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Abstract

Multi-output Gaussian process (GP) regression
has been widely used as a flexible nonparamet-
ric Bayesian model for predicting multiple cor-
related outputs given inputs. However, the cu-
bic complexity in the sample size and the out-
put dimensions for inverting the kernel matrix
has limited their use in the large-data regime.
In this paper, we introduce the factorial stochas-
tic differential equation as a representation of
multi-output GP regression, which is a factored
state-space representation as in factorial hidden
Markov models. We propose a structured mean-
field variational inference approach that achieves
a time complexity linear in the number of sam-
ples, along with its sparse variational inference
counterpart with complexity linear in the number
of inducing points. On simulated and real-world
data, we show that our approach significantly im-
proves upon the scalability of previous methods,
while achieving competitive prediction accuracy.

1 INTRODUCTION

Multi-output Gaussian process (GP) regression models
have been widely used as nonparametric Bayesian models
for modeling correlated multivariate outputs given inputs
under uncertainty. They have been applied to many real-
world problems, including inferring patient-state trajecto-
ries from longitudinal electronic health records (Ghassemi
et al., 2015; Futoma et al., 2017; Cheng et al., 2020), ana-
lyzing neural activity in the brain (Marquand et al., 2014;
Rutten et al., 2020), and modeling genotype X environment
interactions (Cuevas et al., 2017). Several types of multi-
output GP regression have been proposed, such as the
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intrinsic models of coregionalization (IMC; Goovaerts,
1997; Bonilla et al., 2007), linear models of coregion-
alization (LMC; Goulard and Voltz, 1992), collaborative
multi-output GPs (Nguyen and Bonilla, 2014), convolved
GPs (Alvarez and Lawrence, 2011), and mixed-effects GPs
(Wang and Khardon, 2012; Yoon et al., 2022). The well-
known cubic complexity of exact posterior inference in
both the number of samples and the number of outputs
presents a major challenge in applying multi-output GP re-
gression to large-scale data.

To reduce this computational cost in multi-output GP re-
gression, approximate inference methods with sparse in-
ducing points have been widely used (Titsias, 2009; Hens-
man et al., 2013). They reduced the time cost to cubic de-
pendence on the number of inducing points and reduced the
cubic dependence on the number of outputs to linear (van
der Wilk et al., 2020; Yoon et al., 2022).

On the other hand, for single-output GP regression, recent
works have shown that exact inference that scales linearly
in the number of samples is possible, when a stationary
GP with one-dimensional inputs is transformed into its cor-
responding stochastic differential equation (SDE; Sarkka
and Hartikainen, 2012; Grigorievskiy et al., 2017; Sarkka
and Solin, 2019). This approach has been further extended
to sparse variational inference with complexity linear in
the number of inducing points (Adam et al., 2020). This
motivates the problem of identifying the SDE representa-
tion of multi-output GPs to further improve upon the ex-
isting sparse variational inference methods, such that exact
and approximate inference scales linearly in the number of
samples or inducing points.

In this paper, we present the SDE representation for a class
of multi-output GPs, IMC and LMC with one-dimensional
inputs, that has a factorial structure resembling that of fac-
torial hidden Markov models (HMMs; Ghahramani and
Jordan, 1997). We propose a structured mean-field varia-
tional inference strategy (Saul and Jordan, 1995; Blei et al.,
2017) that exploits this factorial structure for linear-time
approximate inference and derive its sparse variational in-
ference counterpart that scales linearly in the number of
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inducing points. In addition, we present ef cient algo- Exact posterior inference in IMC and LMC is expensive for
rithms for handling the block-banded structure in the resultdarge T andP, asO(P 3T 3)-time cost is incurred from in-
ing variational parameters. On simulated and real-worldverting thePT  PT kernel matrix. Sparse variational
data, we empirically show that our approach signi cantly inference with inducing points (Titsias, 2009) has been
reduces the runtime, while achieving competitive predic-widely used along with stochastic optimization (Hoffman
tion accuracy, compared to the existing multi-output GPet al., 2013; Hensman et al., 2013) to reduce the time

regression models with sparse variational inference. complexity for IMC and LMC toO(PLTM 2 + M 3) and
O(PLTM 2 + LM 3), respectively, foM inducing points
2 BACKGROUND andL latent GPs (van der Wilk et al., 2020, Section 4.3.4).
Multi-Output GP Regression. Given univariate outputs SDE Representation of Single-Output GP Regression.
= [y®D;:::yM]T at T distinct time pointst = As an alterr_matwe to sparse variational inference, the SDE
[tW;::::tM]T, single-output GP regression (Rasmusserrepresentatlon of a smgle-outpL_lt G_P has bee_n used _for in-
and Williams, 2005) assumes ference, because exact posterior inference is possible in
A . . linear time with Kalman Itering and smoothing (Murphy,
yO =)+ O; f(t) GP (0;k(t;t9); (1)  2012; Swrkka, 2013). To learn the model, an expectation-

maximization (EM) algorithm (Dempster et al., 1977) has
been used, with Bayesian smoothing in the E-step and opti-
mization of the model parameters and kernel hyperparam-
When the outputs are multivariate, a wide class of multi-eters in the M-step.
output GP regression models have been proposed (s . . .
Alvarez et al. (2012), van der Wilk et al. (2020) for a re- ?E’g?igé:gg%:}az Z?:glfgjfpgtmég,oﬁ tchoemfg]r?:l?/nuégd
\Ii',\e/lvé)'(gggll;:rg2?13’\/\3'?;0;;;’2(;naavéotsgelﬂ é r(gogf\ze:?se (1) can be charact_erized as th_e exact solution (e.g.éMat
1997; Bonilla et al 200,7) which is a special case of th,ekemel) or approximate solution (e.g., squared exponen-
' N ; : tial, periodic kernels) to & -th order linear time-invariant
LMC. The LMC can be viewed as a special case of theSDE (Hartikainen and Bkka, 2010; rkka et al., 2013).
cqnvo_lved GP Alvarez an_d Lawre_nce, 2011) and a gener- Collecting the derivatives df(t) into a state vectaz (t)=
alization of the collaborative multi-output GP (Nguyen and qw..... & 1 (1) 1T .
Bonilla, 2014) and mixed-effects GP (Wang and Khardon/[f (1); 5715 o1, the SDE form of Eq. (1) is
2012; Yoon et al., 2022). The LMC models the correlation
among multiple outputs with a sum of multiple independent dz(t) = Az ()dt+ Bd (t);

where ) N (0; ?),andk :R R 7! Risacovariance
function for the GP prior on the latent functiért).

separable kernels. Suppose that we observe a sequence of f(t)=Uz(),
P-dimensional outputy = [y®;:::;y(M]2 RP T at
T time pointst = [t®;:::;t(M]T. LMC assumes that where (t) is a Wiener process with diffusion coef cient
, , , Q, A 2 RP P s the state-transition matrixB =
yO =)+ O f(t) GP (K (1Y) (2  [0;::::0;1] 2 R is the dispersion vector for(t), and

U =[1;0;:::;0] 2 R P is the output mapping that ex-
tracts the functior (t) from statez(t). The exact expres-

sions ofA, Q, andD depend on the choice of the kernel.
. . For a Maérn kernel with half-integer smoothnesdength-

K (t;t9 = k(619 Koy (3)  scaler, and signal variance?, we have

=t 2 3
0 0

where ) N (0; 2lp),andKk :R R7!/'RP Pisa
matrix-valued covariance function

function de ned over the inputs, and ., Ois aP 0 0 1 0
P matrix modeling the output correlations. The IMCisa A =

special case of the LMC whdn= 1. : " i " :
0 0 0 0 1

An alternative way to construct the LMC is to linearly com- a; P a D1 ap 1 2 ap
bineL independent latent GPs (van der Wilk et al., 2020): 2 P, ( +1
_ | _ % Q= ) 2, D=deg )
yO =t O tm= woe®; .
. =1 @ whereay = °,, = -2, () is the gamma function,
g(t) GP (0;ki(t:t%); 8 2 [L]; andd eis the ceiling function.

wherew- 2 RP induces output correlation. It follows that As the 1 processz(t) satis es the Markov property
K out= W-w! 0, which is a rank-1 matrix. (Gksendal, 2003), noisy observationat time pointd can
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whereA- 2 RP D js the state-transition matrix corre-
— @ @ sponding tok;,(t;t9 (and identical in form toA in Eq.
(5) for Matérn kernel), and - (t) is a Wiener process with
] ) ) diffusion coef cientQ{n corresponding to the spectral den-
Latent : : : sity of ki‘n(t;to). Since the rst component oh-(t) is
SDEs g (t) = Uh- (1), the covariance function takes the form
in Eq. (3) withK ., = w-wT . For notational simplicity,
— @ @ throughout the paper, we assume tRa(t;t9, * 2 [L],
— — — come from the same family of kernels with possibly dif-

ferent hyperparameters, such that the state vectors for all
covariance functions am@ -dimensional. It is straightfor-
ward to relax this assumption.

Output

Figure 1: Graphical model of the factorial SDE for multi- Alternatively, a different factorial SDE is obtained from the

output GP regression. Fo2 [L]andi 2 [T], h® denotes LMC representationin Eq. (2). We obtain an SDE for IMC,

the state vector of theth SDE attime(", andy () denotes when the same strategy for constructing an SDE from a
the P-dimensional output at time?. spatiotemporal model with GP priors with separable ker-

nels (Glad and Ljung, 2000;88kka et al., 2013) is applied

to IMC in Eqg. (2) withL = 1. We extend their result to
be modeled with the following discrete-time model, using construct a factorial SDE for LMC in Eq. (2) by combining
the short-hand notatian(" for z(t(): SDEs for multiple IMCs using the general-purpose algo-
rithm for constructing an SDE from a GP prior with a sum
- - , of covariance functions @kka and Solin, 2019, Section
Transition:p zWjz D =N Oz( D, () -8i 2 [T]  12.3). The resulting factorial SDE is given as follows, with
Likelihood: p yVjz® = N uz®; 2 ;8i 2 [T]; the state vectar (t) = [z;,1(t);:::52-p ()T]T 2 RPP,

Zp(t) 2 RP, forall” 2 [L]andp 2 [P]:

dz () =[lp A-]z-(t)dt

Initial state:p z® = N(0; 1 );

Hhere M=t (v O=evA gnd O =
(i)
0

e " )ABEBTel Y )ATd . For stationary [l Bld -(t): 8 2[L]
covariance functions, it is possible to compute) without F ’ 7)
numerical integration by using the discrete Lyapunov equa-

bS
f)=[r Ulz:(t);

tion, W= M | (O (sarkka and Solin, 2019, .

Section 6.5). The closed-form expression of the steady-

state covariance ; can be obtained by solving the contin- Where - (t) is aP -dimensional Wiener process with diffu-

uous Lyapunov equatioh 1 + 1 AT+BQBT =0, Sion matrixQ;,K o, corresponding td, (t; t)K o, and

where the exact form of , is different for different ker- ~ denotes the Kronecker product.

nels (Sirkka and Solin, 2019, Sections 6.5 and 12.3). The main advantage of the factorial SDE in Eq. (6) over
the one in Eq. (7) stems from the smaller state space with

3 FACTORIAL SDE REPRESENTATION DL state variables in Eq. (6), as opposedBL state

OF MULTI-OUTPUT GP REGRESSION variables in Eq. (7). This reduction of the state-space size

is achieved by modeling the output correlation wia in

In this section, we introduce a factorial SDE representaih€ linear combination of the latent states, instead of via

tion of the LMC to achieve linear-time inference in multi- K out In the stochastic component(t) of the SDE. As the

output GP regression. We consider the LMC in two differ- smaller state space leads to more ef cient inference, for the

ent forms, one in Eqg. (2) and the other in Eq. (4). We showrest of this paper we focus on the factorial SDE in Eq. (6).

that the factorial SDE representation of the latter form |ead@ur factorial SDE has a distributed State_space representa_
to a signi cantly more compact model and more ef cient tion resembling that of factorial HMMs (Fig. 1; Ghahra-

inference than that of the former form. mani and Jordan, 1997). It represents the multi-output GP
We represenf (t) in the LMC in Eq. (4) as the fol- with a sum of separable kernels, while keeping the dynam-
lowing factorial SDE with the state vectdn-(t) = ics of all latent GPs decoupled. As we show in Section

4, this leads to linear-time inference compared to the GP
representation in Egs. (2) and (4).

. D 1,
[g (1); ;000 S 0]T 2 RP:

dh-(t) = A-h-(t)dt+ Bd (t); 8 2 [L]

X (6)
f)=  w-Uh-(t):

=1

Graph Kernels. Our factorial SDE can also be used to
represent multi-output GPs with graph kernels (Kondor
and Lafferty, 2002; Borovitskiy et al., 2021; Nikitin et al.,
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2022), when thev-'s for * 2 [L]in Eqgs. (4) and (6) corre- sparse variational inference previously developed for learn-
spond to a rank- approgglmatlon to th® P graphkernel ing an SDE model for single-output GP regression (Adam
matrixK g, i.e.,K g o W w! et al., 2020) into a single framework. Our approach lever-
ages the factorized structure oderSDESs in our factorial
Handling Multi-Dimensional Inputs. We can extend model for ef cient learning. Second, we employ the ex-
our factorial SDE to handle multi-dimensional inputs by isting generic algorithms for block-tridiagonal matrices to
assuming a multi-output additive regression model (Duvedirectly exploit the block structure in the variational pa-
naud et al., 2011; Lu et al., 2022). Fordimensional input  rameters for ef cient computation, which is applicable in
x () = [x(')' o ('>]T and outpuy (), we can extend Eq. both single-output and multi-output settings. Overall, our
(4)asy) = c=1 f. x0 + ) where for eacls 2 [C], approa_ch ac_hleves_ time cpmplexny linearTirtime pomt_s _
andM inducing points for inference, compared to cubic in

the SDE representation b x¢) s given by Eq. (6). T andM in the existing methods.

Handling Heterogeneous Outputs. To model observa-
tions with heterogeneous outputs (e.g., categorical, binary}gqate the structured mean- eld for factorial HMM and
we can assumg®  pyj f % where () maps \aniational inference for the SDE form of single-output GP
the latent function values to the appropriate parametefeqression as follows. As in structured mean- eld for fac-
space via a set of inverse-link functions (Morenofda 45| Ly (Ghahramani and Jordan, 1997), we approxi-
et al., 2018), and the SDE representationfot(") is mate the posteriop h(l:T)jy(l.T) with a variational dis-

given by Eqg. (6). To handle the resulting non- CONjUYACY, . i that factors across theSDES:
we can use approximate smoothing methods such as ex-

tended Kalman smoothing (Murphy, 2012argka, 2013)
and numerical integration methods such as Gauss-Hermite q hy.
quadrature (Hensman et al., 2015) for approximate poste- =1

rior inference. Then, for each factog h'*™) above, we use the param-

eterization of the variational distribution used in single-
4 VARIATIONAL INFERENCE output GPs (Durrande et al., 2019; Adam et al., 2020):

Structured Mean-Field Variational Inference. We in-

(l T) _ @T) .

qh

As in factorial HMM, exact inference and learning for the q h*D =N (m-;S.1):
factorial SDE in Eqg. (6) is possible via EM but expen-
sive. The complete-data likelihood of nite samples for the ™
discrete-time model of Eq. (6) factorizes as

- 2 RTP above is the variational mean a®d is the
TD TD variational precision matrix with a symmetric
block-tridiagonal structure:

py®™hED = py®DjhED ph{" Zom gen g 0o
T oyoig T Ot v e sen  g@  geRr

i=1 =1 i=2 S = 0 SB2 s® 0 :
where, for simplicity, we use the short-hand notations : . . . TT T
y(1 T) = fy(l)':“'y”)g h(l T) — fh(l) ..... h(T)g . . . (T;T. ) S. -
andh(llzLT) = fh(l1 [RERTEY h(1 T)g Then, in the EM algo- 0 0 S S:
rithm, the E-step computes the postefioh{: ™ jy @) whereS") ands™?) for i;j 2 [T]areD D matri-

with Bayesian smoothing. As in factorial HMM, the E- ces. This block-banded parameterization re ects the rst-
step for factorial SDE is prohibitively expensive whiens order Markovian structure present in the SDE pft).
large, because at each time pdittt, all of the latent states e denote the collection of non-zero tridiagonal blocks as
h® for all ° 2 [L] become dependent given the observa-BTD(S:). As in Adam et al. (2020), we parameterize the
tiony() and thus the ltering and smoothing updates havedistribution with the Cholesky fact®: = R-RT, where

to be carried out oL -dimensional state vectors, instead R+ has the same structure as the lower triangular part of
of the much smalleb -dimensional state vectors for each S- (Cao et al., 2002). We constrain the diagonal entries
of theL latent SDEs. of R- to be positive to ensur8- 0 during optimiza-
tion. The block-banded structure &f- implies that we
only need to keep BT{R-) in memory withO(LTD 2)
space.

In this section, we develop an ef cientinference method for
our factorial SDE representation of the multi-output GP re-
gression. Our contribution is two-fold. First, we combine
the structured mean- eld algorithm previously developedGiven datay =[y®;:::;y(M]atT time points, we opti-

for factorial HMM (Ghahramani and Jordan, 1997) and themize the kernel hyperparameters and the variational param-
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eters by maximizing the evidence lower bound (ELBO): Table 1: Time and space complexities of sparse variational
inference for different models.

X , S
E. lo (i)'h(l.) KL hgl:T) hgl:T)
i1 9 90P YT - q P Model Time Space
TP 5 1 . IMC O(PLT,M2+ M3)  O(LM + M?2)
= plu@ % iy Vi LMC O(PLTMZ+ LM3)  O(LM 2)
1 X N o FSDE O(PLTD?) O(LTD 2)
57w S FSDE-SVI O(PL(Tp+ M)D3)  O(LMD ?)
=1 i=1
S iSi
% Iog!s—‘l. TD+m! m-+1t( S Y
=l b where theD D matricest g, satisfy the recurrence
where¥ = [y();:::pM] ) = L wuUm®is relatons ;=0and ;=s® s P 156V
the prediction for theé-th sample, - is theTD TD fori =2;:::;T. Previous work on SDE models of single-

precision matrix of the priop h®™)  ands. 1 is the  Output GP regression (Durrandg et al., 201.9; Adam et gl.,
2020) computed the log-geterminant by using the identity
logjSj = 2logjR-j =2 log([R]), where[R-] is

A major bottleneck in evaluating the ELBO is in comput- the k-th diagonal element of the Cholesky fact®r. Al-

ing the terms that involve the variational precision matrix:though their approach has the c@&(TD) compared to
fs. 1gT, andlogjS-j. To avoidO(T3D3) complexity ~O(TD?) in our approach, in practice, this difference in
with standard matrix operations, previous works on singlecomputation time is negligible sind® is typically small.
output GPs took advantage of the banded structui® pf Importantly, in our experiments with the factorial SDE, we
but ignored the block structure in the block-tridiagonal ma-found their approach to be often numerically unstable, for
trix (Durrande et al., 2019; Adam et al., 2020). Below, we larger dimensions oR - due to many near-zero diagonal
show ef cient methods for performing these matrix opera-entries inR -, whereas our approach did not suffer from nu-
tions that directly work with the block structure ®. Our ~ merical instability because we use the recursion in Eq. (9)
approach is easy to implement,&sis stored as its blocks that honors the block structure from the Markov property.
in memory, and is numerically more stable.

i-th diagonal block oB. .

We compute the inversés. @ g, inO(TD3) time, us-
ing the block-by-block inversion algorithm by Reuter and
Hill (2012) that directly leverages the block structures in
S-. Itrecursively calculates each diagonal and off-diagonal
block inS. ! in terms of the blocks i+ :

Natural Gradient Updates. To speed up convergence,
we update the variational parameters with natural gradi-
Fnts, again taking advantage of the block structui® irin
constrast to previous approaches that considered only the
banded structure i6-. Following Hoffman et al. (2013)

s 10 (Sgi) _ NS and Salimbeni et al. (2018), we compute the natural gradi-
G ) ' ' ! T (8) ent of the ELBOL with respect to the variational parame-
s = (s ) sl g 1t ters - =[m-;BTD(R-)] as
where theD D matrices + = 0 and ; =
st gl 1y 18U D forj 2 [T 1], and @ -
,=0and ;=s@ Vgl n (D 156 VT "t e T b (10)
fori =2;:::;T. Previous works ignored the block struc-

ture in S-. Instead, they treatefl- as a generic banded
matrix of sizeTD  TD with bandwidthB =2D 1and Where - =[S m-; 1BTD(S:)] are the natural parame-

computed each column with the total c@TB2), which  ters, - =[m-;BTD(m-m7 + S. 1)] are the expectation
lead to including some zero entries that are not part of theyarameters off h™ ™ |, andr . L is the Euclidean gradi-
blocks (Durrande et al., 2019; Adam et al., 2020). ent with respect to-.

We computelogjS:j in O(TD?®) time, using the algo- Computingr .L = (£-)"r L inEq. (10) requires
rithm for block-tridiagonal matrices by Salkuyeh (2006) an efcient computation of BTDR:) from BTD(S. 1).
that again directly works with block matrices. Following While previous works on single-output GP regression (Dur-
Salkuyeh (2006), we express the log-determinant as rande et al., 2019; Adam et al., 2020) used a banded ma-
X trix algorithm to perform this computation, we use the
logjS-j = logj ij; (9)  O(TD?) algorithm by Asif and Moura (2005) that directly
i=1 obtains each block in BT(R ) in terms of the blocks in
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BTD(S. 1) recursively: We train all models in two different optimization settings:
one in which we update both the kernel hyperparameters
R® = chol (s.1") 1 ; and the variational parameters with Adam (Kingma and Ba,
2015) and the other in which we update the kernel hyper-
RM = chol s g’ (g 17y 1g0i+1:) 1; parameters with Adam and the variational parameters with
B _ _ natural gradient descent. For the momentum hyperparam-
RGBT D= (s 1y 15 1" PROD. (11)  eters in Adam, we use the default values given by Kingma

and Ba (2015). For the factorial SDEs, we use the learning
This algorithm is easily incorporated into Jacobian-vectorrate scheduler proposed by Salimbeni et al. (2018), where
and vector-Jacobian product operations within modern authe learning rate for natural gradient descent is log-linearly
tomatic differentiation frameworks such as TensorFlowincreased from an initial learning rate to a nal learning rate
(Abadi et al., 2016) and JAX (Bradbury et al., 2018). over a prede ned number of iterations. We also use gra-

dient clipping with a max-norm threshold @f* to guard
Sparse Variational Inference. To furtherimprove scala- against numerical instability during training (Pascanu et al.,
bility, we modify the approach above for sparse variational2013). To check for convergence, we compute the abso-
inference with minibatch training (Hoffman et al., 2013; lute percent change in successive averages of the ELBO
Hensman et al., 2013; Adam et al., 2020). We provide decalculated with a window size of 40 and declare conver-
tails of the sparse variational inference approach in Sectiogence when we observe a total of ve drops below a toler-
A of the Supplementary Material. The computational costsance of10 °. We optimize all models to convergence but
of calculating the ELBO and the natural gradient updatesstop if the optimization fails to converge within 24 hours
areO(MD 3) for M inducing points using the algorithms or reaches 50,000 iterations, whichever comes rst. We
in Egs. (8), (9), and (11). With minibatches of sikg the  run all experiments on AMD EPYC 7742 CPUs each with
complexity of inference is reduced @(P L(Tp,+ M )D?3), 16GB of RAM and 2.25-3.40 GHz clock speed and com-
which is linear inM , in contrast to the cubic dependency pute the mean absolute error (MAE) and negative log pre-
on M in the existing sparse variational methods for IMC dictive density (NLPD) to assess performance. We imple-
and LMC. The time and space complexities of our and ex-ment the factorial SDE models in JAX (Bradbury et al.,
isting methods are summarized in Table 1. 2018) and all of the baselines in GP ow (Matthews et al.,

2017).

Forecasting and Smoothing for Prediction. We make a

forecasting prediction when a new time pdint is greater 5.1 Simulation Data

than the last training time poirit™) or the last inducing

time points(M). We make a smoothing prediction when We demonstrate the accuracy and scalability of different
t( ) is between two training time point§ 1 andt() for  methods on a small simulation dataset vi#t 10 outputs
somei 2 [T] or between two inducing time poings' v andT = 100 samples and on a large simulation dataset
ands(") for somei 2 [M]. For new time point$( ) 2 R,  with P = 30 outputs and’ = 10; 000samples.

the approximate posterior predictive distribution is given as

z Small Simulation Dataset (31ALL -Sim). For the small

r . ¥ dataset, we sample noisy observations from a LMC
pyCiy®D Py )Jh(lia . q ht) dh(lia with ve Mat’ern—g latent GPsf gy (t);:::;05(t)g, w-
= ! N (0;2Ip) for * 2 [L], and 2 = 0:2 at equally spaced
=N x w-um ¢ ).Xh [S. 1 )]1-1W~WT Lo inputst 2 [0;50] For the latent GPs, we use signal vari-
- L * P ance ? =1 for® 2 [L] and lengthscaleB 1;:::;rs] =

[0:5; 0:5; 0:75; 1; 1] as the kernel hyperparameters.

wherem () is the mean ands. is the covariance For extrapolation, we hold out the last 20 samples as test

matrix of the approximate posterior distributi(nphg ) data, and for interpolation, we perform a ve-fold cross-

We provide the moments af h ) for forecasting and validatio.n using the rem_ajning SQ samples. inen that the
smoothing tasks in Section B of the Supplementary Mg dataset is small, we additionally include exectinference
terial. baseline, whose kernel hyperparameters are optimized with
respect to the marginal log-likelihood using L-BFGS (Liu
and Nocedal, 1989), to evaluate the quality of the approx-
5 EXPERIMENTS imate posterior predictions. For all models, we use ve
latent GPs with Ma&rn% kernels, whose signal variances
We compare the variational and sparse variational inferencand lengthscales are initialized to 1. For the sparse models,
methods for our factorial SDE against those for the IMCwe use an equally spaced gridMf = 30 inducing points
and LMC baselines on simulated and real-world datasets.and use minibatches of siZg = 40. When Adam is used

()
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Table 2: Five-fold cross-validation results om&.L -Sim. ()

INTERPOLATION EXTRAPOLATION

MODEL MAE NLPD MAE NLPD

Exact  L-BFGS 221 028 1.16 003 3.28 004 1.67 0.02

IMC ADAM 2.66 0.15 2.51 0.05 3.70 020 2.60 0.04

IMC NGD 2.66 0.12 251 005 3.63 0.16 2.61 0.04

LMC ADAM 265 015 250 0.05 3.64 0.17 2.58 0.04

LMC NGD 2.64 013 250 005 371 023 3.71 0.23 (b)
FSDE ADAM 230 0.33 1.17 0.05 3.33 003 1.67 0.03

FSDE NGD 231 0.34 120 0.04 3.30 0.02 1.64 0.04

FSDE-SVI Abam 2.85 0.30 1.83 0.27 3.24 0.05 1.77 0.06
FSDE-SVI NGD 255 0.13 247 065 3.23 0.04 219 0.09

to optimize both the kernel hyperparameters and the varia-
tional parameters, we set both the learning ratéor the (©)
hyperparameters and the learning ratéor the variational
parameters td0 2 for all models. With natural gradients,
we set , to 10 2 for the IMC and LMC baselines, change

> from10 4t010 2 over 4,000 iterations for the factorial
SDE and from10 ° to 10 4 over 4,000 iterations for the
factorial SDE with sparse variational inference.

Figure 2 shows the posterior predictions on one of thegd)
10 outputs after each model is trained on one of the 5
train-test splits with natural gradient updates. The predic-
tions and uncertainty estimates given by the factorial SDEs
closely match those of the exact posterior. In constrast, the
IMC and LMC baselines provide signi cantly undercon -
dent predictions that are overly smoothed despite having
the same number of inducing points and latent GPs as th
factorial SDE with sparse variational inference. These re-
sults are consistent with the ndings for single-output GP
regression in Adam et al. (2020) that using the SDE rep-
resentation for variational inference increases the effective
number of inducing points, as they becomealimensional
states instead of scalar-valued function evaluations. Table
2 summarizes the ve-fold cross-validated test MAE and
NLPD for all models trained in both optimization settings.
It shows that the factorial SDE models consistently outper
form the IMC and LMC baselines.

Figure 2: Comparison of the posterior predictions on one
train-test split of MALL-SiM data. (a) LMC with exact
inference, (b) IMC, (c) LMC, (d) factorial SDE, and (e)
factorial SDE with sparse variational inference. The gray

Large Simulation Dataset (LARGE-SIM). We generate iicks on thex-axis are the inducing time poinss

data from a linear combination @f sinusoidal functions
that are randomly shifted and scaled. With inpuggjually

spaced in [0,1000], for the-th gutput at, we take a noisy _ .
observation of functiofip(t)= * ;5 Vi (t) with all models, we use ve latent GPs with Man-3 kernels,

N (0;1) andv; (t) = i=1 Zsin(%) + C(kl) sin 0:1 \1vh?:soer fri]gengl variances and lengthscales are initialized to
@ @ @) A N . parse models, we use an equally spaced grid
g’ (t ) , whereg Uniform(1; 3); ¢ of M = 1;000inducing points and minibatches of size
Uniform( 5;5), and cl(f) Uniform( 10;10). We set T, = 1;000 With Adam for both the kernel hyperparam-
the observation noise to have unit variance. eters and variational parameters, we se&  , = 10 2

. f?r all models. With natural gradients for the variational
For extrapolation, we hold out the last 200 samples as tes arameters, we sep t0 10 2 for the IMC and LMC base-
data, and for interpolation, we perform a ve-fold cross- P §

lines, and change, from 10 4 to 10 2 over 500 iterations

validation using the remaining 9,800 samples. Since th . . o .
dataset is much larger, we focus on the IMC, LMC, andef'orthe factorial SDE with sparse variational inference.

the factorial SDE with sparse variational inference. ForTable 3 shows that the factorial SDE consistently outper-
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Table 3: Five-fold cross-validation results oARGE-SIM.

INTERPOLATION EXTRAPOLATION TIME

MODEL MAE NLPD MAE NLPD ()

IMC ADAM 323 0013.04 010 623 0.04 342 009 24 0.00 @)
IMC NGD 3.25 001 3.33 0.13 648 0.02 402 010 24 0.00

LMC  ADAM 323 001310 0.13 625 0.04 347 011 24 0.00

LMC NGD 325 001 3.35 0.14 649 002 403 0.12 24 0.00

FSDE-SVI Abam 3.23 0.01 2.82 0.00 6.19 0.033.18 0.00 2.620.71
FSDE-SVI NGD 3.23 0.01 2.82 0.00 6.18 0.083.18 0.01 2.57 0.92

(b)

Figure 4: Comparison of the computation time for different
(@) (b) methods on real datasets. (a) Total runtime. (b) Average

time per gradient update step.
Figure 3: Effects of the number of inducing points on the

runtime of different models onARGE-SIM data. (a) Total
runtime. (b) Average time per gradient update step. 5.2 Real Data

We compare the performance of our factorial SDE with

sparse variational inference against that of LMC and IMC

on four real datasets: COVID-1978ck!, ENERGY, and
forms the baselines on prediction accuracy in signi cantly AIR QUALITY . For the latent GPs of all models, we use
less time. In particular, the factorial SDE is the only modelMatérn% kernels, whose signal variances and lengthscales
that converges within the given time budget (see Figure Sare initialized to 1. We include other details of the experi-
in the Supplementary Material for the ELBO plots over it- mental settings in Section C.2 of the Supplementary Mate-
erations). rial.

Using one of the train-test splits, we evaluate how the run-
time for each model changes as we increase the number

inducing pointsM from 200 to 1,000 with increments of versity of daily conrmed COVID-19 cases in the U.S.

200 points. Figure 3 shows that, as we increase the num- )

ber of inducing points, both the total runtime and the ave?—tDong et _al., 2020). We usla the case count$Xer 3, 091
: : - counties in the U.S. over = 273 days from July 2020 to

age time per gradient update grow at a signi cantly SIOWerMarch 2021, treating each day as an input and each coun

pace for the factorial SDE than for the baselines. This is ! g Y P ty

because each gradient update scales cubical for the as an output. We log-normalize the case counts tq be real
baselines but only linearly for the factorial SDE. Moreover, values. We hold out the last 31 days for extrapolation and

while the computational cost for using natural gradients israndomly take a 80-20 split to obtain the training and inter-

signi cantly higher than using Adam in the baseline mod- polation data. For all models, we use minibatches of size

els (Salimbeni et al., 2018, Section 3), the difference isTb = 150 andM = 50 inducing points.

negligibly small for the factorial SDE. Although the worst-
dugily g Stock. We use the closing stock prices Bf = 31

case complexity does not change across the two optimiza- . . :
pexty g y companies in the Dow Jones Industrial Average index over

tion settings for either the baselines or the factorial SDE, in”~_ "~
practice, the additional overhead for calculating the naturgir = 3;018weekdays between 2006 and 2017. We stan-

gradients does lead to a noticeable difference between th%ardae the stock prices to have zero-mean and unit vari-

baselines and the factorial SDE. This illustrates that for & & fWe t;‘eat each weekday as anV{/nprL]Jt Snd thﬁ SItOCk
given computational budget, the linear dependenc&lon price of each company as an output. We hold out the last

for factorial SDEs allows us to afford signi cantly more 200 days for ext_ra_polatlon_and randp mly take a 80-20 split
inducing points for better posterior approximation and still obtain the training and interpolation data. For all mod-
use the natural gradients for faster and improved conver- pips:/www.kaggle.com/datasets/szrlee/

gence with little to no additional computational overhead. stock-time-series-20050101-t0-20171231

OVID-19. We use the data provided by the Center for
ystems Science and Engineering at Johns Hopkins Uni-
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Table 4: Test results on real datasets.

COVID-19 STock ENERGY AIR QUALITY
Interpolation Extrapolation Interpolation Extrapolation Interpolation Extrapolation Interpolation Extrapolation
MODEL MAE NLPD MAE NLPD MAE NLPD MAE NLPD MAE NLPD MAE NLPD MAE NLPD MAE NLPD
IMC AbpAam 0.619 1.142 0.996 1.108 0.072 -0.940 1.622 9.585 0.136-0.232  1.407 3.282 0.687 1.418 0.718 1.365
IMC NGD 0.619 1.144 3.594 1.174 0.072 -0.916 1.652 10.231 0.137 -0.189 1.604 4.293 0.671 1.488.717 1.449
LMC ADAM 0.616 1.152 2.330 1.166 0.072 -0.940 1.605 9.022 0.136 -0.229 1.455 3.556 0.699 1.449 0.718 1.389
LMC NGD 0.627 1.169 4.013 1.206 0.072 -0.893 1.649 9.301 0.137 -0.029 1.617 2.995 0.669 1.480.717 1.443

FSDE-SVI Abam 0.799 1.212 0.892 1.167 0.133 -0.3161.500 3.932  0.132-0.217 1.157 1.489 0.762 1.417 0.719 1.274
FSDE-SVI NGD 0.683 1.162 0.861 1.146 0.083 -0.763 1.657 5.360 0.132 -0.212 1.853 2.555 0.353 0.917 0.727 0.969

els, we use minibatches of sidg = 500 andM = 500 Table 4 shows that the factorial SDE achieves competitive
inducing points. results in both MAE and NLPD across all datasets. In par-
ticular, for the AR QUALITY data, which has the largest

number of samples, the factorial SDE trained with natural

energy consumption of home appliances in a low-energ radient_dgsgent reduces the MAE of the other models by
building (Candanedo et al., 2017). The dataset consist alf. bTh'S IS In p;trt duel to the factbthat th_e fagtonal S?]E
of temperature measurementsin= 10 different rooms cr?n e opt.|m|z§ dfor a larger number Iofb|.t|§ra.t|or;]s within
across the building taken at 10-minute intervals for 4.5t € given “”?e u get, owing to its scalability In the num-
ber of inducing points. We also observe that for the fac-

months, amounting td = 19; 735samples. We treat the . ; . g .
relative time of each measurement as an input and the teng(—)rlal SDE, using natural gradients consistently improves
convergence, MAE, and NLPD across all datasets.

perature of each location as an output. We hold out the
last 200 samples for extrapolation and randomly take a 80-

20 split to obtain the training and interpolation data. For6 DISCUSSION AND CONCLUSION

all models, we use minibatches of sizg = 1;000 and

M = 1;000inducing points. We presented the factorial SDE for multi-output GP re-
gression, and proposed a structured mean- eld variational
inference strategy that exploits the factorial structure. In

AIR QUALITY . We predict the hourly air pollutant mea- both simulated and real dat . t h d that
surements collected from the Gucheng subdistrict in Bei- oth simulated and real data experiments, we showed tha
ur approach signi cantly improves the scalability while

jing between March 1st, 2013 and February 28th, 2017Yr apl -
(Zhang et al., 2017). We consider = 7 real-valued achieving comparable or better prediction accuracy, when

measurements—the PM: PM;o: SO,: NO,; CO; O3 con- compared to existing sparse variational inference methods

centration levels and temperature. We obtain measurefprthe LMC and IMC.

ments afl = 26; 034time points and standardize the data. There are several limitations of our work that remain as
We hold out the last 300 samples for extrapolation and ranfuture work. As we only introduce inducing points and
domly take a 80-20 split to obtain the training and inter- perform minibatching along the time dimension for sparse
polation data. For all models, we use minibatches of sizesariational inference, the scalability of our proposed ap-
Ty, =1;000andM = 2;000inducing points. proach to datasets with a large number of outputs (e.g.,
gene expression data with a large number of genes) can be
mproved further by introducing additional approximations
long the output dimension. In practice, the block-banded

ENERGY. We use the data from a study for predicting

The results on runtime for all sparse variational inferenc
methods on the four real datasets are summarized in Fi

ure 4. The total runtimes in Figure 4(a) and the ELBO - ! . ) o . .
plots in Figure S2 of the Supplementary Material show thafMatrix operations involving the variational precision matrix
can become numerically unstable during training, and em-

the factorial SDE with sparse variational inference is the” . icallv stabl hes to the factorial
only model that either reaches convergence or reaches t oying more numerically stable approaches o the factoria
DE can further improve its performance.

maximum set of iterations in under 24 hours for all real
datasets. For theT®CK, ENERGY, and AR QUALITY
datasets, for which we use moderate to large numbers of if\cknowledgements

ducing points, we observe signi cant improvements in the__ .

average time consumed per gradient update compared %2'; 1W|_|cgg ;Z)agzguF;?]ZrtﬁldsE}/Dgllgi};‘gégG%%j%’?ésl\“sﬂ' i
the IMC and LMC baselines (Fig. 4(b)). For the COVID- ' ; ' P
19 data, the total runtime and average time per step a@orted by the ARCS Foundation.

similar across all methods, as all methods scale linearly

with respect to the number of outputs (see Table 1) and

only M =50 inducing points are used.
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A SPARSE VARIATIONAL INFERENCE

In this section, we provide details on the factorial SDE with sparse variational inference discussed in Section 4 of the
main text. Letfu™™ )ngl be the inducing states for the SDE representation of latentf@R§)g-_, atM inducing

but this can be relaxed. As the state vectors in the factorial SDE representation correspond to the deriait)e shaf
inducing states can be interpreted as inter-domain inducing featuaear@-Gredilla and Figueiras-Vidal, 2008lyarez

et al., 2010; Adam et al., 2020). Following standard practice (Titsias, 2009), we approximate the augmented posterior
distributionp h{: ™ u™)jy @) with the variational distribution

. . ¥ . .
@T). @My _ T T M)

qhyp ugy utM

q

=1

where
qu®™ =N@m-s. 1)
m- 2 RMP above is the variational mean aBd is theMD  MD variational precision matrix with symmetric block-

inference approach is

Xb L X . .
Leio=  Eq logp yVjhfy KL qu®™™ pu®
i=1 =1
ToP 1 iy 1 X X (\)
= —-log@ %) SSiy Vi 55 Giwi? SHE
=1 i=1
1 Iog!s—l. MD +mT m-+tr( S b ;
2., i
P :
where? = [¢® ;9] 90 = L w.um ¢ is the prediction for thée-th sample, - istheMD MD precision
matrix of the priorp u®™) and m®;s. 1" are the moments of the approximate posterior forittie data point
gh® = "p hDju®EM) q &M gu®M) e provide details for the forecasting and smoothingrof); s. 1

from the variational paramete(sn-;S-) in Section B of the Supplementary Material. Keeping the inducing states as
global latent variables, we apply stochastic optimization for ef cient learning and inference (Robbins and Monro, 1951;
Hoffman et al., 2013; Hensman et al., 2013).

B FORECASTING AND SMOOTHING FOR PREDICTION

In this section, we provide details for computing the forecasted and smoothed moments of the approximate posterior
g h') atanew time point() 2 R. Note thatg h' ) takes the form

(R . . .
p hOjh™ D g h® D dh™ ™) (Factorial SDE)

h) = R . . .
d p hOju®M) g u®M) gu™™) (Factorial SDE with sparse variational inference).

Due to the Markov structure of the factorial representation of LME) is conditionally independent of all other states
given the states in theth SDE that are closest in time. For the factorial SDE, the closest states come$d and for
the factorial SDE with sparse variational inference, the closest states comae %dh. We make dorecastingprediction
whent( ) is greater than the last training time pott) or the last inducing time poirg™). We make asmoothing

prediction whert( ) is between two training time point§ » andt(") for somei 2 [T] or between two inducing time
pointsst Y andsl) for somej 2 [M].

Below, we provide the expressions of the approximate moments for both the non-sparse and sparse variational inference
settings. We can then plug in the resulting approximate moments into the posterior predictive distgbytion
p yO)jy®T) in Section 4 of the main text to predict the outputs at unobserved time points.
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B.1 Factorial SDE

For the factorial SDE, the forecasting momentsqdig ) are given by

m)=e AmM.
Z
s =g Ag 1e AT, el A BQ-BTel ATy
0
where , tO ™ and(m™;s. ") are the moments af h{™ .

The smoothing moments qf h) are given by

mi)=m ‘;1m§i RN «;zmgi);
S. 1) = M ‘;1;M "o S. 1G 1) M ‘;1;M - T + (JI 1:i);
where

Mogze™ 4+ (0D 00 @ 0 ()0 0

Mo,z (0D 0T O (oo

with P, () ¢ . next (@) () ) denoting the prior cross-covariance matrhdf) andh®, 7 1)

denoting the prior conditional covariance matrixndf’ givenhgi Y andh", ands. ¢ denoting the2D 2D block
[S- i wii 1i. The exact expressions for the cross-covariance and conditional covariance matrices can be derived from
the prior joint distribution oveh ! Y:h{? andh!” and are given as
01 _ revp . i
(i - e "A 1
g ;i) - ‘;l e nexlAT;
(i u)_ () (iion) (on t (i 1:i)7
P D () B O I G L G I N O B O B GO

(i O O @ iy (GO OREN G

B.2 Factorial SDE with Sparse Variational Inference

For the factorial SDE with sparse variational inference, the forecasting momeﬂnﬂsfo} are given by

m=e AmM;
Z
s =z Ag Mg AT, & A BQBTe A4
0
where , tO) ™) and(m™;s. 1™’} are the moments af u™’ .

The smoothing moments qf h$) are given by

m0)

MomO DM o,m®;
S =M M, Y MM, T U1 D,
where
Mogze™ 4+ (1D OF O 0O ()0 o
M= (1D 07 Oy (o,
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with P tO) g0 b, net g0 O () genoting the prior cross-covariance matrixidf’ andu’,

(i denoting the prior conditional covariance matrixfdf’ givenufj Y andu!’, ands. 10 = denoting the
2D 2D block[S. 1]j 1jj 1j- Asinthe smoothing equations for the factorial SDE, the exact expressions for the cross-
covariance and conditional covariance matrices can be derived from the prior joint distributio:fjov]ér, h ); andu’
and are given as

SIEFPEUNE
(i) = c1e nextAT;
i - O (S DI (R D ! (o )7
—e A4 i) ! D! 1)T+ (i SJ)T () ! f;i)T

(i D O O O D @ T

C ADDITIONAL EXPERIMENTAL DETAILS

In this section, we provide additional results and details on the experimental setting for the simulation and real data
experiments.

C.1 Convergence on [ARGE-SIM Data

Figure S1 shows the ELBO over time and over iterations for all methods on one train-test split egfRbe-ISIM data,

as we vary the number of inducing poiriés. The optimization for the factorial SDE with sparse variational inference
converges faster in terms of both time and iterations across all settinds obmpared to the IMC and LMC baselines.

For the IMC and LMC baselines, &% increases, optimization often fails to converge within 24 hours, due to their cubic
dependence ol (the baselines with natural gradient descent in Figs. S1(b) and S1(c) and all baselines in Figs. S1(d) and
S1(e)). In addition, we see that using natural gradients for the factorial SDE often speeds up convergence, especially when
M is large.

C.2 Additional Details on Real Data Experiments

COVID-19 For all models, we use 300 latent GPs, to accommodate the large number of ¢utpuds 019 When
Adam is used to optimize both the kernel hyperparameters and the variational parameters ;we sgt= 10 2 for the
IMC and LMC baselines, and; = 10 3 and , = 10 * for the factorial SDE with sparse variational inference. When
using natural gradients for the variational parameters, we,set10 2 for the IMC and LMC baselines, and change
from 10 ®to 10 “# over 15,000 iterations for the factorial SDE with sparse variational inference.

Stock For all models, we use 15 latent GPs. When Adam is used to optimize both the kernel hyperparameters and the
variational parameters, we sat= , = 10 3 for all models. When using natural gradients for the variational parameters,

we set , = 10 2 for the IMC and LMC baselines, and changefrom 10 ° to 10 2 over 1,000 iterations for the factorial

SDE with sparse variational inference.

ENERGY For all models, we use 5 latent GPs. When Adam is used to optimize both th# kgperparameters and the
variational parameters, we sat= , = 10 3 for all models. When using natural gradients for the variational parameters,
we set , = 10 2 for the IMC and LMC baselines, and changefrom 10 °to 10 2 over 1,000 iterations for the factorial
SDE with sparse variational inference.

AIR QUALITY For all models, we use 5 latent GPs. When Adam is used to optimize both the kernel hyperparameters
and the variational parameters, we set= , = 10 2 for all models. When using natural gradients for the variational
parameters, we sep = 10 2 for the IMC and LMC baselines, and changefrom 10 °to 10 2 over 1,000 iterations for

the factorial SDE with sparse variational inference.
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C.3 Convergence on Real Data

Figure S2 shows the ELBO over time and over iterations for all methods on the four real-world datasets. For the rel-
atively small COVID-19 dataset with a relatively small number of inducing pdihts= 50, all methods have similar
performance: all baseline methods with natural gradient descent converge, and the other baselines and the factorial SDE
with sparse variational inference proceed until the maximum 50,000 iterations is reached within 24 hours (Fig. S2(a)).
However, for larger datasets with more inducing points such as tleee§ (M = 500), ENERGY (M = 1;000, and

AIR QuALITY (M = 2;000 datasets, the factorial SDE signi cantly outperforms the baseline methods. The optimization
of all of the baselines fails to converge within 24 hours, whereas optimization of the factorial SDE reaches approximate
convergence (i.e., the ELBO plateaus) in signi cantly less time (Figs. S2(b)-S2(d)). As in the simulation experiments with
the LARGE-SIM data, these results empirically demonstrate that the linear dependeiefanthe factorial SDE with

sparse variational inference results in signi cantly faster learning compared to the IMC and LMC baselines with cubic de-
pendence oM . We also see that using natural gradients for the factorial SDE consistently achieves higher ELBO values
across all datasets.

D SOFTWARE

The software is available &ttps://github.com/SeyoungKimLab/Factorial SDE
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