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Abstract

Feature attribution methods identify which fea-
tures of an input most influence a model’s out-
put. Most widely-used feature attribution meth-
ods (such as SHAP, LIME, and Grad-CAM) are
“class-dependent” methods in that they gener-
ate a feature attribution vector as a function of
class. In this work, we demonstrate that class-
dependent methods can “leak” information about
the selected class, making that class appear more
likely than it is. Thus, an end user runs the risk
of drawing false conclusions when interpreting
an explanation generated by a class-dependent
method. In contrast, we introduce “distribution-
aware” methods, which favor explanations that
keep the label’s distribution close to its distribu-
tion given all features of the input. We intro-
duce SHAP-KL and FastSHAP-KL, two baseline
distribution-aware methods that compute Shap-
ley values. Finally, we perform a comprehen-
sive evaluation of seven class-dependent and
three distribution-aware methods on three clin-
ical datasets of different high-dimensional data
types: images, biosignals, and text.

1 INTRODUCTION

Post-hoc feature attribution methods, which identify the
features of an input that most influence predictions, are
critical in high-stakes contexts such as healthcare. Fea-
ture attribution methods are used not only to interpret indi-
vidual predictions, but also to better understand a model’s
global behavior for model development, knowledge discov-
ery, and quality improvement and assurance. For example,
such methods have been used to detect spurious signals in
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hip fracture radiographs (Badgeley et al., 2019), to discover
novel gene expression signatures (Janizek et al., 2021), and
to identify brain regions that help distinguish between pos-
sible sources of dementia (Iizuka et al., 2019).

Most widely-used feature attribution methods (such as
SHAP (Lundberg and Lee, 2017), LIME (Ribeiro et al.,
2016), and Grad-CAM (Selvaraju et al., 2016)) are “class-
dependent” methods, which we define to be any approach
that generates a feature attribution vector as a function of
class. However, we theoretically and empirically show that
class-dependent methods can “leak” information about the
selected class, making that class appear more likely than it
is. Thus, an end user runs the risk of drawing false con-
clusions interpreting an explanation generated by a class-
dependent method.

As an alternative, we define a “distribution-aware” method
(such as REAL-X (Jethani et al., 2021)) to be a class-
independent method that creates explanations based on the
change in the label’s distribution when the features are per-
turbed, with a preference for explanations with a small
change in distribution. Preferring explanations that keep
the label’s distribution close to its distribution when given
full knowledge of the features ameliorates the miscalibra-
tion that can occur when using class-dependent methods.
Further, we consider the evaluation strategy that progres-
sively includes only the top n% of features for each data
point and then plots the resulting model performances on
an inclusion curve (Arras et al., 2017; Petsiuk et al., 2018;
Jethani et al., 2022b). For this evaluation strategy, we
demonstrate that the optimal feature attribution method is
distribution-aware. Finally, we propose a strategy for eval-
uating a feature attribution method given a fixed model.

In summary, our six primary contributions are the fol-
lowing. (1) We introduce and define the difference be-
tween class-dependent and distribution-aware feature at-
tribution methods. (2) We demonstrate that explanations
generated by class-dependent methods using the true la-
bel can leak information about the true label, leading to
inflated performance metrics for class-dependent methods,
whereas this cannot occur with class-independent meth-
ods. (3) We show that explanations generated by class-
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dependent methods using the predicted label can leak in-
formation about the predicted class, making the predicted
class appear more likely than it is. (4) We establish that
the optimal feature attribution vector, as measured by the
above evaluation metric, is distribution-aware. (5) We
present two distribution-aware feature attribution methods,
SHAP-KL and FastSHAP-KL, that estimate Shapley val-
ues, are easy to optimize, and can serve as baselines to
facilitate the development of additional distribution-aware
methods. (6) We perform a comprehensive evaluation of
seven class-dependent and three distribution-aware feature
attribution methods on three clinical datasets of different
high-dimensional data types: images, biosignals, and text.

2 RELATED WORK

Feature attribution methods generally fall into one of two
categories, which we review below: removal-based meth-
ods and gradient-based methods. See Appendix A for rele-
vant feature attribution methods grouped by type.

Removal-based feature attribution methods.
Removal-based methods remove subsets of the input
features to determine their influence (Covert et al., 2021).
Many removal-based methods, such as LIME (Ribeiro
et al., 2016) and SHAP (Lundberg and Lee, 2017),
perform the removal operation for each sample of data,
which can be computationally intensive. Amortized
approaches—such as L2X (Chen et al., 2018), INVASE
(Yoon et al., 2018), REAL-X (Jethani et al., 2021), and
FastSHAP (Jethani et al., 2022b)—represent a new form
of removal-based explainability that performs the removal
operation across multiple samples of data at a time in order
to learn models that produce explanations for a sample of
data with a single forward pass (Fong and Vedaldi, 2017;
Schwab and Karlen, 2019).

Recent work has shown that when using removal-based
methods, replacing the removed features with reference
values shifts the input out-of-distribution or off-manifold,
which can affect explanation quality and make it easier for
adversarial attacks (Frye et al., 2021; Slack et al., 2020;
Jethani et al., 2022b). In addition, some amortized expla-
nation methods, such as L2X and INVASE, can produce
explanations that encode the label directly in the shape of
the explanation rather than with the feature values the ex-
planation highlights (Jethani et al., 2021).

Gradient-based feature attribution methods.
Gradient-based methods determine feature importance
using gradients with respect to either the input or interme-
diate representations of the input (Ancona et al., 2019).
SmoothGrad (Smilkov et al., 2017), for example, measures
how sensitive the model output is to small changes in
a given feature. Integrated Gradients (IntGrad) (Sun-
dararajan et al., 2017), on the other hand, computes the

average gradient to measure the salience of input features
relative to a user-selected reference input. Another popular
method, Grad-CAM (Selvaraju et al., 2016), computes the
gradient of a class with respect to an intermediate layer of
a convolutional neural network (CNN).

Gradient-based methods have been shown to be sensitive
to small changes or distributional shifts in the input. For
example, adding a constant shift to the input can dramati-
cally change the explanations produced by gradient-based
methods (Kindermans et al., 2019; Ghorbani et al., 2019).
Gradient-based methods can also produce explanations that
appear invariant to model parameter and training label ran-
domizations (Adebayo et al., 2018).

3 EVALUATION OF FEATURE
ATTRIBUTION METHODS

A feature attribution method generally produces a single
attribution vector that assigns a score to each input feature,
where a higher score implies a larger relationship to an out-
put. For a given data point, a single attribution vector could
produce many possible explanations, where an explanation
is some subset of the features based on the scores assigned
by the feature attribution method. For example, one could
choose the features with the top one, five, or ten percent of
scores.

In order to evaluate a feature attribution method, one
could compare its explanations to human benchmark ex-
planations. However, human explanations can be time-
consuming and expensive to obtain, or may not be avail-
able at all. For example, while a neural network is able to
predict diabetes from an electrocardiogram (ECG), it is not
yet clear to practitioners what information in the signal is
predictive of the disease (Jethani et al., 2022a).

Multiple strategies have been proposed for evaluating fea-
ture attribution vectors without human benchmark explana-
tions. One standard evaluation strategy is to progressively
include only the top n% of features for each data point and
measure the resulting effect on model performance (Bach
et al., 2015; Samek et al., 2017; Hooker et al., 2019; Sturm-
fels et al., 2020). The expectation is that the better a feature
attribution method is, the more model performance will
improve upon inclusion of only the top-scoring features.
Model performance using each top n% subset of features
is then plotted as an inclusion curve (Arras et al., 2017;
Petsiuk et al., 2018; Jethani et al., 2022b). We follow this
evaluation strategy, as described below.

Defining the evaluation. Let x ∈ X be a random vec-
tor consisting of d features, or x = (x1, . . . ,xd). Let
y ∈ Y = {1, . . . ,K} be the target variable for a multi-
class classification problem. We use s ∈ {0, 1}d to denote
subsets of the indices {1, . . . , d}. The symbols x,y, s are
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Figure 1: Illustration of the evaluation framework. An inclusion curve is constructed by progressively increasing n from 0
to 100, selecting the top n% of features for each data point in a held-out test set using the corresponding feature attribution
vector, and then measuring performance of the surrogate evaluation model across the entire test set using the log-likelihood.

random variables, and the symbols x, y, s are possible val-
ues for those random variables.

Hooker et al. (2019) noted that when relevant features are
removed, the new altered input comes from a distribution
that is different from that of the original unaltered input,
thereby making it difficult to know whether any degrada-
tion in model performance is caused by the removal of rel-
evant features or by the shift in distribution. The authors
solve this problem by training new surrogate models on
the altered inputs, but it has been shown that this retrain-
ing procedure not only is computationally expensive be-
cause it requires re-training for each type of explanation,
but also allows the surrogate models to incorrectly assign
high scores to feature attribution methods that encode the
label in the locations of the removed features as opposed to
their actual values (Jethani et al., 2021; Rong et al., 2022).
In order to prevent the surrogate model from co-adapting to
the explanations, recent work has proposed a computation-
ally efficient strategy that trains a single surrogate model
with randomly masked inputs (Jethani et al., 2021, 2022b;
Covert et al., 2021). We follow this strategy as described
below.

Let F (x,y) be the data distribution from which data is
drawn, and let p(s) be the distribution over s where all sub-
sets occur with non-zero probability. The surrogate eval-
uation model psurr is trained to predict the label y given a
vector of masked features. Masking is accomplished with
a function m(x, s), where the masking function m replaces
features xi where si = 0 with a [mask] value that is not
in the support of xi. The Surrogate Objective is

L(β) =

E
F (x)

E
p(s)

[
DKL

(
F (y |x) || psurr(y |m(x, s);β)

)]
, (1)

where DKL is the Kullback–Leibler (KL) divergence. The
surrogate model at optimality matches the conditional
probability distribution of the target variable given some
subset of features. More formally, if xs is the set {xi :

si = 1}, then psurr(y |m(x, s);β) = F (y |xs) (Jethani
et al., 2021; Covert et al., 2021).

After training, the surrogate evaluation model can eval-
uate any feature attribution method. Let e(x, y) ∈ Rd

be a feature attribution vector generated by a feature
attribution method for each paired sample of data x, y
where ei(x, y) ∈ R is a score for the feature xi. Let
topn(e) = argmaxs s

T e, such that s ∈ {0, 1}d, ∥s∥ =
⌈ nd
100⌉, and n ∈ [0, 100], define an operation that returns

an explanation that denotes the top n% of features with the
highest attributions ei ∈ R. An inclusion curve is con-
structed by progressively increasing n from 0 to 100, se-
lecting the top n% of features for each data point in a held-
out test set using the corresponding feature attribution vec-
tor e(x, y), and then measuring performance of the surro-
gate evaluation model psurr

(
y |m

(
x,topn(e(x, y))

)
;β

)
across the entire held-out test set using the log-likelihood.
The area under the inclusion curve (iAUC) is

iAUC = E
n∼Unif(0,100)

E
F (x,y)[

log psurr

(
y |m

(
x,topn (e(x, y)) ;β

))]
. (2)

A higher iAUC indicates a higher likelihood of the labels
averaged across different feature subset sizes. See Figure 1
for a diagram of the evaluation procedure.

4 CLASS-DEPENDENT VS.
DISTRIBUTION-AWARE METHODS

In this section, we draw a distinction between class-
dependent and distribution-aware feature attribution meth-
ods. This new categorization of feature attribution methods
exposes an important limitation of class-dependent meth-
ods, which are more commonly used than distribution-
aware methods. First, we define class-dependent methods
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and show how they can leak information about the selected
class. Then, we define distribution-aware methods and
show that the maximizer of iAUC is a distribution-aware
method. Finally, we introduce two baseline distribution-
aware methods that compute Shapley values and are easy
to optimize.

4.1 Class-dependent methods

Feature attribution methods can be divided into two cate-
gories: class-dependent and class-independent.

We define a class-dependent feature attribution method to
be any approach that generates a feature attribution vector
as a function of class. Formally, for each sample of data
x and class c, a class-dependent feature attribution method
e(x, c) : X ×Y → Rd generates an attribution vector such
that e(x, c) ̸= e(x, c′) for some c ̸= c′. LIME, SHAP,
Grad-CAM, IntGrad, SmoothGrad, and FastSHAP are all
examples of class-dependent methods. Appendix B shows
how the computation performed by each of these methods
is class-dependent.

A class-independent method generates an attribution vector
that does not depend on any one class. Formally, for each
sample of data x, a class-independent feature attribution
method e(x) : X → Rd generates an attribution vector as
a function of the input x.

See Appendix C for a glossary of terms defined in this pa-
per.

Label leakage. In the specific case where a class-
dependent method generates an attribution vector using the
true label, the predictive performance with only a fixed
fraction of features can exceed the predictive performance
with the entire set of features. In other words, the class-
dependent method is able to leak information about the true
label through the feature attributes that is not captured by
the full set of features. This leakage would cause the evalu-
ation metric iAUC (Equation (2)) to overestimate the utility
of the explanation. Formally,
Lemma 1. There exists a class-dependent feature attri-
bution method e(x,y) and data-generating distribution
x, y ∼ F (x,y) such that

E
F (x,y)

[
logF (y |xtopn(e(x,y)))

]
> E

F (x,y)

[
logF (y |x)

]
(3)

for some n ∈ [0, 100]%.

The proof can be found in Appendix D. Lemma 1 shows
that the explanation can predict the label better than the full
feature set, indicating that the explanations are leaking the
label. While Lemma 1 introduces label leakage as a the-
oretical possibility for class-dependent methods using the

true label, we show empirically in Section 6.3 that this phe-
nomenon occurs with popular class-dependent methods on
clinical datasets, up to estimation error of a model trained
to approximate F (y |x).

Lemma 1 works by having the feature attribution pro-
vide low scores to features that reduce the probability of
the observed label. Thus, when only considering the top
n% of features, features that reduce the probability of the
observed label are obfuscated. By obfuscating features
that support other classes, feature attributions generated
by class-dependent methods fail to track the uncertainty of
the true label, making the label appear more likely than it
should. This susceptibility could have important implica-
tions when interpreting the explanations generated using
the true label. For example, a patient’s likelihood of hos-
pital readmission given their discharge summary may only
be 55%, but by omitting the word “denies” from a note that
reads, “... pt denies chest pain” in the discharge summary,
the patient may appear to have an 80% chance of readmis-
sion.

Overconfidence using the predicted class. As shown in
Lemma 1, a feature attribution method should not have ac-
cess to the true labels when generating feature attributions
in order to avoid label leakage. An alternative to using the
true label is using a model’s prediction of the label.

Let ŷ = argmaxy pmodel(y |x; θ) and let e′(x, ŷ) be a
class-dependent method that uses the model’s predicted
class. Because ŷ is a function of x, e′(x, ŷ) = e(x), a
class-independent method. Therefore, we see that a class-
dependent method that uses the predicted class becomes a
class-independent method. We call class-dependent meth-
ods that use the predicted label predicted-label-dependent
methods. Class-independent methods do not leak the label
on average:

Lemma 2. There does not exist any class-independent fea-
ture attribution method e(x) where Equation (3) holds for
any F (x,y).

The proof can be found in Appendix E.

Predicted-label-dependent methods need not consider the
full distribution across all classes. They could, for example,
focus only on the probability of the predicted class. The im-
plication is that explanations generated using the predicted
class may instead leak the predicted class and omit pre-
dictive features that do not support the predicted class. In
other words, an explanation could make the predicted class
appear more likely than it is for some subset of feature val-
ues. Formally,

Lemma 3. There exists a predicted-label-dependent fea-
ture attribution method e(x, ŷ) where, for some x where
F (x = x) > 0 and for some n ∈ [0, 100]%,

F (y = ŷ |xtopn(e(x,ŷ));β) > F (y = ŷ |x).
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The proof can be found in Appendix F.

Lemma 3 demonstrates that an end user runs the risk of
drawing false conclusions when interpreting an explanation
generated for the predicted class with a class-dependent
method. As an example, consider a model that predicts a
patient’s likelihood of all-cause mortality to be 52% from
data for that patient including clinical notes. Let us say
that a clinician is starting a shift in the hospital, and while
they do not have time to read all of the patient’s clinical
notes, they would like to read the most critical portions of
the clinical notes as relates to the patient’s likelihood of
all-cause mortality. Now suppose the critical portions of
the text are highlighted using a predicted-label-dependent
method. Then for some instances, the clinician will miss
those features that have a negative relationship with all-
cause mortality, but that would still help to inform how they
might choose to care for the patient during their shift.

4.2 Distribution-aware methods

The challenge with the full-space of class-independent
methods is that class-independent methods need not re-
spect the whole distribution of the label given the inputs,
F (y |x). To limit to methods that consider the whole dis-
tribution, we define distribution-aware feature attribution
methods.

A distribution-aware feature attribution method is a class-
independent method e(x) that focuses on the data distribu-
tion of the label given the features, F (y |x). Formally, let
D be a probability divergence, and h(x) be a perturbation
function. Then for some distribution r a distribution-aware
feature attribution method can be written in terms of the di-
vergence D

(
F
(
y |x

)
|| r

(
y |h(x)

))
and prefers smaller

divergences. In other words, a distribution-aware method
generates feature attributions by measuring the effect of
feature perturbation on the distribution of the label. The ef-
fect is measured by the divergence between the distribution
of y given the input and the distribution of y given the per-
turbed input. An example perturbation function removes
features from the input. The data distribution F (y |x) is
unavailable, so practical distribution-aware feature attribu-
tion methods make use of distributions trained to approxi-
mate F (y |x) such as the surrogate psurr (y |x;β).

How a distribution-aware method prefers a smaller diver-
gence depends on the method. For example, REAL-X
(Jethani et al., 2021) is a distribution-aware method that
prefers smaller divergences directly through its optimiza-
tion procedure; we show how the computation performed
by REAL-X is distribution-aware in Appendix B.

As shown in Lemma 1, to avoid the potential for label leak-
age, a feature attribution method should not have access to
the true labels when generating feature attributions. Given
the constraint of not using the true labels, we show in Ap-

pendix G that the maximizer of iAUC assuming an opti-
mal surrogate psurr is not a class-dependent method, but a
distribution-aware method:

e∗ = argmin
e

E
F (x)

E
n∼Unif(0,100)[

DKL

(
F
(
y |x

)
|| F (y |xtopn(e(x)))

)]
. (4)

Equation (4) shows that the optimal feature attribution vec-
tor e∗(x) for an instance x is distribution-aware in that it
minimizes the KL divergence between the likelihood of the
label given all of the features and the likelihood of the target
variable given the top n% of the features, averaged across
all possible n. Furthermore, we see that e∗(x) does not
depend on a true label y, but instead averages over a distri-
bution of the label.

The KL divergence, as with many divergences, measures
the closeness of two distributions, and thus also mea-
sures the calibration in how well the distribution of the
target given a subset of features matches the distribu-
tion of the target given the full feature set. Therefore,
while a distribution-aware method—like a class-dependent
method—returns a subset of the features, the subset that a
distribution-aware method returns is calibrated according
to the predicted probability. In the all-cause mortality ex-
ample in Section 4.1, a distribution-aware method would
highlight an appropriate ratio of positive and negative fea-
tures.

5 DISTRIBUTION-AWARE SHAPLEY
VALUE ESTIMATORS

Gradient optimization is generally used to solve optimiza-
tion problems such as the optimal explainer for iAUC.
However, the function topn in Equation (4) is not dif-
ferentiable. We develop two baseline distribution-aware
methods, SHAP-KL and FastSHAP-KL, that yield real-
valued and, therefore, simpler optimization problems with
a squared loss.

SHAP-KL and FastSHAP-KL estimate Shapley values. To
compute a Shapley value for each input feature, one must
first define how to value a subset of features. Given Equa-
tion (4), we propose valuing a subset of features according
to the KL divergence between the distribution of y given
the full set of features and the distribution of y given a sub-
set of the features:

vx(s) = −DKL

(
psurr (y |x;β) || psurr(y |m(x, s);β)

)
.

Notice that a higher value for a subset of features entails a
smaller KL divergence, as required for distribution-aware
methods.

Letting n ∼ U(D) denote a uniform distribution over the
set D of the number of features {0, . . . , d − 1} to include
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in a subset, and letting s ∼ U(Pi(n)) denote a uniform
distribution over all possible feature subsets (power set of
{0, 1}d) such that n features are included in the subset
(|s|0 = n) and the ith feature is not included in the sub-
set (si ̸= 1), the definition of a Shapley value for the ith
feature is

ϕi(v) = E
n∼U(D)

E
s∼U(Pi(n))

[
vx(s+ ei)− vx(s)

]
= E

n∼U(D)
E

s∼U(Pi(n))
E

y∼F (y | x)
(5)[

logF
(
y |m(x, s+ ei)

)
− logF

(
y |m(x, s)

)]
.

Equation (5) shows that this KL divergence-based Shapley
value assigns an attribution to a feature based on how much
it increases the log probability of the label when added to
different subsets of the rest of the features. Note that the
maximizer of iAUC (Equation (4)) is a weighted average
across subsets that progressively increase in size (e.g. the
top 1% of features is a strict subset of the top 2% of fea-
tures); the Shapley value (Equation (5)) is a weighted aver-
age across all possible feature subsets.

Unfortunately, Shapley values introduce computational
challenges: the expectation in Equation (5) involves an ex-
ponential number of subsets, making it infeasible to cal-
culate for large d. Therefore, SHAP-KL and FastSHAP-
KL efficiently approximate the Shapley values. Following
Lundberg and Lee (2017), SHAP-KL computes Shapley
values using its least-squares characterization:

eSHAP-KL(x) =

argmin
ϕ

E
p(s)

[(
vx(s)− sTϕ− vx(0)

)2]
. (6)

Following Jethani et al. (2022b), FastSHAP-KL learns an
explanation model ϕfast-kl(x; η) that outputs Shapley values
by minimizing the following objective:

LFastSHAP-KL(η) =

E
F (x)

E
p(s)

[(
vx(s)− s⊤ϕfast-kl(x; η)− vx(0)

)2]
(7)

where the feature attributions are generated in a
single forward-pass through the explanation model:
eFastSHAP-KL(x) = ϕfast-kl(x; η). For both objectives (Equa-
tions (6) and (7)), the efficiency constraint and subset sam-
pling distribution p(s) are the same as for SHAP and are
presented in Appendix B.

6 EXPERIMENTS

We validate our theoretical findings by performing a com-
prehensive evaluation of ten of the most commonly used
feature attribution methods using three clinical datasets
of different high-dimensional data types: biosignals, im-
ages, and text. We also compare SHAP-KL to its class-
dependent counterpart SHAP-S using the general image

dataset CIFAR10 (Krizhevsky et al., 2009), demonstrating
similar findings as in the clinical datasets (Appendix H).

6.1 Datasets and model tasks

For biosignal data, we use the PTB-XL ECG dataset (Wag-
ner et al., 2020). We detect right bundle branch block
(RBBB) from ECG inputs using a ResNet model adapted
from Hannun et al. (2019) (we include details of the model
architecture in Appendix I). For image data, we use the
EyePACs retinal fundus imaging dataset (Graham, 2015).
We detect the presence and severity of diabetic retinopa-
thy in retinal images using a DenseNet121 model (Huang
et al., 2017) pre-trained on ImageNet. For text data, we use
the MIMIC-IV critical care dataset (Johnson et al., 2022).
We predict 30-day readmission from patients’ hospital dis-
charge summaries using the pre-trained Bio+Discharge
Summary BERT model (Alsentzer et al., 2019; Huang
et al., 2019). We provide details on dataset processing and
splits in Appendix J and details on training the prediction
models in Appendix K.

6.2 Feature attribution methods

We evaluate the following seven class-dependent methods:
LIME, SHAP, Grad-CAM, IntGrad, SmoothGrad, Fast-
SHAP, and SHAP-S (Covert et al., 2021; Frye et al., 2021).
We evaluate the following three distribution-aware meth-
ods: SHAP-KL, REAL-X, and FastSHAP-KL. Because
Grad-CAM was designed for CNNs, we did not evalu-
ate Grad-CAM using MIMIC-IV. REAL-X failed to opti-
mize on MIMIC-IV using five different regularization hy-
perparameters, therefore we did not evaluate REAL-X on
MIMIC-IV. REAL-X likely requires additional tuning for
this task given that it uses score-function gradient optimiza-
tion. We provide details on explanation generation in Ap-
pendix L; describe how iAUC is empirically calculated in
Appendix M; and report training and explanation run-times
for each method in Appendix N.

6.3 Results

Label leakage in class-dependent methods using the
true label. First, we plot the log-likelihood inclusion
curves of the seven evaluated class-dependent methods
when generating an attribution vector using the true label
(Figure 2). In general, as important features are included in
the input to the surrogate evaluation model, the likelihood
of the true label (and therefore the log-likelihood across
the entire dataset) should increase. On all three datasets we
find that the performance of many of the class-dependent
methods when using a subset of the most relevant features
exceeds performance when using the full set of features
(represented by the horizontal dotted line in Figure 2).

With finite data and an imperfect surrogate evaluation
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Figure 2: When generating explanations using the true label, class-dependent methods can leak information about the true
label that is not captured by the full feature set: performance when using a subset of the most relevant features exceeds
performance when using the full feature set (represented by the horizontal dotted lines above).

Figure 3: The performance of SHAP-KL and FastSHAP-KL when using a subset of the most relevant features generally
does not exceed performance when using the full feature set (represented by the horizontal dotted lines), validating that
distribution-aware methods do not leak the label on average.

model psurr, the excess performance could be due to ei-
ther estimation error or label leakage. Therefore, unless
we know a priori how the features are related to the input,
it is difficult to know whether the unexpectedly high per-
formance of the class-dependent methods is due to label
leakage or due to better estimation of the surrogate with
fewer features.

Distribution-aware methods do not demonstrate label
leakage. Next, we compare our baseline distribution-
aware methods SHAP-KL and FastSHAP-KL to their
class-dependent counterparts SHAP-S and FastSHAP. We
plot the log-likelihood inclusion curves of the four meth-
ods using the true label to select which class to explain for
SHAP-S and FastSHAP (Figure 3). We find that the perfor-
mance of SHAP-KL and FastSHAP-KL when using a sub-
set of the most relevant features generally does not exceed
performance when using the full set of features, validating
that distribution-aware feature attribution methods do not
leak the label on average (Lemma 2).

FastSHAP-KL on the retinal fundus imaging dataset and
SHAP-KL on the discharge summaries dataset gener-
ate feature attributions that achieve slightly higher log-

likelihoods when using a subset of the features than when
using the full set of features (Figure 3). Since the per-
formance of a distribution-aware method provably can-
not exceed the performance using all features (Lemma 2),
the amount SHAP-KL and FastSHAP-KL rise above the
performance estimate using the full features (the hori-
zontal dotted line) provides a window into the magni-
tude of relative model misestimation for different subset
sizes. This magnitude of model misestimation is smaller
than the excess performance over the full feature set in
class-dependent methods, suggesting that label leakage,
not model estimation, is the primary driver of excess per-
formance in class-dependent methods.

During training, the surrogate evaluation model takes as in-
put a vector of masked features to approximate the proba-
bility distribution of the target given a possible subset of
features. It is possible that the surrogate evaluation model
is better able to optimize over subsets with fewer features.
Furthermore, since there is an exponential number of sub-
sets, learning to model each conditional distribution given
each subset is a difficult task. However, as a sanity check,
we ensure that the surrogate evaluation model performs as
well as the original prediction model when evaluated on the
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Table 1: Evaluation of the feature attribution methods using iAUC when class-dependent methods use the predicted class.
Parentheses indicate 95% confidence intervals.

iAUC

PTB-XL: Biosignals EyePACs: Images MIMIC-IV: Text

Distribution-aware
FastSHAP-KL -0.075 (-0.081, -0.071) -1.400 (-1.419, -1.386) -0.634 (-0.638, -0.631)
REAL-X -0.068 (-0.075, -0.064) -1.879 (-1.897, -1.855)
SHAP-KL -0.073 (-0.080, -0.066) -1.596 (-1.619, -1.578) -0.618 (-0.623, -0.613)

Predicted-label-dependent
FastSHAP -0.088 (-0.097, -0.082) -1.851 (-1.879, -1.825) -0.627 (-0.632, -0.623)
Grad-CAM -0.069 (-0.076, -0.064) -1.988 (-2.018, -1.962)
IntGrad -0.128 (-0.141, -0.117) -1.443 (-1.461, -1.422) -0.635 (-0.638, -0.632)
LIME -0.095 (-0.103, -0.087) -1.594 (-1.609, -1.571) -0.614 (-0.620, -0.609)
SHAP -0.097 (-0.106, -0.089) -1.598 (-1.612, -1.565) -0.615 (-0.621, -0.608)
SHAP-S -0.095 (-0.105, -0.085) -1.623 (-1.650, -1.597) -0.614 (-0.618, -0.607)
SmoothGrad -0.130 (-0.143, -0.120) -1.718 (-1.742, -1.695) -0.634 (-0.637, -0.631)

full feature set (Appendix O).

Predicted-label-dependent vs. distribution-aware
methods. Finally, we evaluate the iAUC of the ten feature
attribution methods when using the predicted class (instead
of the true label) to select which class to explain for the
seven class-dependent methods (Table 1).

As the most relevant features are included as input to the
surrogate evaluation model, we expect the iAUC of a suc-
cessful feature attribution method to increase. Though the
theory shows that the best method for iAUC is distribution-
aware (Equation (4)), the distribution-aware methods stud-
ied do not directly optimize iAUC, leaving open the pos-
sibility for a predicted-label-dependent method to have
higher iAUC. We find that compared to predicted-label-
dependent methods, distribution-aware methods have, on
average, higher iAUCs on two of the three datasets: REAL-
X obtained the highest iAUC (-0.068) on the ECG dataset
and FastSHAP-KL obtained the highest iAUC (-1.400)
on the retinal fundus imaging dataset. On the discharge
summaries dataset, however, the predicted-label-dependent
methods outperform the distribution-aware methods on av-
erage: LIME and SHAP-S obtained the highest iAUCs
(both -0.614).

7 DISCUSSION

7.1 Choosing a feature attribution method

When using the true label, distribution-aware methods are
recommended given that they do not demonstrate label
leakage. When using the predicted label, however, it is
not clear whether a predicted-label-dependent method or
a distribution-aware method would be preferred. While
in theory a class-dependent method does not perform op-

timally with respect to iAUC (Equation (4)), it can still
outperform a distribution-aware method in practice because
existing distribution-aware methods do not optimize iAUC
directly (Section 6.3).

In order to evaluate a feature attribution method given
some fixed model, we recommend constructing an inclu-
sion curve for the method under consideration as described
in Section 3. The inclusion curve can then be used to de-
termine how much of the model’s performance is explained
by different subsets of the top features. For example, an in-
clusion curve might reveal that the top 10% of features ex-
plains 90% of the model’s accuracy under some attribution
method. If the performance is high enough given the de-
sired percentage of features, the feature attribution method
can be used. If it is not high enough, alternative feature
attribution methods should be evaluated.

7.2 The merits of class-dependent methods

While our theoretical and empirical results demonstrate
that class-dependent methods can make a given class ap-
pear overly likely, there are settings in which focusing on
a single class, instead of on the full distribution across all
classes, is a useful design feature (as opposed to a “bug”)
of class-dependent methods. Because iAUC measures how
well the target distribution can be approximated using a
subset of features, our paper focuses specifically on settings
in which each data point can take on different values of the
target distribution (because the true label or predicted class
for one sample may not be the same for another sample).

While class-dependent methods do not maximize iAUC
and may leak the label, they are still useful when trying
to understand which features increase or decrease the prob-
ability of a specific class, in which case explanations are
generated using a fixed class for all data points. For exam-
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ple, given a model that predicts which molecules inhibit
growth of a bacterial species, a class-dependent method
might help highlight moieties that maximize the likelihood
of that outcome in order to guide molecule development. It
remains open what is the best evaluation for a class-specific
explanation.

7.3 The limitations imposed by discrete optimization

As discussed in Section 5, directly maximizing evaluation
metrics for feature attribution methods can be infeasible
since they often involve discrete functions that are not dif-
ferentiable, such as topn in Equation (4). While SHAP-
KL and FastSHAP-KL serve as distribution-aware base-
lines that yield real-valued optimization problems with a
squared loss, neither optimizes iAUC directly, which could
negatively affect their performances. The development of
additional distribution-aware methods that make use of ad-
vances in discrete optimization to more directly optimize
evaluation metrics such as Equation (4) is an important av-
enue for future work.

7.4 Interpreting the feature attribution vector

As discussed in Section 3, feature attribution scores can
produce many possible explanations, and often it is not
known in advance which n% of features will ultimately be
of interest. When this is the case, feature attribution method
performance can be evaluated across different feature sub-
set sizes and measured using a summary statistic such as
iAUC. Eventually, a single feature attribution vector is pro-
duced that includes a score for each input feature. Because
iAUC is a weighted average, if we were to use the single
feature attribution vector to select the “top” k features, it
is not guaranteed that we would in fact retrieve the most
predictive feature subset of size k.

To see why, consider a scenario in which there are three
input features x1, x2, and x3: together x1 and x2 are per-
fectly predictive of the output, but separately they are not
very predictive of the output; x3 alone is almost, but not
quite, perfectly predictive of the output. Given k = 1, the
most predictive feature would be x3. Given k = 2, the
most predictive two features would be x1 and x2. How-
ever, given the constraint that all features are ranked and
the relevant feature subsets monotonically increase in size
so that each subset always includes the “top” n% of fea-
tures, there is no way to choose x3 when k = 1 and choose
x1 and x2 when k = 2.

Therefore, there is no single attribution vector with scores
for all features such that the k highest ranked features are
the most predictive k features for all values of k. Care
should be taken when referring to the features with the top
scores in the attribution vector as the “most predictive” fea-
tures. Future work might investigate ways to address this
limitation when developing new attribution methods.

7.5 Cognitive burden of class-dependent methods

Given a data point, a class-dependent method produces
a set of feature attributions for every possible class. A
distribution-aware method, on the other hand, produces
for a data point a single set of feature attributions, taking
into consideration the full distribution of class probabili-
ties. However, this extra degree of freedom afforded by
class-dependent methods comes at a cost.

As discussed in Section 4.1, class-dependent methods
can surface features that make the selected class appear
more reasonable and obfuscate features that support other
classes. Because class-dependent methods are miscali-
brated and fail to adequately capture the uncertainty of a
class label, it is important that any end user interpreting the
results of a class-dependent method take into consideration
not only the explanation generated for the selected class,
but also the explanations generated for all other classes. In
other words, the end user runs the risk of drawing inaccu-
rate conclusions by only looking at the explanation for the
selected class. However, considering the feature attribu-
tions generated for every class, and then reducing them to
a single explanation for the task at hand, constitutes a sig-
nificant—and perhaps unrealistic—cognitive burden on the
part of the end user. Future work should explore the effect
of miscalibrated explanations on human decision-making.

8 CONCLUSION

In this work, we introduce and define class-dependent and
distribution-aware feature attribution methods. We demon-
strate that class-dependent methods—but not distribution-
aware methods—can leak information about the true la-
bel, causing evaluation metrics to overestimate the util-
ity of their explanations. We show that explanations gen-
erated by class-dependent methods using the predicted
label can make the predicted class appear more likely
than it is. We establish that the maximizer of iAUC is
a distribution-aware method. We present two baseline
distribution-aware methods, SHAP-KL and FastSHAP-KL,
that can be easily optimized. Finally, we validate our
theoretical findings by evaluating seven class-dependent
and three distribution-aware feature attribution methods on
three clinical datasets.

9 REPRODUCIBILITY

Formal statements and proofs for all theoretical results are
provided in Appendices B and D to G. Experimental de-
tails for all empirical results are provided in Appendices H
to P and code is available at https://github.com/
explanationleakage/xai. All datasets used are
publicly available as outlined in Appendix J.

https://github.com/explanationleakage/xai
https://github.com/explanationleakage/xai
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A FEATURE ATTRIBUTION METHODS GROUPED BY TYPE

Gradient-based Removal-based Amortized Relies on OOD inputs

Distribution-aware
FastSHAP-KL x x
REAL-X x x
SHAP-KL x

Class-dependent
FastSHAP x x
Grad-CAM x
IntGrad x x
LIME x x
SHAP x x
SHAP-S x
SmoothGrad x x
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B REVIEW OF FEATURE ATTRIBUTION METHODS

B.1 Gradient-based feature attribution methods

Gradient-based methods determine feature importance using gradients with respect to either the input or intermediate
representations of the input (Ancona et al., 2019). Gradients explain how sensitive the model’s output is to changes in
the input or intermediate representation. Popular gradient-based methods include Grad-CAM (Selvaraju et al., 2016),
Integrated Gradients (IntGrad) (Sundararajan et al., 2017), SmoothGrad (Smilkov et al., 2017), and others (Bach et al.,
2015; Shrikumar et al., 2017).

SmoothGrad attributes importance based on how sensitive the output is to small changes in the corresponding feature,
where the output is smoothed through the introduction of Gaussian noise as follows:

eSG(x, y) =
1

n

n∑
i=1

∂pmodel
(
y | x+N (0, σ2); θ

)
∂x

.

IntGrad attributes importance by computing the average gradient to measure the salience of features in the input relative to
a reference input x̄ as follows:

eIG(x, y) = (x− x̄)⊙ 1

n

n∑
i=1

∂pmodel
(
y | x̄+ i

n (x− x̄); θ
)

∂
(
x̄+ i

n (x− x̄)
) .

Grad-CAM computes the gradient with respect to an intermediate representation of the input learned by the model A(x; θ).
This method can only be used with convolutional neural networks (CNN), as the structure of CNNs uniquely allows the
representation to be directly mapped onto the input. Grad-CAM computes explanations as follows:

eGrad-CAM(x, y) = ReLu

 c∑
k

 1

hw

h∑
i−1

w∑
j=1

∂pmodel (y | x; θ)
∂A(x; θ)ki,j

A(x; θ)k


where A(x; θ) is a c-channel, h by w, two-dimensional convolutional layer.

B.2 Removal-based feature attribution methods

Popular removal-based methods include LIME (Ribeiro et al., 2016), SHAP (Lundberg and Lee, 2017), and others (Zeiler
and Fergus, 2014; Fong and Vedaldi, 2017).

Both LIME and SHAP solve independent optimization problems for each sample of data. SHAP computes Shapley values
as follows:

eSHAP(x, y) = argmin
ϕ

E
p(s)

[(
pmodel (y | m(x, s); θ)− sTϕ− F (y)

)2]
p(s) ∝ d− 1(

d
1⊤s

)
· 1⊤s · (d− 1⊤s)

. (Shapley kernel)

Similarly, LIME computes feature attributions using a measure of distance D and attribution complexity Ω as follows:

eLIME(x, y) = argmin
ϕ

E
p(s)

[(
pmodel (y | m(x, s); θ)− sTϕ− F (y)

)2]
+Ω(ϕ)

p(s) ∝ D(m(x, s), x). (LIME kernel)

Both optimizations are performed for a single sample of data x, y. The computation also requires sampling subsets from
p(s) and removing input features using a masking function m(x, s) that replaces the removed features with a reference
value for high-dimensional data.

Recent work has shown that replacing the removed features with a reference value shifts the input out-of-distribution/off-
manifold, which can affect explanation quality and allow for adversarial attack (Frye et al., 2021; Slack et al., 2020; Jethani
et al., 2022b). To address this issue, SHAP-S (Covert et al., 2021; Frye et al., 2021) approximates replacing the removed
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features x1−s by using a surrogate model learned by minimizing Equation (1). SHAP-S computes Shapley values as
follows:

eSHAP-S(x, y) = argmin
ϕ

E
p(s)

[(
psurr (y | m(x, s);β)− sTϕ− F (y)

)2]
p(s) ∝ d− 1(

d
1⊤s

)
· 1⊤s · (d− 1⊤s)

.

Note that this is the same objective as that used by SHAP except pmodel is replaced with psurr.

B.3 Amortized removal-based feature attribution methods

The removal-based methods above perform the removal operation for each sample of data, which can be computationally
intensive. Amortized removal-based methods represent a new form of removal-based explainability that performs the
removal operation across multiple samples of data at a time in order to learn models that produce explanations for a sample
of data with a single forward pass (Fong and Vedaldi, 2017; Schwab and Karlen, 2019). Amortized removal-based methods
include L2X (Chen et al., 2018), INVASE (Yoon et al., 2018), REAL-X (Jethani et al., 2021), and FastSHAP (Jethani et al.,
2022b).

FastSHAP builds upon the SHAP-S objective to learn an explanation model that outputs Shapley values with a single
forward pass. The follow objective is used to train the explanation model:

LFastSHAP(η) = E
F (x)

E
Unif(y)

E
p(s)

[(
psurr (y | m(x, s);β)− sTϕexplanation(x, y; η)− F (y)

)2]
p(s) ∝ d− 1(

d
1⊤s

)
· 1⊤s · (d− 1⊤s)

.

Explanations can then be computed for a given sample of data as follows:

eFastSHAP(x, y) = ϕexplanation(x, y; η).

While the above feature attribution methods produce explanations in a class-dependent fashion (as a function of x and y),
REAL-X produces explanations in a class-independent fashion (as a function of only x). By measuring the KL divergence
between the distribution of the target given the full feature set and the distribution of the target given a subset of features,
REAL-X is a distribution-aware method. For a given sample of data, REAL-X returns a sufficiently small subset of features
for a given input that best predicts the target and reduces uncertainty about the target variable. This objective is minimized
and amortized by learning an explanation model that outputs a distribution over subsets by sharing parameters across
samples of data as follows:

LREAL-X(ϕ) = E
F (x)

E
qexp(s|x;ϕ)

[
DKL

(
F (y | x; θ) || psurr(y | m(x, s);β)

]
= E

F (x)
E

qexp(s|x;ϕ)
E

F (y|x;θ)
[− log psurr (y | m(x, s);β)] + Const.

Explanations can then be computed for a given sample of data as follows:

eREAL-X(x) = qexp(s | x;ϕ).

From this equation, it is clear that REAL-X explanations are generated as a function of x alone. L2X (Chen et al., 2018)
and INVASE (Yoon et al., 2018) optimize a near-identical objective: they learn psurr jointly within the same objective,
which Jethani et al. (2021) shows allows the predicted distribution to be encoded directly by s.
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C GLOSSARY

class-dependent A class-dependent feature attribution method generates a feature attribution vector as a
function of class. Formally, for each sample of data x and class c, a class-dependent fea-
ture attribution method e(x, c) : X × Y → Rd generates an attribution vector such that
e(x, c) ̸= e(x, c′) for some c ̸= c′. LIME, SHAP, Grad-CAM, IntGrad, SmoothGrad, and
FastSHAP are all examples of class-dependent methods. Appendix B shows how the com-
putation performed by each of these methods is class-dependent.

class-independent A class-independent method generates an attribution vector that does not depend on any one
class. Formally, for each sample of data x, a class-independent feature attribution method
e(x) : X → Rd generates an attribution vector as a function of the input x.

distribution-aware A distribution-aware feature attribution method is a class-independent method e(x) that fo-
cuses on the data distribution of the label given the features, F (y |x). Formally, let D be
a probability divergence, and h(x) be a perturbation function. Then for some distribution
r a distribution-aware feature attribution method can be written in terms of the divergence
D
(
F
(
y |x

)
|| r

(
y |h(x)

))
and prefers smaller divergences. In other words, a distribution-

aware method generates feature attributions by measuring the effect of feature perturbation
on the distribution of the label. The effect is measured by the divergence between the distri-
bution of y given the input and the distribution of y given the perturbed input. An example
perturbation function removes features from the input. The data distribution F (y |x) is
unavailable, so practical distribution-aware feature attribution methods make use of distri-
butions trained to approximate F (y |x) such as the surrogate psurr (y |x;β).

How a distribution-aware method prefers a smaller divergence depends on the method. For
example, REAL-X (Jethani et al., 2021) is a distribution-aware method that prefers smaller
divergences directly through its optimization procedure; we show how the computation per-
formed by REAL-X is distribution-aware in Appendix B.

predicted-label-
dependent

A predicted-label-dependent method is a class-dependent method that uses the predicted
label. Let ŷ = argmaxy pmodel(y |x; θ) and let e′(x, ŷ) be a class-dependent method that
uses the model’s predicted class. Because ŷ is a function of x, e′(x, ŷ) = e(x), a class-
independent method. Therefore, we see that a class-dependent method that uses the pre-
dicted class becomes a class-independent method.
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D PROOF: LABEL LEAKAGE IN CLASS-DEPENDENT METHODS

We prove that in the specific case where a class-dependent method generates an attribution vector using the true label,
the predictive performance with only a fixed fraction of features can exceed the predictive performance with the entire
set of features. In other words, the class-dependent method is able to leak information about the true label through the
feature attributes that is not captured by the full set of features. This leakage would cause the evaluation metric iAUC
(Equation (2)) to overestimate the utility of the explanation. Formally,

Lemma 1. There exists a class-dependent feature attribution method e(x,y) and data-generating distribution x, y ∼
F (x,y) such that

E
F (x,y)

[
logF (y |xtopn(e(x,y)))

]
> E

F (x,y)

[
logF (y |x)

]
(3)

for some n ∈ [0, 100]%.

Proof. We provide an example scenario in which a class-dependent method identifies a subset of features where the log-
likelihood of the target variable using that subset of features exceeds the log-likelihood of the target variable given the full
feature set.

Consider the following data-generating process for the input x := {x1,x2} and the target y:

x1 ∼ Uniform(0, 1), x2 =
1

2
, y ∼ Bernoulli

(
x1 + x2

2

)
,

and the following class-dependent explanation method:

e(x, y) =



[
0 1

]
x1 < 0.5, y = 1[

1 0
]

x1 ≥ 0.5, y = 1[
1 0

]
x1 ≤ 0.5, y = 0[

0 1
]

x1 > 0.5, y = 0

Then for n = 50% (inclusion of a single feature),

F (y |xtop50%(e(x,y))) =


1
2 x1 < 0.5, y = 1
x1

2 + 1
4 x1 ≥ 0.5, y = 1

3
4 − x1

2 x1 ≤ 0.5, y = 0
1
2 x1 > 0.5, y = 0

Whereas, for the full feature set,

F (y |x) =

{
x1

2 + 1
4 y = 1

3
4 − x1

2 y = 0

Therefore,

F (y |xtop50%(e(x,y))) > F (y |x) if x1 < 0.5, y = 1
F (y |xtop50%(e(x,y))) = F (y |x) if x1 ≥ 0.5, y = 1
F (y |xtop50%(e(x,y))) = F (y |x) if x1 ≤ 0.5, y = 0
F (y |xtop50%(e(x,y))) > F (y |x) if x1 > 0.5, y = 0

.

Since in all cases F (y |xtop50%(e(x,y))) ≥ F (y |x) and the events x1 < 0.5, y = 1 and x1 > 0.5, y = 0 occur with
non-zero probability,

E
F (x,y)

[
logF (y |xtop50%(e(x,y)))

]
> E

F (x,y)

[
logF (y |x)

]
.
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E PROOF: NO LABEL LEAKAGE IN CLASS-INDEPENDENT METHODS

We showed in Appendix D that there exists a class-dependent feature attribution method e(x,y) and data-generating
distribution x, y ∼ F (x,y) such that

E
F (x,y)

[
logF (y |xtopn(e(x,y)))

]
> E

F (x,y)

[
logF (y |x)

]
(3)

for some n ∈ [0, 100]%.

We now prove that there does not exist any class-independent method e(x) where the likelihood of the target variable given
the top n% of features exceeds the likelihood of the target variable given the full feature set.

Lemma 2. There does not exist any class-independent feature attribution method e(x) where Equation (3) holds for any
F (x,y).

Proof. For a class-independent method Equation (3) becomes

E
F (x,y)

[
logF (y |xtopn(e(x)))

]
> E

F (x,y)

[
logF (y |x)

]
(8)

The generative process by which the explanations are created using a class-independent method can be expressed via the
following Markov chain:

y −→ x −→ xtopn(e(x)),

where the target generates the input, which in turn generates the explanation that is used to mask/include features. Accord-
ing to the data processing inequality,

I(x;y) ≥ I(xtopn(e(x));y) ∀n ∈ [0, 100]%,

which states that the mutual information content between the input and the target cannot be increased by processing the
input. Rewriting the mutual information in terms of the conditional entropy produces

H(y | x) ≤ H(y | xtopn(e(x))) ∀n ∈ [0, 100]%.
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Let r′ be a distribution. Then using the definition of conditional entropy the inequality can be written as an expectation:

E
F (x,y)

[
logF (y | x)

]
≥ E

F
(
xtopn(e(x)),y

) [ logF(
y | xtopn(e(x))

)]

≥ E
F
(
xtopn(e(x)),y

) [ logF(
y | xtopn(e(x))

)]

− E
F
(
xtopn(e(x))

) [DKL

(
F
(
y | xtopn(e(x))

)
|| r′

(
y | xtopn(e(x))

))]

= E
F
(
xtopn(e(x)),y

) [ logF(
y | xtopn(e(x))

)]

+ E
F
(
xtopn(e(x)),y

) [ log r′(y | xtopn(e(x))

)
− logF

(
y | xtopn(e(x))

)]

= E
F
(
xtopn(e(x)),y

) [ log r′(y | xtopn(e(x))

)]

= E
F
(
xtopn(e(x)),y

) E
F
(
x|xtopn(e(x)),y

) [ log r′(y | xtopn(e(x))

)]

= E
F
(
xtopn(e(x)),x,y

) [ log r′(y | xtopn(e(x))

)]

= E
F
(
x,y

) E
F
(
xtopn(e(x))|x,y

) [ log r′(y | xtopn(e(x))

)]

= E
F
(
x,y

) [ log r′(y | xtopn(e(x))

)]
∀n ∈ [0, 100]%.

Since r′ is arbitrary, Equation (8) holds for r′ = F . Therefore, the performance of a class-independent method when using
the top n% of features is upper-bounded by the performance when using the full feature set.
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F PROOF: LABEL LEAKAGE IN CLASS-DEPENDENT METHODS WHEN USING THE
PREDICTED CLASS

Predicted-label-dependent methods need not consider the full distribution across all classes. They could, for example, focus
only on the probability of the predicted class. The implication is that explanations generated using the predicted class may
instead leak the predicted class and omit predictive features that do not support the predicted class. In other words, an
explanation could make the predicted class appear more likely than it is for some subset of feature values. Formally,

Lemma 3. There exists a predicted-label-dependent feature attribution method e(x, ŷ) where, for some x where F (x =
x) > 0 and for some n ∈ [0, 100]%,

F (y = ŷ |xtopn(e(x,ŷ));β) > F (y = ŷ |x).

Proof. Let x,y ∼ F (x,y) be the data-generating distribution. Consider the following data-generating process for the
input x := {x1,x2} and the target y ∈ {1, 2, 3}:

x1 ∼ Bernoulli(0.80), x2 ∼ Bernoulli(0.5),

y |x ∼ Categorical([max{x1 − x2

2
, 0}+ 1

2
,
1− (max{x1−x2

2 , 0}+ 1
2 )

2
,
1− (max{x1−x2

2 , 0}+ 1
2 )

2
]).

Let the model’s predicted class be ŷ = argmax
y

pmodel (y |x; θ) where pmodel is the optimal model (i.e. the true data-

generating distribution). Notice that it will always be the case that ŷ = 1. Let e(x, ŷ = 1) be a class-dependent feature
attribution method that uses the predicted class to generate explanations and that is defined as follows:

e(x, ŷ = 1) =


[
1 0

]
if x1 = 1[

0 1
]

if x1 = 0
.

Then for n = 50% (inclusion of a single feature),

F (y = ŷ |xtop50%(e(x,ŷ));β) =


F (y = ŷ |x1 = 1) = 0.5 · 0.5 + 0.5 · 1.0 = 0.75 if x1 = 1,x2 = 1

F (y = ŷ |x1 = 1) = 0.5 · 0.5 + 0.5 · 1.0 = 0.75 if x1 = 1,x2 = 0

F (y = ŷ |x2 = 1) = 0.8 · 0.5 + 0.2 · 0.5 = 0.5 if x1 = 0,x2 = 1

F (y = ŷ |x2 = 0) = 0.8 · 1.0 + 0.2 · 0.5 = 0.9 if x1 = 0,x2 = 0

and

F (y = ŷ |x) =


0.5 if x1 = 1,x2 = 1

1.0 if x1 = 1,x2 = 0

0.5 if x1 = 0,x2 = 1

0.5 if x1 = 0,x2 = 0

.

We see that

F (y = ŷ |xtop50%(e(x,ŷ));β) > F (y = ŷ |x) if x1 = 1,x2 = 1

F (y = ŷ |xtop50%(e(x,ŷ));β) > F (y = ŷ |x) if x1 = 0,x2 = 0.

Since both of the above two cases occur with non-zero probability, we see that there exists a class-dependent feature
attribution method that, when generating explanations using the predicted class, makes the predicted class appear overly
likely for some n ∈ [0, 100]%.
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G PROOF: WITHOUT TRUE LABELS, A DISTRIBUTION-AWARE METHOD
MAXIMIZES IAUC

Given the constraint of not using the true labels, we show that the maximizer of iAUC assuming an optimal surrogate psurr
is not a class-dependent method, but a distribution-aware method.

As we saw in Equation (2), the area under the inclusion curve (iAUC) is

iAUC = E
n∼Unif(0,100)

E
F (x,y)

[
log psurr

(
y |m

(
x,topn (e(x, y)) ;β

))]
.

The feature attribution method that depends only on x and that maximizes iAUC is

e∗ = argmax
e

E
n∼Unif(0,100)

E
F (x,y)

[
log psurr

(
y |m

(
x,topn (e(x)) ;β

))]

= argmax
e

E
n∼Unif(0,100)

E
F (x)

E
F (y |x)

[
log psurr

(
y |m

(
x,topn (e(x)) ;β

))]

= argmax
e

E
n∼Unif(0,100)

E
F (x)

E
F (y |x)

[
log psurr

(
y |m

(
x,topn (e(x)) ;β

))
− log psurr

(
y |x;β

)
+ log psurr

(
y |x;β

)]

= argmax
e

E
n∼Unif(0,100)

E
F (x)

E
F (y |x)

[
log psurr

(
y |m

(
x,topn (e(x)) ;β

))
− log psurr

(
y |x;β

)]

= argmin
e

E
n∼Unif(0,100)

E
F (x)

E
F (y |x)

[
log psurr

(
y |x;β

)
− log psurr

(
y |m

(
x,topn (e(x)) ;β

))]

Since at optimality psurr

(
y |m

(
x,topn (e(x)) ;β

∗)) = F (y |xtopn(e(x))) for all n ∈ [0, 100]% (Jethani et al., 2021), we
see that

e∗ = argmin
e

E
F (x)

E
n∼Unif(0,100)

[
DKL

(
F
(
y |x

)
|| F

(
y |xtopn(e(x))

))]
.

Therefore, we see that the optimal feature attribution vector e∗(x) for an instance x is distribution-aware in that it minimizes
the KL divergence between the likelihood of the label given all of the features and the likelihood of the target variable given
the top n% of the features, averaged across all possible n. Furthermore, we see that e∗(x) does not depend on a true label
y, but instead averages over a distribution of the label.
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H COMPARING SHAP-KL AND SHAP-S ON CIFAR-10

We compare the distribution-aware SHAP-KL to its class-dependent counterpart SHAP-S using the general image dataset
CIFAR10 (Krizhevsky et al., 2009), demonstrating similar findings as in the clinical datasets.

CIFAR-10 contains 60,000 32× 32 images across 10 classes. We used 50,000 samples for the training and 5,000 samples
for both validation and testing. Each image was resized to 224 × 224 using bilinear interpolation to interface with the
ResNet-50 architecture (He et al., 2016). The ResNet models were trained as described in Appendix K. Explanations
were then generated for the 5,000 images in the test set using SHAP-KL and SHAP-S (both set up to sample 4028 feature
subsets), and evaluated using iAUC.

As with our other experiments (Section 6.3), we plot the log-likelihood inclusion curves of SHAP-KL and SHAP-S, using
the true label for SHAP-S (Figure 4). We find that the performance of SHAP-KL when using a subset of the features
does not exceed performance when using the full set of features (represented by the horizontal dotted line), validating that
distribution-aware methods do not leak the label on average. We find that the performance of SHAP-S when using a subset
of the features does exceed performance when using the full set of features.

Figure 4: The performance of SHAP-KL when using a subset of the most relevant features does not exceed performance
when using the full set of features (represented by the horizontal dotted line), validating that distribution-aware methods
do not leak the label on average.

We also evaluate the iAUC of SHAP-KL and of SHAP-S when using the predicted class (instead of the true label) to select
which class to explain (Table 2). We find that SHAP-KL has a higher iAUC than SHAP-S.

Table 2: Evaluation of SHAP-KL and SHAP-S using iAUC when SHAP-S uses the predicted class.

SHAP-KL SHAP-S

iAUC -1.008 -1.461
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I ECG PREDICTION MODEL ARCHITECTURE

Figure 5: Diagram of the ECG model architecture.
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J DATASET DETAILS

The PTB-XL dataset consists of 21, 430 12-Lead/10s ECGs. We classify the presence of right bundle branch block (RBBB)
from lead VI of the ECG. There was a 7.75% prevalence of RBBB in the dataset. The dataset was split into training, valida-
tion, and test sets according to an 8 : 1 : 1 ratio. The validation and test sets were directly used as the explanation validation
and test sets (2, 163 ECGs). We trained the deeper 34-layer ResNet model adapted from Hannun et al. (2019) to classify
the presence of a RBBB (see Appendix I for model architecture) as compared to shallower architectures (Goodfellow et al.,
2018; Han et al., 2020). The PTB-XL data is made available under the Creative Commons Attribution 4.0 International
Public License at https://physionet.org/content/ptb-xl/1.0.2/.

The EyePACs dataset consists of 88, 702 retinal fundus images. The task is formulated as multiclass classification
labeled for the presence and severity of diabetic retinopathy. The label distribution was 73.5% normal, 7% mild,
15% moderate, 2.5% severe, and 2% proliferative. The dataset was split into training, validation, and test sets ac-
cording to a 4 : 1 : 5 ratio. The dataset was downloaded from Kaggle and processed with TensorFlow Datasets
(Abadi et al., 2015) according to the 2015 Kaggle competition winner Graham (2015) to generate 544 by 544 pixel
images. Class-balanced explanation validation and test sets (1000 and 2500 images, respectively) were randomly sam-
pled from the validation and test sets, respectively. We trained a DenseNet121 model, pre-trained on ImageNet, to clas-
sify the severity of diabetic retinopathy. The EyePACs dataset is made available at https://www.kaggle.com/c/
diabetic-retinopathy-detection/data under a set of rules found here: https://www.kaggle.com/
competitions/diabetic-retinopathy-detection/rules.

We processed the MIMIC-IV dataset according to Huang et al. (2019), yielding a cohort of 34, 560 patient admis-
sions with 2, 963 positive 30-day readmission labels and 42, 358 negative labels. As detailed by Huang et al. (2019),
the dataset was balanced to yield a final dataset of 5, 926 discharge summaries and split into training, validation, and
test sets according to an 8 : 1 : 1 ratio. The validation and test sets were directly used as the explanation valida-
tion and test sets (584 discharge summaries). The discharge summaries were split into 128 token segments and to-
kenized using the Hugging Face (Wolf et al., 2019) BERT tokenizer. We trained a BERT transformer, implemented
using Hugging Face for TensorFlow and pretrained weights obtained from Alsentzer et al. (2019), to predict 30-day
readmission. The MIMIC-IV data is made available under the PhysioNet Credentialed Health Data License 1.5.0 at
https://physionet.org/content/mimiciv/2.0/.

https://physionet.org/content/ptb-xl/1.0.2/
https://www.kaggle.com/c/diabetic-retinopathy-detection/data
https://www.kaggle.com/c/diabetic-retinopathy-detection/data
https://www.kaggle.com/competitions/diabetic-retinopathy-detection/rules
https://www.kaggle.com/competitions/diabetic-retinopathy-detection/rules
https://physionet.org/content/mimiciv/2.0/
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K PREDICTION MODEL DETAILS

Both the DenseNet121 and ResNet models were trained for 100 epochs using Adam with a learning rate of 10−3 and a
batch size of 32. The BERT model was trained for 50 epochs using Adam with a learning rate of 2 ∗ 10−5 and a batch
size of 16. We used a learning rate scheduler that multiplied the learning rate by a factor of 0.95 after three epochs of no
validation loss improvement. Early stopping was triggered after the validation loss ceased to improve for ten epochs.
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L EXPLANATION GENERATION

The explanation validation set was used to tune each explanation method’s hyperparameter, where the best performing
explanation set for the associated metric was selected. The gradient-based methods were implemented using TensorFlow’s
native backprop functionality. Both IntGrad and SmoothGrad have a single hyperparameter that controls the number of
samples along the path from the baseline input to the final input and the number of noisy inputs to sample, respectively.
We tuned this hyperparamater for both explanation methods across 64, 128, 256, 512, and 1024 samples. Grad-CAM does
not have any hyperparameters. Because Grad-CAM can only be applied to CNNs, we could not generate Grad-CAM
explanations for our BERT text classification model.

Feature removal was performed at different granularities for the removal-based methods depending on the data type. We
removed segments of the input instead of individual features: 32 by 32 super-pixel segments for images, 0.08 second seg-
ments, and tokens for text. We implement LIME and SHAP using their respective open-source packages, where feature
removal is simulated by replacing the removed features with a baseline value for all three data types. We simply alter
SHAP’s value function to implement SHAP-S and SHAP-KL. Image and ECG data were replaced using the zero baseline,
while text data was replaced using the [MASK] token. Both LIME, SHAP, SHAP-S, and SHAP-KL have a single hyperpa-
rameter that controls the number of feature subsets to sample. We tuned this hyperparamater for the explanation methods
across 512, 1024, 2048, 4096, and 8192 subset samples. LIME1 is made available under the BSD 2-Clause “Simplified”
License. SHAP2 is made available under the MIT License.

Explanation generation with REAL-X, FastSHAP, and FastSHAP-KL involves a three-step process: 1) training a surrogate
model to simulate feature removal, 2) training an explanation model, and 3) computing explanations with a single forward
pass through the explanation model. We trained the surrogate and explanation models and tuned them using the same
training and validation sets we used to train the original model. The surrogate model was trained with random feature
removals, where the removed features were replaced with their aforementioned baseline. The surrogate model simulates
marginalizing out features from the original model with their conditional distribution. The surrogate model’s training pro-
cedure and model architecture directly mirrored that of the corresponding original model. We adapted the explanation
model architectures from their corresponding classification models being explained by truncating the architectures (see
Appendix P for details). For FastSHAP and FastSHAP-KL, we tuned the hyperparameter controlling the number of feature
subsets to sample for each input in a mini-batch explanation model across 1, 2, 4, 8, 16. For REAL-X, we tuned the regu-
larization hyperparameter that enforces sparse subset selections of the input across 10−5, 10−4, 10−3, 10−2, and 10−1. All
other training hyperparameters used to train the original models were conserved when training and tuning the explanation
models. FastSHAP3 and REAL-X4 are both made available under the MIT License.

1https://github.com/marcotcr/lime
2https://github.com/slundberg/shap
3https://github.com/neiljethani/fastshap
4https://github.com/rajesh-lab/realx

https://github.com/marcotcr/lime
https://github.com/slundberg/shap
https://github.com/neiljethani/fastshap
https://github.com/rajesh-lab/realx
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M EMPIRICAL CALCULATION OF IAUC

As discussed in Section 3, an inclusion curve is constructed by progressively increasing n from 0 to 100, selecting the top
n% of features for each data point in a held-out test set using the corresponding feature attribution vector e(x, y), and then
measuring performance of the surrogate evaluation model psurr

(
y |m

(
x,topn(e(x, y))

)
;β

)
across the entire held-out test

set using the log-likelihood. As we saw in Equation (2), the area under the inclusion curve (iAUC) is

iAUC = E
n∼Unif(0,100)

E
F (x,y)

[
log psurr

(
y |m

(
x,topn (e(x, y)) ;β

))]
.

For our experiments (Section 6), instead of calculating the above expectation, we construct the inclusion curve using the
following values of n: 0, 1, 5, 10, 15, 25, 50, 75, 85, 90, 95, 99, and 100. We then use the trapezoid rule to approximate
the area under this inclusion curve in order to calculate iAUC.
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N EXPLANATION EFFICIENCY

We include wall clock times for each explanation method on the explanation test set below. The experiments were run
using a single core of an Intel Xeon Gold 6148 processor and a single AMD MI50 GPU. Gradient-based methods are quite
efficient, especially Grad-CAM, which only requires a single gradient estimate per explanation. Removal-based methods
such as SHAP and LIME are slow. Meanwhile, the amortized methods incur a fixed training cost, which is often made up
for by its meager marginal cost for generating each explanation. In some cases, the amortization also improves explanation
quality. However, this may not always be the case, as the model may over-fit the data (i.e. FastSHAP on MIMIC-IV) or
optimize poorly.

Table 3: Training and explanation run-times for the explanation sets (in minutes).

PTB-XL EyePACs MIMIC-III

# of Samples 2163 2500 3063

E
xp

la
in

Grad-CAM 56.39 31.11 —
IntGrad 15.82 3902.53 717.18
SmoothGrad 63.17 2398.13 415.74
SHAP 143.02 6389.12 1343.03
SHAP-S 150.49 6909.33 1354.13
SHAP-KL 144.47 6348.32 1356.01
LIME 138.08 6649.19 1340.14
FastSHAP 0.01 0.66 0.30
FastSHAP-KL 0.02 0.51 0.27
REAL-X 0.01 0.51 —

Tr
ai

n

FastSHAP 54.67 3597.14 2038.53
FastSHAP-KL 76.51 2918.45 3320.96
REAL-X 89.27 3611.14 —
SHAP-S 16.73 1320.97 38.63
SHAP-KL 16.73 1320.97 38.63



Don’t be fooled: label leakage in explanation methods and the importance of their quantitative evaluation

O SURROGATE MODEL VS. ORIGINAL PREDICTION MODEL PERFORMANCE

Table 4: AUROC of the original prediction model compared to the surrogate model. The prediction model is trained
using the full feature set while the surrogate model is trained using random subsets of the input. The performance of
each model on the full feature set is compared using the AUROC (micro-averaged for Eye-PACs). Model performance is
negligibly affected by randomly removing subets of the input during training.

pmodel(y | x; θ) psurr(y | x;α)
PTB-XL 0.997 0.997
Eye-PACs 0.947 0.951
MIMIC-IV 0.775 0.774
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P EXPLANATION MODEL ARCHITECTURES

P.1 ECG explanation model

We modified the ECG model architecture (see Appendix I) to return a tensor of size 125 × 1 for REAL-X/FastSHAP-KL
and 125 × 2 (one for each class) for FastSHAP. For the 10s ECG’s input size of 1000 × 1, this process provides 0.08
second segment explanations. First, the layers after the 6th residual connection were removed; the output of this block was
125× 64. We then appended a 1D convolutional layer with filters of size 1 × 1, one filter for REAL-X/FastSHAP-KL and
2 filters for FastSHAP, such that the output was 125× 1 or 125× 2 respectively. For FastSHAP, the yth 125 dimensional
array slice corresponded to the segment-level Shapley values for the class y ∈ {0, 1}.

P.2 Retinal fundus image explanation model

We modified the DenseNet121 architecture to return a tensor of size 17×17×1 for REAL-X/FastSHAP-KL and 17×17×5
(one for each class) for FastSHAP. For an input image size of 544 × 544 this process provides 32 × 32 super-pixel
explanations. First, the classification layers (global average pooling and fully-connected layers) were removed; the output
of this block was 17 × 17 × 1024. We then appended a 2D convolutional layer with filters of size 1 × 1, one filter for
REAL-X/FastSHAP-KL and 5 filters for FastSHAP, such that the output is 17 × 17 × 1 or 17 × 17 × 5 respectively. For
FastSHAP, the yth 17× 17 slice corresponded to the superpixel-level Shapley values for the class y ∈ {0, 1, 2, 3, 4}.

P.3 Discharge summary explanation model

We modified the BERT architecture by appending two fully connected layers to the output for the last encoder layer.
The output of the final encoder layer was a 128 × 768 tensor, such that there was a 768 dimensional array outputted for
each input token. We first appended a fully connected layer with 768 units, GeLU activation, and layer norm. Then, we
appended another fully connected layer with either 1 unit for REAL-X/FastSHAP-KL or 2 units for FastSHAP, yielding a
128 × 1 or 128 × 2 output. This output provided attributions for each token in the input text segment. For FastSHAP, the
yth 128 dimensional slice corresponded to the token-level Shapley values for the class y ∈ {0, 1}.
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