
Unified Perspective on Probability Divergence via the Density-Ratio Likelihood:
Bridging KL-Divergence and Integral Probability Metrics

Masahiro Kato1,2 Masaaki Imaizumi1,3 Kentaro Minami4

The University of Tokyo1 CyberAgent, Inc.2 RIKEN AIP3 Preferred Networks, Inc.4

Abstract

This paper provides a unified perspective for the
Kullback-Leibler (KL)-divergence and the inte-
gral probability metrics (IPMs) from the perspec-
tive of maximum likelihood density-ratio esti-
mation (DRE). Both the KL-divergence and the
IPMs are widely used in various fields in appli-
cations such as generative modeling. However, a
unified understanding of these concepts has still
been unexplored. In this paper, we show that
the KL-divergence and the IPMs can be repre-
sented as maximal likelihoods differing only by
sampling schemes, and use this result to derive
a unified form of the IPMs and a relaxed estima-
tion method. To develop the estimation problem,
we construct an unconstrained maximum likeli-
hood estimator to perform DRE with a stratified
sampling scheme. We further propose a novel
class of probability divergences, called the Den-
sity Ratio Metrics (DRMs), that interpolates the
KL-divergence and the IPMs. In addition to these
findings, we also introduce some applications of
the DRMs, such as DRE and generative adver-
sarial networks. In experiments, we validate the
effectiveness of our proposed methods.

1 INTRODUCTION

The notion of divergence between probability measures
plays an important role in statistics, machine learning, and
information theory (Rachev, 1991). Two of the widely
used probability divergences are the Kullback-Leibler (KL)
divergence (Kullback and Leibler, 1951) (an instance of
f -divergence (Ali and Silvey, 1966; Csiszár, 1967)), and
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the family of integral probability metrics (IPMs, Zolotarev,
1984; Müller, 1997), including the Wasserstein distance
(Gray et al., 1975; Levina and Bickel, 2001, WD,), the max-
imum mean discrepancy (MMD, Borgwardt et al., 2006;
Gretton et al., 2009), and the Dudley metric (Dudley, 2002).

Density-ratio estimation (DRE) is a fundamental problem
in statistics and has a long history (Silverman, 1978). The
obtained density ratios have a wide range of applications,
such as regression under a covariate shift (Shimodaira, 2000;
Reddi et al., 2015), learning with noisy labels (Liu and Tao,
2014; Fang et al., 2020), anomaly detection (Smola et al.,
2009; Hido et al., 2011; Abe and Sugiyama, 2019), two-
sample testing (Keziou and Leoni-Aubin, 2005; Kanamori
et al., 2010; Sugiyama et al., 2011a), causal inference
(Uehara et al., 2020), change point detection (Kawahara
and Sugiyama, 2009), and generative adversarial networks
(GANs, Uehara et al., 2016). In particular, density ratios ap-
pear in definitions of various probability divergences, such
as f -divergences including the KL-divergence; hence DRE
is also important for the application of these divergences.

Understanding the relation between the IPMs and KL-
divergence using density ratios has been studied for a long
time. Inequalities between these divergences and metrics
have traditionally been investigated (Gibbs and Su, 2002;
Tsybakov, 2009) along with their sample complexities Sripe-
rumbudur et al. (2012); Liang (2019). Glaser et al. (2021)
proposes a divergence that extends the KL-divergence and
inherits properties of the MMD. In the literature of GANs,
Song and Ermon (2020) develops a method to generalize the
f -GAN (Goodfellow et al., 2014; Nowozin et al., 2016) and
the Wasserstein-GAN (Arjovsky et al., 2017), where they
are based on f -divergence and the Wasserstein distance,
respectively. Belavkin (2018) and Ozair et al. (2019) con-
sider the relationship in the context of mutual information.
Agrawal and Horel (2020) relates them in terms of their
optimal lower bounds. Despite these advances, it seems that
the ultimate solution has not yet been obtained

In this paper, we elucidate a new connection between the
KL-divergence and IPMs through the development of new
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DRE schemes. Specifically, we show that a solution of our
scheme has two properties: (i) an optimal objective value
coincides with the KL-divergence, and (ii) it has a form of
the IPMs. Then, the IPMs with a certain function class can
be written as a sum of the KL- and inverse KL-divergences.

The DRE scheme that we develop for the above results is
based on a nonparametric likelihood in a stratified setting.
Stratified sampling is a framework for dealing with two
samples, which has been studied mainly in the literature on
causal inference (Wooldridge, 2001). In this setting, we ob-
tain two groups of observations drawn from each population,
and then we perform the maximum likelihood DRE, inspired
by maximum likelihood density estimation (Good, 1971;
de Montricher et al., 1975; Tapia and Thompson, 1978; Scott
et al., 1980). For estimating density functions, it is neces-
sary to impose a constraint that the density function must
integrate to one, which requires us to solve a constrained
optimization problem. Because solving constrained prob-
lems is computationally challenging in general, we leverage
a technique developed by Silverman (1982), which con-
verts the constrained maximum likelihood problem to an
equivalent unconstrained problem. We extend these results
to propose a maximum likelihood density ratio estimation.
This scheme is different from Bregman divergence-based
DRE summarized by Sugiyama et al. (2012).

As an application of our theoretical connection result, we de-
velop a new class of probability divergences named a density
ratio metric (DRM). The DRMs possess several topological
properties of both the KL-divergence and IPM, and serve as
a valid probability divergence even for distributions that do
not have common support. We also derive an upper bound
on an error of the density ratio estimator. In addition, we
develop a DRM-based GAN as an IPM-based GAN method.
We summarize our findings and contributions as follows:

• Both the KL-divergence and the IPMs are written in
the unified way as the maximum of our DRE scheme
under the stratified sampling setting.

• The IPMs with a certain function class can be written
as the sum of the KL and inverse KL-divergences.

• We propose a probability divergence, which bridges
the density ratio, the KL-divergence and the IPMs.

The remainder of this paper is organized as follows. We
first introduce the problem setting of DRE in Section 2 and
show the maximum likelihood DREs in Section 3. Then,
in Section 4, we discuss the relationship between the KL-
divergence and IPMs. Based on the results, we define DRMs
exhibiting some useful theoretical properties in Section 5.
Section 6 presents the experimental results on DRE.

2 PROBLEM SETTING OF DRE

We formulate the problem of DRE. Let P and Q be two
probability measures defined on a measurable space W ,
which is a Borel subset of Rd. We assume that P and Q

have the densities denoted by p∗ and q∗, and also define their
supportsWp,Wq ∈ W asWp =

{
x ∈ W|p∗(x) > 0

}
and

Wq =
{
x ∈ W|q∗(x) > 0

}
. We define their intersection

W∗ := Wp ∩ Wq. Let X ∈ W and Z ∈ W be random
variables following P and Q. We have two observation sets
X = {Xi}ni=1 of size n andZ = {Zj}mj=1 of sizem, which
are i.i.d. samples from P and Q, respectively.

The goal of DRE is to estimate the density ratio between
p∗ and q∗ or its inverse, which are defined as r∗(x) =
p∗(x)
q∗(x) . Note that r∗(x) (resp. 1/r∗(x)) is not well-defined
if q∗(x) = 0 (resp. p∗(x) = 0).

Notation. Denote by P(W) the set of probability mea-
sures defined onW . Let R > 1 be a constant, which will
be specified. Denote an integration over W by

∫
=
∫
W .

For f : W → R and a weight b : W → [1,∞), define a
weighted norm ‖f‖b = supx∈W

|f(x)|
b(x) . Define a function

set Bb := {f : ‖f‖b < ∞}. For u : W∗ → R, denote the
L2 (pseudo-)norm overW∗ with the probability measure W
by ‖u‖L2(W) = (

∫
W∗ u(x)dW(x))1/2 and the L∞ (pseudo-

)norm by ‖u‖L∞(W) = supx∈W∗ |u(x)|. The expectation
is defined overW∗, for which r∗ and 1/r∗ are defined.

3 MAXIMUM PENALIZED
LIKELIHOOD DRE (MPL-DRE)

We consider a maximum penalized likelihood approach
to DRE, as a preliminary step towards building a bridge
between the KL-divergence and the IPMs. First, we re-
view classical nonparametric probability density estimation.
Next, we develop two formulations of DRE associated with
different sampling schemes: the ordinary and the stratified
samplings. In addition, we provide a convergence rate of
the estimation error and discuss the choice of regularizers.

3.1 Recap: MPLE of Probability Density Function

Before discussing the maximum likelihood DRE, we review
classical nonparametric maximum likelihood density esti-
mation (Good and Gaskins, 1971; Silverman, 1982). Let
s : W → R be a model of probability density p and de-
fine the likelihood as

∏n
i=1 s(Xi) and log-likelihood as∑n

i=1 log s(Xi). We estimate p(x) by maximizing the log-
likelihood under the following constraint:

∫
s(x)dx = 1.

However, Good and Gaskins (1971) finds that a naive ap-
plication of maximum likelihood estimation would make
the estimate the mean of a set of the Dirac functions at the
n observations, which is too rough as an estimate of the
density function. To avoid this issue, Good and Gaskins
(1971) adds a roughness (smoothness) penalty Ψ(s) <∞
to the objective function of the log-likelihood to control the
smoothness of the density function estimator. This frame-
work is called maximum penalized likelihood estimation
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(MPLE) of the density, where the objective is given as

`(s) =

n∑
i=1

log s(Xi)− αΨ(s), (1)

s.t.

∫
s(x)dx = 1, ∀x s(x) ≥ 0,

where the positive number α is the smoothing parameter and
Ψ(s) <∞ is the roughness penalty, which is a functional.
There are several candidates for the choice of the roughness
penalty Ψ(s), whose choice is discussed in Section 3.6.

Silverman (1982) proposes an unconstrained formulation for
nonparametric density estimation. Let g ∈ G be a model of
the logarithmic density log s, where G is a set of measurable
functions. Then, for a roughness penalty Ψ(g), it shows that
the maximizer of

n∑
i=1

g(Xi)−
∫

exp(g(x))dx− αΨ(g)

without constraint is identical with the maximizer of the con-
strained problem equation 1. We refer to this transformation
as Silverman’s trick.

Proposition 3.1 (Theorem 3.1 in Silverman (1982)). Sup-
pose that Ψ(g) only involves the derivative of g(x) with
regard to x. The function ĝ in G minimizes

∑n
i=1 g(Xi)

over g in G subject to
∫

exp(g) = 1 if and only if ĝ mini-
mizes

∑n
i=1 g(Xi)−

∫
exp(g(x))dx− αΨ(g) over g.

Although a model of the logarithmic density is used in the
original statement of Silverman (1982), we can remove this
restriction as shown in Eggermont and LaRiccia (1999).

3.2 MPL-DRE under the Ordinary Sampling

We develop a novel MPLE framework for density ratios
named MPL-DRE, by extending the MPLE of the probabil-
ity density. We first consider the ordinary sampling setup,
which considers a likelihood of a density ratio model using
only one ofX andZ . The stratified sampling, which utilizes
both X and Z , will be discussed in Section 3.3.

Let r :W → (0,∞) be a model of the density ratio p∗(x)
q∗(x) ,

which belongs to a function classR defined as follows.

Definition 3.2 (proper function set). A (measurable) func-
tion set F is proper, if F ⊂ Bb holds with a weight function
b : W → [1,∞) as b(x) = min{1, 1/q∗(x)} for x ∈ Wq

and b(x) = 1 for x /∈ Wq .

With this definition, a proper function set F contains a
function r : W → (0,∞) such that r(x) = R for all
x /∈ Wq , and r(x) = 1/R for all x /∈ Wp.

Here, by using the density ratio model r, a model of
the density p∗(x) (resp. q∗(x)) is written as pr(x) =
r(x)q∗(x) (resp. qr = p∗(x)/r(x)). Using the mod-
els, we write a nonparametric likelihood for r(x) as

Lordinary,p(r;X ) =
∏n
i=1 pr(Xi) =

∏n
i=1 r(Xi)q

∗(Xi),
hence its log-likelihood is given as

`ordinary,p(r;X ) =

n∑
i=1

(
log r(Xi) + log q∗(Xi)

)
.

Note that log q(Xi) is irrelevant to the optimization. We
also define the following term for a constraint on r. We
recall thatW∗ =W∗.

T1(r) :=

∫
W∗

r(z)q∗(z)dz +

∫
Wp∩Wc

q

p∗(x)dx.

T1(r) = 1 guarantees that r is a density ratio function from
an aspect of the ordinary sampling scheme with p∗.

We update the objective of the MPL-DRE by introducing
the roughness penalty Ψ:

max
r∈R

Jordinary,p(r;X )− αΨ(r), s.t. T1(r) = 1,

where Jordinary,p(r;X ) =
1

n

n∑
i=1

log r(Xi).

In addition, inspired by Silverman’s trick (Silverman, 1982),
we consider the following unconstrained problem:

max
r∈R

{
Jordinary,p(r;X )−

∫
W∗

r(z)q∗(z)dz − αΨ(r)

}
.

To interpret the objective functions above, we study a prob-
lem of replacing the empirical summatinos of the objective
functions with its expected value. We consider the following
maximizers of the expected version of the objectives:

r̃ordinary,p := arg max
r∈R:T1(r)=1

EX [Jordinary,p(r;X )]− αΨ(r),

r†ordinary,p := arg max
r∈R

EX [Jordinary,p(r;X )]

−
∫
W∗

r(z)q∗(z)dz − αΨ(r),

where EX denotes the expectation over Wp with respect
to P. Then, we have the following theorem. The proof is
inspired by Silverman (1982) and shown in Appendix A.

Theorem 3.3. Suppose that the function class R follows
Definition 3.2, and Ψ(r) only involves the derivative of r(x)
with regard to x. IfR contains a function r such that r(x) =

r∗(x) for all x ∈ W∗, then r†ordinary,p = r̃ordinary,p.

Besides, the following theorem shows the analytical solution
of r†strat. The proof is shown in Appendix B.

Theorem 3.4. For R in Definition 3.2, r̃ordinary,p(x) =
r∗(x) if x ∈ W∗

R if x /∈ Wp

1
R

if x /∈ Wq

.
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Note that for x /∈ Wp∪Wq , Definition 3.2 gives the solution.

In estimation, by replacing the expectation in the uncon-
strained problem with the sample average and R with a
hypothesis classH, we solve the the following problem:

max
r∈H

{
Jordinary,p(r;X )− 1

m

m∑
j=1

r(Zj)− αΨ(r)

}
.

Similarly, we define the MPLE with unconstrained optimiza-
tion problem of the reciprocal of the density ratio as

max
g∈G

{
Jordinary,q(r;Z)− αΨ(r)

}
,

where Jordinary,q(r;Z) = − 1
m

∑m
j=1 log r(Zj). As well

as r̃ordinary,p and Theorems 3.4, we denote the solution in
expectation by r̃ordinary,q and obtain the analytical solution.
Then, we can confirm that r†ordinary,p(x) = r†ordinary(x),q .

Except for the penalties, the constrained optimization is
identical to that of KL Importance Estimation Procedure
(KLIEP, Sugiyama et al., 2008), and the unconstrained opti-
mization is identical to that of Nguyen et al. (2008). While
their formulations are motivated by the minimization of the
KL divergence or variational representations, our objectives
are derived from the likelihoods (see Section 4.1).

3.3 MPL-DRE under the Stratified Sampling

In the previous section, we defined the likelihood for each
observation X and Z separately. Next, we define the like-
lihood of the density ratio using both X and Z . Following
terminology in statistics, we refer to this framework as MPL-
DRE under the standard stratified sampling (Imbens and
Lancaster, 1996; Wooldridge, 2001; Uehara et al., 2020).

The likelihood function under the stratified sampling scheme
is given as Lstrat(r;X ,Z) =

∏n
i=1 pr(Xi)

∏m
j=1 qr(Zj).

Using the relations pr(x) = r(x)q∗(x) and qr(z) =
p∗(z)/r(z), the log-likelihood function is given as

`strat(r;X ,Z) =

n∑
i=1

(
log r(Xi) + log q∗(Xi)

)
+

m∑
j=1

(
− log r(Zj) + log p∗(Zj)

)
.

Note that log q∗(Xi) and log p∗(Zj) are irrelevant to the
MPLE. We can further generalize the likelihood by con-
sidering a weighted likelihood (Wooldridge, 2001), which
is defined as `λstrat(r;X ,Z) = λ 1

n

∑n
i=1 log r(Xi) + (1−

λ) 1
m

∑m
j=1

(
− log r(Zj)

)
with λ ∈ [0, 1]. By choosing

λ appropriately, we can make the estimation more accu-
lately. For example, when we consider parametric models,
Wooldridge (2001) implies that appropriate choice of λ min-
imizes the asymptotic variance.

We also define the following term:

T2(r) :=

∫
W∗

1

r(x)
p∗(x)dx+

∫
Wc

p∩Wq

q∗(z)dz.

A constraint T2(r) = 1 normalizes r from the perspective
of q∗. Then, the MPLE under stratified sampling is given as

max
r∈R

Jstrat(r;λ,X ,Z)− αΨ(r), s.t. T1(r) = T2(r) = 1,

where Jstrat(r;λ,X ,Z) := λJordinary,p(r;X ) + (1 −
λ)Jordinary,q(r;Z) with λ ∈ [0, 1].

Similar to the ordinary sampling, we study maximizers of
an expected version of the objective functions.

r̃strat := arg max
r∈R:T1(r)=T2(r)=1

K(r)− αΨ(r),

r†strat := arg max
r∈R

K(r)− αΨ(r)

− (1− λ)

∫
W∗

1

r(x)
p∗(x)dx− λ

∫
W∗

r(z)q∗(z)dz,

where K(r) is an expected log-likelihood defined as

K(r) := EX ,Z [Jstrat(r;λ,X ,Z)] (2)

= λ

∫
log r(x)p∗(x)dx− (1− λ)

∫
log r(x)q∗(x)dx.

(3)

We can relate r̃strat with r†strat as the following theorem.

Theorem 3.5. Under the same conditions in Theorem 3.3,
r̃strat = r†strat = r̃ordinary,p = r̃ordinary,q .

The proof is shown in Appendix C.

We define an estimator of MPL-DRE under the stratified
sampling by replacing the expectation with the sample aver-
age andR with a hypothesis classH,

r̂ = arg max
r∈H

{
K̂(r)− αΨ(r)

}
, (4)

where K̂(r) = Jstrat(r;λ,X ,Z) − 1−λ
n

∑n
i=1

1
r(Xi)

−
λ
m

∑m
j=1 r(Zj).

3.4 Estimation Error Bounds

We derive an estimation error bound for r̂ defined in equa-
tion 4 on the L2 norm. We provide a generalization error
bound in terms of the Rademacher complexities of a hypoth-
esis class and the following assumption.

Assumption 3.6. There exists an empirical maximizer
r̂ ∈ arg maxr∈H K̂(r) and a population maximizer r̄ ∈
arg maxr∈H EX ,Z [K̃(r)].

In Theorem 3.7, for a multilayer perception with ReLU acti-
vation function (Definition D.5), we derive the convergence
rate of the L2 distance. The proof is shown in Appendix D.
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Theorem 3.7 (L2 Convergence rate). Let H be defined as
in Definitions 3.2 and D.5 and assume r∗ ∈ H. Under
Assumption 3.6, for some 0 < γ < 2, as m,n→∞,

max
{
λ‖r̂ − r∗‖L2(Q), (1− λ)‖1/r̂ − 1/r∗‖L2(P)

}
= OP

(
min{n,m}−1/(2+γ)

)
.

Thus, DRE under the DRMs becomes nearly a parametric
rate when γ is close to zero. (Kanamori et al., 2012; Liang,
2019). In addition to the convergence guarantee, this re-
sult is useful in some applications, such as causal inference
(Chernozhukov et al., 2016; Uehara et al., 2020). To com-
plement this result, we empirically investigate the estimator
error using an artificially generated dataset with the known
true density ratio in Section 6.

3.5 MPL-DRE with Exponential Density Ratio
Models

When focusing on exponential density ratio models exp(g)
for g ∈ G, we can rewrite the objective function of MPL-
DRE under the ordinary sampling as follows:

max
g∈G

{
Jeordinary,p(g;X )− 1

m

m∑
j=1

exp(g(Zj))− αΨ(r)

}
,

Jeordinary,p(g;X ) =
1

n

n∑
i=1

g(Xi).

Similarly, we define an objective function for estimating the
inverse density ratio as

max
g∈G

{
Jeordinary,q(g;Z)− 1

n

n∑
i=1

exp(−g(Xi))− αΨ(g)

}
,

Jeordinary,q(g;Z) =
1

m

m∑
j=1

g(Zj).

Then, the objective in MPL-DRE under the standard strati-
fied sampling is given as

max
g∈G

{
Jestrat(g;λ,X ,Z)− 1

n

n∑
i=1

exp
(
g(Xi)

)
− 1

m

m∑
j=1

exp
(
− g(Zj)

)
− αΨ(g)

}
,

where

Jestrat(g;λ,X ,Z) :=

λJeordinary,p(r;X ) + (1− λ)Jeordinary,q(r;Z). (5)

3.6 On the Roughness Penalties

We have hitherto introduced the MPLE of DRE under the
ordinary and stratified sampling scheme. To prevent the

estimates from boiling down to Dirac functions spiking
at X and Z , we discuss several choices for the rough-
ness penalty. In DRE, the roughness penalty by Good
(1971); Good and Gaskins (1971) for density function f
is Ψ(f) =

∫
R

(f ′(x))2

f(x) dx = 4
∫
R((f(x)1/2)′)2dx, which

may also be considered as a measure of the ease of de-
tecting small shifts in r. Silverman (1982) proposes using
Ψ(f) =

∫
R((log f(x))

′′′
)2dx, which is a measure of higher-

order curvature in log f , which is zero if and only if f is a
Gaussian density function.

For simplicity of notation, we omit the roughness penalty
from the objective function in the following sections, since
the roughness penalty can also be interpreted as a choice of
function classR (Silverman, 1982).

4 RELATIONSHIPS BETWEEN THE
KL-DIVERGENCE AND THE IPMS
FROM THE DENSITY-RATIO
PERSPECTIVE

First, we formally define the KL divergence and the IPMs.
The KL divergence is defined as

KL
(
P ‖ Q

)
:=

∫
Wp

p∗(x) log
p∗(x)

q∗(x)
dx

=

∫
Wp

p∗(x) log r∗(x)dx.

For F ⊂ Bb on X , the IPMs based on F and between
P,Q ∈ P(W) is defined as:

IPMF
(
P ‖ Q

)
:= sup

f∈F

{∫
f(x)p∗(x)dx−

∫
f(x)q∗(x)dx

}
.

If for all f ∈ F , −f ∈ F , then IPMF forms a metric over
P(W); we assume that this is always true for T in this paper
to enable the removal of the absolute values. There is an
obvious trade-off in the choice of F to fully characterize
the IPMF ; that is, on one hand, the function class must be
sufficiently rich that IPMF vanishes if and only if P = Q.
In contrast, for certain methods, the larger the function
class F , the more difficult it is to estimate IPMF (Muandet
et al., 2017). Thus, F should be restrictive enough for the
empirical estimate to converge rapidly (Sriperumbudur et al.,
2012).

We give examples of F . If we set F ={
f :W 7→ R : |f(x)− f(y)| ≤ ‖x− y‖, (x, y) ∈ W2

}
,

the corresponding IPM becomes the Wasserstein distance
(Villani, 2008). If F is the reproducing kernel Hilbert space,
the IPM coincides with the MMD Muandet et al. (2017).
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4.1 The KL-Divergence and MPL-DRE

In this section, we elucidate the relationship between KL-
divergence and MPL-DRE. Suppose thatWp ⊆ Wq . Let us
denote by G the set of continuous bounded functions from
W to R. Let us consider the dual of the KL divergence,
defined as follows (Donsker and Varadhan, 1976; Ambrosio
et al., 2005; Nguyen et al., 2008, 2010; Arbel et al., 2021):

sup
g∈G

{
1 +

∫
Wp

g(x)p∗(x)dx−
∫
W∗

exp(g(x))q∗(x)dx

}
.

(6)

By Silverman’s trick, the maximizer g∗ satis-
fies

∫
exp(g)q∗(x)dx = 1. Therefore, (6) =∫

Wp
g∗(x)p∗(x)dx. If G includes the true logarithm

of the density ratio function from the dual of the KL
divergence, it may be noted that the maximized expected
log-likelihood is identical to the KL divergence. We
summarize this result in the following lemma, which is
derived from Theorems 3.3 and 3.4.

Lemma 4.1. For G, suppose that R = {exp(g)|g ∈ G}
be a proper function set. If R contains a function r such
that r(x) = r∗(x) for all x ∈ W∗ and Wp ⊆ Wq, then
the maximum expected log-likelihood under the ordinary
sampling over the exponential density ratio models,

max
g∈G

∫
Wp

g(x)dP(x), s.t.

∫
W∗

exp(g(z))dQ(x) = 1,

matches the KL-divergence KL
(
P ‖ Q

)
.

This formulation is also identical to that of Nguyen et al.
(2010), which estimates the density ratio by solving equa-
tion 6. This paper motivates the method from the perspective
of the likelihood and finds that this formulation has a normal-
ization effect by Silverman’s trick. In fact, Sugiyama et al.
(2008) proposes KLIEP, which solves the constrained opti-
mization problem in Lemma 4.1, and Sugiyama et al. (2012)
refers to the objective function of Nguyen et al. (2010) as
unnormalized KL-divergence (UKL) because it does not
have a normalization term. However, as explained above,
the maximizer is normalized owing to Silverman’s trick
without considering the constrained problem as Sugiyama
et al. (2008). equation 6 is also called KL Approximate
Lower bound Estimator (KALE) (Arbel et al., 2021; Glaser
et al., 2021).

4.2 The IPMs and MPL-DRE

Remarkably, under the stratified sampling scheme, the max-
imum expected log-likelihood of the MPL-DRE coincides
with the IPMs with a certain function class. In particular,
we can see this through equation 2 by (i) considering the
exponential-type density ratio model, (ii) setting λ to be
0.5, and (iii) setting F to be a set of functions such that

T1(r) = T2(r) = 1. We can also obtain the empirical coun-
terpart from equation 5. This finding means that, in a certain
situation, the maximum log-likelihood of the density ratio
defines a proper distance between corresponding probability
distributions.

As mentioned in Section 3.6, imposing the roughness
penalty corresponds to a restriction on the function classR,
giving rise to variants of the IPMs.

Nguyen et al. (2017) and Zhao et al. (2020) also propose
a sum of KL and inverse KL divergences, but they do not
discuss the relationship between the sum and the IPMs. In
fact, the D2GAN proposed by Nguyen et al. (2017) can also
be considered as a variant of IPM-based GANs.

5 THE DENSITY RATIO METRICS
(DRMS)

This paper introduces the DRMs as an unified set of probabil-
ity divergences, which bridges KL-divergence and a certain
IPM via the density ratio. We define the DRMs based on the
expected weighted log-likelihood of the density ratio under
the stratified sampling as

DRMλ
R(P ‖ Q) := (7)

sup
r∈C(R)

{
λ

∫
log r(x)dP(x)− (1− λ)

∫
log r(z)dQ(z)

}
,

whereR is a set of measurable functions defined in Defini-
tion 3.2, and the set of functions C(R) is defined as

C(R) = {r ∈ R : T1(r) = T2(r) = 1} .

As well as the previous section, we omit the roughness
penalty Ψ(r) by interpreting it the choice of function class
R. In DRM, the optimal r in equation 7 is the density
ratio as shown in Theorem 3.5. Besides, as a probability
divergence, the following lemma holds.

Lemma 5.1. For λ ∈ [0, 1], with sufficiently large R,
DRMλ

R(P ‖ Q) = 0⇔ P = Q for any P,Q ∈ P(W).

The proof is shown in Appendix E.

We give an empirical approximator for DRMλ
R(P ‖ Q).

Suppose we have empirical measures Pn = n−1
∑n
i=1 δXi

and Qm = m−1
∑m
j=1 δZj with the Dirac measure δx at

x ∈ W . As discussed in Section 3.3, we achieve the empiri-
cal approximation as

D̂RM
λ

R,n,m(Pn ‖ Qm) := sup
r∈R
K̂(r).

5.1 Topological Properties

We present topological properties of the DRMs, that is, their
relation to weak convergence of probability distributions.
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Figure 1: Relationship between the KL-divergence, the
IPMs, and DRMs. A family of the DRMs (red line) corre-
sponds to the KL-divergence (yellow dots) at λ ∈ {0, 1},
and is tangent to the set of the IPMs (blue region) at λ = 0.5.

Such the property is important for generative models, such
as GANs and adversarial VAEs. Here, ⇀ denotes weak
convergence of probability measures.
Theorem 5.2. Let P be a probability measure and
(PN )N≥0 be a sequence of probability measures. Suppose
W is bounded. Then, we have the followings:

1. (imply weak convergence) For λ ∈ [0, 1],
limN→∞DRMλ

R(PN ‖ P) = 0⇒ PN ⇀ P
2. (metrize weak convergence) For λ = 1/2,

limN→∞DRMλ
R(PN ‖ P) = 0⇔ PN ⇀ P.

The proof is provided in Appendix F.

5.2 From DRM to the KL-divergence and the IPMs

We define a function class R̃ as R̃ = {exp(g(·)) | g ∈ G}.
Then, we obtain the following result.
Theorem 5.3. Suppose that under G, R̃ satisfies Defini-
tion 3.2. Then, DRM

1/2

R̃ (P ‖ Q) = 1
2 IPMG(P ‖ Q).

Besides, suppose that r∗ ∈ R̃. If Wq ⊆ Wp, then
DRM1

R̃(P ‖ Q) = KL(P ‖ Q). If Wp ⊆ Wq, then
DRM0

R̃(P ‖ Q) = KL(Q ‖ P).

Thus, the DRMs bridge the IPMs and KL-divergence via
the density ratio. We illustrate the concept in Figure 1.

In order to estimate the density ratio using finite samples, we
need to control the roughness of the estimator appropriately,
as explained in Section 3. In the DRMs, the problem of
roughness can be considered as a choice of function class
R, which corresponds to the property of the IPMs that the
different function class yields different metrics, such as WD
and MMD.

A map d : P×Q 7→ d(P‖Q) ∈ [0,∞] is called a probability
semimetric if it possesses the following properties: (i) d(P ‖
Q) = 0 if and only if P = Q; (ii) d(P ‖ Q) = d(Q ‖
P); (iii) d(P ‖ Q) ≤ d(P ‖ O) + d(O ‖ Q), where O
is a probability measure. It is known that the IPMs are
probability semimetric, and thus the following corollary
holds.
Theorem 5.4. Suppose the same condition in Theorem 5.3.
Then, DRM

1/2

R̃ (P ‖ Q) = 1
2 IPMG(P ‖ Q) is probability

semimetric.

5.3 Choice of λ

We develop a method for choosing λ by the technical of em-
pirical processes (van der Vaart and Wellner, 2013). To the
end, we define empirical processes at log r as GXn log r =√
n(
∫

log r(x)dP(x)− 1
n

∑n
i=1 log r(Xi)) and GZm log r =√

m(
∫

log r(z)dQ(z)− 1
m

∑m
j=1 log r(Zj)).

We derive a limit distribution of the empirical processes,
select λ that minimizes variance of that limit distribution.
Consider a class F of functions f : W → R. The
Donsker theorem shows that a sequence of empirical pro-
cesses {Gnf : f ∈ F} with F converges in distribution to a
Gaussian process with zero mean and some covariance func-
tion, when F satisfies the Donsker condition (see conditions
and results in Theorem 2.8.2 in van der Vaart and Wellner
(2013)). Given that the function class {log r(x) : r ∈ R}
satisfies the Donsker condition, which holds when r(x) is
differentiable, we obtain the following limit distribution.

Theorem 5.5. If {log r(x) : r ∈ R} satisfies the Donsker
condition,

D̂RM
λ

R,n,m(Pn ‖ Qm) N
(

DRMλ
R(P ‖ Q), V (λ)

)
,

where V (λ) = λV P + (1 − λ)V Q, V P =∫ (
log r(x)−

∫
log r(x)dP(x)

)2
dP(x), and V Q =∫ (

log r(z)−
∫

log r(z)dQ(z)
)2

dQ(z).

With the limiting variance V (λ), we select λ as follows.

Corollary 5.6. The asymptotic variance V (λ) of the DRM
estimator is minimized when λ = V P

V P +V Q .

5.4 Related Work

DRE methods. Sugiyama et al. (2011b) and Kato and
Teshima (2021) focus on the Bregman divergence (BD)
minimization framework (Bregman, 1967) to provide a gen-
eral framework that unifies various DRE methods, such
as moment matching (Huang et al., 2007; Gretton et al.,
2009), probabilistic classification (Qin, 1998; Cheng and
Chu, 2004), density matching (Nguyen et al., 2008, 2010),
density-ratio fitting (Kanamori et al., 2009), and learning
from positive and unlabeled data (Kato et al., 2019).

More closely related to our work is the KLIEP, a frame-
work of DRE by density matching under the KL divergence
Sugiyama et al. (2008), Although the original implementa-
tion by Sugiyama et al. (2008) solves the constraint problem,
we can transform the problem to an unconstrained problem
by applying the method of Silverman (1982). The solu-
tion of KLIEP is equal to the solution of empirical UKL,
minr∈R− 1

n

∑n
i=1 log r(Xi) + 1

m

∑m
j=1 r(Zj). Although

Sugiyama et al. (2008, 2012) introduce the normalization
constraint to this objective and omit 1

m

∑m
j=1 r(Zj), we do

not have to conduct the transformation because the solution
of the unconstrained problem satisfies the constraint.
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Table 1: Results of Section 6: means, medians, and stds of the squared error in DRE using synthetic datasets. The lowest
mean and median (med) methods are highlighted in bold.

dim uLSIF RuLSIF (α = 0.1) WD DRM (λ = 0.5) DRM (λ = 0.1) DRM (λ = 0.9)
mean med std mean med std mean med std mean med std mean med std mean med std

2 11.216 9.997 4.547 11.655 10.481 4.566 7.962 4.536 13.838 1.781 1.107 2.025 1.565 0.977 1.762 3.039 2.194 2.959
10 15.512 14.673 3.218 15.285 14.292 3.178 12.164 13.033 4.879 3.638 3.222 1.861 2.901 2.488 1.583 5.577 4.885 2.151
50 15.578 15.045 3.326 15.586 15.055 3.326 14.307 13.922 3.614 6.654 6.032 2.340 4.879 4.273 1.856 10.117 9.451 2.728

100 16.479 15.356 4.194 16.318 15.054 4.220 9.040 6.976 6.849 7.540 6.748 2.812 8.785 8.305 2.266 12.163 11.074 3.552

The roughness problem is also closely related to the overfit-
ting problem in DRE, called train-loss hacking (Kato and
Teshima, 2021) and density-chasm problem (Rhodes et al.,
2020). Rhodes et al. (2020), Ansari et al. (2020), Kumagai
et al. (2021), and Choi et al. (2021) mainly focus on the
support of two densities in population. On the other hand,
Kato and Teshima (2021) considers that it is caused by the
finite samples. The roughness problem is more related to
the train-loss hacking because, as well as Good and Gaskins
(1971), the estimated density ratio becomes a set of Dirac
delta functions even if there is a common support between
two densities, which causes the overfitting problem. We
introduce the correction for our objective in Appendix G.

Relation to GANs. We discuss the generative ratio match-
ing networks (Srivastava et al., 2020), which uses density
ratio as a discriminator and use MMD to train the generator.
Although they estimate the density ratio by using uLSIF by
Kanamori et al. (2009), separately from the training gen-
erator with MMD, we can also estimate the density ratio
from MMD; that is, based on our findings, we can train the
discriminator and generator by using the same objective.

A density ratio is closely related to a discriminator in GANs
(Tran et al., 2017). We can enforce the smoothness by
using the findings of GANs. Chu et al. (2020) categorizes
the smoothness of the discriminator, and find that we can
enforce Lipschitz continuity by using some constraints, such
as spectral normalization (Miyato et al., 2018).

Given observationsX from the density p∗, the goal of GANs
is to learn a generator, which generates samples similar to
X . The generator is a parametric function Gθ : Rd′ →W ,
where θ ∈ Θ is the parameter, Θ is the parameter space, and
d′ � d. We denote the function class by {Gθ}θ∈Θ. Each
function Gθ is applied to a d′-dimensional random variable
ε, and for the generator, we define a family of densities
G = {qβ}β∈B. Let us denote m ∈ N i.i.d. samples drawn
from the density qβ byWq. In contrast, the discriminator
D belongs to a family of Borel functions fromW to (0, 1),
denoted by D.

Probability divergence plays an important role in GANs,
such as the Wasserstein GAN (Arjovsky et al., 2017;
Bousquet et al., 2017) and MMD GAN. Based on
the stratified MPL-DRE, we also propose Stratified
Likelihood based GAN (SLoGAN). The SLoGAN train
the generator and discriminator by solving the follow-

ing minimax game: DRMλ
R(P ‖ Qθ). Nguyen

et al. (2017) proposes D2GAN with the following objec-
tive: J(g, r1, r2) = αEp

[
log r1(Xi))

]
− Ep

[
r1(Xi))

]
−

Eq
[
r2(Xi))

]
+ βEp

[
log r(Xi))

]
. This objective can be

regarded as a variant of the DRMs and the IPMs. In Propo-
sition 1 in Nguyen et al. (2017), the authors show that the
optimal discriminator r1 is αr∗ and the optimal discrimina-
tor r2 is β/r∗, if separate discriminators (r1 = 1/r2) and
exponential density models are not used, the objective of
D2GAN surprisingly can be reduced to a metric belong-
ing to the IPMs under α = β = 1. For instance, if we
use 1-Lipschitz functions for the class of the discrimina-
tors, the objective becomes the WD with the normalization
constraints.

6 EXPERIMENTS

We conduct several experiments to investigate the empir-
ical performances of methods using our proposed DRM.
In this section, we empirically investigate the L2 error
‖r − r∗‖L2(Q) in the proposed DRE based on DRM be-
cause the weight of DRM affects a better estimation of the
density ratio.

We compare our DRM-based DRE with the uLSIF
(Kanamori et al., 2009) and RuLSIF (Yamada et al., 2011).
For DRM, we choose λ from 0.5, 0.9, and 0.1. The model is
3-layer perceptron with a ReLU activation function, where
the number of the nodes in the middle layer is 32. We also
apply the same spectral normalization (Miyato et al., 2018)
to enforce Lipschitz continuity. Therefore, when setting
λ = 0.5 in DRM, the metric becomes WD with normal-
ization constraints owing to Lipschitz continuity. We also
show the results when we do not use the normalization con-
straints (just maximizing the log likelihood of MPL-DRE
under the stratified sampling), denoted by WD. For uL-
SIF and RuLSIF, we use an open-source implementation1,
which uses a linear-in-parameter model with the Gaussian
kernel (Kanamori et al., 2012). Let the dimensions of the
domain be d, P = N (µp, Id), and Q = N (µq, Id), where
N (µ,Σ) denotes the multivariate normal distribution with
mean µ and Σ, and let µp and µq be d-dimensional vectors
µp = (0, 0, . . . , 0)> and µq = (1, 0, . . . , 0)>, where and Id
is a d-dimensional identity matrix. We fix the sample sizes
at n = m = 1, 000 and choose d from {2, 10, 50, 100}. To

1https://github.com/hoxo-m/densratio_py.

https://github.com/hoxo-m/densratio_py
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measure the performance, we use the mean, median (med),
and standard deviation (std) of the squared errors over 50
trials. Note that in this setting, we know the true density
ratio r∗. The results are shown in Table 1. The proposed
DRM-based DRE methods estimate the density ratio more
accurately than the other methods with a lower mean and
median of the squared error. We also show additional ex-
perimental results with different parameters in Appendix H.
From the additional results, we can find that appropriate
choices of λ lowers the squared error. Besides, we show
experimental results on distribution modeling in Appendix I.

In Appendices J and K, we perform experiments of two-
sample homogeneity test and inlier-based outlier detection.

7 CONCLUSION

We have demonstrated that differences in the sampling
schemes utilized in constructing the likelihood of the den-
sity ratio lead to the KL-divergence and the IPMs. Based on
this finding, we have introduced a new family of probability
divergences, the DRMs, which includes the KL-divergence
and the IPMs. One benefit is that by suitably adjusting a
parameter λ in the DRMs, our DRMs can stabilize DRE,
which has been used in various applications such as inlier-
based outlier detection, transfer learning, and two-sample
homogeneity tests. The DRMs are valuable not only for
DRE but also for other applications, and this work aims
to offer deeper insights by linking probability divergences
to the density ratio. For example, D2GAN (Nguyen et al.,
2017) can be seen as a GAN based on IPMs by using the
DRMs, as well as Wasserstein GAN and MMD GAN. There-
fore, our DRMs offer both theoretical insights and practical
benefits.
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A PROOF OF THEOREM 3.3

Proof. Preliminary, we define the following terms:

A(r) = −
∫
Wp

log(r(x))p∗(x)dx+

∫
W∗

r(z)q∗(z)dz + αΨ(r),

A0(r) = −
∫
Wp

log(r(x))p∗(x)dx− αΨ(r).

Given r inR, we define r� as

log (r�(x)) = − log (r(x))− log

(∫
W∗

r(z)q∗(z)dz +

∫
Wp∩Wc

q

p∗(x)dx

)
.

Here, we have

r�(x) =
r(x)∫

W∗ r(z)q
∗(z)dz +

∫
Wp∩Wc

q
p∗(x)dx

.

Therefore,∫
Wp

r�(x)w∗(x)dx =

∫
W∗

r�(z)q∗(z)dz +

∫
Wp∩Wc

q

p∗(x)dx =

∫
W∗ r(z)q

∗(z)dz +
∫
Wp∩Wc

q
p∗(x)dx∫

W∗ r(z)q
∗(z)dz +

∫
Wp∩Wc

q
p∗(x)dx

= 1,

where w∗(x) = 1[x ∈ W∗](q∗(x)− p∗(x)/r�(x)) + p∗(x)/r�(x). Besides, from the condition, Ψ(r�) = Ψ(r).

Using the equality, we obtain the following relation by elementary manipulations:

A (r�) = −
∫
Wp

log (r�(x)) p∗(x)dx+

∫
W∗

r�(z)q∗(z)dz +

∫
Wp∩Wc

q

p∗(x)dx+ Ψ(r�)

= −
∫
Wp

(
log (r(x))− log

(∫
W∗

r(z)q∗(z)dz +

∫
Wp∩Wc

q

p∗(x)dx

))
p∗(x)dx+ 1 + Ψ(r)

= −
∫
Wp

log (r(x)) p∗(x)dx+ log

(∫
W∗

r(z)q∗(z)dz +

∫
Wp∩Wc

q

p∗(x)dx

)
+ 1 + Ψ(r)

= A(r)−
∫
W∗

r(z)q∗(z)dz −
∫
Wp∩Wc

q

p∗(x)dx+ log

(∫
W∗

r(z)q∗(z)dz +

∫
Wp∩Wc

q

p∗(x)dx

)
+ 1

= A(r)− T1(r) + log (T1(r)) + 1.

Hence, we obtain A(r�) ≤ A(r). Also, A(r�) = A(r) holds only if T1(r) = 1, since t− log t ≥ 1 for all t ≥ 0 and they
are equal only if t = 1.

Therefore, r minimizes A(r) if and only if r minimizes A(r) subject to T1(r) = 1. Here, note that, subject to T1(r) = 1,
the two objectives A(r) and A0(r) + 1 are identical. Thus, the proof is complete.

B PROOF OF THEOREM 3.4

Proof. We consider the minimization of

−
∫
W∗

log(r(x))p∗(x)dx+

∫
W∗

r(z)q∗(z)dz +

∫
Wp∩Wc

q

p∗(x)dx,

over all functions r ∈ R. This problem can be reduced to the following point-wise minimization problem:

min
u∈(0,∞)

− log uq∗(x) + uq∗(x). (8)
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As we denote the solution by u∗, the first order condition of this minimization problem is given as

− 1

u∗
p∗(x) + q∗(x) = 0,

and u∗ ∈ (0,∞) holds. Then, the solution given as u∗ = p∗(x)
q∗(x) ∈ (0,∞).

Finally, we define r†ordinary,p(x) := arg minu∈(0,∞)− log uq∗(x) + uq∗(x) for x ∈ W∗, r†ordinary,p(x) = r∗(x). From
Definition 3.2, for x /∈ Wp, r†ordinary,p(x) = 1/R, and for x /∈ Wq, r

†
ordinary,p(x) = R. It can be confirmed that

r†ordinary,p(x) ∈ R because r∗ is measurable and takes values in (0,∞). Therefore, the solution of the original optimization
problem is equal to r†ordinary,p almost everywhere.

By the same procedure of the proof on r†ordinary,p, we can obtain the r†ordinary,q , which is equal to r†ordinary,p.

C PROOF OF THEOREM 3.5

Proof. Preliminary, we define some supportive notations:

K(r) = λ

∫
log r(x)dP(x)− (1− λ)

∫
log r(x)dQ(x).

We consider the KKT condition for functionals. Let us consider minimizing −K(r) for r ∈ R, where R is defined in
Definition 3.2, satisfying T1(r) = T2(r) = 1. We define a set of constrained functions as

T1 := {r : T1(r) = 1} , and T2 := {r : T2(r) = 1} .

We consider the following inequality:

min
r∈R∩T1∩T2

−K(r) ≥ min
r∈R∩T1∩T2

−λ
∫

log r(x)dP(x) + min
r∈R∩T1∩T2

(1− λ)

∫
log r(x)dQ(x)

≥ min
r∈R∩T1

−λ
∫

log r(x)dP(x) + min
r∈R∩T2

(1− λ)

∫
log r(x)dQ(x) (9)

Then, we consider the solutions of

min
r∈R∩T1

−
∫

log r(x)dP(x),

and

min
r∈R∩T2

−
∫

log
1

r(x)
dQ(x),

where recall that we denote the solutions by r†ordinary,p(x) and r†ordinary,q(x).

First, Theorem 3.4 shows the solution r†ordinary,p. This result can be applied to r†ordinary,q. Then, we can confirm that
r†ordinary,p(x) = r†ordinary(x),q = r†. By definition, r† satisfies the constraints in equation 9. Therefore, r†ordinary,p(x) =

r†ordinary(x),q = r† is also the solution of equation 9.

D PROOF OF THEOREM 3.7

We consider relating the L2 error bound to the DRM generalization error bound in the following lemma.

Lemma D.1 (L2 distance bound). Let H := {r : X → (0,∞)|
∫
W∗ |r(x)|2dx < ∞} and assume r∗ ∈ H. If

inft∈(0,∞) br
′′(t) > 0, then there exists µ > 0 such that for all r ∈ H,

λ‖r − r∗‖2L2(Q)/‖r
∗‖2L2(P) + (1− λ)‖1/r − 1/r∗‖2L2(P)/‖1/r

∗‖2L2(Q)

= −2
(
K̃(r)− K̃(r∗)

)
− o(λ‖r − r∗‖2L2(Q))− o((1− λ)‖1/r − 1/r∗‖2L2(P)).
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Proof. We define the additional notation

K̃(r) = K(r)− (1− λ)

∫
W∗

1

r(x)
p∗(x)dx− λ

∫
W∗

r(z)q∗(z)dz.

Since µ := inft∈(0,∞) log′′(t) > 0, the function f is µ-strongly convex. By the definition of strong convexity,

−
(
K̃(r)− K̃(r∗)

)
= −λ

∫
W∗

log r(x)dP(x) + (1− λ)

∫
W∗

log r(z)dQ(z) + (1− λ)

∫
W∗

1

r(x)
dP(x) + λ

∫
W∗

r(z)dQ(z)− 2

+ λ

∫
W∗

log r∗(x)dP(x)− (1− λ)

∫
W∗

log r∗(z)dQ(z)− (1− λ)

∫
W∗

1

r∗(x)
dP(x)− λ

∫
W∗

r∗(z)dQ(z) + 2.

Here, we have

−
∫
W∗

log r(x)dP(x) +

∫
W∗

r(z)dQ(z) +

∫
W∗

log r∗(x)dP(x)−
∫
W∗

r∗(z)dQ(z)

= −
∫
W∗

r∗(z) log r(z)dQ(x) +

∫
W∗

r(z)dQ(z) +

∫
W∗

r∗(z) log r∗(z)dQ(z)−
∫
W∗

r∗(z)dQ(z)

=

∫
W∗
{−r∗(z) log r(z) + r(z) + r∗(z) log r∗(z)− r∗(z)} dQ(z)

=

∫
W∗

{
−r∗(z) log

r(z)

r∗(z)
+ r(z)− r∗(z)

}
dQ(z)

=

∫
W∗

{
−r∗(z)

(
r(z)

r∗(z)
− 1− 1

2

(
r(z)

r∗(z)
− 1

)2

+ · · ·

)
+ r(z)− r∗(z)

}
dQ(z)

=
1

2

∫
W∗

(
r(x)

r∗(x)
− 1

)2

dP(x) + o

(∫
W∗

(
r(x)

r∗(x)
− 1

)2

dP(x)

)
.

Similarly, ∫
W∗

log r(z)dQ(z) +

∫
W∗

1

r(x)
dP(x)− log r∗(z)dQ(z)−

∫
W∗

1

r∗(x)
dP(x)

=
1

2

∫
W∗

(
r∗(z)

r(z)
− 1

)2

dQ(z) + o

(∫
W∗

(
r∗(z)

r(z)
− 1

)2

dQ(z)

)
.

By combining them,

−
(
K̃(r)− K̃(r∗)

)
≥ λ/2‖r/r∗ − 1‖2L2(P) + (1− λ)/2‖r∗/r − 1‖2L2(Q) + o(‖r/r∗ − 1‖2L2(P)) + o(‖r∗/r − 1‖2L2(Q)).

Here, from Hölder’s inequality,∫
W∗

(r(x)− r∗(x))2dQ(x) =

∫
W∗

r∗2(x)

(
r(x)

r∗(x)
− 1

)2

dQ(x)

=

∫
W∗

r∗(z)

(
r(z)

r∗(z)
− 1

)2

dP(z) ≤ ‖r∗‖2L∞(P)‖r/r
∗ − 1‖2L2(P).

Similarly, ∫
W∗

(1/r(x)− 1/r∗(x))2dQ(x) ≤ ‖1/r∗‖2L∞(Q)‖r
∗/r − 1‖2L2(Q).

Therefore,

λ‖r − r∗‖2L2(Q)/‖r
∗‖2L∞(P) + (1− λ)‖1/r − 1/r∗‖2L2(P)/‖1/r

∗‖2L∞(Q)

= −2
(
K̃(r)− K̃(r∗)

)
− o(λ‖r − r∗‖2L2(Q))− o((1− λ)‖1/r − 1/r∗‖2L2(P)).
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Then, we prove Theorem 3.7 as follows:

Proof of Theorem 3.7. Following Sugiyama et al. (2010, 2012), for P1,P2 ∈ P(W), we define unnormalized KL (UKL)
objective functional as

UKL(g;P1,P2) = 1 +

∫
g(x)dP1(x)−

∫
exp(g(x))dP2(x).

Thanks to the strong convexity, by Lemma D.1, we have

λ‖r̂ − r∗‖2L2(Q)/‖r
∗‖2L∞(P) + (1− λ)‖1/r̂ − 1/r∗‖2L2(P)/‖1/r

∗‖2L∞(Q)

= −
(
K̃(r)− K̃(r∗)

)
− o(λ‖r̂ − r∗‖2L2(Q))− o((1− λ)‖1/r̂ − 1/r∗‖2L2(P))

= λUKL(r̂)− λUKL(r∗) + (1− λ)UKL(1/r̂)− (1− λ)UKL(1/r∗)

− o(λ‖r̂ − r∗‖2L2(Q))− o((1− λ)‖1/r̂ − 1/r∗‖2L2(P)).

Here, we have

UKL(r̂)−UKL(r∗)−ÛKL(r̂) + ÛKL(r̂)︸ ︷︷ ︸
= 0

−ÛKL(r∗) + ÛKL(r∗)︸ ︷︷ ︸
= 0

≤ (UKL(r̂)−UKL(r∗) + ÛKL(r∗)− ÛKL(r̂))︸ ︷︷ ︸
=: A

,

where we used ÛKL(r̂) ≤ ÛKL(r∗).

Let us define `1(r) and `2(r) as

`1(r) := r,

`2(r) := − log r.

For a function A :W → R, observations {Wi}ni=1, and a probability measure W, let us denote the expectation and sample
average by

EW[A(W )] =

∫
W∗

A(w)dW(w),

ÊW[A(W )] =
1

n

n∑
i=1

A(Wi) =

∫
W∗

A(w)dWn(w),

where Wb := n−1
∑n
i=1 δWi is an empirical measure with {Wi}ni=1.

To bound A, for ease of notation, let `r1 = `1(r(X)) and `r2 = `2(r(X)). Then, since

UKL(r) = EQ`1(r(X)) + EP`2(r(X)),

ÛKL(r) = ÊQ`1(r(X)) + ÊP`2(r(X)),

we have

A = UKL(r̂)−UKL(r∗) + ÛKL(r∗)− ÛKL(r̂)

= (EQ − ÊQ)(`r̂1 − `r
∗

1 ) + (EP − ÊP)(`r̂2 − `r
∗

2 )

≤ |(EQ − ÊQ)(`r̂1 − `r
∗

1 )|+ |(EP − ÊP)(`r̂2 − `r
∗

2 )|

By applying Lemma D.3, for any 0 < γ < 2, we have

A ≤ OP

max

‖r̂ − r
∗‖1−γ/2L2(Q)√

min{n,m}
,

1

(min{n,m})2/(2+γ)


 .
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Then, for any 0 < γ < 2, we get

UKL(r̂)−UKL(r∗)− o(‖r − r∗‖2L2(Q))

= OP

max

‖r̂ − r
∗‖1−γ/2L2(Q)√

min{n,m}
,

1

(min{n,m})2/(2+γ)


− o(‖r̂ − r∗‖2L2(Q)).

Similarly, we have

UKL(1/r̂)−UKL(1/r∗)

= OP

max

‖1/r̂ − 1/r∗‖1−γ/2L2(P)√
min{n,m}

,
1

(min{n,m})2/(2+γ)


− o(‖1/r̂ − 1/r∗‖2L2(P)).

As a result, we have

λ‖r̂ − r∗‖2L2(Q)/‖r
∗‖2L∞(P) + (1− λ)‖1/r̂ − 1/r∗‖2L2(P)/‖1/r

∗‖2L∞(Q)

+ o(λ‖r̂ − r∗‖2L2(Q))− o((1− λ)‖1/r̂ − 1/r∗‖2L2(P))

= −2
(
K̃(r)− K̃(r∗)

)
= 2λOP

max

‖r̂ − r
∗‖1−γ/2L2(Q)√

min{n,m}
,

1

(min{n,m})2/(2+γ)




+ 2(1− λ)OP

max

‖1/r̂ − 1/r∗‖1−γ/2L2(P)√
min{n,m}

,
1

(min{n,m})2/(2+γ)


 .

Here, we have

min
{

1/‖r∗‖2L∞(P), 1/‖1/r
∗‖2L∞(Q)

}
max

{
λ‖r̂ − r∗‖2L2(Q), (1− λ)‖1/r̂ − 1/r∗‖2L2(P)

}
+ o(max

{
λ‖r̂ − r∗‖2L2(Q), (1− λ)‖1/r̂ − 1/r∗‖2L2(P)

}
)

= OP

max

max

λ‖r̂ − r
∗‖1−γ/2L2(Q)√

min{n,m}
,

(1− λ)‖1/r̂ − 1/r∗‖1−γ/2L2(P)√
min{n,m}

 ,
1

(min{n,m})2/(2+γ)


 .

Consider a case where λ‖r̂ − r∗‖2L2(Q) ≥ (1− λ)‖1/r̂ − 1/r∗‖2L2(P). In this case, we consider

min
{

1/‖r∗‖2L∞(P), 1/‖1/r
∗‖2L∞(Q)

}
λ‖r̂ − r∗‖2L2(Q) + o(λ‖r̂ − r∗‖2L2(Q))

= OP

max

λ‖r̂ − r
∗‖1−γ/2L2(Q)√

min{n,m}
,

1

(min{n,m})2/(2+γ)


 .

Without loss of generality, we only consider a case where λ > 0 and min
{

1/‖r∗‖2L∞(P), 1/‖1/r
∗‖2L∞(Q)

}
> 0. Then,

because min
{

1/‖r∗‖2L∞(P), 1/‖1/r
∗‖2L∞(Q)

}
and λ are constants, either

‖r̂ − r∗‖2L2(Q) + o(‖r̂ − r∗‖2L2(Q)) = OP

‖r̂ − r∗‖1−γ/2L2(Q)√
min{n,m}

 ,

or

‖r̂ − r∗‖2L2(Q) + o(‖r̂ − r∗‖2L2(Q)) = OP

(
1

(min{n,m})2/(2+γ)

)
,
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holds. From the first case, we have the following result:

‖r̂ − r∗‖L2(Q) + o(‖r̂ − r∗‖L2(Q)) = OP

(
1

min{n,m}1/(2+γ)

)
.

From the second case, we have the following result:

‖r̂ − r∗‖L2(Q) + o(‖r̂ − r∗‖L2(Q)) = OP

(
1

(min{n,m})1/(2+γ)

)
.

In summary,

λ‖r̂ − r∗‖L2(Q) + o(‖r̂ − r∗‖L2(Q)) = OP

(
1

(min{n,m})1/(2+γ)

)
.

Similarly, for a case where λ‖r̂ − r∗‖2L2(Q) < (1− λ)‖1/r̂ − 1/r∗‖2L2(P), we have

(1− λ)‖r̂ − r∗‖L2(P) + o(‖r̂ − r∗‖L2(P)) = OP

(
1

(min{n,m})1/(2+γ)

)
.

By combining them,

max
{
λ‖r̂ − r∗‖L2(Q), (1− λ)‖1/r̂ − 1/r∗‖L2(P)

}
= OP

(
1

(min{n,m})1/(2+γ)

)
.

Each lemma used in the proof is provided as follows.

D.1 Bounding the Empirical Deviations

Following is a proposition originally presented in van de Geer (2000), which was rephrased in Kanamori et al. (2012) in a
form that is convenient for our purpose.
Lemma D.2 (Lemma 5.13 in van de Geer (2000), Proposition 1 in Kanamori et al. (2012)). Let F ⊂ L2(P) be a function
class and the map I(f) be a complexity measure of f ∈ F , where I is a non-negative function on F and I(f0) <∞ for a
fixed f0 ∈ F . We now define FM = {f ∈ F : I(f) ≤M} satisfying F =

⋃
M≥1 FM . Suppose that there exist c0 > 0 and

0 < γ < 2 such that

sup
f∈FM

‖f − f0‖ ≤ c0M, sup
f∈FM

‖f−f0‖L2(P )≤δ

‖f − f0‖∞ ≤ c0M, for all δ > 0,

and that HB(δ,FM ,P) = O (M/δ)
γ . Then, we have

sup
f∈F

∣∣∫ (f − f0)d(P− Pn)
∣∣

D(f)
= OP (1) , (n→∞),

where D(f) is defined by

D(f) = max

‖f − f0‖1−γ/2L2(P) I(f)γ/2
√
n

,
I(f)

n2/(2+γ)

 .

Lemma D.3 (Lemma 10 in Kato and Teshima (2021)). Under the conditions of Theorem 3.7, for any 0 < γ < 2, we have

|(EQ − ÊQ)(`r̂1 − `r
∗

1 )| = OP

max

‖r̂ − r
∗‖1−γ/2L2(Q)√
m

,
1

m2/(2+γ)




|(EP − ÊP)(`r̂2 − `r
∗

2 )| = OP

max

‖r̂ − r
∗‖1−γ/2L2(Q)√
n

,
1

n2/(2+γ)




as n,m→∞.
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D.2 Complexity of the hypothesis class

For the function classes in Definition D.5, we have the following evaluations of their complexities.

Lemma D.4 (Lemma 5 in Schmidt-Hieber (2020)). For L ∈ N and p ∈ NL+2, let V :=
∏L+1
l=0 (pl + 1). Then, for any

δ > 0,
logN (δ,H(L, p, s,∞), ‖ · ‖∞) ≤ (s+ 1) log(2δ−1(L+ 1)V 2).

Definition D.5 (ReLU neural networks; Schmidt-Hieber, 2020). For L ∈ N and p = (p0, . . . , pL+1) ∈ NL+2,

F(L, p) :={f : x 7→WLσvLWL−1σvL−1
· · ·W1σv1

W0x :

Wi ∈ Rpi+1×pi , vi ∈ Rpi(i = 0, . . . , L)},

where σv(y) := σ(y − v), and σ(·) = max{·, 0} is applied in an element-wise manner. Then, for s ∈ N, F ≥ 0, L ∈ N,
and p ∈ NL+2, define

H(L, p, s, F ) := {f ∈ F(L, p) :

L∑
j=0

‖Wj‖0 + ‖vj‖0 ≤ s, ‖f‖∞ ≤ F},

where ‖ · ‖0 denotes the number of non-zero entries of the matrix or the vector, and ‖ · ‖∞ denotes the supremum norm.
Now, fixing L̄, p̄, s ∈ N as well as F > 0, we define

IndL̄,p̄ := {(L, p) : L ∈ N, L ≤ L̄, p ∈ [p̄]L+2},

and we consider the hypothesis class

H̄ :=
⋃

(L,p)∈IndL̄,p̄

H(L, p, s, F )

H := {r ∈ H̄ : Im(r) ⊂ (br, Br)}.

Moreover, we define I1 : IndL̄,p̄ → R and I : H → [0,∞) by

I1(L, p) := 2|IndL̄,p̄|
1

s+1 (L+ 1)V 2,

I(r) := max

‖r‖∞, min
(L,p)∈IndL̄,p̄

r∈H(L,p,s,F )

I1(L, p)

 ,

where V :=
∏L+1
l=0 (pl + 1), and we define

HM := {r ∈ H : I(r) ≤M}.

Proposition D.6 (Lemma 8 in Kato and Teshima (2021)). There exists c0 > 0 such that for any γ > 0, any δ > 0, and any
M ≥ 1, we have

logN (δ,HM , ‖ · ‖∞) ≤ s+ 1

γ

(
M

δ

)γ
.

and

sup
r∈HM

‖r − r∗‖∞ ≤ c0M.

Definition D.7 (Derived function class and bracketing entropy). Given a real-valued function class F , define ` ◦ F :=
{` ◦ f : f ∈ F}. By extension, we define I : ` ◦ H → [1,∞) by I(` ◦ r) = I(r) and ` ◦ HM := {` ◦ r : r ∈ HM}. Note
that, as a result, ` ◦ HM coincides with {` ◦ r ∈ ` ◦ H : I(` ◦ r) ≤M}.
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Proposition D.8 (Lemma 9 in Kato and Teshima (2021)). Let ` : (0,∞)→ R be a ν-Lipschitz continuous function. Let
HB

(
δ,F , ‖ · ‖L2(P)

)
denote the bracketing entropy of F with respect to a distribution P. Then, for any distribution P, any

γ > 0, any M ≥ 1, and any δ > 0, we have

HB

(
δ, ` ◦ HM , ‖ · ‖L2(P)

)
≤ (s+ 1)(2ν)γ

γ

(
M

δ

)γ
.

Moreover, there exists c0 > 0 such that for any M ≥ 1 and any distribution P ,

sup
`◦r∈`◦HM

‖` ◦ r − ` ◦ r∗‖L2(P) ≤ c0νM,

sup
`◦r∈`◦HM

‖`◦r−`◦r∗‖L2(P)≤δ

‖` ◦ r − ` ◦ r∗‖∞ ≤ c0νM, for all δ > 0.

E PROOF OF LEMMA 5.1

Proof. We study two cases: (i)Wp =Wq , and (ii)Wp 6=Wq .

Consider the first case thatWp =Wq holds. By Theorem 3.5, r̃strat = r∗ attains the maximum of DRMλ
R(P‖Q). Hence,

we have

DRMλ
R(P‖Q) = λKL(P‖Q) + (1− λ)KL(Q‖P). (10)

Since the Kullback-Leibler divergence KL(P‖Q) satisfies KL(P‖Q) = 0⇔ P = Q, we obtain the statement.

Consider the second caseWq 6=Wq . In this case, we always have P 6= Q, hence it is sufficient to show that DRMλ
R(P‖Q) >

0. We substitute r†strat and obtain

DRMλ
R(P‖Q) ≥ K(r†strat)

= λ

∫
W∗

log r∗(x)dP(x) + (1− λ)

∫
W∗

log(1/r∗(x))dQ(x)

+ λ

∫
Wp\Wq

logRdP(x) + (1− λ)

∫
Wq\Wp

logRdQ(x).

We have ∫
W∗

log r∗(x)dP(x) =

∫
W∗
− log

(
q∗(x)

p∗(x)

)
dP(x)

≥
∫
W∗
−
(
q∗(x)

p∗(x)
− 1

)
dP(x)

=

∫
W∗

(p∗(x)− q∗(x)) dx

= P(W∗)−Q(W∗),

where the inequality follows log(x) ≤ (x− 1). Using this inequality, we continue the lower bound on DRMλ
R(P‖Q) as

DRMλ
R(P‖Q)

≥ λ(P(W∗)−Q(W∗)) + (1− λ)(Q(W∗)− P(W∗))
+ (λP(Wp\Wq) + (1− λ)Q(Wq\Wp)) logR

= (2λ− 1)P(W∗) + (1− 2λ)Q(W∗) + (λP(Wp\Wq) + (1− λ)Q(Wq\Wp)) logR.

We show that the lower bound is strictly positive. For λ ∈ [0, 1/2], the lower bound is larger than 0 if

logR >
(1− 2λ)(P(W∗)−Q(W∗))

λP(Wp\Wq) + (1− λ)Q(Wq\Wp)
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holds. Similarly, for λ ∈ [1/2, 1], we obtain the same result when we have

logR >
(2λ− 1)(Q(W∗)− P(W∗))

λP(Wp\Wq) + (1− λ)Q(Wq\Wp)
.

Note that min{P(Wp\Wq),Q(Wq\Wp)} > 0 holds by the setting. Hence, if R is sufficiently large such that satisfies the
inequalities, we show that DRMλ

R(P‖Q) > 0.

F PROOF OF THEOREM 5.2

Proof. We show the statements one by one.

1: We put r∗ in the maximum in DRMλ
R(P‖Q) and obtain

DRMλ
R(P‖Q) ≥ λ

∫
Wp

log(r∗(x))dP(x) + (1− λ)

∫
Wq

log(1/r∗(x))dQ(x)

= λKL(P‖Q) + (1− λ)KL(Q‖P).

Hence, we have lim supN→∞ λKL(PN‖P) + (1 − λ)KL(P‖PN ) = 0. Combining the non-negativity of the Kullback-
Leibler divergence, we obtain limn→∞KL(PN‖P) and limn→∞KL(P‖PN ) = 0. Since the Kullback-Leibler divergence
implies weak convergence (Gibbs and Su, 2002) with the bounded assumption, we obtain the statement.

2: The direction⇒ follows the above first statement. We show the opposite⇐. With λ = 1/2, we obtain

DRM
1/2
R (PN‖P) =

1

2
sup

r∈C(R)

{∫
W

log r(x)d(PN − P)(x)

}
.

Since r ∈ C(R) is a continuous, bounded, and strictly positive function, log r is continuous and bounded. Hence, by the
definition of weak convergence, we obtain the statement.

G ESTIMATION OF THE DRM AND DENSITY RATIO

We can estimate the density ratio by solving the inner maximization problem in DRM; that is, we consider minimizing

K̂(r) =

{
λ

1

n

n∑
i=1

log r(Xi)− (1− λ)
1

m

m∑
j=1

log r(Zj)−
1− λ
n

n∑
i=1

1

r(Xi)
− λ

m

m∑
j=1

r(Zj)

}
,

Besides, if we know the upper bounds of r∗ and 1/r∗, we can also impose the non-negative correction proposed by Kiryo
et al. (2017) and Kato and Teshima (2021). In UKL , does not become negative because... Based on this motivation. Kato
and Teshima (2021) proposes the following nonnegative UKL:

n̂nUKL(r) := −
n∑
i=1

(
log
(
r(Xi)

)
− Cr(Xi)

)
+

 m∑
j=1

r(Zj)− C
n∑
i=1

r(Xi)


+

,

where C is a constant such that 0 < C < 1/R, and R is a constant such that for all x ∈ W , r∗(x) < R. Note that the
second term is always positive in population (Kato and Teshima, 2021). Therefore, the nonnegative UKL is identical to the
original UKL. Thus, we can regard nonnegative UKL is a generalization of the original UKL.

The empirical counterpart of the nonnegative UKL is given as

n̂nK(r) = λn̂nUKL(r,Pn,Qm)− (1− λ)n̂nUKL(1/r,Qm.Pn),

When the nonnegative correction is violated, instead of simply replacing it with 0, we can use gradient ascent; that is, if
... The use of gradient ascent is reported to improve the empirical performance Kiryo et al. (2017); Kato and Teshima
(2021). Our proposed algorithm is summarized in Algorithm 1. We call the DRE method using the DRM with non-negative
correction nnDRM.
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Algorithm 1 nnDRM

Input: Training data
{
Xi

}n
i=1

and
{
Zj
}m
j=1

, the algorithm for stochastic optimization such as Adam (Kingma and Ba,
2015), the learning rate γ, the regularization coefficient λ and functionR(r), and a constant C > 0.
Output: A density ratio estimator r̂.
while No stopping criterion has been met: do
N mini-batches:

{({
Xk
i

}nk

i=1
,
{
Zkj
}mk

j=1

)}N
k=1

.

for k = 1 to N do
if
∑mk

j=1 r(Z
k
j )− C

∑nk

i=1 r(X
k
i ) ≥ 0: then

Gradient decent: set gradient
Grad = ∇rn̂nUKL(r,Pkn,Qkn).

else
Gradient ascent: set gradient

Grad = ∇r
{ mk∑
j=1

r(Zkj )− C
nk∑
i=1

r(Xk
i )
}
.

end if
if
∑nk

i=1
1

r(Xk
i )
− C

∑mk

j=1
1

r(Zk
j )
≥ 0: then

Gradient decent: add gradient

Grad += ∇rn̂nUKL(
1

r
,Qkn,Pkn).

else
Gradient ascent: add gradient

Grad += ∇r
{ nk∑
i=1

1

r(Xk
i )
− C

mk∑
j=1

1

r(Zkj )

}
.

end if
Update r with the gradient and the learning rate γ.

end for
end while

H ADDITIONAL RESULTS OF SECTION 6

In addition to the experimental results shown in Section 6, we investigate the performance of the DRM-based DRE with
different λ, chosen from {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}.

First, we change the sample sizes. We show the results with sample sizes (n,m) = (1000, 100), (n,m) = (10000, 1000),
and (n,m) = (10000, 100) in Table 2. We choose the dimension d from {10, 100}. The other settings are identical to that of
Section 6. In Section 6, DRM with λ = 0.9 achieves the lowest mean and squared errors. However, in this result, DRM with
λ = 0.5 achieves lower mean and squared errors than that with λ = 0.9. We consider that this is because balancing lambda
between the log likelihood of the density ratio and inverse density ratio makes the estimation error lower as discussed in
Wooldridge (2001). In this case, because n is larger than m. Therefore, weighting the log likelihood 1

n

∑n
i=1 log r(Xi)

more than 1
m

∑m
j=1 log 1

r(Xi)
may make the estimation more accurate.

Next, we change the mean vectors from the setting of Section 6 as µp = (1, 0, . . . , 0)> and µq = (0, 0, . . . , 0)>. The other
settings are the same as that of Section 6. The results shown by boxplots in Figures 2 and 3.

It can be confirmed that the error can be reduced by adjusting λ appropriately. For example, in Section 6, DRM with λ = 0.1
shows the best performance. However, by observing the results carefully, we can find that there are cases where setting
lambda around 0, 4 may reduce the error more than setting with λ = 0. We can also find that appropriate choices of λ are
also affected by the changes in the sample size ratio and the mean vectors.
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Table 2: Results of Appendix H: means, medians, and stds of the squared error in DRM-based DRE using synthetic datasets.
The lowest mean and median (med) methods are highlighted in bold.

sample sizes: n = 1000, m = 100

dim λ = 0.0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1, 0
mean med std mean med std mean med std mean med std mean med std mean med std

10 8.129 6.045 8.444 8.969 6.699 9.371 9.843 7.467 9.778 10.867 8.464 9.954 11.915 9.384 10.315 12.874 10.224 10.584
100 26.693 26.407 6.058 18.115 16.749 5.663 12.581 12.130 3.165 14.481 13.816 3.439 16.296 15.637 3.520 17.145 16.438 3.554

sample sizes: n = 10000, m = 100

dim λ = 0.0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1, 0
mean med std mean med std mean med std mean med std mean med std mean med std

10 3.458 3.338 1.202 3.767 3.729 1.143 4.088 4.148 1.146 4.669 4.562 1.208 5.518 5.608 1.134 6.71 6.479 1.167
100 6.748 6.608 1.138 6.886 6.759 1.213 8.157 8.028 1.348 10.579 10.329 1.443 12.502 12.303 1.522 13.71 13.578 1.506

sample sizes: n = 10000, m = 100

dim λ = 0.0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1, 0
mean med std mean med std mean med std mean med std mean med std mean med std

0 6.735 6.445 1.537 7.221 7.134 1.750 8.069 7.931 1.576 9.099 8.999 1.558 10.148 10.026 1.503 10.975 10.854 1.531
1 15.215 14.857 2.579 11.843 11.674 1.304 11.556 11.434 1.279 14.722 14.514 1.288 16.499 16.329 1.267 17.267 17.206 1.293

Table 3: Negative Log-likelihood (NLL) and MMD, multiplied by 103, results on six 2-d synthetic datasets. Lower is better.

Metric GAN MoG Banana Rings Square Cosine Funnel

NLL WGAN −2.59± 0.04 −3.58± 0.00 −4.26± 0.00 −3.74± 0.00 −3.99± 0.00 −3.58± 0.01
KL-WGAN −2.55± 0.01 −3.59± 0.01 −4.25± 0.01 −3.73± 0.01 −4.00± 0.02 −3.57± 0.01
SLoGAN −2.52± 0.01 −3.58± 0.00 −4.26± 0.00 −3.71± 0.01 −3.99± 0.00 −3.57± 0.00

MMD WGAN 16.38± 7.47 2.32± 0.80 1.73± 0.30 1.48± 0.39 1.08± 0.32 1.83± 0.72
KL-WGAN 2.26± 0.22 1.96± 0.12 1.34± 0.23 1.35± 0.21 1.00± 0.13 1.16± 0.31
SLoGAN 5.89± 1.49 1.38± 0.43 1.79± 0.37 0.73± 0.09 1.10± 0.24 1.63± 0.32

I EXPERIMENTAL ON DISTRIBUTION MODELING

We investigate the distribution modeling using DRM. Following Song and Ermon (2020), we use the 2-d synthetic datasets
include Mixture of Gaussians (MoG), Banana, Ring, Square, Cosine and Funnel; these datasets cover different modalities
and geometries. We compare our proposed DRM with the WGAN and KL-WGAN, proposed by Song and Ermon (2020).

After training, we draw 5,000 samples from the generator and then evaluate two metrics over a fixed validation set. One is
the negative log-likelihood (NLL) of the validation samples on a kernel density estimator fitted over the generated samples;
the other is the MMD (Borgwardt et al. (2006)) between the generated samples and validation samples. To ensure a fair
comparison, we use identical kernel bandwidths for all cases.

Distribution modeling. We report the mean and standard error for the NLL and MMD results in Tables 3 (with 5 random
seeds in each case). We illustrate the histograms of samples in Figure 4.

Density ratio estimation. We demonstrate that SLoGAN learns the density ratio simultaneously. We consider measuring
the density ratio from synthetic datasets, and compare them with the the discriminators of WGAN, f -GAN with KL
divergence, KL-WGAN. We evaluate the density ratio estimation quality by multiplying dQ with the estimated density
ratios, and compare that with the density of P; ideally the two quantities should be identical. We demonstrate empirical
results in Figure 5, where we plot the samples used for training, the ground truth density p∗ and the two estimates given by
two methods. In terms of estimating density ratios, our proposed approach estimates it as well as f-GAN and KL-WGAN.

Stability of discriminator objectives. For the MoG and Square and Cosine datasets, we further show the estimated
divergences over a batch of 256 samples in Figure 6. While divergences of KL-WGAN and our proposed SLoGAN decrease
more stable tan that of WGAN.



Unified Perspective on Probability Divergence via the Density-Ratio Likelihood

J TWO-SAMPLE TEST

We conduct experiments on two-sample testings, where we test P = Q. Let us define a null hypothesis as H0 : P = Q and
an alternative hypothesis as H1 : P 6= Q. We compare a two-sample testing method using the DRM with efficient weight
defined in Corollary 5.6 with ones using the DRM with λ = 0.5, KLIEP (DRM with λ = 1, Sugiyama et al., 2008) and
MMD (Gretton et al., 2009).

We use the artificially generated datasets and diabetes, mushrooms, and breast-cancer datasets from the LIVSVM
library2. The diabetes, mushrooms, and breast-cancer datasets are originally datasets for binary classification.
We describe how to construct datasets for two-sample test as follows:

Beta 1: both P and Q are Beta(3, 5). We draw 15 samples from both of the distributions.

Normal 1: both P and Q are N (0, 1). We draw 15 samples from both of the distributions.

Beta 2: P is Beta(3.5, 5), and Q is Beta(3, 5). We draw 15 samples from both of the distributions.

Normal 2: P is N (0, 1), and Q is N (0, 2). We draw 15 samples from both of the distributions.

Normal 3: P is N (0, 1), and Q is N (1, 1). We draw 15 samples from both of the distributions.

diabetes (null): We randomly draw two sets of 100 samples from positive data of the diabetes dataset, which
correspond to P and Q, respectively.

diabetes (alt): We randomly draw 100 samples from positive data of the diabetes dataset, which corresponds to P.
We randomly draw 100 samples from negative data of the diabetes dataset, which corresponds to Q.

mushrooms (null): We randomly draw two sets of 100 samples from positive data of the mushrooms dataset, which
correspond to P and Q, respectively.

mushrooms (alt): We randomly draw 100 samples from positive data of the mushrooms dataset, which corresponds to
P. We randomly draw 100 samples from negative data of the mushrooms dataset, which corresponds to Q.

breast-cancer (null): We randomly draw two sets of 100 samples from positive data of the diabetes dataset, which
correspond to P and Q, respectively.

breast-cancer (alt): We randomly draw 100 samples from positive data of the breast-cancer dataset, which
corresponds to P. We randomly draw 100 samples from negative data of the breast-cancer dataset, which
corresponds to Q.

For each dataset, we generate 15 samples. Then, for each two-sample testing method using MMD, KLIEP, and DRM, we
apply bootstrap to construct the confidence intervals. We conduct hypothesis testing with 5% significance. For 100 trials,
we report the averaged rate of rejecting the null hypothesis in Table 4. All methods return similar results. Although it seems
that there are no significant differences among them, we can confirm the soundness of the DRM-based two-sample test.

K INLIER-BASED OUTLIER DETECTION

As an application of the DRM, we conduct experiments on inlier-based outlier detection with benchmark datasets, namely
mnist (LeCun et al., 1998), fashion-mnist (FMNIST) (Xiao et al., 2017), and cifar-10, each comprising 10
classes. In existing work, Hido et al. (2008, 2011) employ a direct DRE for inlier-based outlier detection, which detects
outliers in a test set based on a training set consisting of only inliers, using the ratio of training and test data densities as an
outlier score.

We adopt the experimental setup proposed by Golan and El-Yaniv (2018) and Kato and Teshima (2021), where we treat one
class as the inlier class and all other classes as outliers. In the case of cifar-10, for instance, we have 5,000 training data
per class and 1,000 test data per class, resulting in 1,000 inlier samples and 9,000 outlier samples. We use AUROC as the
metric to evaluate whether the outlier class can be detected in the outlier samples.

2https://www.csie.ntu.edu.tw/~cjlin/libsvm/

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Figure 2: Results of Appendix H: The mean vectors are µp = (0, 0, . . . , 0)> and µq = (1, 0, . . . , 0)>.

Figure 3: Results of Appendix H: The mean vectors are µp = (1, 0, . . . , 0)> and µq = (0, 0, . . . , 0)>.
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Figure 4: Results of Appendix I: Histograms of samples from the true data distribution, WGAN and KL-WGAN, and our
SLoGAN

Figure 5: Results of Appendix I: Estimating density ratios. The first column contains the samples used for training, the
second column is the ground truth density of P (p∗), the third and sixth columns are the density of Q times the estimated
density ratios from WGAN (thrid column), f-GAN (fourth column), KL-WGAN (fifth column), and our SLoGAN (sixth
column).
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Figure 6: Results of Appendix I: Estimated divergence with respect to training epochs (smoothed with a window of 10).

Table 4: Experimental results of two-sample test. The mean rate of rejecting the null hypothesis (i.e., p∗ = q∗) under the
significance level 5% is reported. In Beta 1, Normal 1, diabetes (null), mushrooms (null), and breast-cancer
(null) datasets, the null hypothesis is correct; therefore, a rejection rate close to 0.05 is better. In Beta 2, Normal 2,
Normal 3, diabetes (alt), mushrooms (alt), and breast-cancer (alt) datasets the null hypothesis is not correct;
therefore, a larger rejection rate is better.

Beta 1 Normal 1 Beta 2 Normal 2 Normal 3
null-hypothesis is correct null-hypothesis is not correct

DRM (optimal λ) 0.04 0.07 0.30 0.15 0.11
DRM (λ = 0.5) 0.04 0.07 0.30 0.15 0.11
KLIEP (DRM with λ = 1) 0.07 0.05 0.28 0.11 0.13
MMD 0.06 0.05 0.38 0.10 0.25

diabetes (null) mushrooms (null) breast-cancer (null)
null-hypothesis is correct

DRM (optimal λ) 0.02 0.05 0.05
DRM (λ = 0.5) 0.02 0.05 0.05
KLIEP (DRM with λ = 1) 0.02 0.02 0.06
MMD 0.03 0.05 0.03

diabetes (alt) mushrooms (alt) breast-cancer (alt)
null-hypothesis is not correct

DRM (optimal λ) 0.54 1.00 1.00
DRM (λ = 0.5) 0.54 1.00 1.00
KLIEP (DRM with λ = 1) 0.54 1.00 1.00
MMD 0.65 1.00 1.00

We compare our proposed nnDRM with λ = 0.5 to several benchmark methods, including nnBD-LSIF (Kato and Teshima,
2021, nnDRM with λ = 1), nnPU (Kiryo et al., 2017), nnBD-LSIF (Kato and Teshima, 2021), Deep Semi-Supervised
Anomaly Detection (DeepSAD) (Ruff et al., 2020), and Geometric Transformation (GT) (Golan and El-Yaniv, 2018). We
use the LeNet for our methods, and we use the LeNet or the Wide ResNet for other methods, which are the same neural
network architectures employed in Golan and El-Yaniv (2018), Ruff et al. (2020), and Kato and Teshima (2021). The
detailed structures are provided in Appendix D of Kato and Teshima (2021).

Although nnDRM cannot always achieve the best results, it often outperforms nnBD-UKL, which employs λ = 1. This
indicates that while our approach may not outperform specialized methods such as nnPU, it improves the performance of
the KL-divergence-based DRE method (nnBD-UKL) by using the parameter λ.
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Table 5: Average area under the ROC curve (Mean) of anomaly detection methods averaged over 5 trials with the standard
deviation (SD). For all datasets, each model was trained on the single class, and tested against all other classes. The best
performing method in each experiment is in bold. SD: Standard deviation.

MNIST nnDRM nnBD-UKL uLSIF-NN nnBD-LSIF nnBD-PU nnBD-LSIF nnBD-PU Deep SAD GT
Network LeNet LeNet LeNet LeNet LeNet WRN WRN LeNet WRN
Inlier Class Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
0 0.999 0.000 0.999 0.000 0.999 0.000 0.997 0.000 0.999 0.000 1.000 0.000 1.000 0.000 0.592 0.051 0.963 0.002
1 1.000 0.000 0.998 0.001 1.000 0.000 0.999 0.000 1.000 0.000 1.000 0.000 1.000 0.000 0.942 0.016 0.517 0.039
2 0.998 0.000 0.995 0.001 0.997 0.001 0.994 0.000 0.997 0.001 1.000 0.000 1.000 0.001 0.447 0.027 0.992 0.001
3 0.999 0.000 0.991 0.003 0.997 0.000 0.995 0.001 0.998 0.000 1.000 0.000 1.000 0.000 0.562 0.035 0.974 0.001
4 0.999 0.000 0.982 0.005 0.998 0.000 0.997 0.001 0.999 0.000 1.000 0.000 1.000 0.000 0.646 0.015 0.989 0.001
5 0.999 0.000 0.993 0.003 0.997 0.000 0.996 0.001 0.998 0.000 1.000 0.000 1.000 0.000 0.502 0.046 0.990 0.001
6 0.999 0.000 0.997 0.000 0.997 0.001 0.997 0.001 0.999 0.000 1.000 0.000 1.000 0.000 0.671 0.027 0.998 0.000
7 0.997 0.000 0.989 0.004 0.996 0.001 0.993 0.001 0.998 0.001 1.000 0.000 1.000 0.001 0.685 0.032 0.927 0.004
8 0.998 0.000 0.992 0.002 0.997 0.000 0.994 0.001 0.997 0.000 0.999 0.000 0.999 0.000 0.654 0.026 0.949 0.002
9 0.995 0.000 0.976 0.014 0.993 0.002 0.990 0.002 0.994 0.001 0.998 0.001 0.998 0.001 0.786 0.021 0.989 0.001

FMNIST nnDRM nnBD-UKL uLSIF-NN nnBD-LSIF nnBD-PU nnBD-LSIF nnBD-PU Deep SAD GT
Network LeNet LeNet LeNet LeNet LeNet WRN WRN LeNet WRN
Inlier Class Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
T-shirt/top 0.983 0.001 0.896 0.017 0.960 0.005 0.981 0.001 0.985 0.000 0.984 0.001 0.982 0.000 0.558 0.031 0.890 0.007
Trouser 0.999 0.000 0.957 0.005 0.961 0.010 0.998 0.000 1.000 0.000 0.998 0.000 0.998 0.000 0.758 0.022 0.974 0.004
Pullover 0.980 0.001 0.875 0.026 0.944 0.012 0.976 0.001 0.980 0.001 0.983 0.002 0.972 0.001 0.617 0.046 0.902 0.005
Dress 0.991 0.000 0.917 0.004 0.973 0.006 0.986 0.001 0.992 0.000 0.991 0.001 0.986 0.000 0.525 0.038 0.843 0.014
Coat 0.981 0.001 0.882 0.007 0.958 0.006 0.978 0.001 0.983 0.000 0.981 0.002 0.974 0.000 0.627 0.029 0.885 0.003
Sandal 0.999 0.000 0.896 0.056 0.968 0.011 0.997 0.001 0.999 0.000 0.999 0.000 0.999 0.000 0.681 0.023 0.949 0.005
Shirt 0.954 0.001 0.824 0.009 0.919 0.005 0.952 0.001 0.958 0.001 0.944 0.005 0.932 0.001 0.618 0.015 0.842 0.004
Sneaker 0.997 0.000 0.824 0.043 0.991 0.001 0.994 0.002 0.998 0.000 0.998 0.000 0.998 0.000 0.802 0.054 0.954 0.006
Bag 0.998 0.000 0.979 0.007 0.980 0.005 0.994 0.001 0.999 0.000 0.998 0.000 0.999 0.000 0.447 0.034 0.973 0.006
Ankle boot 0.998 0.000 0.841 0.064 0.992 0.001 0.985 0.015 0.999 0.000 0.997 0.000 0.996 0.000 0.583 0.023 0.996 0.000

CIFAR-10 nnDRM nnBD-UKL uLSIF-NN nnBD-LSIF nnBD-PU nnBD-LSIF nnBD-PU Deep SAD GT
Network LeNet LeNet LeNet LeNet LeNet WRN WRN LeNet WRN
Inlier Class Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
plane 0.921 0.002 0.915 0.002 0.745 0.056 0.934 0.002 0.943 0.001 0.925 0.004 0.923 0.001 0.627 0.066 0.697 0.009
car 0.954 0.001 0.931 0.002 0.758 0.078 0.957 0.002 0.968 0.001 0.965 0.002 0.960 0.001 0.606 0.018 0.962 0.003
bird 0.826 0.007 0.833 0.003 0.768 0.012 0.850 0.007 0.878 0.004 0.844 0.004 0.858 0.004 0.404 0.006 0.752 0.002
cat 0.800 0.007 0.815 0.004 0.745 0.037 0.820 0.003 0.856 0.002 0.810 0.009 0.841 0.002 0.517 0.018 0.727 0.014
deer 0.871 0.005 0.875 0.004 0.758 0.036 0.886 0.004 0.909 0.002 0.864 0.008 0.872 0.002 0.704 0.052 0.863 0.014
dog 0.859 0.004 0.849 0.003 0.728 0.103 0.875 0.004 0.906 0.002 0.887 0.005 0.896 0.002 0.490 0.025 0.873 0.002
frog 0.933 0.003 0.907 0.004 0.750 0.060 0.944 0.003 0.958 0.001 0.948 0.004 0.948 0.001 0.744 0.014 0.879 0.008
horse 0.907 0.006 0.899 0.004 0.782 0.048 0.928 0.003 0.948 0.002 0.921 0.007 0.927 0.002 0.519 0.015 0.953 0.001
ship 0.953 0.001 0.922 0.002 0.780 0.048 0.958 0.003 0.965 0.001 0.964 0.002 0.957 0.001 0.430 0.062 0.921 0.009
truck 0.934 0.004 0.918 0.002 0.708 0.081 0.939 0.003 0.955 0.001 0.952 0.003 0.949 0.001 0.393 0.008 0.911 0.003
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