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Abstract

Network embedding has emerged as a promis-
ing research field for network analysis. Re-
cently, an approach, named Barlow Twins, has
been proposed for self-supervised learning in
computer vision by applying the redundancy-
reduction principle to the embedding vectors cor-
responding to two distorted versions of the image
samples. Motivated by this, we propose Barlow
Graph Auto-Encoder, a simple yet effective ar-
chitecture for learning network embedding. It
aims to maximize the similarity between the em-
bedding vectors of immediate and larger neigh-
borhoods of a node, while minimizing the re-
dundancy between the components of these pro-
jections. In addition, we also present the vari-
ational counterpart named Barlow Variational
Graph Auto-Encoder. We demonstrate the ef-
fectiveness of BGAE and BVGAE in learning
multiple graph-related tasks, i.e., link prediction,
clustering, and downstream node classification,
by providing extensive comparisons with sev-
eral well-known techniques on eight benchmark
datasets.

1 INTRODUCTION

Graphs are flexible data structures used to model complex
relations in a myriad of real-world phenomena such as bio-
logical and social networks, chemistry, knowledge graphs,
and many others (see Ying et al., 2018; Ata et al., 2017;
Gilmer et al., 2017; Wu et al., 2005; Zhou et al., 2020).
Recent years have seen a remarkable interest in the field
of graph analysis in general and unsupervised network em-
bedding learning in particular. Network embedding learn-
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ing aims to project the graph nodes into a continuous low-
dimensional vector space such that the structural properties
and semantics of the network are preserved (see Cai et al.,
2018; Cui et al., 2018). The quality of the embedding is
determined by the downstream tasks such as transductive
node classification and clustering.

A variety of approaches have been proposed over the years
for learning network embedding. On one hand, we have
techniques that aim to learn the network embedding by em-
ploying the proximity information which is not limited to
the first-hop neighbors. Such approaches include spectral,
random-walk based and matrix-factorization based meth-
ods, e.g., as discussed in (Perozzi et al., 2014; Grover and
Leskovec, 2016; Defferrard et al., 2016; Wang et al., 2017).
On the other hand, the neural network based approaches,
e.g., as proposed by (Kipf and Welling, 2016a; Veličković
et al., 2017; Xu et al., 2018), usually focus on the struc-
tural information by limiting themselves to the immedi-
ate neighborhood. Intuitively, larger neighborhood offers
richer information that should consequently help in learn-
ing better network embedding. However, the neural net-
work based approaches often yield better results compared
to the spectral techniques etc., despite them being theoret-
ically more elegant. Recently, graph Diffusion has been
proposed by (Klicpera et al., 2019) to enable a variety of
graph based algorithms to make use of a larger neighbor-
hood in the graphs with high homophily. This is achieved
by precomputing a graph diffusion matrix from the adja-
cency matrix, and then using it in place of the original ad-
jacency matrix. For instance, coupling this technique with
graph neural networks (GNNs) enables them to learn from
a larger neighborhood, thereby improving the network em-
bedding learning. However, replacing the adjacency matrix
with the diffusion matrix deprives the algorithms from an
explicit local view provided by the immediate neighbor-
hood, and forces them to learn only from the global view
presented by the diffusion matrix. Such an approach can af-
fect the performance of the learning algorithm especially in
the graphs where the immediate neighborhood holds high
significance. This advocates the need to revisit the way
in which the information in the multi-hop neighborhood
is employed to learn the network embedding. There exist
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some contrastive approaches, e.g., as proposed by (Velick-
ovic et al., 2019; Qiu et al., 2020; Zhu et al., 2020) that can
capture the information in larger neighborhood in the form
of the summary vectors, and then learn network embed-
ding by aiming to maximize the local-global mutual infor-
mation between local node representations and the global
summary vectors. However, this information is captured in
an implicit manner in the sense that there is no objective
function to ensure preservation of the information in the
larger neighborhood.

In this work we adopt a novel approach for learning net-
work embedding by simultaneously employing the infor-
mation in the immediate as well as larger neighborhood in
an explicit manner. This is achieved by learning concur-
rently from the adjacency matrix and the graph diffusion
matrix. To efficiently merge the two sources of informa-
tion, we take inspiration from Barlow Twins, an approach
recently proposed by (Zbontar et al., 2021) for unsuper-
vised learning of the image embeddings by constructing the
cross-correlation matrix between the outputs of two identi-
cal networks fed with distorted versions of image samples,
and making it as close to the identity matrix as possible.
Motivated by this, we propose an auto-encoder-based ar-
chitecture named as Barlow Graph Auto-Encoder(BGAE),
along with its variational counterpart named as Barlow
Variational Graph Auto-Encoder(BVGAE). Both BGAE
and BVGAE make use of the immediate as well as the
larger neighborhood information to learn network embed-
ding in an unsupervised manner while minimizing the re-
dundancy between the components of the low-dimensional
projections. Our contribution is three-fold:

• We propose a simple yet effective auto-encoder-based
architecture for unsupervised network embedding,
which explicitly learns from both the immediate and
the larger neighborhoods provided in the form of the
adjacency matrix and the graph diffusion matrix re-
spectively.

• Motivated by Barlow Twins, BGAE and BVGAE
aim to achieve stability towards distortions and
redundancy-minimization between the components of
the embedding vectors.

• We show the efficacy of our approach by evaluating
it on link-prediction, transductive node classification
and clustering on eight benchmark datasets. Our ap-
proach consistently yields promising results for all the
tasks whereas the included competitors often under-
perform on one or more tasks.

As detailed in the subsequent sections and derivations, it is
non-trivial to efficiently merge the information from neigh-
borhoods at different levels, as it needs a careful choice of
the loss function and related architecture components.

2 RELATED WORK

2.1 Network Embedding

Earlier work related to network embedding, such as
GraRep (Cao et al., 2015), HOPE (Ou et al., 2016), and
M-NMF (Wang et al., 2017), etc., employed matrix fac-
torization based techniques. Concurrently, some proba-
bilistic models were proposed to learn network embed-
ding by using random-walk based objectives. Examples of
such approaches include DeepWalk (Perozzi et al., 2014),
Node2Vec (Grover and Leskovec, 2016), and LINE (Tang
et al., 2015), etc. As discussed by (Ribeiro et al., 2017),
such techniques over-emphasize the information in prox-
imity, thereby sacrificing the structural information. In
recent years several graph neural network (GNN) archi-
tectures have been proposed as an alternative to matrix-
factorization and random-walk based methods for learn-
ing the graph-domain tasks. Some well-known examples
of such architectures include graph convolutional network
or GCN (by Kipf and Welling, 2016a), graph attention net-
work or GAT (by Veličković et al., 2017), Graph Isomor-
phism Networks or GIN (by Xu et al., 2018), and Graph-
SAGE (by Hamilton et al., 2017), etc. This has allowed ex-
ploration of network embedding using GNNs as discussed
in (Cai et al., 2018; Cui et al., 2018). Such approaches in-
clude auto-encoder based (e.g., VGAE (Kipf and Welling,
2016b) and GALA (Park et al., 2019)), adversarial (e.g,
ARVGA (Pan et al., 2018) and DBGANp (Zheng et al.,
2020)), and contrastive techniques (e.g., DGI (Velickovic
et al., 2019), MVGRL (Hassani and Khasahmadi, 2020)
and GRACE (Zhu et al., 2020)), etc.

2.2 Barlow Twins

This approach has been recently proposed by (Zbontar
et al., 2021) as a self-supervised learning (SSL) mecha-
nism making use of redundancy reduction - a principle first
proposed in neuroscience by (Barlow et al., 1961). Bar-
low Twins employs two identical networks, fed with two
different versions of the batch samples, to construct two
versions of the low-dimensional projections. Afterwards
it attempts to equate the cross-correlation matrix computed
from the twin projections to identity, hence reducing the re-
dundancy between different components of the projections.
This approach is relatable to several well-known objective
functions for SSL, such as the information bottleneck ob-
jective by (Tishby et al., 2000), or the INFONCE objective
by (Oord et al., 2018).

The idea of Barlow Twins has been ported recently to graph
datasets by Graph Barlow Twins or G-BT by (Bielak et al.,
2022). Inspired by the image-augmentations proposed by
Barlow Twins (cropping, color jittering, and blurring, etc.),
G-BT adopts edge dropping and node feature masking to
form the augmented views of the input graphs. While this
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approach works for transductive node classification, its per-
formance degrades for tasks involving link-prediction as
demonstrated by the experiments in section 4 because there
is no explicit objective to preserve the information in links.

As we will see in section 3.2.2, addition of this objective is
non-trivial because it involves a careful modification of the
original loss term from Barlow Twins.

2.3 Graph Diffusion Convolution (GDC)

GDC was proposed by (Klicpera et al., 2019) as a way to ef-
ficiently aggregate information from a large neighborhood.
This is achieved in two steps.

1. Diffusion: First a dense diffusion matrix S is con-
structed from the adjacency matrix using generalized
graph diffusion as a denoising filter.

2. Sparsification: This is the second step where either
top k entries of S are selected in every row, or the en-
tries below a threshold ϵ are set to 0. We use S to
denote the resulting sparse diffused matrix. The value
of threshold can also be estimated from the intended
average degree of the sparse graph as implemented
in (Klicpera et al., 2019).

S defines an alternate graph with weighted edges that carry
more information than a binary adjacency matrix. This
sparse matrix, when used in place of the original adjacency
matrix, improves graph learning for a variety of graph-
based models such as degree corrected stochastic block
model or DCSBM by (Karrer and Newman, 2011), Deep-
Walk, GCN, GAT, GIN, and DGI, etc.

3 BARLOW GRAPH AUTO-ENCODER

3.1 Problem Formulation

Suppose an undirected graph G = (V, E) with the adja-
cency matrix A ∈ {0, 1}N×N and optionally a matrix
X ∈ RN×F of F -dimensional node features, N being the
number of nodes. In addition, we construct a diffused ver-
sion of G by building a diffusion matrix S ∈ RN×N from
A. For brevity we use I = (A,X) and I = (S,X) if
features are available, otherwise I = A and I = S. Given
d as the embedding-dimension size, we aim to optimize
the model parameters for finding the network embeddings
ZI ∈ RN×d and ZI ∈ RN×d from I and I such that:

1. ZI and ZI can be fused in a way that both A and
S can be reconstructed from the fused embedding
Z ∈ RN×d. This allows the embedding to capture the
local information from I as well as the information in
a larger neighborhood from I.

2. Same components of different projections have high
covariance and vice versa for different components.
This adds to the stability towards distortions and also
reduces redundancy between different components of
the embedding.

Mathematically, the above objective is achieved by mini-
mizing the following loss function

L = Lrecon + βLcov (1)

where β is a hyperparameter of the algorithm to weigh be-
tween the reconstruction loss and the cross-covariance loss.
The general model architecture is given in figure 1. We first
define the loss terms and then brief the modules of the ar-
chitecture.

3.2 Loss Terms

3.2.1 Reconstruction Loss (Lrecon)

We aim to learn the model parameters in order to maximize
the log probability of recovering both A and S from Z.
This probability can be written as a marginalization over
the joint distribution containing the latent variables Z as

log
(
p(A,S)

)
= log

(∫
p(A,S,Z)dZ

)
(2)

= log
(∫

p(Z)p(A|Z)p(S|Z)dZ
)
, (3)

where the prior p(Z) is modelled as a unit gaussian. Equa-
tion 3 assumes conditional independence between A and S
given Z.

To ensure tractability, we introduce the approximate poste-
rior q(Z|I, I) given by

q(Z|I, I) = q(ZIZI |I, I) (4)

= q(ZI |I)q(ZI |I), (5)

where equation 5 follows from equation 4 because of the
assumed conditional independence of ZI and ZI given
their respective inputs. Both q(ZI |I) and q(ZI |I) are
modelled as Gaussians by a single encoder block that learns
the parameters µ(·) and σ(·) of the distribution conditioned
on the given inputs I and I respectively. The term Lrecon

can now be considered as a negative of the ELBO bound
derived as

log
(
p(A,S)

)
≥−DKL

(
q(ZI |I) || N (0, I)

)
−DKL

(
q(ZI |I) || N (0, I)

)
− BCE

(
Â,A

)
− BCE

(
Ŝ,S

)
(6)

=LELBO (7)
=− Lrecon, (8)
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Figure 1: General model architecture. Based upon the input adjacency matrix A, we get the diffusion matrix S, which
needs to be computed only once. The encoder yields the low dimensional projection matrices ZI and ZI corresponding to
I and I respectively. Using a fusion function h(·), The projections ZI and ZI are fused into a single projection Z, which
is then fed to the edge decoder to reconstruct Â and Ŝ.

where DKL refers to the KL divergence, BCE is the binary
cross-entropy, and the matrices Â and Ŝ refer to recon-
structed versions of A and S respectively. The inequality in
6 follows from Jensen’s inequality. It is worth noticing that
BCE is computed based upon the edges constructed from
the fused embedding Z. For detailed derivation, we refer
the reader to the supplementary material.

The reconstruction loss in 8 refers to the variational variant
BVGAE. For the non-variational case of BGAE, the KL
divergence terms get dropped, leaving only the two BCE
terms.

3.2.2 Covariance Loss (Lcov)

The correlation-loss by (Zbontar et al., 2021) (also em-
ployed by (Bielak et al., 2022)) involves normalization by
the standard deviation of the embedding vectors, centered
across the input batch (equation 2 in (Zbontar et al., 2021)).
While this works for images and for nodes of the graphs,
it has a tendency to obscure the information in the relative
strengths of the links in a graph. For graph-datasets, we
often replace cosine similarity with dot products, followed
by a sigmoid (as done by (Kipf and Welling, 2016b; Khan
et al., 2020; Hassani and Khasahmadi, 2020), etc.) as it
helps in preventing the information in the magnitude of the
vectors. Following this approach, instead of computing the
cross-correlation matrix, we compute the cross-covariance
matrix and use the sigmoid function to individually nor-
malize the absolute entries cℓm. The loss Lcov is then com-
puted as a summation of two terms corresponding to the
mean of diagonal elements and off-diagonal elements of C.

Lcov =− 1

N

∑
ℓ=m

log(cmm)

− λ

N(N − 1)

∑
ℓ ̸=m

log(1− cℓm), (9)

where λ defines the trade-off between the two terms. The
first term of equation 9 is the invariance term. When min-
imized, it makes the embedding stable towards distortions.

The second term refers to the cross-covariance between dif-
ferent components of C. When minimized, it reduces the
redundancy between different components of the vectors.
The entries cℓm of C are given by

cℓm = sigmoid
(∣∣ |B|∑

b=1

(zIbℓ − zIℓ )(z
I
bm − zIm)

∣∣), (10)

where b indexes the batch B with size |B| and the ℓ-th com-
ponent of the latent embedding zIb is denoted by zIbℓ. The
empirical means across embeddings ZI and ZI are de-
noted by zI and zI respectively. It is also worth noticing
that the underlying objective is the same for equation 9 as
well as the original correlation-based loss in Barlow Twins
i.e., C should be as close to identity matrix as possible.

3.3 Model Architecture Blocks

We now describe the modules leading to the loss terms in
equation 1 as shown in figure 1.

3.3.1 Diffusion:

The generalized diffusion to construct S from A is given
by

S =

∞∑
k=0

θkT
k, (11)

where T is the generalized transition matrix and θk are the
weighting coefficients. There can be multiple possibilities
for θk and Tk while ensuring the convergence of equa-
tion 11 such as the ones proposed by (Jiang et al., 2019; Xu
et al., 2020; Klicpera et al., 2019), etc. In this work, we re-
port the case of Personalized PageRank or PPR, introduced
by (Page et al., 1999) as it consistently gives better results
with BGAE/BVGAE. For the detailed results including the
Heat Kernel (Klicpera et al., 2019), we refer the reader to
the supplementary material.

PPR kernel corresponds to T = AD−1 and θk = α(1 −
α)k, where D is the degree matrix and α ∈ (0, 1) is the
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teleport probability. The corresponding symmetric transi-
tion matrix is given by T = D−1/2AD−1/2. Substitution
of T and θk into equation 11 leads to a closed form solution
for diffusion using PPR kernel as

S = α
(
I− (1− α)D−1/2AD−1/2

)−1

. (12)

Equation 12 restricts the use of PPR-based diffusion for
large graphs. However, in practice, there exist multiple ap-
proaches to efficiently approximate equation 12 such as the
ones proposed by (Andersen et al., 2006) and (Wei et al.,
2018). In all the results reported in this paper, we use the
approximate version of equation 12. Diffusion works well
for graphs with high homophily. So BGAE/BVGAE also
target similar networks.

3.3.2 Encoder:

This module is responsible for projecting the information
in I and I into d-dimensional embeddings ZI and ZI re-
spectively. Following the work of (Zbontar et al., 2021),
we use a single encoder to encode both versions of the in-
put graph. Our framework is general in the sense that any
reasonable encoder can be plugged in to get the learnable
projections.

In our work, we have considered two options for the en-
coder block, consequently leading to two variants of the
framework.

• For BGAE, we use a single layer GCN encoder.

• For BVGAE, we employ a simple variational encoder
that learns the parameters µ(·) and σ(·) of a gaus-
sian distribution conditioned upon the input samples.
The latent samples can then be generated by following
the reparameterization trick (see Kingma and Welling,
2013).

3.3.3 Fusion Function:

The function h(·) is used to fuse ZI and ZI into a single
matrix Z. In this work we define Z as a weighted sum of
ZI and ZI as

h(zIi , z
I
i ) = ϕI

i z
I
i + ϕI

i z
I
i , (13)

where the weights {ϕI
i }Ni=1 and {ϕI

i }Ni=1 can either be
fixed or learned. In this work we report two variants of
the fusion function.

• Fixing ϕI
i = ϕI

i = 0.5 ∀i.

• Learning {ϕI
i }Ni=1 and {ϕI

i }Ni=1 using attention mech-
anism.

For attention, we compute the dot products of different em-
beddings of the same node with respective learnable weight
vectors, followed by LeakyReLU activation. Afterwards a
softmax is applied to get the probabilistic weight assign-
ments, i.e.

ϕI
i =

exp
(
A
(
wT

1 z
I
i

))
exp

(
A
(
wT

1 z
I
i

))
+ exp

(
A
(
wT

2 z
I
i

)) , (14)

ϕI
i = 1− ϕI

i . (15)

where A(·) is the LeakyReLU activation function and
w1,w2 ∈ Rd are learnable weight vectors.

3.3.4 Decoder

Since our approach is auto-encoder-based, we use the edge
decoder as proposed by (Kipf and Welling, 2016b), to re-
construct the entries âij of Â as

âij = σ(zTi zj) (16)

The entries of Ŝ can also be reconstructed in similar fash-
ion.

4 EXPERIMENTS

This section describes the datasets and the experiments
conducted to evaluate the efficacy of our approach. We
choose eight benchmark datasets including Wikipedia
articles (WikiCS) (Mernyei and Cangea, 2020), Ama-
zon co-purchase data networks (AmazonPhoto and Ama-
zonComputers (McAuley et al., 2015)), extracts from
Microsoft Academic Graph (CoauthorCS and Coauthor-
Physics) (Sinha et al., 2015), and citation networks (Cora,
CiteSeer and PubMed) (Sen et al., 2008). The basic char-
acteristics of these datasets are briefed in table 1. We first
report the results for link prediction. The network embed-
ding learned by BGAE and BVGAE is unsupervised as no
node labels are used during training. Hence, to measure
the quality of the network embedding, we analyze our ap-
proach for two downstream tasks: clustering and transduc-
tive node classification. For the interested readers, the sup-
plementary material contains a detailed analysis of BGAE
and BVGAE in different settings. We use the AWS EC2
instance type g4dn.4xlarge with 16GB GPU for train-
ing. For reproducibility, the implementation details of all
the experiments along with the code are provided in (Khan,
2022). For all the experiments, we report publicly available
results from our competitors.

4.1 Link Prediction

4.1.1 Comparison Methods

For link prediction, we select 12 competitors. We start with
DeepWalk by (Perozzi et al., 2014) as the baseline.
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Table 1: Datasets used for evaluation.

Dataset Nodes Edges Features Classes

Cora (Sen et al., 2008) 2,708 5,297 1,433 7
CiteSeer (Sen et al., 2008) 3,312 4,732 3,703 6
PubMed (Sen et al., 2008) 19,717 44,338 500 3
WikiCS (Mernyei and Cangea, 2020) 11,701 216,123 300 10
AmazonComputers (McAuley et al., 2015) 13,752 245,861 767 10
AmazonPhotos (McAuley et al., 2015) 7,650 119,081 745 8
CoauthorCS (Sinha et al., 2015) 18,333 81,894 6,805 15
CoauthorPhysics (Sinha et al., 2015) 34,493 247,962 8,415 5

Auto-encoder based Architectures: We include graph
auto-encoder or GAE which aims to reconstruct the adja-
cency matrix for the input graph. The variational graph
auto-encoder or VGAE (Kipf and Welling, 2016b) is its
variational counterpart that extends the idea of variational
auto-encoder or VAE by (Kingma and Welling, 2013) to
graph domain. In the case of adversarially regularized
graph auto-encoder or ARGA by (Pan et al., 2018), the la-
tent representation is forced to match the prior via an adver-
sarial training scheme. Just like VGAE, there exists a vari-
ational alternative to ARGA, known as adversarially regu-
larized variational graph auto-encoder or ARVGA. GALA
by (Park et al., 2019) learns network embedding by treating
encoding and decoding steps as Laplacian smoothing and
Laplace sharpening respectively.

Contrastive Methods: DGI by (Velickovic et al., 2019)
leverages Deep-Infomax by (Hjelm et al., 2018) for graph
datasets. Graph InfoClust or GIC by (Mavromatis and
Karypis, 2020) learns network embedding by maximizing
the mutual information with respect to the graph-level sum-
mary as well as the cluster-level summaries. GMI by (Ma
et al., 2021) aims to learn node representations while aim-
ing to improve generalization performance via added con-
trastive regularization. GCA by (Zhu et al., 2021) pro-
poses adaptive augmentation techniques to contrast views
between nodes and subgraphs or structurally transformed
graphs. MVGRL by (Hassani and Khasahmadi, 2020)
learns graph embedding by contrasting multiple views of
the input data.

In addition, we include G-BT by (Bielak et al., 2022)
which is another approach making use of the redundancy-
minimization principle introduced in (Zbontar et al., 2021)
as discussed in section 2.2.

For link prediction, we skip the three datasets where many
public results are missing and report these partial results in
the supplementary material.

4.1.2 Settings

For link prediction, we follow the same link split as adopted
by our competitors, i.e., we split the edges into the training,
validation, and test sets containing 85%, 5%, and 10% links
respectively. For all the competitors we keep the same set-
tings as given by the authors. For the methods where multi-

ple variants are given by the authors(e.g., ARGA, ARVGA,
etc.), we report the best results amongst all the variants. For
our approach, we keep the latent dimension to 512 for all
the experiments except CoauthorPhysics where d = 128 to
avoid out-of-memory issues. We use a single layer GCN
encoder for BGAE, and two GCN encoders to output the
parameters µ(·) and σ(·) in case of the variational encoder
block of BVGAE. For all the experiments, we get S by set-
ting the average degree to 25. The value of the hyperparam-
eter λ in equation 9 is set to 5e−3 for all the experiments.
This is the same as proposed in by (Zbontar et al., 2021) in
Barlow-Twins. Adam by (Kingma and Ba, 2014) is used as
the optimizer with learning rate and rate decay set to 0.01
and 5e−6. The hyperparameter β is fixed to 1 for all ex-
periments. Instead of computing a closed-form solution, it
is sufficient to compute the BCE loss using the samples z.
For this, we follow other auto-encoder-based approaches
such as the ones proposed by (Kipf and Welling, 2016b;
Khan et al., 2020) for dataset splits and sampling of posi-
tive/negative edges for every training iteration. For evalua-
tion, we report the area under the curve (AUC) and average
precision (AP) metrics. All the results are the average of
10 runs. Further implementation details can be found the
code by (Khan, 2022).

4.1.3 Results

Table 2 gives the results for the link prediction task. For
our approach, we give the results for BGAE as well as BV-
GAE, both with and without attention. We can observe that
our approach achieves the best or second best results in all
the datasets. Overall the variant of BGAE with attention
performs well across all the datasets and metrics. This val-
idates the choice of attention as a fusion function. Among
the competitors, the contrastive approaches perform rela-
tively better across all the datasets. One exception is Ama-
zonPhoto where ARGA achieves the best results. How-
ever, as the next sections demonstrate, the performance of
ARGA/ARVGA degrades for downstream node classifica-
tion and clustering. Another thing to note is the results of
G-BT. As the training epochs go on for G-BT, the results
degrade rapidly, often by about 30% of the results reported
in table 2. Apart from AmazonPhotos, there is a healthy
margin between BGAE and G-BT mainly because unlike
BGAE, G-BT does not explicitly preserve the information
in the links.

4.2 Transductive Node Classification

4.2.1 Comparison Methods

We compare with 14 competitors for transductive node
classification, using raw features and DeepWalk(with fea-
tures) as the baselines. In addition to the methods briefed in
section 4.1.1, we include two more contrastive methods i.e.
GRACE and BGRL: GRACE by (Zhu et al., 2020) learns
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Table 2: Link prediction performance, as evaluated by AUC and AP metrics. The best results are styled as bold and second
best are underlined.

Algorithm Cora CiteSeer PubMed CoauthorCS AmazonPhoto

AUC AP AUC AP AUC AP AUC AP AUC AP

DeepWalk 83.10 85.00 80.50 83.60 84.40 84.10 91.74 91.19 91.48 90.79

GAE 91.00 92.00 89.50 89.90 96.40 96.50 94.09 93.86 93.86 92.96
VGAE 91.40 92.60 90.80 92.00 94.40 94.70 89.60 89.36 92.05 92.02
ARGA 92.40 93.20 91.90 93.00 96.80 97.10 91.99 92.54 96.10 95.40
ARVGA 92.40 92.60 92.40 93.00 96.50 96.80 93.32 93.32 92.70 90.90
GALA 92.10 92.20 94.40 94.80 91.50 89.70 93.81 94.49 91.80 91.00

DGI 89.80 89.70 95.50 95.70 91.20 92.20 94.87 94.34 92.24 92.14
GIC 93.50 93.30 97.00 96.80 93.70 93.50 95.03 94.94 92.70 92.34
GMI 95.10 95.60 97.80 97.40 96.37 96.04 96.37 95.04 93.88 92.67
GCA 95.75 95.47 96.44 96.49 95.28 95.52 96.31 96.28 93.25 92.74
MVGRL 90.52 90.45 92.89 92.89 92.45 92.17 95.17 95.58 92.89 92.45

G-BT 87.46 86.84 93.42 93.01 94.53 94.26 92.64 91.40 95.12 95.45

BGAE 98.52 98.42 98.59 98.61 97.78 97.68 96.31 95.44 95.01 94.24
BGAE + Att 98.79 98.73 98.56 98.57 98.06 98.03 96.51 95.65 95.18 94.49
BVGAE 97.87 97.62 98.63 98.57 97.93 97.89 96.12 95.13 94.61 94.29
BVGAE + Att 98.03 97.77 98.23 98.08 97.77 97.74 96.21 95.34 94.97 94.28

network embedding by making use of multiple views and
contrasting the representation of a node with its raw infor-
mation (e.g., node features) or neighbors’ representations
in different views. BGRL by (Thakoor et al., 2021) elimi-
nates the need for negative samples by minimizing invari-
ance between two augmented versions of mini-batches of
graphs.

4.2.2 Settings

The training phase uses the same settings as reported in sec-
tion 4.1.2. For transductive node classification, we do not
need to split the edges into training/validation/test sets. So
we use all the edges for self-supervised learning of the node
embeddings. For evaluating the embedding, a logistic re-
gression head is used with lbfgs solver. For this, we use
the default settings of the scikit-learn package. For
citation datasets (Cora, CiteSeer, and PubMed), we follow
the standard public splits for training/validation/test sets
used in many previous works such as the ones by (Yang
et al., 2016; Velickovic et al., 2019; Khan et al., 2021; Kipf
and Welling, 2016a), i.e., 20 labels per class for training,
500 samples for validation, and 1000 for testing. For Wi-
kiCS, we average over the 20 splits that are publicly pro-
vided. For the rest of the datasets (AmazonPhoto, Amazon-
Computers, CoauthorPhysics, and coauthorCS), we follow
the split configuration of B-JT, i.e. generate random splits
with training, validation, and test sets containing 10%,
10%, and 80% nodes respectively. For evaluation, we use
accuracy as the metric.

4.2.3 Results

Table 3 gives the comparison between different algorithms
for transductive node classification. We can again ob-

serve consistently good results by our approach for all eight
datasets. For this task, the margin is rather small, especially
for Cora and CiteSeer, compared to the best competitor i.e.
GMI. Nonetheless, our point still stands well-conveyed that
our approach performs on par with the well-known network
embedding techniques for transductive node classification.
A comparison of table 3 with table 2 demonstrates incon-
sistencies in the performance of our competitors for the two
tasks. This is mainly because either the competitors do not
explicitly preserve information in the links (e.g. MVGRL,
G-BT, etc), or link prediction is their main focus (e.g., in
GAE/ARGA, etc). For instance, ARGA performed reason-
ably well for link prediction, but fails to give a similar con-
sistent performance across all datasets in table 3. On the
other hand, MVGRL performs well in table 3, although its
performance suffered in table 2.

4.3 Node Clustering

4.3.1 Settings

For clustering, we choose 10 methods in total for compari-
son, with the baseline established by K-Means. The exper-
imental configuration for node clustering follows the same
pattern as in section 4.1.2. For clustering, we use all the
edges just like in section 4.2.2, i.e., all the edges are used
for self-supervised learning of the node-embeddings. Af-
terward, we use K-Means to infer the cluster assignments
from the embeddings. For evaluation, we use normalized
mutual information (NMI) as the metric.

4.3.2 Results

The results of the experiments for downstream node clus-
tering are given in table 4. Here again, we perform con-
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Table 3: Transductive node classification performance, as evaluated by accuracy. The best results are styled as bold and
second best are underlined. OOM refers to Out-of-Memory.

Algorithm Cora CiteSeer PubMed WikiCS CoauthorCS CoauthorPhysics AmazonComputers AmazonPhoto

Raw 47.87 49.33 69.11 71.98 90.37 93.58 73.81 78.53
DeepWalk 70.66 51.39 74.31 77.21 87.70 94.90 86.28 90.05

GAE 71.53 65.77 72.14 70.15 90.01 94.92 85.18 91.68
VGAE 75.24 69.05 75.29 75.63 92.11 94.52 86.44 92.24
ARGA 74.14 64.14 74.12 66.88 89.41 93.10 84.39 92.68
ARVGA 74.38 64.24 74.69 67.37 88.54 94.30 84.66 92.49

DGI 81.68 71.47 77.27 75.35 92.15 94.51 83.95 91.61
GIC 81.73 71.93 77.33 77.28 89.40 93.10 84.89 92.11
GRACE 80.04 71.68 79.53 80.14 92.51 94.70 87.46 92.15
GMI 83.05 73.03 80.10 74.85 OOM OOM 82.21 90.68
GCA 82.10 71.30 80.20 78.23 92.95 95.73 88.94 92.53
MVGRL 82.90 72.60 79.40 77.52 92.11 92.11 87.52 91.74
BGRL 82.70 71.10 79.60 79.98 93.31 95.56 89.68 92.87

G-BT 80.80 73.00 80.00 76.65 92.95 95.07 88.14 92.63

BGAE 83.51 72.43 81.84 78.93 93.76 95.01 92.24 91.10
BGAE + Att 83.60 72.41 80.95 79.53 93.76 95.64 92.44 91.89
BVGAE 82.62 72.97 80.02 77.52 93.25 95.13 89.19 89.38
BVGAE + Att 82.57 73.09 80.25 77.82 93.15 95.60 89.91 89.98

Table 4: Node clustering performance, as evaluated by NMI. The best results are styled as bold and second best are
underlined. OOM refers to Out-of-Memory.

Algorithm Cora CiteSeer PubMed WikiCS CoauthorCS CoauthorPhysics AmazonComputers Amazon-Photos

K-means 32.10 30.50 0.10 18.20 64.20 48.90 16.60 28.20

GAE 42.90 17.60 27.70 24.30 73.10 54.50 44.10 61.60
VGAE 43.60 15.60 22.90 26.10 73.30 56.30 42.30 53.00
ARGA 44.90 35.00 30.50 27.50 66.80 51.20 23.50 57.70
ARVGA 52.60 33.80 29.00 28.70 61.60 52.60 23.70 45.50

DGI 41.10 31.50 27.70 31.00 74.70 67.00 31.80 37.60
GRACE 46.18 38.29 16.27 42.82 75.62 OOM 47.93 65.13
GCA 55.70 37.40 28.90 29.90 73.50 59.40 42.60 34.40
MVGRL 60.90 44.00 31.50 26.30 74.00 59.40 24.40 34.40

G-BT 43.40 41.57 29.52 27.46 74.37 59.8 65.55 52.39

BGAE 62.42 43.36 38.46 45.80 80.10 68.01 66.98 67.13
BGAE + Att 62.27 43.84 38.59 46.93 80.30 68.12 66.93 67.43
BVGAE 59.60 43.29 37.41 40.78 79.01 67.10 60.98 61.33
BVGAE + Att 59.82 43.27 37.47 40.86 79.42 67.06 61.44 61.62

sistently well for all the datasets except CiteSeer, where
we achieve the second-best results by a small margin. It
is worth noticing that apart from CiteSeer, we achieve
both the best and the second results using different vari-
ants of BGAE. A comparison of table 4 with table 2 and
table 3 again highlights that no competitor algorithm per-
forms consistently well for all the tasks and datasets. For
instance, ARGA performed well on some datasets in ta-
ble 2. However, its performance suffers in table 4. Simi-
larly, GMI, which performs well in table 3, is outperformed
by many other algorithms in node clustering. On the other
hand, the algorithms such as GIC, that perform well in ta-
ble 4 are outperformed by others in table 3. This high-
lights the task-specific nature of the network embedding
learned by different competitors and also shows the effi-
cacy of BGAE across multiple tasks and datasets.

5 CONCLUSION

This work proposes a simple yet effective auto-encoder
based approach for network embedding that simultane-
ously employs the information in the immediate and larger
neighborhoods. To construct a uniform network embed-
ding, the two information sources are efficiently coupled
using the redundancy-minimization principle. We propose
two variants, BGAE and BVGAE, depending upon the type
of encoder block. To construct larger neighborhood from
the immediate neighborhood, we use graph-diffusion. Our
work is restricted to the networks with high homophily, be-
cause diffusion only works well for such networks. As
demonstrated by the extensive experimentation, our ap-
proach is on par with the well-known baselines, often out-
performing them over a variety of tasks such as link predic-
tion, clustering, and transductive node classification.
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Günnemann. Diffusion improves graph learning. Ad-
vances in Neural Information Processing Systems, 32:
13354–13366, 2019.

https://github.com/RayyanRiaz/bvgae
https://github.com/RayyanRiaz/bvgae


Barlow Graph Auto-Encoder for Unsupervised Network Embedding

Kaili Ma, Haochen Yang, Han Yang, Tatiana Jin, Pengfei
Chen, Yongqiang Chen, Barakeel Fanseu Kamhoua,
and James Cheng. Improving graph representation
learning by contrastive regularization. arXiv preprint
arXiv:2101.11525, 2021.

Costas Mavromatis and George Karypis. Graph info-
clust: Leveraging cluster-level node information for un-
supervised graph representation learning. arXiv preprint
arXiv:2009.06946, 2020.

Julian McAuley, Christopher Targett, Qinfeng Shi, and An-
ton Van Den Hengel. Image-based recommendations on
styles and substitutes. In Proceedings of the 38th inter-
national ACM SIGIR conference on research and devel-
opment in information retrieval, pages 43–52, 2015.

Nikhil Mehta, Lawrence Carin Duke, and Piyush Rai.
Stochastic blockmodels meet graph neural networks. In
International Conference on Machine Learning, pages
4466–4474. PMLR, 2019.
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SUPPLEMENTARY
MATERIAL

Throughout the supplementary material, we follow the no-
tation and references from the main paper.

6 DERIVATION OF Lrecon FOR
VARIATIONAL CASE

As mentioned in the paper, we aim to learn the model pa-
rameters θ to maximize the log probability of recovering
the joint probability of A and S from Z, given as

log
(
p(A,S)

)
= log

(∫
p(A,S,Z)dZ

)
(17)

= log
(∫

p(Z)p(A|Z)p(S|Z)dZ
)
. (18)

Here we assume conditional independence between A and
S given Z. The approximate posterior, introduced for
tractability, is given as

q(Z|I, I) = q(ZIZI |I, I) (19)

= q(ZI |I)q(ZI |I,ZI) (20)

= q(ZI |I)q(ZI |I), (21)

where equation 21 follows from equation 20 because of
the assumed conditional independence of ZI and ZI given
their respective inputs I and I. The corresponding prior
p(Z) is assumed as a joint of i.i.d. Gaussians, i.e.

p(Z) = p(ZI)p(ZI) = N (0, I)N (0, I). (22)

So Lrecon can now be considered as a negative of the ELBO
bound derived as

log
(
p(A,S)

)
= log

(∫
p(Z)p(A|Z)p(S|Z)dZ

)
(23)

= log
(∫ p(Z)p(A|Z)p(S|Z)

q(Z|I, I)
q(Z|I, I)dZ

)
(24)

= log

(
EZ∼q

{p(Z)p(A|Z)p(S|Z)
q(Z|I, I)

})
(25)

≥EZ∼q

{
log
(p(Z)p(A|Z)p(S|Z)

q(Z|I, I)

)}
, (26)

where (26) follows from Jensen’s Inequality. Using the fac-
torizations in equation 20 and equation 21, we can now sep-

arate the factors inside log of (26) as

EZ∼q

{
log
(p(Z)p(A|Z)p(S|Z)

q(Z|I, I)

)}

= EZ∼q

{
log
(p(ZI)p(ZI)p(A|Z)p(S|Z)

q(ZI |I)q(ZI |I)

)}
(27)

= EZ∼q

{
log
( p(ZI)

q(ZI |I)

)
+ log

( p(ZI)

q(ZI |I)

)
+ log

(
p(A|Z)

)
+ log

(
p(S|Z)

)}
(28)

= −DKL

(
q(ZI |I)||p(ZI)

)
−DKL

(
q(ZI |I)||p(ZI)

)
− BCE(Â,A)− BCE(Ŝ,S) (29)

= −DKL

(
q(ZI |I)||N (0, I)

)
−DKL

(
q(ZI |I)||N (0, I)

)
− BCE(Â,A)− BCE(Ŝ,S) (30)

= LELBO = −Lrecon. (31)

7 DETAILED COMPARISON

We now aggregate the publicly available results for all three
tasks discussed in the paper. The publicly available ap-
proaches often cover only a subset of the datasets evaluated
in this work. So we leave the table cells empty in case of
missing public results. In addition to the competitors men-
tioned in the paper, we add new competitors for different
tasks.

7.1 Link Prediction

We add the following approaches in addition to the ones
given in table 2: GNN based architectures GCN by (Kipf
and Welling, 2016a) and GAT by (Veličković et al., 2017),
along with their hyperbolic variants HGCN by (Chami
et al., 2019) and HGAT by (Gulcehre et al., 2018). Deep
Generative Latent Feature Relational Model or DGLFRM
by (Mehta et al., 2019) that aims to reconstruct the adja-
cency matrix while retaining the interpretability of stochas-
tic block models. Graph InfoClust or GIC by (Mavro-
matis and Karypis, 2020), which learns network embed-
ding by maximizing the mutual information with respect to
the graph-level summary as well as the cluster-level sum-
maries. Graphite by (Grover et al., 2019), which is another
auto-encoder based generative model that employs a multi-
layer procedure, inspired by low-rank approximations, to
iteratively refine the reconstructed graph via message pass-
ing.

7.1.1 Results

We can notice that our approach is still either best or second
best including all the competitors. GMI and GCA achieve
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Table 5: Link prediction performance, as evaluated by AUC and AP metrics. The best results are styled as bold and second
best are underlined.

Algorithm Cora CiteSeer PubMed WikiCS CoauthorCS AmazonComputers AmazonPhoto

AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP

Spectral 84.60 88.50 80.50 85.00 84.20 87.80
DeepWalk 83.10 85.00 80.50 83.60 84.40 84.10 91.74 91.19 87.35 91.48 91.48 90.79

GCN 90.47 91.62 82.56 83.20 89.56 90.28
HGCN 92.90 93.45 95.25 95.97 96.30 96.75
GAT 93.17 93.81 86.48 87.51 91.46 92.28
HGAT 94.02 94.63 95.84 95.89 94.18 94.42
GAE 91.00 92.00 89.50 89.90 96.40 96.50 93.00 94.80 94.09 93.86 93.61 93.36 93.86 92.96
VGAE 91.40 92.60 90.80 92.00 94.40 94.70 93.60 95.00 89.60 89.36 93.15 92.40 92.05 92.02
ARGA 92.40 93.20 91.90 93.00 96.80 97.10 93.40 94.70 91.99 92.54 96.10 95.40
ARVGA 92.40 92.60 92.40 93.00 96.50 96.80 94.70 94.80 93.32 93.32 92.70 90.90
DGLFRM 93.43 93.76 93.79 94.38 93.95 94.97
GALA 92.10 92.20 94.40 94.80 91.50 89.70 93.60 93.10 93.81 94.49 91.80 91.00
Graphite 94.70 94.90 97.30 97.40 97.40 97.40

DGI 89.80 89.70 95.50 95.70 91.20 92.20 94.87 94.34 92.24 92.14
GIC 93.50 93.30 97.00 96.80 93.70 93.50 95.03 94.94 92.70 92.34
GMI 95.10 95.60 97.80 97.40 96.37 96.04 96.37 95.04 93.88 92.67
GCA 95.75 95.47 96.44 96.49 95.28 95.52 96.31 96.28 93.25 92.74
MVGRL 90.52 90.45 92.89 92.89 92.45 92.17 95.17 95.58 92.89 92.45

G-BT 87.46 86.84 93.42 93.01 94.53 94.26 93.05 93.18 92.64 91.40 91.54 90.59 95.12 94.45

BGAE 98.52 98.42 98.59 98.61 97.78 97.68 97.23 97.69 96.31 95.44 95.01 94.04 95.01 94.24
BGAE + Att 98.79 98.73 98.56 98.57 98.06 98.03 97.73 98.03 96.51 95.65 95.13 94.48 95.18 94.49
BVGAE 97.87 97.62 98.63 98.57 97.93 97.89 97.62 97.42 96.12 95.13 94.66 94.01 94.61 94.29
BVGAE + Att 98.03 97.77 98.23 98.08 97.77 97.74 97.85 98.05 96.21 95.34 94.90 94.07 94.97 94.28

good results for CoauthorCS, Graphite performs consis-
tently well for all the datasets. However these algorithms
suffer when evaluated for clustering and transductive node
classification.

7.2 Clustering

We include the following clustering-specific competitors in
addition to the ones given in table 4 and section 7.1: Big-
Clam by (Yang and Leskovec, 2013) uses matrix factor-
ization for community detection. DNGR by (Cao et al.,
2016) learns network embedding by using stacked denois-
ing auto-encoders. RMSC by (Xia et al., 2014) introduces
a multi-view spectral clustering approach to recover a low-
rank transition probability matrix from the transition matri-
ces corresponding to multiple views of input data. TADW
by (Yang et al., 2015) learns the network embedding by
treating DeepWalk as matrix factorization and adding the
features of vertices. AGC by (Zhang et al., 2019) per-
forms attributed graph clustering by first obtaining smooth
node feature representations via k-order graph convolution
and then performing spectral clustering on the learned fea-
tures. DAEGC by (Wang et al., 2019) uses GAT to en-
code the importance of the neighboring nodes in the latent
space such that both the reconstruction loss and the KL-
divergence based clustering loss are minimized.

In addition, we include some well-known approaches for
unsupervised network embedding. DBGAN by (Zheng
et al., 2020) introduces a bidirectional adversarial learning
framework to learn network embedding in such a way that

the prior distribution is also estimated along with the ad-
versarial learning. GMI by (Ma et al., 2021) is an unsu-
pervised approach to learn node representations while aim-
ing to improve generalization performance via added con-
trastive regularization. GMNN by (Qu et al., 2019) relies
on a random field model, which can be trained with varia-
tional expectation maximization.

7.2.1 Results

Our approach performs the best overall, although GIC and
BGRL achieve the best results for CiteSeer and Amazon-
Photo respectively. Graphite performed well in table 5, but
for clustering, it is outperformed by many other competi-
tors. The converse is true for GIC and GALA, which out-
perform BGAE for a single dataset in clustering, but fail
to compete in the link-prediction task. Similarly, DBGAN
emerges as a decent competitor for node-clustering. How-
ever, as we will see in the next section, its performance de-
grades for the task of node classification. We cannot com-
ment on BGRL because we could neither find its public
implementation nor any publicly published results for link-
prediction on the selected datasets.

7.3 Transductive Node Classification

The competitors evaluated in table 7 have already been
introduced in the main paper and in section 7.1 and sec-
tion 7.2. We exclude some methods that are specifically de-
signed for clustering, because such methods perform poor
on transductive node classification.
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Table 6: Node clustering performance, as evaluated by NMI. The best results are styled as bold and second best are
underlined. OOM refers to Out-of-Memory.

Algorithm Cora CiteSeer PubMed WikiCS CoauthorCS CoauthorPhysics AmazonComputers AmazonPhoto

K-means 32.10 30.50 0.10 18.20 64.20 48.90 16.60 28.20
Spectral 12.70 5.60 4.20

DeepWalk 32.70 8.80 27.90
BigClam 0.70 3.60 0.60
DNGR 31.80 18.00 15.50
RMSC 25.50 13.90 25.50
TADW 44.10 29.10 0.10

GAE 42.90 17.60 27.70 24.30 73.10 54.50 44.10 61.60
VGAE 43.60 15.60 22.90 26.10 73.30 56.30 42.30 53.00
ARGA 44.90 35.00 30.50 27.50 66.80 51.20 23.50 57.70
ARVGA 52.60 33.80 29.00 28.70 61.60 52.60 23.70 45.50
GALA 57.70 44.10 32.70 51.20
Graphite 54.12 42.42 32.40

DGI 41.10 31.50 27.70 31.00 74.70 67.00 31.80 37.60
GIC 53.70 45.30 31.90
GRACE 46.18 38.29 16.27 42.82 75.62 OOM 47.93 65.13
AGC 53.70 41.10 31.60
GMI 50.33 38.14 26.20
GMNN 53.72 41.73 31.77
DAEGC 52.80 39.70 26.60
DBGAN 56.00 40.70 32.40 48.50
GCA 55.70 37.40 28.90 29.90 73.50 59.40 42.60 34.40
MVGRL 60.90 44.00 31.50 26.30 74.00 59.40 24.40 34.40
BGRL 39.69 77.32 55.68 53.64 68.41

G-BT 43.40 41.57 29.52 27.46 74.37 59.80 65.55 52.39

BGAE 62.42 43.36 38.46 45.80 80.10 68.01 66.98 67.13
BGAE + Att 62.27 43.84 38.59 46.93 80.30 68.12 66.93 67.43
BVGAE 59.60 43.29 37.41 40.78 79.01 67.10 60.98 61.33
BVGAE + Att 59.82 43.27 37.47 40.86 79.42 67.06 61.44 61.62

7.3.1 Results

GRACE, GMI, GALA, and BGRL perform well for Wi-
kiCS, CiteSeer, and AmazonPhoto. However our approach
performs the best overall as we achieve the best or second-
best results in 6 out of 8 datasets. This demonstrates the ef-
ficacy of our approach over a variety of tasks unlike many
competitors that shine only in some of the target tasks.

8 ABLATION STUDIES

We now observe how our approach is affected by changes
in β from equation 1, λ from equation 9, and average-
node degree used for sparsification of S into S. For sake
of brevity, we only plot the results for transductive node
classification task because link prediction and clustering
follow a similar pattern. To emphasize the relative per-
formance, the vertical axes correspond to the percentage
accuracy scores relative to the ones reported in table 3.

8.1 Effect of β

To evaluate the effect of β in equation 1, we sweep β for the
values across the set {0.01, 0.1, 1, 10, 100, 1000, 10000}.

Figure 2: Effect of β on transductive node classification
performance. The vertical axis shows the performance in
%, relative to the results reported in the main paper.
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Figure 8.1 shows the effect of β on transductive node clas-
sification for different datasets. For most of the datasets,
the results are rather stable for quite a large range of β, i.e.,
in [1, 50] range. AmazonComputers and AmazonPhoto
datasets are an exception in the sense that their performance
degrades quicker than other datasets. Overall, a general
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Table 7: Transductive node classification performance, as evaluated by accuracy. The best results are styled as bold and
second best are underlined.

Algorithm Cora CiteSeer PubMed WikiCS CoauthorCS CoauthorPhysics AmazonComputers AmazonPhoto

Raw 47.87 49.33 69.11 71.98 90.37 93.58 73.81 78.53
DeepWalk 70.66 51.39 74.31 77.21 87.70 94.90 86.28 90.05

GAE 71.53 65.77 72.14 70.15 90.01 94.92 85.18 91.68
VGAE 75.24 69.05 75.29 75.63 92.11 94.52 86.44 92.24
ARGA 74.14 64.14 74.12 66.88 89.41 93.10 84.39 92.68
ARVGA 74.38 64.24 74.69 67.37 88.54 94.30 84.66 92.49
Graphite 82.10 71.00 79.30

DGI 81.68 71.47 77.27 75.35 92.15 94.51 83.95 91.61
GIC 81.73 71.93 77.33 77.28 89.40 93.10 84.89 92.11
GRACE 80.04 71.68 79.53 80.14 92.51 94.70 87.46 92.15
AGC 70.90 71.89 68.91
GMI 83.05 73.03 80.10 74.85 OOM OOM 82.21 90.68
GMNN 82.78 71.54 80.60
DBGAN 77.30 69.70 77.50
GCA 82.10 71.30 80.20 78.23 92.95 95.73 88.94 92.53
MVGRL 82.90 72.60 79.40 77.52 92.11 92.11 87.52 91.74
BGRL 82.70 71.10 79.60 79.98 93.31 95.56 89.68 92.87

G-BT 80.80 73.00 80.00 76.65 92.95 95.07 88.14 92.63

BGAE 83.51 72.43 81.84 78.93 93.76 95.01 92.24 91.10
BGAE + Att 83.60 72.41 80.95 79.53 93.76 95.64 92.44 91.89
BVGAE 82.62 72.97 80.02 77.52 93.25 95.13 89.19 89.38
BVGAE + Att 82.57 73.09 80.25 77.82 93.15 95.60 89.91 89.98

trend of degradation can be observed for high values of β
for all datasets, which is intuitive because for such values,
the covariance loss takes over and the reconstruction loss
is practically neglected, resulting in relatively poor results.
Another observation is that the results above the 0-line on
the graphs are better than the ones reported in the main pa-
per. So, by carefully tuning β, we can achieve even better
results compared to the ones reported in the paper.

8.2 Effect of λ

The hyperparameter λ governs the trade-off between in-
variance and cross-covariance in equation 9. The pro-
posed value of λ by (Zbontar et al., 2021) is 5e−3. To
see the effect of changing β, we sweep it across the val-
ues {1e−3, 5e−3, 1e−2, 5e−2}. The effect of changing λ
on different datasets has been plotted in figure 8.2. The
plot validates that λ = 5e−3, proposed in Barlow Twins
by (Zbontar et al., 2021), is a reasonable choice also for
graph datasets. Some datasets perform better for λ = 1e−3

and some yield better results for λ = 1e−2. However,
there is a general trend of decrease in the performance for
λ ≥ 5e−2.

8.3 Effect of Average Sparsification Degree in S

As mentioned in section 2.3, one of the ways of sparsi-
fication is to provide the intended average node degree.
We have fixed this value to 25 for all the reported results.
Now we observe the effect of changing this hyperparame-

Figure 3: Effect of λ on transductive node classification
performance. The vertical axis shows the performance in
%, relative to the results reported in the main paper.
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ter. For this purpose, we sweep the average degree over the
values {5, 10, 20, 25, 30, 40, 50, 60, 75, 80, 100, 125, 150}.
The results have been plotted in figure 8.3. The results
for PubMed are not plotted for the degree values greater
than 75 because of out-of-memory issues. The relative per-
formance remains more or less consistent over the plotted
range, and varies between ±1% of the reported results.
This also shows that the architecture can extract the rele-
vant information from the neighborhood over a reasonable
range of average degree. An exception is WikiCS where
the results improve by up to 2% compared to the reported
results in table 3 for the average degree value of 150. How-
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ever, for such a high value, the graph is no longer reason-
ably sparse. This causes high training overhead because of
the large number of edges in S. On the other extreme, for
the value of 5, we can see a decline in many datasets be-
cause here S is too sparse, hence the information in S is
too little to be of use.

Figure 4: Effect of average node degree in S on trans-
ductive node classification performance. The vertical axis
shows the performance in %, relative to the results reported
in the main paper.
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9 VARIANTS OF OUR APPROACH

In the main paper, we have reported the results for PPR
both with and without attention. From these results, we can
already establish that it is always better to use attention i.e.,
let the neural network decide the weights for averaging the
embeddings from the immediate and larger neighborhood.
So, in this section, we focus on the case with attention, and
report the results with following variations:

• Toggling Lrecon on/off in equation 1

• Choosing between BGAE and BVGAE.

• Choosing between PPR and Heat Kernels for diffu-
sion.

For brevity, we use triple of the form(
1(Lrecon is mute),1( variational model), kernel name

)
.

For instance, (1, 0, ppr) means that we are referring to the
variant where we are only using Lcov in non-variational
mode with PPR kernel for diffusion. In the main paper,
we have reported the results for the variant (0, 0, ppr) and
(0, 1, ppr). Using this notation, we plot the results for all
the eight variations for all three tasks i.e. link prediction,
clustering and transductive node classification in figure 5a,
figure 5b, and figure 5c respectively. For some datasets
(e.g., CoauthorPhysics), some variants could not be plotted
because of out-of-memory issues. The general behavior

is similar for different variants across all three tasks. The
important observations from figure 5 are as follows:

• The variant (0, 0, ppr), shown in green, performs the
best overall.

• The variants (0, 0, ppr) and (0, 0, heat) are usually
close in performance, although (0, 0, ppr) is often bet-
ter by a small margin.

• The variants (0, 0, ppr) and (0, 0, heat) with simple
GCN encoders usually outperform their variational
counterparts, i.e., (0, 1, ppr) and (0, 1, heat). There
are, however, minor exceptions. For instance, in fig-
ure 5a, (0, 1, ppr) is marginally better than (0, 0, ppr)
for CiteSeer. Similarly, in figure 5b, (0, 1, heat) is
marginally better than (0, 0, heat) for CoauthorCS.

• When Lrecon is turned off, the performance is usually
relatively worse than when Lrecon is on. This can be
seen in (1, 1, ppr), (1, 0, ppr), (1, 1, heat), and (1,
0, heat) variants. The only exception is CiteSeer in
figure 5a where (1, 1, ppr) outperforms (0, 1, ppr) by
a tiny margin. This validates our intuition that Lrecon

aids Lcov almost always.
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(a) Variants of our approach for link prediction

0.00

0.25

0.50

0.75

1.00

AmazonComputers AmazonPhoto CiteSeer CoauthorCS CoauthorPhysics Cora PubMed WikiCS

(1, 1, ppr) (1, 0, ppr) (0, 1, ppr) (0, 0, ppr) (1, 1, heat) (1, 0, heat) (0, 1, heat) (0, 0, heat)

(b) Variants of our approach for node clustering
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(c) Variants of our approach for node classification

Figure 5: Variants of our approach for link prediction, node clustering, and node classification.
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