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Abstract

In an unsupervised attack on variational autoen-
coders (VAEs), an adversary finds a small per-
turbation in an input sample that significantly
changes its latent space encoding, thereby com-
promising the reconstruction for a fixed decoder.
A known reason for such vulnerability is the dis-
tortions in the latent space resulting from a mis-
match between approximated latent posterior and
a prior distribution. Consequently, a slight change
in an input sample can move its encoding to a
low/zero density region in the latent space result-
ing in an unconstrained generation. This paper
demonstrates that an optimal way for an adver-
sary to attack VAEs is to exploit a directional bias
of a stochastic pullback metric tensor induced by
the encoder and decoder networks. The pullback
metric tensor of an encoder measures the change
in infinitesimal latent volume from an input to a
latent space. Thus, it can be viewed as a lens to
analyse the effect of input perturbations leading
to latent space distortions. We propose robustness
evaluation scores using the eigenspectrum of a
pullback metric tensor. Moreover, we empirically
show that the scores correlate with the robustness
parameter β of the β−VAE. Since increasing β
also degrades reconstruction quality, we demon-
strate a simple alternative using mixup training to
fill the empty regions in the latent space, thus im-
proving robustness with improved reconstruction.

1 INTRODUCTION

Variational autoencoders (VAEs) belong to a class of deep
generative models with a stochastic encoder-decoder net-
work (Kingma and Welling, 2014). The encoder parame-
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terises the variational distribution over latent variables con-
ditioned on data samples, and the decoder estimates the
data distribution through the latent distribution. Thus, VAEs
serve a dual purpose of estimating data density and provid-
ing a rich representation space with uncertainty quantifica-
tion. Recently several works have shown the application of
VAEs to high-fidelity image generation (Vahdat and Kautz,
2020), music generation (Roberts et al., 2017), video gen-
eration (Wu et al., 2021), and many others. However, like
other machine learning models, VAEs are also susceptible
to adversarial attacks, as demonstrated in several recent
works (Tabacof et al., 2016; Gondim-Ribeiro et al., 2018;
Willetts et al., 2021; Kos et al., 2017; Kuzina et al., 2021). In
a typical setup, an adversary can attack a VAE by learning a
small perturbation to an input that will lead to a large change
in its latent encoding. This mechanism takes the form of
an optimisation problem (introduced later in Equation 5),
which is generally solved using stochastic gradient meth-
ods (Chakraborty et al., 2021; Szegedy et al., 2014). For a
more comprehensive overview of attacks on VAEs and other
generative models, we refer readers to (Sun et al., 2021).

The primary reason for the vulnerability of VAEs to at-
tacks is the distortion in the latent space resulting from the
mismatch between approximated posterior and latent space
prior, also known as the posterior-prior gap. Hence, the la-
tent space is non-smooth, and the representations of similar
inputs tend to be significantly distant in the space under the
Euclidean metric. Methods such as (Mathieu et al., 2019;
Willetts et al., 2021) have emphasised the importance of
reducing the posterior-prior for learning disentangled la-
tent space that also improves the robustness of VAEs. β−
VAE (Higgins et al., 2017) formulation introduces a param-
eter β to directly control the gap. Other methods (Chen
et al., 2018b; Kim and Mnih, 2018; Esmaeili et al., 2019)
utilise the total correlation (TC) term to disentangle the la-
tent coordinates of VAEs that also smooths the latent space
proving helpful in improving the robustness. The limita-
tion of these approaches is that they cause over-smoothing
of the reconstructed samples and require a careful training
mechanism to balance the regularisation term. Willetts et al.
(2021) address this problem by introducing a TC term in
hierarchical VAEs that provide robustness along with sharp
reconstruction. However, most robustness methods use reg-



Adversarial robustness of VAEs through the lens of local geometry

ularisation terms, which do not provide meaningful insights
for quantifying robustness. Therefore, the notion of a small
change in the input to the large change in latent space is not
well established. Moreover, comparing these schemes re-
lies on the visual inspection of distorted images at different
magnitudes of adversarial loss.

Much recently Camuto et al. (2021) proposed a theoreti-
cal framework that considers the uncertainty of encoder for
studying the robustness of VAEs. However, the attacks in the
input space do not consider the effect of geometry induced
by an encoder or decoder maps. In another recent work Kuz-
ina et al. (2021) proposed an asymmetric KL term to capture
the difference between the latent representation of input and
its perturbation. They obtain the ϵ using the Jacobian of
the mean latent code evaluated at the input perturbation.
Nevertheless, their optimisation objective does not provide
any geometrical insights. Likewise, they do not consider the
contribution of the standard deviation term when computing
Jacobian. Thus, do not account for the uncertainty in the
representation space. Our paper shows that the geometry
induced by the stochastic nature of encoder mapping pro-
vides the intuition behind the sensitivity of VAEs that can
be a valuable tool for understanding robustness.

The central theme of our paper is to view the adversarial at-
tack problem through the lens of manifold geometry. Unlike
existing approaches treating the input space as Euclidean,
we propose to utilise the stochastic pullback-metric tensor
induced by the encoder map to measure the distance in the
input space. We demonstrate that the distortion in the latent
space results in a directional bias appearing in the form of an
anisotropic metric tensor. We show that an optimal way for
an adversary to design an attack is by moving along the dom-
inant eigendirection of the induced metric tensor. Moreover,
we propose scores to quantify robustness using the eigen-
spectrum of the pullback metric tensor. We hypothesise
that methods reducing posterior-prior gap improve robust-
ness, directly influencing the induced metric tensors. To this
end, we demonstrate that the proposed scores correlate with
the β parameter of β−VAE used to control robustness. To
our knowledge, such a geometric view of the robustness of
VAEs has not been previously investigated.

β−VAE is known to generate over-smooth samples for a
high value of β. We introduce a simple mechanism using
a mixup training (Zhang et al., 2018) that improves the
robustness of VAE without much effect on reconstruction
quality. Specifically, we introduce a regularisation loss
term that forces the encoder to fill empty regions with linear
interpolation in data space and ensures the decoder generates
the respective interpolations, thus avoiding the issue of an
unconstrained generation. We empirically demonstrate that
such a training scheme improves the robustness measured
by the proposed scores.

2 BACKGROUND

2.1 β−Variational autoencoder

β−VAE (Higgins et al., 2017) is a probabilistic encoder-
decoder framework that simultaneously parameterises the
latent distribution and emission distribution using deep neu-
ral networks. Consider a sample x ∈ X = RN drawn
from unknown data distribution p(x), VAE learns an approx-
imate posterior distribution qϕ(z|x) over latent variables
z ∈ Z = Rdz using a stochastic encoder network, and an
emission distribution pθ(x|z) using a stochastic decoder net-
work. The parameters θ of an encoder network and ϕ of a
decoder network are learned by maximising the evidence
lower bound (ELBO),

Ez∼q(z|x)[log pθ(x|z)]− βKL[qϕ(z|x)||p(z)] (1)

where KL stands for Kullback-Leibler divergence (Kull-
back and Leibler, 1951), and a parameter β controls the
smoothness of latent distribution, setting β = 1 is equiva-
lent to a standard VAE (Kingma and Welling, 2014).

2.2 Adversarial attacks on VAEs

The adversarial attacks on VAEs assume access to a pre-
trained encoder-decoder network. The adversary aims to
exploit the capacity of VAE by finding small perturbations
in an input sample that lead to a large change in its latent
encoding or reconstruction. In a supervised scenario, the
adversary starts with input and finds a minimal change that
can match the reconstruction to the known target. In an
unsupervised setting, the aim is to maximise the distance in
latent codes, which will corrupt the reconstruction. Several
recent developments have proposed mechanisms for design-
ing an adversary and evaluating the robustness of existing
deep generative models (Tabacof et al., 2016; Willetts et al.,
2021). Our paper takes a geometrical viewpoint of an un-
supervised attack by analysing the metric tensor induced
by the stochastic encoder network. We first introduce the
unsupervised variational attack problem and later present
our approach in Section 2.3.

For an encoder neural network fθ : X → Z the unsupervised
latent space attack optimises the objective (Gondim-Ribeiro
et al., 2018),

max
η:||η||2≤η0

d(fθ(x), fθ(x+ η)) (2)

where η0 is a small constant that decides the severity of the
attack, and d(., .) is a distance function that measures the
proximity in the latent space. A common approach to find-
ing a corruption η is to use stochastic gradient methods (Sun
et al., 2021; Willetts et al., 2021).
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Figure 1: Left: Illustration that adversarial examples find non-smooth change in the latent encodings. A small perturbation
in the input sample exploits a direction that maximally changes latent encoding by moving from high density to low/zero
density region in the latent space. In this paper, we show an optimal perturbation can be found by moving along the
eigendirection of the local pullback metric tensor of a data point. Right: A smooth mapping f from the data manifold
M to the latent manifold N induces pullback metrics on M. The jacobian Jf(x) = ∂f

∂x is a linear map from a tangent
vector y ∈ TxM to a tangent vector z ∈ Tf(x)N that induces a pullback Riemannian metric tensor Gx = JTf(x)Jf(x). The
determinant of metric tensor Gx represents the change in infinitesimal volume element when projected to the latent space.

2.3 Latent space geometry

In this section, we introduce definitions from Riemannian
geometry relevant to the context of our work.

Definition 2.1. A n−dimensional manifold M is a topologi-
cal space where for every x ∈ M there exist a neighborhood
region Vx homeomorphic to Rn (Lee, 2006).

Definition 2.2. A Riemannian metric for a smooth man-
ifold M is a bilinear, symmetric, positive definite map
Gx : TxM × TxM → R for all x ∈ M, where TxM
is a tangent plane at point x on the manifold (Lee, 2006).

Definition 2.3. A smooth manifold M with a Riemannian
metric G defined on every point of a manifold is called a
Riemannian Manifold (Lee, 2006).

Definition 2.4. Given a mapping f : M → N from smooth
manifold M to N , for any x ∈ M the pull-back metric Gx

induced by the mapping f is given as Gx = JTf(x)Gf(x)Jf(x),

where Jf(x) =
∂f(x)
∂x .

2.4 Latent space distortion

To understand the latent distortion, we use an alternative
derivation of ELBO (Makhzani et al., 2016),

−RE[log pθ(x|z)]−CE[qϕ(z)||p(z)] +H[qϕ(z|x)] (3)

where RE is the reconstruction error, CE is the cross en-
tropy, and H is the entropy. For a Gaussian encoder, the
H term maximises the variance of latent encoding, the RE
term forces the distribution to be peakier (low variance), and
the CE term is to force the approximated posterior to match
with the prior distribution. Optimizing the full objective
means the encoder has to match a fixed prior and simul-
taneously have a peaky distribution. Due to this tradeoff,
the encoder fails to match the fixed prior, resulting in the
posterior-prior gap. As a result, latent space is distorted
with regions of low or zero density for which the decoder is

unconstrained. For the derivation of Equation 3 with a more
comprehensive discussion, we refer readers to (Makhzani
et al., 2016; Tomczak, 2022).

The posterior-prior gap implies small changes in the input
sample can result in significant changes in the latent encod-
ing leading to abrupt changes in the reconstruction. Figure 1
on the left demonstrates an example of a vulnerability of
VAEs.

2.5 Related work

The distortions in the latent space of VAEs have been
previously shown to result in limited generalisation ca-
pacity of VAEs (Rezende and Viola, 2018; Chen et al.,
2020). Rezende and Viola (2018) further proposed a con-
strained optimisation to control the model performance. In
our work, we take a geometric view of such distortion and
use it to investigate the robustness of VAEs.

The use of encoder Jacobian matrices has previously ap-
peared in approximating a tangent space of a data manifold,
which captures the data points’ sensitivity to its latent en-
coding (Rifai et al., 2011b,a). However, they don’t consider
the stochasticity of the encoder and decoder mappings. Sev-
eral recent works treat the decoder mapping of VAEs as
a smooth immersion and use the pullback as an induced
metric in the latent space. The computation of such metrics
has been helpful in various applications such as drawing
on manifold samples, latent space interpolation, clustering,
motion planning and many more (Arvanitidis et al., 2018;
Yang et al., 2018; Hauberg, 2018; Chen et al., 2018a; Shao
et al., 2017; Arvanitidis et al., 2020; Mohammadi et al.,
2022). (Chen et al., 2020) propose to flatten the pullback
metric tensor in the latent space induced by the decoder,
which allows them to use standard Euclidean distance as
a metric in latent space. The computation of a pullback
in Chen et al. (2018a); Yang et al. (2018); Chen et al. (2020)
does not consider the contribution of the uncertainty in the
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MNIST: (a) Original ↓ Reconstruction (b) Corrupted δ1 ↓ Reconstruction (c) Corrupted δ2 ↓ Reconstruction

FMNIST: (d) Original ↓ Reconstruction (e) Corrupted δ1 ↓ Reconstruction (f) Corrupted δ2 ↓ Reconstruction

Figure 2: Illustration of adversarial attack along the dominant eigenvector of a stochastic pullback metric tensor. The
first two rows are the results of MNIST data, and the bottom two are on the FashionMNIST dataset. We evaluate the
reconstruction for original images and its two corrupted versions with different step sizes δ1 = 0.5233 and δ2 = 0.7443.
Moving along eigendirection doesn’t affect the input image but significantly changes its reconstruction.

decoder mapping. It is, therefore, limited in its ability to
capture the topological properties of the manifold. Arvan-
itidis et al. (2018); Hauberg (2018) proposed to consider
the uncertainty of the decoder by treating the Gaussian de-
coder as a random projection of a deterministic manifold.
This viewpoint allows them to treat the reconstruction space
as a random manifold and the pullback metric tensors as
stochastic, proving helpful in handling topological holes
and low-density regions.

We want to remark much of the existing methods focus on
improving the sampling in the latent space or improving
the performance on tasks. Here, we show such distortions
can be exploited by an adversary and discuss the impor-
tance of local geometry for evaluating and training robust
VAEs. Previously Zhao et al. (2019); Sun et al. (2019);
Martin and Elster (2020) studied the spectrum of Fisher
information (pullback from probability simplex to the input
space) of a classifier to investigate the robustness of adver-
sarial perturbations. However, there is no such study for
generative models to our knowledge. Also, the metric tensor
considered in our paper considers the effect of uncertainty in
the latent space, which is vital for understanding the latent
distortions.

3 ADVERSARIAL ATTACK EXPLOIT
LOCAL GEOMETRY

Consider an encoder fϕ as a smooth immersion from a
data manifold to a latent manifold. We can then utilise
the pullback metric tensor induced by fϕ to express the
infinitesimal distance in the input space in terms of the
local metric tensor of the latent space. Thus, unlike the
existing methods that rely on Euclidean distance in the input
space, we use the pullback metric tensor to measure the
infinitesimal distance.

Here, we first express the adversarial optimisation problem
in terms of the pullback metric tensor. Next, we show that
the adversary can exploit the directional bias of a metric
tensor to design optimal attacks.

Remark 3.1. The infinitesimal distance between the repre-
sentation of any data point x and its perturbation xη = x+η
under parametric encoder fθ for η small in l2 is approxi-
mated as,
i) d(fθ(x), fθ(x+ η)) = ηTGxη, where Gx = JTfθ(x)Jfθ(x)
for locally flat latent manifold,
ii) d(fθ(x), fθ(x + η)) = ηTGxη, where Gx =
JTfθ(x)GzJfθ(x) for a latent Riemannian manifold equipped
with metric tensor Gz. Here Gz = JTgϕ(z)Jgϕ(z) is a pullback
under the parametric decoder mapping gϕ.

where Jfθ(x) ∈ Rdz×N is a Jacobian matrix, dz is the di-
mensionality of Z and N is the dimensionality of X. The
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matrix Gx is a symmetric, positive definite matrix known as
a pullback metric tensor under the mapping fθ. We can use
it to measure the local inner product for every x in the input
space x ∈ X.

3.1 Stochastic pull-back metric tensor

Eklund and Hauberg (2019); Arvanitidis et al. (2018) pro-
posed an expected pullback metric tensor for measuring
distances in the latent space of deep generative models.
Here we utilise the pullback of an encoder mapping to eval-
uate the robustness of representations. Consider a stochas-
tic encoder mapping fθ expressed as a combination of
mean µθ(x) and standard deviation σθ(x) parameterisa-
tions: fθ(x) = µθ(x) + ϵ ⊙ σθ(x), where ϵ ∼ N (0, Id),
then a Jacobian of fθ with respect to input x can be ex-
pressed as Jfθ = Jµ(x) + ϵ⊙ Jσ(x) and the pullback matrix
Gx as,

Gx = (Jµ(x) + ϵ⊙ Jσ(x))
T (Jµ(x) + ϵ⊙ Jσ(x))

= JTµ(x)Jµ(x) + JTµ(x)ϵJµ(x) + JTσ(x)ϵJµ(x) + JTσ(x)ϵ
2Jσ(x)

We can view the latent space as a random projection of a
deterministic manifold. Under the assumption the sample
paths from fθ are smooth, we can treat the metric tensor as a
stochastic matrix. The metric of the random latent manifold
can be estimated in expectation as Ĝx = Eϵ∼p(ϵ)[Gx]. Since,
ϵ is a zero mean and unit covariance the E[ϵ] = 0 and
E[ϵ2] = 1 the final expected metric tensor is,

Ĝx = JTµ(x)Jµ(x) + JTσ(x)Jσ(x) (4)

Theorem 3.2. Given a stochastic encoder mapping fθ, for
an arbitrary data point x ∈ X the adversarial perturbation
xη under l2 norm is optimal when moving along the eigendi-
rection of a stochastic pullback metric tensor induced by fθ
at x.

Proof. By using the stochastic pull back metric tensor given
in Equation 4, we reformulate the adversarial attack optimi-
sation of Equation 5 as,

max
η

ηT Ĝxη

subject to ||η||2 = η0 (5)

Next, to solve the problem, we combine the constraints by
introducing Lagrange multiplier λ,

max
η

ηT Ĝxη + λ(η0 − ||η||22) (6)

The closed-form solution of the above optimisation takes
the form:

Ĝxη = λη (7)

thus a pair (λ,η) represents the eigenvalue and eigenvector
of the stochastic pullback metric tensor, the eigenvector
with the largest eigenvalue corresponds to the direction of
maximal change.

(a) β = 0.01 (b) β = 1.0 (c) β = 7.5

Figure 3: The plot shows the change in the latent encoding
of β−VAE (in terms of Euclidean distance) for different
values of β when moving along the dominant eigendirection
of a pullback metric tensor Ĝx with different step size δ. We
can see for small β, the changes are of much higher mag-
nitude compared to larger β, demonstrating that increasing
the β makes the latent space more smooth.

Thus, for any given input x an adversary can design an
optimal attack by taking a step along the eigendirection of
Ĝx as xc = x+ δλη, where δ is a step size. To compromise
the reconstruction the step size δ can be chosen such that
||x− x̂c||2 > ||x− x̂||2, where x̂ and x̂c are reconstructions
of original input and its corrupted version.

3.2 Robustness evaluation

A robustness method should suppress the maximum eigen-
value of the pullback metric tensor. Moreover, it should
eliminate the directional bias resulting from the anisotropic
distribution of eigenvalues of a pullback metric tensor. To
quantify these two effects, we report the following two
scores,

Spectral Radius for a matrix G is defined as,

ρ(G) = max{|λ|,λ is an eigenvalue of G} (8)

A robust model will have a low value of spectral radius.

Von Neumann Entropy (Bengtsson et al., 2008) S of a metric
tensor G is given by the Shannon entropy of its eigenvalues
S = −

∑
k λk logλk. The high value would imply the

metric tensor is anisotropic, resulting in a directional bias.
Thus, a robust model will have a low value of S.

4 RESULTS AND DISCUSSION

As pointed out in Remark (3.1), we can treat the latent space
as (i) locally flat or (ii) a Riemannian manifold equipped
with a metric tensor at all points. In the latter case, similar
to the encoder, the stochastic pull-back metric tensor in the
latent space can be computed as Gz = JTgω(z)Jgω(z) where
gθ is a decoder network. The main paper presents case (i)
results where latent space is Gz = I. We also analyze the
case Gz is a pullback induced by the decoder network; the
results for this one are reported in Supplementary B.

We used PyTorch (Paszke et al., 2019) for the implemen-
tation of our work. The experimental details, including
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CelebA: (a) Original ↓ Reconstruction (b) Corrupted δ1 ↓ Reconstruction (c) Corrupted δ2 ↓ Reconstruction

Figure 4: Illustration of adversarial attack along the dominant eigenvector of a stochastic pullback metric tensor on
CelebA dataset. We evaluate the reconstruction for original images and its two corrupted versions with different step sizes
δ1 = 0.5233 and δ2 = 0.7443.

the training procedure, are discussed in Supplementary Sec-
tion A. The implementation is publicly available on GitHub1.
Here, we first empirically demonstrate the vulnerability of a
VAE using a one-step attack along the dominant eigendirec-
tion of input samples. Next, we investigate the robustness
of β−VAE and discuss a simple mixup strategy that fills a
posterior-prior gap in the latent space, flattens the latent
space and ensures the decoder generated valid samples.

4.1 Adversarial attack

Figure 2 demonstrates the two instances of corruption along
the dominant eigenvector of β = 1 VAE on MNIST (Lecun
et al., 1998) and FashionMNIST (Xiao et al., 2017) datasets.
For each dataset, the three columns in the first row are a set
of original images and their corrupted version with a step
size of δ = 0.5223 and δ = 0.7443. In the second row, we
report their respective reconstructions. We observe that with
δ = 0.5223, the reconstruction significantly differs from
the original images, and for δ = 0.7443 gets much more
severe, exposing the capacity of VAE. This result proves an
attacker can exploit the metric tensor’s directional bias to
design a one-shot attack. Figure 4 further demonstrates a
similar finding on the CelebA (Liu et al., 2015) dataset.

4.2 Robustness evaluation

In this section, we first investigate the connection between
our proposed scores and the robustness of β−VAE and later
discuss an alternative robustness scheme using a mixup
training loss.

4.2.1 β−VAE

The β parameter in a β−VAE controls the gap between an
approximated posterior and a prior distribution. The high
value of β reduces the gap, thus eliminating the latent dis-
tortions which an adversary can exploit. We now investigate

1https://github.com/MdAsifKhan/RobustnessVAE/

the effect of increasing values of β on the two scores. We
sample 50 values of β with a logarithmic spacing between
[0.01, 10]. We trained the encoder-decoder model for each
parameter and computed the two scores ρ(Ĝ) and S for
every sample point. Due to the high computational cost
of training 50 different models per dataset, in this section,
we limit the experiments to MNIST and FashionMNIST
datasets.

Figure 5 first and the second column in row one (MNIST)
and in row three (FashionMNIST) reports the histogram of
the scores for four different values of β. We observe that the
higher value of β suppresses the spectral radius. Similarly,
the von Neumann entropy is decreased, demonstrating that
the local directions get isotropic. Importantly, this indicates
the adversary cannot exploit the directional bias for high
values of β with η small in the norm. In the third and fourth
columns of rows one and three, we report the mean and stan-
dard deviation of the scores computed for fifty increasing
values of β. The results demonstrate that by reducing the
KL gap, parameter β prevents distortion in the latent space
eliminating the directional bias exploited by an adversary.

Next, we examine the connection between the step size δ and
the strength of attacks under different values of β. We report
the mean squared error (MSE) between an original image
and its reconstruction under varying corruption rates along
five dominant eigendirections. We generated 40 logarithmic
spacing steps in the range [0.01, 10]. Figure 5 second row
(MNIST) and fourth row (FashionMNIST) demonstrate the
MSE vs step size averaged across all test samples for four
different values of β. We observe that for the small β, all
five directions tend to get high MSE, and as β increases,
it requires a larger step size to get a significant change in
MSE.

Further, to analyse the latent distortions, we generate per-
turbations of increasing magnitude for each sample x by
increasing step size δ along the dominant eigendirection
of the pullback metric tensor. In Figure 3, we report the
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(a) Robustness evaluation of β−VAE on MNIST.

(b) Robustness evaluation of β−VAE on FashionMNIST.

Figure 5: Figure (a), on the left, we report the histogram of spectral radius and Von Neumann entropy (on test samples) for
different values of β in β-VAE. On the right, we report the average of two scores across test samples for an increasing value
of β. We observe that increasing the value of β suppresses the metric tensor’s maximum eigenvalue, and the eigenspectrum
distribution gets more isotropic. In the second row, we corrupt the test images along the top five eigendirections (denoted by
λ1, λ2, λ3, λ4, and λ5) with an increasing step size for different values of β. The plots describe the average MSE across
test samples. We observe that the average step size increases for a higher value of β. Increasing the value of β reduces
the posterior-prior gap, minimising distortion in the latent space. Figure (b) demonstrates similar observations on the
FashionMNIST dataset.

distance between the latent encoding of the original input
and its perturbations averaged across data samples.

Increasing the β improves the contribution of the uncertainty
term, showcasing that the probabilistic encoder-decoder
model is more robust than its deterministic counterpart. The
stochastic metric tensor comprises two terms resulting from
the latent space’s variational distribution. For small values
of β, the encoder does not do well in quantifying the uncer-
tainty and fails to match the prior; as an outcome, the latent

space is more distorted, resulting in empty and low-density
regions given by dominating eigendirections of the metric
tensor. The distortions are reduced for a high value of β;
accordingly, the second term can account for the uncertainty
in latent space preventing the eigenvalues from getting large.

In Supplementary Section B, we report the results for the
case where latent space is equipped with a metric tensor Gz

induced by the decoder network. We observe a higher value
of spectral radius when incorporating the geometry of the



Adversarial robustness of VAEs through the lens of local geometry

Robustness evaluation of mixup on MNIST and FashionMNIST.
(a) MNIST (b) FashionMNIST

Figure 6: Figure (a), first row, two columns are histograms of spectral radius and Von Neumann entropy (on test samples)
with and without mixup regularisation. Second row, we corrupt the test images along the top five eigendirections (denoted
by λ1, λ2, λ3, λ4, and λ5) with an increasing step size for different values of β. The plots describe the average MSE across
test samples. We observe mixup suppresses the spectral radius, and the eigenspectrum distribution gets more isotropic.
Figure (b) demonstrates similar observations on the FashionMNIST dataset.

decoder, which implies the latent space is locally curved.

4.2.2 Latent mixup

In β−VAE, a higher value of β reduces the posterior-prior
gap but degrades the reconstruction quality. We propose
filling up the low or zero-density region in the latent space
as an alternative solution to the latent distortion problem.
To this end, we utilise a mixup training strategy. Mixup is a
simple and powerful data augmentation technique that has
been shown to improve the robustness and generalisation ca-
pabilities of classification models (Zhang et al., 2018; Lamb
et al., 2019; Verma et al., 2019). For a given pair of distinct
data points xi and xj , we use linear interpolation between
them to draw samples in the low-density region; likewise,
we take the linear interpolation between the encodings zi
and zj , of the respective samples,

zm = αzi + (1− α)zj , xm = αxi + (1− α)xj (9)

where α is sampled from a Beta distribution B(a, b) with
shape parameters a and b that we set to 0.5. We now intro-
duce the following regularisation penalty to a VAE objec-
tive,

C = ||zm − fϕ(xm)||2 + ||gθ(zm)− xm||2 (10)

where the first term is to force the encoder to match mixing
in the input space, and the second term is to force the de-
coder to match mixing in the latent space to mixing in the

reconstruction space. Combining the two loss terms lets the
encoder fill the empty region of latent space such that the
linear interpolation in a latent space corresponds to linear
interpolation in input space. Thus reducing the gap between
the posterior and a prior and preventing the decoder from
generating unconstrained output. We report the robustness
scores for increasing step size δ.

Figure 6 shows the comparison of robustness scores with
mixup training on MNIST and FashionMNIST datasets.
We observe mixup suppresses the spectral radius for two
datasets, thus improving the robustness. Figure 7 further
demonstrates the qualitative performance of VAE trained
with a mixup loss.

5 CONCLUSION, LIMITATIONS AND
FUTURE SCOPE

We have presented a geometrical perspective of adversarial
attacks and introduced scores for measuring the robustness
of VAEs. We have shown that the sensitivity of the encoder
at a given input depends on eigendirections of stochastic
pullback metric tensor that an adversary can exploit to de-
sign an attack. We proposed evaluation scores using the
spectral radius and Von Neumann’s entropy of a pullback
metric tensor. Moreover, we demonstrate the scores corre-
late with parameter β of β−VAE, providing geometrical
insights into the robustness due to parameter β of β−VAE.

A caveat with β−VAE is that increasing the β trades off the
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FashionMNIST: (a) Original (b) Reconstruction MNIST: (c) Original (d) Reconstruction

Figure 7: Here, we report a qualitative evaluation of training VAE with a mixup loss. We report the input samples and their
respective reconstructions. On the left are the results of the FashionMNIST and the rights of MNIST.

capacity of representations with the quality of reconstruction
resulting in over-smooth reconstructions for a large value
of β, which further implies a tradeoff between the spectral
radius and robustness. To circumvent the above issue, we
utilised a mixup training scheme that fills the empty region
of latent space and improves the robustness measured in
terms of proposed scores. We want to remark mixup does
not guarantee that all empty or low-density regions are filled
in the latent space. Here coverage depends on the regular-
isation hyperparameter as well as the size of the training
dataset. Thus, it is still possible the regions of zero-low
density exist. However, the overall training scheme reduces
latent distortions.

Recently few mechanisms have been proposed to reduce
the distortion in latent space and improve the robustness
of VAEs (Willetts et al., 2021; Kuzina et al., 2021). We
hypothesise that the benefits of such robustness measures
can be better established geometrically by investigating their
pullback metric tensors. Another recent work (Kuzina et al.,
2022) shows the adversarial attacks on VAEs target to move
latent encoding to the region of low or zero density. More-
over, they proposed using a Markov Chain Monte Carlo
(MCMC) as a correction scheme during the inference time.
We wish to investigate the applicability of the proposed
scores to the above methods in future work.

A limitation of our current work is that we only consider
the unsupervised attack when a target sample is unknown.
Moreover, there can be different forms of attack by replacing
l2−norm with more general p−norms. We wish to study
these in future work.
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Supplementary Materials

A IMPLEMENTATION DETAILS

We use PyTorch Paszke et al. (2019) to implement our work, and all networks are trained on a single 11GB Nvidia RTX
2080 GPU. For MNIST and FashionMNIST datasets, we use the same architecture across all the experiments. The encoder
network is a four-layer multi-layered perceptron (MLP) with 256, 256, 512 and 32 hidden units. The latent space distribution
is a multivariate Gaussian with mean and standard deviation parameterised by two 32× 32 linear mappings. We use the
standard zero mean and unit covariance prior on the latent space. The decoder network is the inverse of an encoder with 32,
512, 256 and 256 hidden units. We use tanh as an activation function and batch-normalisation Ioffe and Szegedy (2015)
before all activations.

For the CelebA dataset, the encoder is a convolutional neural network (CNN) with four convolution layers with an increasing
number of filters 32, 64, 128, 256, and 512 followed by a dense layer that maps to a latent space. The latent distribution is a
multivariate Gaussian with mean and standard deviation given by 128× 128 linear mappings. The decoder is an inverse
of encoder architecture with a dense layer that maps to 1024 hidden units followed by transpose convolution layers with
decreasing number of filters 512, 256, 128, 64 and 32. All convolution layers are followed with a tanh activation function
and batch-normalisation layer. For all models, we use Adam optimiser Kingma and Ba (2015) with a learning rate of 0.003.

B EXTENDED RESULTS

We also conducted experiments for the case when latent space is locally curved that is Gz = JTgϕ(z)Jgϕ(z) where gϕ is a
decoder network with parameters ϕ. For a stochastic decoder mapping gϕ = µ(z) + ϵ⊙ σϕ(z) the metric tensor Gz can
further be expressed as Gz = JTµϕ(z)

Jµϕ(z)
+ JTσϕ(z)Jσϕ(z). We use this expression of pullback metric tensor in the latent

space to measure infinitesimal distance which results in the following expression of combined pullback metric tensor,

Ĝx = JTµθ(x)
GzJµθ(x)

+ JTσθ(x)GzJσθ(x) (11)

Figure 8-9 show the results on MNIST and FashionMNIST. Figure 10 further discusses the analysis of robustness scores.
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MNIST: (a) Original ↓ Reconstruction (b) Corrupted δ1 ↓ Reconstruction (c) Corrupted δ2 ↓ Reconstruction

Figure 8: Illustration of adversarial attack along the dominant eigenvector of a stochastic pullback metric tensor given by
Equation 11. We evaluate the reconstruction for original images and its two corrupted versions with different step sizes
δ1 = 0.5233 and δ2 = 0.7443.

FMNIST: (a) Original ↓ Reconstruction (b) Corrupted δ1 ↓ Reconstruction (c) Corrupted δ2 ↓ Reconstruction

Figure 9: Illustration of adversarial attack along the dominant eigenvector of a stochastic pullback metric tensor given by
Equation 11. We evaluate the reconstruction for original images and its two corrupted versions with different step sizes
δ1 = 0.5233 and δ2 = 0.7443.
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(a) Robustness evaluation of β−VAE on MNIST.

(b) Robustness evaluation of β−VAE on FashionMNIST.

Figure 10: Evaluation using stochastic pullback metric tensor given by Equation 11. Figure (a), on the left, we report the
histogram of spectral radius and Von Neumann entropy (on test samples) for different values of β in β-VAE. On the right,
we report the average of two scores across test samples for an increasing value of β. Increasing the value of β suppresses
the metric tensor’s maximum eigenvalue, and the eigenspectrum distribution gets more isotropic. In the second row, we
corrupt the test images along the top five eigendirections (denoted by λ1, λ2, λ3, λ4, and λ5) with an increasing step size
for different values of β. The plots describe the average MSE across test samples. We observe for a higher value of β, the
average step size increases. Increasing the value of β reduces the posterior-prior gap, minimising distortion in the latent
space. Figure (b) demonstrates similar observations on the FashionMNIST dataset.
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