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Abstract

While deep neural networks are proven to be ef-
fective learning systems, their analysis is com-
plex due to the high-dimensionality of their
weight space. Persistent topological properties
can be used as an additional descriptor, provid-
ing insights on how the network weights evolve
during training. In this paper, we focus on convo-
lutional neural networks, and define the topology
of the space, populated by convolutional filters
(i.e., kernels). We perform an extensive anal-
ysis of the topological properties of the convo-
lutional filters. Specifically, we define a metric
based on persistent homology, namely, Convolu-
tional Topology Representation, to determine an
important factor in neural networks training: the
generalizability of the model to the test set. We
further analyse how various training methods af-
fect the topology of convolutional layers.

1 Introduction

The learning process of neural models evolves around find-
ing an optimal combination of weights that, given an input
data, produces a certain output, e.g., a class. The distri-
bution of the weights may define various properties of the
model such as model generalizability (Atiya and Ji, 1997).
Extracting these properties requires analysing a complex
multi-dimensional weight space, which is not a trivial task.

One way to approximate the weight space in neural net-
works is through the means of topology and persistent ho-
mology. Recent studies have explored the potential ben-
efit of analysing topological features for network weights
(Rieck et al., 2019; Carlsson and Gabrielsson, 2020; Love
et al., 2020; Birdal et al., 2021) and network activations
(Corneanu et al., 2019, 2020; Lacombe et al., 2021). For
example, Rieck et al. (2019) define a complexity measure
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of a fully connected layer by employing its graph structure
and further use it as an early stopping criterion.

In this work, we focus on convolutional layers. To the
best of our knowledge, (Carlsson and Gabrielsson, 2020;
Love et al., 2020) are the only existing studies of the ge-
ometry of convolutional layers. Carlsson and Gabrielsson
(2020) build a complex on 100 trainings of the same model
and show the existence of recurring topological patterns in
the space of trained convolutional filters, particularly in the
first layer. Such construction is computationally cumber-
some as it requires to train the same network 100 times.
Continuing this line of work, Love et al. (2020) attempt
to improve the generalisability of CNNs by restricting the
weights of the first convolutional layers to lie on a topolog-
ical manifold. While demonstrating improvement in gen-
eralisability of the network to unseen datasets, the authors
report only 30% accuracy when generalizing from MNIST
to SVHN.
The work of Carlsson and Gabrielsson (2020) may be clos-
est in spirit to our work. However, our method of extract-
ing and summarizing topological features allows for a per-
model comparison and gives rise for a more detailed anal-
ysis of the topological space of convolutional filters.

In this work, we explore the manifolds populated by the
learnable filters, that form convolutional layers. The filters
are projected to a low-dimensional manifold in Euclidean
space, from which we construct Vietorios-Rips complexes
(Zomorodian (2010)) and extract 1D topological features
by applying persistent homology, summarized in a persis-
tence diagram. By aggregating the topological features,
we introduce a new compact metric, namely, Convolutional
Topology Representation (ConvTopRep), that summarises
the topology of a convolutional layer. ConvTopRep is cal-
culated as a 1-Wasserstein distance of the points in persis-
tence diagram to its diagonal. We further demonstrate how
it can be used to explain the generalizability of the model.

In particular, we address two challenges:

• Model Selection. In many real-world applications, the
train and test data come from different distributions
(Gulrajani and Lopez-Paz (2021)). A wide range of
methods and models have been introduced to tackle
this domain shift problem (Wang et al. (2021b)).
However, selecting the best model, which can perform
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equally well on the training and unseen test data, re-
mains a highly challenging task. We argue that our
proposed ConvTopRep is indicative of the generalis-
ability of the model and can therefore be used as a
competitive selection criteria. We further show that
ConvTopRep outperforms the current state-of-the-art
model selection methods in domain generalisation.

• Model Behaviour Analysis. Due to the complexity
and multi-dimensionality of neural networks, inter-
preting or visualising their weight space becomes a
challenging task. In this paper, we propose to use
ConvTopRep to analyse the impact of various training
methods on the network weight space. In addition,
we show that the evolution of topology of convolu-
tional layers throughout training can shed light on the
behaviour of neural networks and can help to make a
more incisive model selection.

Our contributions are three-fold: Firstly, we study the
topology of the space of convolutional filters and introduce
Convolutional Topology Representation - a novel measure -
as a meaningful and compact representation of the topology
of convolutional layers. Secondly, we show that the pro-
posed measure is indicative of model generalizability and
can be used as a competitive model selection criterion in the
context of domain generalization. Lastly, we demonstrate
that the described topological properties provide valuable
insights into the behavior of the model.

2 Related Work

Various efforts have been taken to analyse the behaviour of
neural networks through the lens of topology and persis-
tent homology. The first work in this direction employs the
graph structure of the fully connected layer by considering
neurons as vertices and the their connection as edges (Rieck
et al., 2019). The authors construct a Clique complex of
the undirected multi-partite graph, where the filtration is
induced by the values of the weight matrix. The con-
structed Clique complex reflects the structural complexity
of the layer, with large (absolute) weights indicating that
certain neurons exert a larger influence over the final ac-
tivation of a layer. Finally, a persistence diagram for 0
dimensional topological features is constructed. The re-
sulting measure, called neural persistance, is calculated as
the Euclidean distance of the points of the persistence dia-
gram to its diagonal. Neural persistance demonstrates the
advantages of dropout and batch normalization, and can be
used as an early stopping criterion.However, the authors
also acknowledge that the described edge-focused filtration
scheme is not efficient for convolutioal layers.

Lacombe et al. (2021) extend this line of work by divert-
ing attention from a weight graph to an activation graph.
Their proposed topological quantity, called topological un-
certainty, estimates the difference between the activation

of the network by the unseen test data versus the original
train data. The proposed measure gives promising results in
detecting out-of-distribution samples and selecting trained
networks for unlabeled data. However, calculating persis-
tent homology for each sample is a time-consuming pro-
cess, which makes the method computationally inefficient
and infeasible for large scale datasets.

In the proposed approach by (Corneanu et al., 2019, 2020),
a Pearson correlation matrix is computed based on the net-
work activations by the train set. Then, the resulting corre-
lation values are used as a distance matrix for Vietoris–Rips
or Clique complexes. Various topological approximators,
such as betti numbers and average persistence are used for
test error estimation and adversarial attack detection. The
main drawback of this approach is that the constructed cor-
relation matrix does not encode the structural information
of the network, and thus, is unable to capture conditional
dependencies of the neurons.

An entirely different approach to a network representation
was taken by Birdal et al. (2021), where instead of focus-
ing on the topology of each individual model or layer, the
authors analyse the weight trajectories of the network af-
ter convergence and introduce a new measure of intrinsic
dimension, that correlates with generalization error (note
that their experiments are focusing on the generalisation
error for the datasets belonging to the same domain). How-
ever, their described complex construction is computation-
ally prohobitive for large networks, as it requires building
several VR complexes with simplices, each simplex repre-
senting the entire set of network parameters.

Unlike Rieck et al. (2019) and Lacombe et al. (2021), that
primarily focus on the topology of fully connected lay-
ers, Carlsson and Gabrielsson (2020) analyse convolu-
tional layers and discusses the simple global structures that
are encoded in the weights of convolutional layers. The
authors employ a method of partial clustering of convolu-
tional weights to extract simplicial complexes, called Map-
per (Singh et al., 2007), and create a filtration based on
condensity. The described construction of the simplicial
complex with Mapper requires performing 100 trainings
of the same model, which is computationally cumbersome.
Based on the findings of Carlsson and Gabrielsson (2020),
the proposed approach by Love et al. (2020) further at-
tempts to improve the generalisability of CNNs by restrict-
ing the weights of the first convolutional layers to lie on a
topological manifold, such as Primary Circle or Klein Bot-
tle. While demonstrating improvement in generalizability
of the network to unseen datasets, the authors report only
30% accuracy when generalizing from MNIST to SVHN.
(Carlsson and Gabrielsson, 2020) may be closest in spirit to
our work. However, our method of extracting and summa-
rizing topological features allows for a per-model compar-
ison and gives rise for a more detailed analysis of the uni-
formity of the topological space of convolutional filters.



Ekaterina Khramtsova, Guido Zuccon, Xi Wang, Mahsa Baktashmotlagh

Figure 1: Persistence diagrams with 0D and 1D topological features for epoch 0 (left), 50 (middle), 150 (right).

3 Methodology

In this work, our goal is to define a measure that can give
an insight into the behaviour of a convolutional model, and
indicate its ability to generalize on unseen datasets, without
requiring access to the source and target datasets. To this
end, we restrict our analysis on the weight space of convo-
lutional layers - a primary component of CNNs.

Specifically, we start with a simple straightforward mea-
sure - a weight norm, that is commonly used as a baseline
criteria for selecting filters in network pruning, where the
filters with the small norm are considered to be uninforma-
tive and can thus be dropped (Li et al., 2017b). In Section
4.3, we experimentally show that having the largest weight
norm cannot give any insight on model generalisability in
the context of domain generalisation, making it an ineffec-
tive criteria for model selection. We further introduce an
alternative weight based measure that represents a topolog-
ical footprint of the space of convolutional weights. Fi-
nally, we show that our method outperforms weight-norm
criteria and other state of the art model selection methods.

In the next section, we provide an intuition behind using
topological descriptor for convolutional filter space, fol-
lowed by its formal definition and derivation in Section 3.2.
We include the basic definitions of homology in the supple-
mentary material.

3.1 Motivation and Interpretation

In this work, we define a measure that summarises the dis-
tribution of the weights of convolutional filters. To this
end, we employ persistent homology (PH) - a well-known
method from topological data analysis, that provides an in-
sight to the global ”shape” of the weight space. An advan-
tage of using PH is in its robustness against weight pertur-
bations. Moreover, by design, PH is calculated based on
the pairwise distance between filters; and therefore sum-
marizes a relative distribution of filters with respect to each
other. By definition, PH is order invariant and therefore,
can be used for comparing the networks trained on different
data and with different weight initialisations. The output of
PH can be given in a form of a persistence diagram, where
each point represents a topological feature.

0-D topological features (i.e., connected components),
summarise the density of the filter space. As the network
trains, the average pairwise distance between the filters
increases. In terms of topology, this translates to longer
lifetime of connected components (see Fig.1) - the orange
points representing 0D features move upwards along y axis
of the persistence diagram. However, our experiments
showed that the evolution of the connected components’
lifetime is not consistent across layers and training meth-
ods, which makes the representation unreliable.

1-D topological features (i.e., holes) In Fig. 1, each blue
point in the persistence diagram represents a hole, and the
further the point is from the diagonal in the persistence dia-
gram, the larger is the size of the hole in the original space.
As the network trains, the points in the persistence diagram
move upwards along the diagonal. It reflects the increase
of the filters variability: the distance between filters be-
comes larger, resulting in holes appearing at a larger scale.
However, no hole persists for a long time indicating that
the filters are relatively uniformly distributed. To aggre-
gate the information about all the holes, we calculate total
persistence as the sum of distances of the points to the diag-
onal, which represents the sum of the lifespans of the holes.
Our main finding is that the behaviour of the model and its
generalisability is correlated with the total lifetime of 1d
topological features.

3.2 Convolutional Topology Representation

In this section, we introduce and formally define the Con-
volutional Topology Representation (ConvTopRep). By
exploiting the topology of the feature space of convolu-
tional layers, ConvTopRep provides a compact, yet repre-
sentative summary of a filter distribution.

The calculation of ConvTopRep consists of three main
steps, summarized in Figure 2.

Step 1. Construct a metric space by projecting convolu-
tional filters to the Euclidean Manifold.

A convolutional layer can be seen as a finite set of points,
each representing a filter. Characterizing the topology of
this point set requires having a metric space. Formally, we
define it as follows:
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Figure 2: The pipeline of calculating ConvTopoRep for one channel. (1) The set of filters is projected to a Euclidean Man-
ifold, where the distance between filters is defined as Eucledean distance. (2) Vietorios-Rips (VR) complex is constructed
on the set of filters. (3) Persistent homology is applied by gradually increasing the threshold ϵ and monitoring the creation
and destruction of 1D topological features. The resulting persistence diagram is summarised as 1-Wasserstein distance of
the points to the diagonal.

In a convolutional layer, the set of learnable filters trans-
forms the input xin to the output xout. Lets assume
that the layer l has a set filters, each of which is of
the size H x W: F ∈ RH×W×Din×Dout . We define
Fc = {f0, f1, ..., fDout−1} ∈ RHW×Dout as a finite
set of flattened filters for a channel c. The distance be-
tween filters which belong to one channel can be derived
as the Euclidean distance of ∀fi, fj ∈ Fc, d(fi, fj) =√∑HW

k=1 (fik − fjk)2, where (Fc, d) represents a complete
metric space.

Step 2. Construct Vietorios-Rips complex.

Definition 1 Vietoris–Rips Complex V Rϵ(Fc, d) is an ab-
stract simplicial complex, where each filter fi represents a
point. V Rϵ(Fc, d) has k-simplex if the distance between
every pair of k+1 points is at most ϵ: d(fi, fj) < ϵ∀i, j ∈
k + 1, k < Dout.

Given the metric space, we can construct a filtration as fol-
lows: A filtration K of VR complex is populated by con-
sidering the distance ϵ as a free parameter. By gradually
increasing ϵ, we obtain the family of nested complexes.

Step 3. Calculate Persistent homology and approximate the
resulting persistence diagram into a fixed-sized metric.

We further apply persistence homology on a constructed
VR complex and obtain a persistence diagram.
Intuitively, zero-dimensional topological features, or con-
nected components, summarise the density of the space.
On the other hand, the existence of the first-dimensional
topological features indicates that the filters are unevenly
distributed in space. In this work, we only look at 1-D
topological invariants, or holes.

Persistence diagram contains a multiset of points D =
D1 ∈ R2, where each point xi = (bi, di) indicates that
a hole appeared when the distance ϵ = bi and disappeared
when ϵ = di.

Assume that persistence diagram D has j+1 points, D =
{x0, ..., xj}. Then the degree-1 total persistence is defined

as follows: Pers(D) =
∑j

i=0 di − bi.

It is equivalent to a 1-Wasserstein distance to the diagonal
of the persistence diagram.

Finally, in order to summarise the persistence of the filter
space for a convolutional layer l, we average the total per-
sistence of VR complexes for all channels. Formally,

ConvTopRepl =

∑c
i=1 Pers(Di)

Din

Remark 1 Given the layer l with F ∈ RH×W×Din×Dout

filters, the upper bound of ConvTopRepl can be derived
as

ConvTopRepl <
Dout × dmax

Din

with dmax being a largest possible Euclidean distance be-
tween filters: dmax = sup(d(fi, fj))∀fi, fj .

Proof 1 The recent study by Lim et.al. Lim et al. (2020)
defines an upper bound on a death time di for VR complex
on a metric space (F, d) to be smaller or equal than the
radius of F. Given that bi < di,∀i ⇒ di−bi ≤ radius(F ).

If a persistence diagram D has j points, the total persis-
tence is bounded by: Pers(D) < j ∗ radius(F ). Since
VR complex is build on a pairwise Euclidean distance
matrix between the filters in our setup, radius(F ) rep-
resents the largest possible distance between the filters:
dmax = sup(d(fi, fj))∀fi, fj . Finally, by construction,
the number of 1-D topological features can not exceed the
number of the elements in a distance matrix: j < Dout.
Therefore, ConvTopRepl is bounded by:

ConvTopRepl <
j ∗ radius(F )

Din
≤ Dout × dmax

Din

Finally, the ultimate measure ConvTopRep, that describes
a topological footprint of a model, is defined as the aver-
age ConvTopRepl across all its convolutional layers. A
model selection criteria is then to choose the model with
the smallest ConvTopRep.
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Digits CIFAR-10
SVHN USPS SYNTH Weather Blur Noise Digits

ERM 34.89 ± 1.75 79.05 ± 1.14 44.43 ± 1.1 75.56 ± 1.88 77.51 ± 1.67 52.15 ± 3.75 78.35 ± 1.26
ME-ADA 38.73 ± 2.43 79.13 ± 1.01 48.11 ± 1.61 80.3 ± 0.44 83.22 ± 0.36 68.57 ± 2.17 83.13 ± 0.24
RandConv 64.72 ± 1.2 85.75 ± 1.18 68.09 ± 1.67 71.1 ± 1.34 72.74 ± 1.53 58.46 ± 2.81 75.07 ± 1.63

Table 1: Average test accuracies of LeNet (left) and WideResNet (right), trained with ERM, ME-ADA and RandConv.

4 Experiments

We designed experiments to investigate the scenarios in
which ConvTopRep can be used as a competitive measure
for model selection and the effect that different training
methods have on the filter space of the network. A di-
verse range of experiments has been conducted to show a
practical use of the proposed measure for both shallow and
deep convolutional networks. We start with a description
of the experimental setup and then proceed to comparing
the models using the topology of their convolutional lay-
ers. We finally conclude with the analysis of the evolution
of topology throughout training.

4.1 Experimental setup

Datasets We consider three collection of datasets:
Digits, CIFAR-10 and ImageNet.
Digits consists of four datasets (or domains) which repre-
sent a collection of handwritten digits with different styles:
MNIST (LeCun et al., 2010), USPS (Denker et al., 1989),
SVHN (Netzer et al., 2011), and SYNTH (Ganin and Lem-
pitsky, 2015). Following single domain generalization
setup by Zhao et al. (2020), we use 10K samples from
MNIST for training, and evaluate the performance on all
other datasets.
CIFAR-10 (Krizhevsky and Hinton, 2009) contains natu-
ral images from 10 different classes, and consists of 50K
training samples and 10K test samples. We use CIFAR-10
for training, and CIFAR10-corrupted (Hendrycks and Di-
etterich, 2019) for evaluation. CIFAR10-corrupted is con-
structed by exposing CIFAR-10 to 15 types of corruption.
ImageNet classification set (Russakovsky et al., 2015) is a
large collection of more than 1M images, distributed across
1000 classes. ImageNet-Sketch (Wang et al., 2019) con-
sists of 50K sketch-like images, that match the ImageNet
in categories and scale.

Networks We consider three neural network structures:
LeNet (Lecun et al., 1989) as a relatively shallow network
for the Digits dataset, WideResNet (16-4) (Zagoruyko and
Komodakis, 2016) as a more complex network for CI-
FAR10, and a deep network AlexNet (Krizhevsky et al.,
2012) for ImageNet. We refer to the supplementary mate-
rial for a summary of the training hyperparameters.

Algorithms We selected three state-of-the-art methods
from domain generalization: ERM (Vapnik, 1998), ME-

ADA (Zhao et al., 2020), and Random Convolutions
(RandConv)(Xu et al., 2021). ME-ADA generates hard ad-
versarial samples, that maximizes the entropy of the latent
representation of the network. The entropy is calculated on
the softmax output of the model and is designed to enlarge
its predictive uncertainty. RandConv is a data augmenta-
tion technique, where the dataset is extended by applying
convolutional filters with random parameters, incorporat-
ing various textures while preserving global shapes.

The algorithms of choice are the ideal candidates for our
topological analysis, as none of them is extending or mod-
ifying the structure of the network. Therefore, they share
the same number of learnable parameters, including con-
volutional filters, and only differ by the value of their
weights. Additionally, we share an insight that some gen-
erative methods display unstable behaviour, that can be de-
tected with ConvTopRep. We refer to the supplementary
material for more discussion.

4.2 ConvTopRep gives an insight on how the choice of
objective affects the weight space of the network

MNIST, LeNet: We start by analysing the filter space
of a small model, LeNet, trained on the MNIST dataset
accross the different domain generalisation methods se-
lected (ERM, ME-ADA, RandConv). For each training,
the model from the last epoch is selected. The values of
ConvTopRep are calculated for each convolutional layer,
shown in Fig.3, left.

We first observe that the variance of ConvTopRep for the
first layer of LeNet is significantly larger than for the sec-
ond layer regardless of the domain generalisation method
examined (e.g. 0.13 against 0.012 for ERM ). This indi-
cates that, regardless of the method, the weight space of
the first convolutional layer of a relatively small network
like LeNet is sensitive towards parameter initialisation.

Next, we measure the correlation between the test accu-
racies and the values of ConvTopRep. The test accura-
cies for each method are shown in Table.1. The resulting
plots from Fig.3 reveal that on MNIST dataset, the training
using RandConv leads to the most uniformly distributed
filter space of both first and second convolutional layers,
reflected in the smallest values of ConvTopRep, and the
highest accuracies on all three test datasets. Similarly, the
highest values of ConvTopRep, corresponding to the ERM
method, match the lowest test accuracies.
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Figure 3: Distribution of ConvTopRep for LeNet convolutional layers (left) and WideResNet blocks (right). Dashed lines
represent the average ConvTopRep across all convolutional layers.

Figure 4: Correlation between the accuracy of ImageNet-
Sketch and the ConvTopRep for AlexNet. Lower values of
ConvTopRep correspond to the higher test accuracies.

CIFAR10, WideResNet We proceed with the model se-
lection analysis of a more complex model, WideResNet,
trained on CIFAR-10. ConvTopRep for the first and the
last basic blocks of WideResNet are showed in Fig.3, right,
and the associated test accuracies on CIFAR10-corrupted
are summarised in Table.1. Similarly to LeNet, the Con-
vTopRep of the last layer of WideResNet is correlated with
average accuracies of all methods. The best performing
model, ME-ADA, has the smallest value of ConvTopRep,
and RandConv, representing the worst average accuracy
among all methods, has the largest ConvTopRep.

Additionally, the topology of convolutional layers gives an
insight into the nature of the methods. For example, the
ConvTopRep values of RandConv of the first basic block
are smaller than ERM and even smaller than ME-ADA
for some trainings. It shows that RandConv enhances the
topology of the first basic block. Indeed, the strength of
RandConv is in making the model robust against style per-
turbations, which primarily affects the earlier layers in the
network. It is also reflected in the test performance: while

being on average less accurate than other methods, Rand-
Conv outperforms ERM on the ”noise” corruption.

ImageNet, AlexNet We conclude our set of model selec-
tion experiments with AlexNet trained on ImageNet. We
train one ERM model, one ME-ADA model, and three dif-
ferent configurations of RandConv models. In order to in-
crease the number of models to select from, we addition-
ally add early checkpoints for each training, namely, after
epoch 30, epoch 60, and the last epoch 90. The resulting
collection contains 15 different models. For more details
about the training hyperparameters, please refer to the sup-
plementary material.

According to the values of ConvTopRep, visualised in Fig-
ure 4, RandConv outperforms both ME-ADA and ERM,
which is confirmed by the values of the test accuracy of
ImageNet-Sketch. However, it can be seen that the value of
ConvTopRep, corresponding to the average ConvTopRepl
across convolutional layers are not very accurate when se-
lecting models within one training method (e.g.,, Rand-
Conv models). As discussed in the previous sections,
RandConv mostly affects the first layers of the network by
making them more robust against style perturbations.

Correlation Analysis We evaluated the relationship be-
tween the model accuracy and the average ConvTopRep
value by computing Pearson correlation coefficients, which
can range from -1 to 1, with values indicating the direction
and strength of the relationship. A coefficient of 0 indicates
no correlation, while 1 and -1 indicate perfect positive and
negative correlation, respectively.

For each experimental setup, we calculated the average ac-
curacy across target datasets and computed its correlation
with ConvTopRep. Our findings show strong negative cor-
relations between the accuracy of the models studied and
ConvTopRep value, with Pearson Correlation coefficients
of -0.8767 for Digits, -0.841 for CIFAR10, and -0.934 for
ImageNet.
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Digits
SVHN USPS SYNTH Avg

Source Risk 35.69 ± 1.45 79.80 ± 1.00 45.45 ± 0.65 53.65 ± 1.03
Entropy 46.46 ± 11.6 76.17 ± 7.95 54.77 ± 9.20 59.13 ± 9.59
Source SND 38.47 ± 1.02 70.72 ± 2.36 48.86 ± 1.55 52.68 ± 1.64
Target SND 33.07 ± 0.96 79.94 ± 8.51 67.47 ± 1.40 60.16 ± 3.62
Weight Norm 63.29 ± 2.41 86.48 ± 0.55 67.47 ± 1.39 72.41 ± 1.45
NP 63.21 ± 0.99 87.00 ± 0.99 68.32 ± 0.99 72.84 ± 1.73
ConvTopRep 65.47 ± 0.11 86.38 ± 1.72 69.50 ± 0.63 73.78 ± 0.82

Table 2: Model Selection Comparison for LeNet, trained on MNIST dataset. The values represent the average accuracy
and the std of top-3 best models, selected from 30 candidates. Proposed ConvTopRep outperforms other baselines.

CIFAR-10
Weather Blur Noise Digits Avg

Source Risk 67.73 ± 0.94 78.90 ± 0.70 53.29 ± 2.16 72.32 ± 0.83 68.06 ± 1.16
Entropy 67.63 ± 1.26 78.86 ± 0.78 50.12 ± 1.29 71.97 ± 1.06 67.15 ± 1.09
Source SND 67.46 ± 1.23 78.81 ± 0.35 53.07 ± 2.32 72.02 ± 0.69 67.84 ± 1.15
Target SND 56.79 ± 3.11 73.01 ± 1.49 26.87 ± 0.93 60.71 ± 1.74 54.34 ± 1.82
Weight Norm 63.15 ± 1.78 71.92 ± 1.68 30.06 ± 4.98 64.88 ± 1.85 57.50 ± 2.57
NP 59.07 ± 2.97 68.52 ± 1.73 42.89 ± 1.30 62.25 ± 3.02 58.43 ± 2.26

ConvTopRep 68.55 ± 0.91 78.91 ± 0.72 53.31 ± 2.34 72.35 ± 0.67 68.28 ± 1.16

Table 3: Model Selection Comparison for WideResNet, trained on CIFAR-10. The values represent the average accuracy
and the std of top-3 best-selected models, selected from 30 candidates. Proposed ConvTopRep outperforms other baselines.

4.3 The network with the smallest ConvTopRep value
generalises better on unseen target domains

One of the challenging tasks in domain generalization is
to estimate the performance of the model without having
access to the test data. In this section, we demonstrate how
ConvTopRep can be used to assess the generalisability of
the model and help to select an optimal method for model
selection. In particular, we propose the following model
selection procedure:
We first calculate ConvTopRepl for all the convolutional
layers l of the network. We further average the values of
ConvTopRepl accross the layers to obtain ConvTopRep
- a measure, that summarises the average total persistence
of the filter space of the network. The model selection
criteria is thus to select the network with the smallest value
of ConvTopRep.
Model Selection Baselines We compare the performance
of our method with a variety of domain adaptive model
selection approaches, including Weight Norm (Li et al.,
2017b), Source Risk and Source Class-Entropy (Ganin and
Lempitsky, 2015) and a current state-of-the-art unsuper-
vised criterion called Soft Neighborhood Density (SND)
(Saito et al., 2021). Source Risk, commonly used as an
early stopping criterion in general ML applications, and
Source Entropy, that can be viewed as a confidence mea-
sure for the model predictions (Wang et al., 2021a), are
sensitive to the source data distribution and are thus inef-
fective when a large domain gap is present. In contrast,

SND employs a target feature space by hypothesising that a
good source classifier would embed the target samples into
dense neighborhoods. Unlike SND, our method does not
require the access to the data in target domains and there-
fore can also be used in domain generalisation setup. For
the completeness of the experimental setup, we calculate
SND on both source validation data and target data.
Finally, we include in the analysis a topology-based model
selection method, namely Neural Persistence (NP) (Rieck
et al., 2019), that defines a measure based on the topology
of the fully connected layers. We show that, while efficient
in fully connected networks, NP is less representative of
the behaviour of large convolutional networks.

Experiments We build a pool of 30 trained models (10
for each algorithm - ERM, ME-ADA and RandConv). We
further choose the top 3 best models according to vari-
ous model selection strategies and report their average tar-
get accuracies. The results for LeNet, trained on MNIST,
are summarised in Table 2; for WideResNet, trained on
CIFAR-10 - in Table 3, and for AlexNet, trained on Im-
ageNet - in Table 4. The results reveal the superiority of
ConvTopRep over the other methods across all the datasets
and network structures. Note that the other topology-based
method NP performs well on MNIST dataset, but fails
on WideResNet, as it has only one fully connected layer,
which proves to be insufficient to represent the generalis-
ability of the whole deep network. Similarly, SourceSND
works well on WideResNet and AlexNet, but results in an
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ImageNet
SourceRisk Entropy SourceSND TargetSND NP WeightNorm ConvTopRep
11.52 ± 0.6 11.52 ± 0.6 14.39 ±0.68 8.46 ±0.61 14.23 ±0.5 9.03 ±1.26 14.56 ±0.08

Table 4: Model Selection Comparison for AlexNet, trained on ImageNet. The values represent the average accuracy and the
standard deviation of top-3 best models, selected from 15 candidates. Proposed ConvTopRep outperforms other baselines.

inefficient model selection for LeNet. Unlike other meth-
ods, that succeed in some setups, while failing in others,
our approach provides competitive results across all the in-
vestigated datasets and networks.

4.4 The evolution of ConvTopRep value sheds light
on the model’s behaviour throughout training

In order to get an insight into the importance of each con-
volutional layer to make an informed and incisive model
selection, it is important to understand the correlation be-
tween the topology of different layers and its evolution
throughout training. In this section, we investigate how the
topology of convolutional layers evolve during the training
and how it is affected by different methods. As an exam-
ple, we take 3 trainings of WideResNet and analyse the
evolution of topology separately for each method (ERM,
RandConv and ME-ADA). In summary, we show that the
method that improves the ConvTopRep of the earlier blocks
may incite a degradation of the topology of the later blocks,
and vice versa (see Fig.5).

ERM: We start our analysis with ERM. As the model
trains, ConvTopRep of most blocks continuously de-
creases, with the exception of the first convolution layer
of the last Network block (see dashed blue line in Fig.5c,
where ConvTopRep only decreases for the first 26 epochs).
The inconsistency in the evolution of ConvTopRep re-
flects the instability of the test accuracies, with one corrup-
tion type (noise) achieving the best accuracies in the early
epochs, while others continue to increase until later epochs.

ME-ADA: The analysis of ME-ADA reveals more fasci-
nating patterns. As expected, during the first 8 epochs, ME-
ADA exhibits the same behaviour as ERM on all blocks.
After epoch 8, the first round of adversarial data generation
is performed, which produces significant drops of ConvTo-
pRep, particularly for the last convolution layer (see the
solid red line in Fig.5c). It is consistent with our knowl-
edge of ME-ADA, as it produces adversarial samples based
on the output of the last fully connected layer, which is
best reflected in the last layers of the network. The second
round of adversarial data generation happens after epoch
18. While the ConvTopRep of the last basic block keeps
decreasing, the earlier basic blocks become negatively af-
fected by the insertion of adversarial samples, with the val-
ues of ConvTopRep decreasing considerably slower than
earlier epochs and even increasing for the first layer of the
last block (dashed red line in Fig.5b). The ConvTopRep
measure stabilizes towards the end of the training, with the

(a) Network Block 1

(b) Network Block 2

(c) Network Block 3

Figure 5: Evolution of ConvTopRep during training for dif-
ferent WideResNet blocks. Dashed lines represent the 1-st
basic block, solid lines represent the 2-d basic block. The
vertical grey lines indicate the min-max step of ME-ADA.

lowest values for all the blocks obtained in the last couple
of epochs. It is correlated with the model performance on
the test dataset, that achieves the highest accuracies on all
corruption types in the last epochs of the training.
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RandConv: Finally, we conclude our study with the analy-
sis of the topology of WideResNet, trained with RandConv.
In contrast to ME-ADA, RandConv aims to finetune the
first layers by introducing texture and color variance to the
training samples. It is reflected in a continuous decrease of
ConvTopRep for the first two Network blocks. However,
once the ConvTopRep of the first basic block of RandConv
starts outperforming ERM in epoch 15 (see the blue and
red solid lines in Fig.5a), the ConvTopRep of the last block
starts converging to a higher value than ERM (see the blue
and red solid lines in Fig.5c).

5 Conclusion
In this work, we studied the space of convolutional filters
through the lens of persistent homology. We introduced a
measure, called ConvTopRep, that summarises 1-D topo-
logical features of a convolutional layer, and showed how
it can be used to understand the effect of various objectives
on the weight space, to perform an informed model selec-
tion and to analyse the model’s behaviour.
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Supplementary Material of:
Convolutional Persistence as a Remedy to Neural Model Selection

This Supplementary Material is organised as follows: We introduce some basic definitions from Persistent Homology
in Section A, followed by a detailed description of our experimental setup in Section B. We further perform additional
experiments on model selection in Section C, where we show that the value of ConvTopRep of individual layers can also
be used for selecting the best model. Additionally, we perform similar experiments on another dataset PACS, described in
Sec.C.3. Finally, we proceed with the behaviour analysis in Section D. Specifically, we show that ConvTopRep reflects
model instability during training and can even be used as an early stopping criteria in some setups.

A Definitions

Simplicial Complex: A Simplicial complex is a combination of simplices, where the intersection between two simplices
is also a simplex.
In other words, given a set S and a set C, C is a simplicial complex of S if a ∈ C, b ⊂ a =⇒ b ∈ C

Vietoris-Rips(VR) Complex: Given a finite metric space (X, d), VR complex of X at a threshold r > 0 is a Simplicial
Complex containing all the set of simplices with the diameter smaller than r:
V RX(r) := {ν ⊂ X : diam(ν) < r}, where diam(ν) = max{d(xi, xj) |xi, xj ∈ ν}

Filtration: A sequence of simplicial complexes, such that ∅ = C0 ⊂ ... ⊂ Cn = C is called a filtration of C. For VR
complex, a filtration is created by gradually increasing the diameter r.

Persistent Homology: Persistent homology is a method that keeps track of topological structures that persist throughout
a filtration. The resulting homology of the filtration is summarised in a persistence diagram D, where each point (bki , d

k
i )

indicates that a k-th dimensional topological feature appeared when the threshold α = 1 − bki and disappeared when
α = 1− dki . The points from persistence diagrams represent a multi-set.

B Implementation details

In this section, we provide the details of our experimental setup.

LeNet consists of two convolutional layers, followed by three fully connected layers. Both convolutional layers have kernel
size = [5 x 5]. ReLU activation function is applied on every layer apart from the last layer, and 2D maxpooling is applied
after the convolutional layers. Networks are trained using Adam optimizer with learning rate equal to 0.0001 and batch
size equal to 32. ERM models are trained for 30 epochs, ME-ADA models are trained for 60 epochs, RandConv models -
for 200 epochs.

WideResNet (16-4) consists of a convolutional layer and 3 Network blocks, followed by a batch normalization layer and a
fully connected layer. Each Network block has two basic blocks with two convolutional layers each. The kernel size for
all convolutional layers is of size [3 x 3]. WideResNet is optimized by SGD using Nesterov momentum with a learning
rate of 0.1, weight decay of 0.0001, and the learning rate decay following a cosine annealing schedule. All the networks
are trained for 100 epochs with batch size equal to 128.

AlexNet is trained for 90 epochs using SGD optimizer with momentum of 0.9, weight decay of 0.0001 and batch size equal
to 256. We initialize the learning rate to be 0.01 and decrease it according to the Step LR scheduler with gamma of 0.1 and
step size of 30 epochs. For each training, we normalise the data and perform random resized crop and random horizontal
flip.
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Digits
SVHN USPS SYNTH Avg

Source Risk 0.053 0.180 -0.196 0.012
Entropy 0.365 0.223 0.529 0.372
Source SND 0.376 0.228 0.476 0.360
Target SND 0.148 -0.005 0.333 0.159
Weight Norm 0.317 0.122 0.556 0.332
NP 0.376 0.117 0.540 0.339
ConvTopRep 0.513 0.377 0.444 0.445

Table 1: Kendall’s τ coefficient values for LeNet, trained on MNIST

Due to the computational complexity of the training, we only train the networks under the following setups:

• Trained from scratch with ERM (only basic augmentations)

• Trained from scratch with RandConv:
RCimg1−7, p = 0.5, λ = 10

• Pretrained on ImageNet

• Pretrained on ImageNet, finetuned with RandConv:
RCimg1−7, p = 0.5, λ = 10

• Pretrained on ImageNet, finetuned with RandConv:
RCimg1−7, p = 0.8, λ = 10

• Pretrained on ImageNet,
finetuned with MeAda:
lr max = 50, loops adv = 50, β = 1, γ = 10

Note that for ImageNet, we only train one model with MeAda due to both memory and time inefficiency of this method
(it requires to store a copy of modified version of the whole dataset, alongside with the original samples). Finally, we
additionally add early checkpoints for each training, namely, after epoch 30, epoch 60, and the last epoch 90. Overall, we
obtain 15 different models in our selection pool.

We use giotto-ph library (Pérez et al., 2021) for cpu-paralleled calculation of Vietoris–Rips persistence and gudhi library
(Maria et al., 2014) for the other topology-related calculations. In practice, the computation of ConvTopRep for all the
convolutional layers of the network takes around 0.4 sec for LeNet, 19.2 sec for WideResNet and 22.7 sec for AlexNet
(used 10 Intel(R) Core(TM) i7-9850H CPU @ 2.60GHz).

C Model Selection

C.1 Alternative evaluation via Kendall Rank Correlation

In the main paper, we evaluate the quality of model selection methods by the performance of the top-3 chosen models. For
a further quantitative evaluation, we propose to extrapolate model selection methods to perform a ranking task. We further
calculate Kendall rank correlation coefficient, or τ coefficient (Kendall and Gibbons, 1955), between the ground-truth
ranking, which is the ranking of the models based on their target accuracies, and the ranking, produced by various model
selection methods.

Kendall’s τ coefficient evaluates the degree of similarity between two sets of ranks, with the values ranging from -1 to
1, with 1 being positive correlation, and -1 being negative correlation. In our case, positive correlation indicates that
the models are ranked in a decreasing order of their target accuracies, negative correlation represents the ranking in an
increasing order of the accuracies, while τ = 0 represents random ranking. Therefore, large values of τ correspond to a
better quality of a ranking method.

The results are summarised in Table 1 for LeNet, trained on digits; in Table 2 for WideResNet, trained on CIFAR10, and
in Table 3 for AlexNet, trained on ImageNet. The results for both LeNet and AlexNet show the superiority of ConvTo-
pRep over the other ranking methods, with τ = 0.638 for ConvTopRep-based AlexNet ranker outperforming its closest
counterpart WeightNorm by a large margin.
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CIFAR-10
Weather Blur Noise Digits Avg

Entropy 0.166 0.355 0.471 0.208 0.290
Source SND 0.395 0.671 0.265 0.399 0.443
Target SND -0.121 0.426 -0.834 0.029 -0.067
Weight Norm -0.158 -0.290 -0.659 -0.253 -0.325
NP -0.325 -0.585 -0.177 -0.384 -0.384
ConvTopRep 0.138 0.219 0.633 0.226 0.288

Table 2: Kendall’s τ coefficient for WideResNet, trained on CIFAR10

ImageNet
SourceRisk Entropy SourceSND TargetSND WeightNorm NP ConvTopRep

-0.257 -0.238 0.238 -0.619 0.276 0.029 0.638

Table 3: Kendall’s τ coefficient for AlexNet, trained on ImageNet

SVHN USPS SYNTH Avg
ConvTopRep, 1-st Layer 65.75 ± 0.49 85.8 ± 1.03 69.13 ± 0.4 73.56 ± 0.28

ConvTopRep, 2-d Layer 64.57 ± 1.22 86.41 ± 0.34 68.24 ± 0.99 73.08 ± 0.37

ConvTopRep average 65.47 ± 0.11 86.38 ± 1.72 69.49 ± 0.63 73.78 ± 0.67

Oracle 65.86 ± 0.41 87.44 ± 0.81 69.64 ± 0.45 74.32 ± 0.56

Table 4: Model Selection Comparison for LeNet, Trained on MNIST

Unlike LeNet and AlexNet, ConvTopRep-based WideResNet ranker is outperformed by activation-based rankers, such
as Source SND and Entropy. According to a Kendall’s τ coefficient, only the noise corruption is ranked better based
on ConvTopRep. In particular, ConvTopRep ranker successfully identifies that Me-Ada outperforms both RandConv and
ERM, however it has difficulty distinguishing the models within RandConv and ERM categories.

C.2 Model Selection: Ablation study

In this section, we provide additional analysis of the model selection experiments. We start by examining if each individual
layer or block can be used separately as a measure for model generalisability. To this end, we calculate ConvTopRep
separately for each convolutional layer/block, and use its smallest value to select top-3 best models. The resulting averaged
accuracies are summarised in Table 4 for LeNet, trained on MNIST, Table 5 for WideResNet, trained on CIFAR10 and Table
7 for AlexNet, trained on ImageNet. For comparison, we provide the average performance of the original ConvTopRep
by choosing the model with the smallest ConvTopRep, averaged across all convolutional layers. Finally, we compare
ConvTopRep with the so-called Oracle by selecting the best models.

The results confirm that the ConvTopRep is a competitive model selection method: ConvTopRep average has only 0.5%
drop in comparison with Oracle for LeNet and only 1.3% drop for WideResNet. In addition, for a small network, both
first and second layers can be used separately for model selection without a significant performance loss (less than 0.7%
on average across target domains). This finding is particularly useful for scenarios with limited computational capacities.
Similarly, the ConvTopRep of individual blocks for a larger ResNet model can be used for model selection: aside from the
first, less informative block, the other blocks contain topological information, representative of the model generalisability.
In fact, selecting ConvTopRep computed from one block instead of the average ConvTopRep can lead to better model
selection for some domains (e.g., see Weather domain in Table 3). However, selecting an appropriate layer or block
requires some prior knowledge about target domain, that is often unavailable in general domain generalisation setup.

In all the previous experiments, we were choosing the last epoch to select the representative model of the training. In
order to be consistent with the experimental setup of (Xu et al., 2021) and (Zhao et al., 2020), we perform an additional
experiment, where we select the best model to represent a training. The results, summarised in the Table 6, show that both
Oracle and ConvTopRep best are noticeably larger than Oracle and ConvTopRep last, which might be an indication of the
models’ instability. However, our method remains effective, with less than 1.5% drop from Oracle in both ”best” and ”last”
representation strategies.
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Weather Blur Noise Digits Avg
ConvTopRep, 1-st ResNet Block 58.01 ± 3.37 67.49 ± 1.31 40.21 ± 1.91 62.38 ± 3.67 57.03± 2.56

ConvTopRep, 2-d ResNet Block 67.60 ± 1.03 78.75 ± 0.53 55.29 ± 5.05 71.95 ± 0.91 68.40 ± 1.88

ConvTopRep, 3-d ResNet Block 68.51 ± 1.08 78.95 ± 0.85 51.05 ± 2.01 72.16 ± 0.87 67.68 ± 1.20

ConvTopRep average 68.55 ± 0.91 78.91 ± 0.72 53.31 ± 2.34 72.35 ± 0.67 68.28 ± 1.16

Oracle 68.82 ± 0.12 79.21 ± 0.15 57.76 ± 1.82 72.73 ± 0.15 69.63 ± 0.56

Table 5: Model Selection Comparison for WideResNet, trained on CIFAR-10

ConvTopRep last Oracle Last ConvTopRep best Oracle best
Digits 73.78 75.32 74.48 75.7
CIFAR 68.28 69.63 79.67 80.53

Table 6: Model Selection Comparison for different train representation strategies

ConvTopRep, 1-st layer 15.63 ± 0.38

ConvTopRep, 2-st layer 14.19 ± 0.47

ConvTopRep, 3-d layer 14.59 ± 0.04

ConvTopRep, 4-d layer 14.19 ± 0.47

ConvTopRep average 14.56 ± 0.08

Oracle 15.63 ± 0.38

Table 7: Model Selection Comparison for AlexNet, trained on ImageNet dataset.

Lastly, a similar set of experiments was conducted for AlexNet, trained on ImageNet dataset. The results, summarized in
Table 7, show that even by using the topology of the middle layers as a selection criterion, the average accuracy of the
selected models does not fall lower than 14%. In addition, due to the prevalence of RandConv over the other training
methods, choosing the models based on the first layer of AlexNet leads to selecting the actual top 3 models within the
selection pool (it matches the oracle accuracy, see Table. 7). Finally, in case where no prior knowledge of the training is
available, choosing the average across convolutional layers value of ConvTopRep remains a reliable indicator of a model
performance and leads to a competitive model selection.

C.3 Model Selection on PACS

We perform model selection experiments on PACS dataset (Li et al., 2017a), trained on AlexNet. PACS dataset containing
224 × 224 images from 4 domains -Art Paining, Cartoon, Photo and Sketch - distributed across 7 categories. We follow
(Li et al., 2017a) for the recommended train, validation, and test splits. AlexNet is optimized by SGD using Nesterov
momentum with a learning rate of 0.001, weight decay of 0.0001, and the learning rate decay following a cosine annealing
schedule. All the networks are fine-tuned for 100 epochs with batch size equal to 32. We use mixing variant of RandConv.
For ME-ADA experiments, the parameters are: β = 10,K = 1, η = 20.

Differently from LeNet and WiseResNet models in our previous experiments, AlexNet is not trained from scratch, but
fine-tuned from a pre-trained on ImageNet model. The fine-tuning of ERM, ME-ADA, and RandConv on PACS dataset
shows unstable behaviour, which is reflected in the model selection performance of various baselines, shown in Table 8.
We observe that a certain model selection method achieves splendid results on some domains, while drastically failing on
the others. For example, Source Risk for Art domain is only 0.1% worse than Oracle, while having more than 10% drop on
Sketch domain. We observe a similar pattern in our ConvTopRep measure: the model chosen based on the topology of the
last layers performs well on Cartoon, Art, and Photo domains, while the model chosen based on the smallest ConvTopRep
of the first layers outperforms other approaches on Sketch domain.

D Behaviour Analysis: Model Stability

Another problem we would like to address is the stability of the methods. Given that the test and train data come from
different distributions, standard evaluation metrics such as validation loss and validation accuracy might not be representa-
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Cartoon Art Photo Sketch Avg
Source Risk 65.87 64.01 86.95 60.27 69.27

Entropy 65.97 61.04 79.58 59.74 66.58
Source SND 65.42 63.18 82.63 59.42 67.66

NP 65.12 61.85 79.6 71.38 69.49
ConvTopRepbest 66.06 64.01 86.95 71.24 69.36

Oracle 67.38 64.02 87.46 71.56 72.61

Table 8: Model Selection Comparison for PACS dataset

(a) Evolution of ConvTopRep. (b) Evolution of the validation loss.

Figure 1: ConvTopRep and validation loss for LeNet trained with ERM, plotted for 4 independent trainings.

tive of the model behaviour on the test set. In this section, we discuss the insight that the topology of convolutional layers
provides on the model behaviour, and in particular, on model stability. We chose our first experimental setup, namely
LeNet model trained on MNIST dataset, for the described analysis.

ERM: We start our experiments by analyzing the topology of the filter space of the last convolutional layer.

In the beginning of the training, the filters are randomly initialized, which leads to the sparsity of the feature space. As the
model trains, the filter space becomes uniformly distributed, which is reflected in the continuous decrease of ConvTopRep
(see Fig.1a).

Moreover, we observe that the evolution of the convolutional feature space might be used as an insight into the behaviour
of the model during training. More precisely, the lack of change in ConvTopRep indicates that the model has converged to
some local optima. As a consequence, it is correlated with the validation loss (see Fig.1b). Therefore, it can be used as an
alternative criteria for the early stopping in scenarios where the validation data is not available (e.g. small-scale datasets).

To further validate this, 10 independent trainings were conducted. For each training, we perform an early stopping based
on the smallest validation loss and an early stopping based on the smallest ConvTopRep. We compare the performance of
these methods on SVHN, USPS, and SYNTH datasets and report a mean and standard deviation of the accuracies over 10
trainings. The result, summarised in Table 9, demonstrate that using ConvTopRep as an early stopping criteria improves
the performance on all three datasets.

ME-ADA: In the next set of experiments we analyze how ME-ADA affects the topology of the parameter space in a
shallow network (e.g., LeNet).

During the first 300 iterations, the algorithm generates samples that resemble the worst-case data shifts and corruptions
according to the output of the last fully connected layer. These samples are meant to reduce the gap between the source
domain and the unseen target domain. In reality, the introduction of these diverse out-of-distribution samples leads to the
model instability, reflected in large inter-training and inter-step accuracy variance on all three test datasets.

With the lack of test data, the instability of the model can be foreseen through the topology of the second convolutional
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ERM
USPS SVHN SYNTH

Validation Loss 78.5±1.1 34.3±1.9 44.1±1.1
ConvTopRep 80.2±1.0 35.9±2.1 45.2±1.5

ME-ADA
USPS SVHN SYNTH

Validation Loss 79.6±0.8 39.3±2.8 48.8±1.7
ConvTopRep 77.6±1.5 38.2±1.9 47.5±1.4

RandConv
USPS SVHN SYNTH

Validation Loss 84.3±0.8 61.7±1.1 63.3±1.1
ConvTopRep 85.7±1.1 64.5±1.7 67.9±1.7

Table 9: Early stopping comparison for LeNet. The values represent the mean and the std of the test accuracy over 10
trainings.

Figure 2: Left: Evolution of ConvTopRep during training of LeNet with ME-ADA. Right: Zoomed ConvTopRep (top left)
and the accuracy of SYNTH (top right), USPS (bottom left) and SVHN (bottom right) for corresponding epochs.

layer, summarised by ConvTopRep. It exhibits the following pattern: during the first 9 epochs, the value of ConvTopRep
decreases for all 10 trainings. However, after 9 epochs, the evolution of the topology is inconsistent within trainings as we
observe significant fluctuations of ConvTopRep.

We observe a correlation between ConvTopRep and test accuracies. That is, the decrease in ConvTopRep does not always
lead to the accuracy improvement on all the datasets, but rather indicates the change in test accuracy. For example, in
Fig. 2, we showcase that the change in ConvTopRep leads to an increase in accuracy on SYNTH and SVHN datasets, but
a decrease in the accuracy on USPS. As a consequence, using the smallest value of ConvTopRep as a criteria for early
stopping in such an unstable scenario proves to be ineffective. In fact, it is outperformed by the validation loss-based early
stopping on all three test datasets.

Random Convolution: We use mixing variant of Random Convolutions, where the original image is blended in with
the output of Random convolutions to retain augmented images from being too far from the source distribution, and to
continuously interpolate between the source domain and randomly sampled domain. Described interpolation results in
more stable behaviour of the model.

It is worth noting that RandConv is a model-independent strategy. Unlike ME-ADA, that uses the last fully connected layer
as a basis for adversarial sampling, the main focus of RandConv is to fine-tune convolutional layers to make them more
robust against style perturbations. It is reflected in the evolution of the topology space of the second convolutional layer,
shown in Fig. 3.

In particular, for the first 50 epochs the variance of the ConvTopRep between trainings is very small, which means that the
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Figure 3: ConvTopRep and Validation loss for LeNet trained with RandConv. The solid line represents the mean, the grey
area represents the variance over 10 trainings.

evolution of convolutional layers is consistent and stable. Furthermore, the value of ConvTopRep continuously decreases,
indicating that the filter space becomes more structured, with filters becoming more connected. ConvTopRep eventually
converges to a certain value after epoch 150.

Note that one of the main concerns of generative methods such as RandConv is their instability during training. This is due
to the diversity of generated samples, which makes the network continuously changing. This behaviour is reflected in the
values of ConvTopRep, which makes it a reliable measure of convergence for training.

Finally, for RandConv, validation loss indicates to stop earlier than ConvTopRep, when the model is yet under-trained, as
shown in see Fig.3. As a result, it can be seen that for RandConv our proposed ConvTopRep significantly outperforms
the early stopping using validation loss. The early-stopping comparison results, summarised in Table 9, show that us-
ing ConvTopRep leads to an average of 1.4% accuracy improvement on USPS, 3% improvement on SVHN, and 4.6%
improvement on SYNTH.


