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Abstract

We tackle the cross-modal retrieval problem,
where learning is only supervised by relevant
multi-modal pairs in the data. Although the con-
trastive learning is the most popular approach for
this task, it makes potentially wrong assumption
that the instances in different pairs are automati-
cally irrelevant. To address the issue, we propose
a novel loss function that is based on self-labeling
of the unknown semantic classes. Specifically, we
aim to predict class labels of the data instances in
each modality, and assign those labels to the cor-
responding instances in the other modality (i.e.,
swapping the pseudo labels). With these swapped
labels, we learn the data embedding for each
modality using the supervised cross-entropy loss.
This way, cross-modal instances from different
pairs that are semantically related can be aligned
to each other by the class predictor. We tested
our approach on several real-world cross-modal
retrieval problems, including text-based video re-
trieval, sketch-based image retrieval, and image-
text retrieval. For all these tasks our method
achieves significant performance improvement
over the contrastive learning.

1 Introduction

Cross-modal retrieval, the task of retrieving the most rel-
evant items in the database of one modality (e.g., images)
for a given query from another modality (e.g., texts), has
received unprecedented attention in computer vision and
related areas (Chen et al., 2015; Faghri et al., 2018; Lee
et al., 2018; Li et al., 2019; Zhang et al., 2020; Chun et al.,
2021; Miech et al., 2021, 2019, 2020; Wang et al., 2021;
Dey et al., 2019; Sain et al., 2021). The crux of the problem
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is to learn the underlying relevance or similarity metric be-
tween data instances that live in heterogeneous modalities
with highly different distributions. Although there are sev-
eral different learning problem formulations in the literature,
in this paper we mainly focus on the paired training data
setup, in which training is only supervised by relevant pairs
in the training data, and there are no semantic class labels
annotated. That is, the training data consist of only pairs
of relevant multi-modal data instances, e.g., (image, text),
which may require minimal human annotation effort (e.g.,
web scraping of images and nearby texts).

The contrastive (or triplet loss) learning (Chopra et al., 2005;
Hadsell et al., 2006) is recognised as the most popular and
successful approach, which aims to learn the cross-modal
similarity measure by the intuitive criteria that pull together
relevant pairs and push away irrelevant ones. However, it
makes potentially wrong assumption that instances in dif-
ferent pairs are automatically irrelevant. The pairs in the
training data are usually collected by considering relevant
pairs only (e.g., nearby images and texts in a web page),
and the relevance of instances in different pairs is usually
not checked However, this is implicitly assumed in the con-
trastive loss. The issue was also raised in recent work (Kim
et al., 2019; Zhou et al., 2020; Patrick et al., 2020; Wray
et al., 2021; Chen et al., 2021). In this paper we propose a
novel learning algorithm that addresses the issue via self-
labeled clustering approach.

Motivated from the recent clustering-based representation
learning in the self-supervised learning literature (Asano
et al., 2020; Caron et al., 2020), we propose a novel loss
function for cross-modal retrieval that is based on self-
labeling of the unknown classes. Specifically, we intro-
duce (latent) semantic class labels to be assigned to data
instances, where class labels supposedly decide the rele-
vance of cross-modal data instances (i.e., the same class
label means relevant items, and vice versa). We predict
class labels of the data instances in each modality, and as-
sign the predicted labels to the corresponding instances in
the other modality (i.e., swapping the pseudo labels). With
these swapped pseudo labels, we learn the data embedding
for each modality using the supervised cross-entropy loss.
This way, cross-modal instances from different pairs that
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are semantically related can be aligned to each other by
the class predictor. The whole process of label prediction
and supervised learning with swapped classes is alternated
to learn the optimal feature extraction networks. We call
this approach Swapped Assignment of Multi-modal Pairs
(SwAMP).

The main benefits of the SwAMP are in two folds: i) Un-
like the contrastive loss, SwAMP does not make potentially
wrong assumption that instances from different pairs are
automatically irrelevant. The optimized class assignment
finds similar instances from other pairs, and the feature ex-
tractor is trained in such a way that the same-class instances,
even in different pairs, are well aligned. This feature of
aligning instances in different pairs is hardly exploited in
the contrastive loss. ii) Since the learning does not fully
resort to pair-based losses as in contrastive learning, the
sampling complexity can be reduced. This comes from the
class-based loss adopted in the SwAMP, where similar ideas
were exploited previously in self-supervised representation
learning (Caron et al., 2018; Asano et al., 2020; Caron et al.,
2020). Our approach is generically applicable to different
types of cross-modal retrieval problems. We empirically
demonstrate that the SwAMP loss improves retrieval perfor-
mance significantly over the contrastive learning, on various
real-world cross-modal retrieval problems, including text-
video, sketch-image, and image-text retrieval.

2 Problem Setup & Background

Let xA and xB denote data instances from modality A and
modality B, respectively. For instance, xA is an image from
the image modality, while xB is a text/caption from the text
modality. Throughout the paper we deal with modality-wise
feature representation, meaning that we have modality-wise
feature extractors (neural networks) ϕA(·) and ϕB(·) ap-
plied to xA and xB , respectively. Also known as dual en-
coders, it produces a succinct vector representation for each
modality, ϕA(xA) ∈ Rd and ϕB(xB) ∈ Rd. The shared
feature space (⊂ Rd) allows us to define the similarity score
s(xA, xB) as a cosine angle between ϕA(xA) and ϕB(xB).
The goal is to learn the feature extractors so that the relevant
pairs xA and xB have a high similarity score s(xA, xB),
while irrelevant pairs have a low similarity score. The main
benefit of the modality-wise feature representation is the
computational efficiency, scalable to billions of instances at
training/test time, thanks to the efficient dot-product. There
is an alternative approach that directly computes the simi-
larity score without having modality-wise representation. A
typical example is the cross-modal attention models (Lee
et al., 2018; Lu et al., 2019; Desai and Johnson, 2020; Huang
et al., 2020) (details in Sec. 4). Although they can capture
interactions between cross-modal local features, they are
computationally demanding, not scalable to large-scale data.

The training data are composed of relevant pairs D =

{(xA
i , x

B
i )}Ni=1, where xA

i and xB
i are the instances in the

i-th relevant pair. At test time, a query is given from the
query modality, say xA, and the goal is to find the most
relevant instance, say xB , from the other modality, where
the search is performed on the given test set {xB

i }
N+M
i=N+1.

2.1 Contrastive Learning

In contrastive learning (Chopra et al., 2005; Hadsell et al.,
2006), it is implicitly assumed that data instances from dif-
ferent pairs are irrelevant, although it may not be true. The
loss function is defined to capture the intuition: penalize low
(high) similarity scores for relevant (irrelevant, resp.) pairs.
By introducing the margin α (e.g., 0.2) and considering the
most violating irrelevant pairs (i.e., hard negatives), the loss
can be written as (subscript c stands for contrastive):

Lc(ϕ
A, ϕB) =

∑
i∈D

(
s(xA

i , x
B
i )− max

j∈D\i
s(xA

i , x
B
j )

)
≥α

+
(
s(xA

i , x
B
i )− max

j∈D\i
s(xA

j , x
B
i )

)
≥α

(1)

where (z)≥α = max(0, α − z) only incurs positive loss
when z < α. A main issue of the contrastive learning is that
we cannot guarantee that data instances from different pairs
in the training data are irrelevant, because the data are usu-
ally collected by considering relevant pairs only (e.g., web
scraping of images and nearby texts), and the relevance of
instances in different pairs is usually not checked. However,
this is assumed in the contrastive loss.

3 Our Approach: SwAMP

Our idea is to introduce (latent) semantic class labels for
data instances and use them to learn the feature extractors.
The class labels supposedly decide the relevance of data
instances from different modalities, that is, xA and xB are
considered relevant if their class labels are the same, and
vice versa. Obviously, the paired cross-modal instances in
the training data must have the same class labels. But be-
yond this, instances from different pairs can also be deemed
relevant if they belong to the same semantic class labels.
The motivation is that if we estimate the class labels accu-
rately, the feature extractor learning can be turned into a
supervised classification problem.

More formally, we consider (unknown) class labels to be
assigned to the data instances. Let yA, yB ∈ {1, . . . ,K}
be the class labels for xA and xB , respectively, where K is
chosen by the user. The relevance of xA and xB is deter-
mined by their class labels: xA and xB are deemed relevant
if yA = yB and irrelevant if yA ̸= yB . If we knew the
class labels that bear such semantics in the training data,
then training becomes supervised learning that can be done
for each modality, which allows us to avoid pairwise terms
in the loss function. However, we don’t have class labels,
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and we optimize them (i.e., self-supervised learning) to-
gether with the feature extractors ϕA(·) and ϕB(·). To this
end, we build linear classifiers p(y|xA) and p(y|xB) on the
extracted features. For each modality M ∈ {A,B},

p(y = j|xM ) =
exp(p⊤j ϕ

M (x)/τ)∑
l exp(p

⊤
l ϕ

M (x)/τ)
, (2)

where P = {p1, . . . , pK} are trainable parameters that
are shared between two modalities, and τ is the temper-
ature in the softmax. We can regard each pj as the pro-
totype vector for class j that lies in the shared feature
space. Since we have classification models, the (super-
vised) cross-entropy loss minimization is a natural choice
to optimize them. That is, letting ptrue(y|xA) be the true
conditional class distribution for modality A, we minimize
Eptrue(y|xA)[− log p(y|xA)] with respect to P and the net-
work parameters of ϕA(·) (similarly for modality B). Since
we cannot access ptrue(y|xA), one may be tempted to use
the model p(y|xA) in (7) instead. However, it can easily
lead to a degenerate solution such as the one that puts all
the probability mass on a particular single class all the time
(thus attaining the optimal cross-entropy loss 0). Moreover,
this would make learning ϕA(·) and ϕB(·) nearly indepen-
dent and less interacted with each other, merely through the
shared prototypes P .

Instead, we form an optimization problem to estimate a
surrogate of ptrue(y|xA), which we denote by q(y|xA),
using the information from the other modality B, while
imposing additional constraints to avoid the degenerate
solutions. More specifically, we optimize the surrogate
q(y|xA) with the following two criteria. First, q(y|xA)
needs to be well aligned with the current estimate p(y|xB)
for xB that is paired with xA. This is due to the aforemen-
tioned requirements for the class labels, where the class
labels (more generally, their distributions) of the paired in-
stances should match. Secondly, the marginal distribution
q(y) = ExA∼D[q(y|xA)] is constrained to be a uniform
distribution1. This constraint naturally arises from the sym-
metry of class labels, a reasonable assumption about the
true class distribution, and successfully leaves out the de-
generate solutions discussed above. To summarize, the
following is the optimization problem for q(y|xA), where
QA is the (N×K) matrix with QA

iy := q(y|xA
i ). Recall that

D = {(xA
i , x

B
i )}Ni=1 is the training data of paired instances.

min
QA

Ei∼D
[
Eq(y|xA

i )[− log p(y|xB
i )]

]
(3)

s.t. Ei∼D[q(y|xA
i )] = 1/K, ∀y.

We perform similar optimization for q(y|xB) (QB
iy :=

1This means balanced clusters. Even when data exhibit imbal-
ance in semantic classes (e.g., long-tail distributions), our cluster-
ing model can still handle it by learning semantically redundant
multiple clusters, thus forming super-clusters while rendering oth-
ers minor classes. See Sec. A for illustration.

q(y|xB
i )) to approximate ptrue(y|xB) by exchanging the

roles of A and B. The optimal solutions (surrogates) are
denoted by qA and qB , where we use the superscript to
distinguish the two modalities. Note that during the opti-
mization of (3) for qA and qB , we fix the model parameters,
that is, P and the feature extractor networks. The overall op-
timization is alternation between: i) surrogate optimization
(3) with P , ϕA, ϕB fixed, and ii) supervised (cross-entropy)
loss minimization with qA and qB fixed, where the latter
can be written as (subscript s stands for SwAMP):

min
P,ϕA,ϕB

Ls := Ei∼D
[
EqA(y|xA

i )[− log p(y|xA
i )]

]
+

Ei∼D
[
EqB(y|xB

i )[− log p(y|xB
i )]

]
(4)

Now we discuss how to optimize (3). It is essentially the op-
timal transport (OT) problem (Villani, 2008; Cuturi, 2013),
specifically with the cost matrix Ciy = − log p(y|xB

i ) and
the marginal constraints

∑
i Q

A
iy = 1/K,∀y (and implic-

itly
∑

y Q
A
iy = 1/N,∀i ∈ D). Although the OT is known

to be an instance of the linear program (LP), conventional
LP solvers are not suitable for large-scale problems. As
is common practice, we relax the problem by augmenting
the loss with the entropic regularizer for q(y|xA), namely
1
η

∑
iy Q

A
iy logQ

A
iy added to the loss (thus, penalizing small

entropy), which can be solved by the efficient Sinkhorn-
Knopp (SK) algorithm (Cuturi, 2013). Here η is the regular-
ization trade-off hyperparameter. The SK algorithm finds
the optimal solution as QA = Diag(u)ADiag(v), where
Aiy = e−ηCiy and the vectors u ∈ RN

+ and v ∈ RK
+ are

the fixed points of ui = 1
N /(Av)i, vj = 1

K /(A⊤u)j for
i = 1, . . . , N , j = 1, . . . ,K. The fixed point iteration usu-
ally converges quickly after a few iterations. We denote the
algorithm as:

Q← SK(cost = C, reg = η). (5)

One challenge in optimizing (3) with the SK, however, is
that it involves the entire dataset D in the loss, which means
that the model update (4) has to be deferred until q is opti-
mized for an entire data epoch. Simply replacing D with
a minibatch might be dangerous since the population class
marginal distributions are poorly covered by a minibatch.
We need an even larger subset of D to roughly meet the
(uniform) class constraint. To this end, we adopt the (FIFO)
queues, where we accumulate the embeddings ϕA(xA) and
ϕB(xB) from the latest minibatches into the queues. The
optimization (3) is then performed on the queue data (D
replaced by the data in the queues). To have the uniform
class constraint meaningful, we choose the queue size to be
greater than K. Note that (3) is solved by the SK algorithm,
and thus no backprop is required, hence enlarging the queue
size does not incur computational issue. Similar ideas were
used in the self-supervised representation learning literature,
e.g., (He et al., 2019) and (Caron et al., 2020). To have the
queues filled with the latest features, we insert the features
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Algorithm 1 SwAMP Training.
Input: Class cardinality K, queue size, temp. τ , η in SK.
Initialize: P = {pk}Kk=1, ϕA, ϕB . Empty queueQ.
Output: Trained model {P, ϕA(·), ϕB(·)}.
Repeat until convergence:

1. Sample a minibatch of paired data B = {(xA
i , x

B
i )}.

2. Evaluate ϕA(xA
i ) and ϕB(xB

i ) for i ∈ B (forward pass).
3. Insert {(ϕA(xA

i ), ϕ
B(xB

i ))}i∈B into the queueQ.
4. Solve (3) for modality A and B:
{qA(y|i)}i∈Q ← SK(cost={− log p(y|xB

i )}i∈Q, reg= η)
{qB(y|i)}i∈Q ← SK(cost={− log p(y|xA

i )}i∈Q, reg= η)
5. Take the minibatch portions {qA(y|i), qB(y|i)}i∈B;

Do SGD update with L in (6).

of the current minibatch into the queues, then perform the
SK algorithm. Once (3) is done, we can optimize (4) by
gradient descent, but only the current minibatch portion of
q is used. The final loss function is a combination of the
SwAMP loss and the contrastive loss,

L(P, ϕA, ϕB) = Lc(ϕ
A, ϕB) + λLs(P, ϕ

A, ϕB), (6)

where λ is the trade-off hyperparameter.

As we estimate the surrogate qA using the current clas-
sification model in modality B, and vice versa, the class
assignment is swapped. The pseudo code of our algorithm
is shown in Alg. 1. The idea of optimizing class labels
in the representation learning was previously introduced
in (Asano et al., 2020; Caron et al., 2020), however, they
aimed for self-supervised representation learning as an in-
stance discrimination pretext task with augmented data. In
this paper, we deal with the cross-modal retrieval problem,
where we estimate the class labels of instances in one modal-
ity using the features from the other modality. Unlike the
contrastive loss, SwAMP does not make any assumption
that instances from different pairs are automatically irrele-
vant. The OT class assignment finds similar instances from
other pairs, and the feature extractor is trained in such a way
that the same-class instances, even in different pairs, are
well aligned. This feature of aligning instances in different
pairs is hardly exploited in the contrastive loss.

4 Related Work

Cross-modal retrieval. It is beyond the scope of the pa-
per to enumerate all previous works on cross-modal re-
trieval, and we refer the readers to recent survey papers such
as (Wang et al., 2016). Recently, the most interesting cross-
modal tasks involve, among others, video-text (Liu et al.,
2019; Gabeur et al., 2020; Patrick et al., 2020; Miech et al.,
2021, 2019, 2020; Wang et al., 2021; Chen et al., 2021),
image-text (Chen et al., 2015; Faghri et al., 2018; Lee et al.,
2018; Chun et al., 2021; Li et al., 2019; Zhang et al., 2020),
and sketch-photo (Dey et al., 2019; Sain et al., 2021). For
the training data of relevant pairs, most approaches com-
monly rely on the idea of contrastive learning (Chopra et al.,

2005; Hadsell et al., 2006). Beyond the intuitive triplet
forms (Wang et al., 2014; Schroff et al., 2015), more so-
phisticated losses were introduced in (Sohn, 2016; Song
et al., 2016; Wang et al., 2019a,b) to deal with a positive
and multiple negative pairs as well as hard examples. To
reduce the super-linear time computational overhead, sev-
eral sophisticated sampling strategies were proposed (Wu
et al., 2017; Harwood et al., 2017; Yuan et al., 2017). As
discussed in Sec. 2, there are broadly two different ways
to define the similarity metric between instances of differ-
ent modalities: modality-wise feature representation and
cross-modal attention. The main benefit of the former is the
computational efficiency, scalable to billions of instances at
training/test time, thanks to the efficient dot-product. The
latter directly computes the similarity score without having
modality-wise representation (Lee et al., 2018; Lu et al.,
2019; Desai and Johnson, 2020; Huang et al., 2020) using
the transformer-like attentive neural networks which aim to
capture interactions between local features in the instances
from different modalities. Although they can capture cross-
modal interactions between local features of data instances
from different modalities, they are computationally demand-
ing and very slow due to the quadratic complexity in the
number of local features. In (Miech et al., 2021), a hybrid
of the two is introduced, which retains the two models, but
performs re-ranking/distillation at test time for speed-up.

Clustering-based approaches. There were previous at-
tempts to cluster (group) data instances, or equivalently
self-labeling, to improve saliency in representation learn-
ing. Some approaches perform offline K-means clustering
for every epoch (Caron et al., 2018; Alwassel et al., 2020),
which can make training slow. The idea of optimizing class
labels in the representation learning was previously intro-
duced in (Asano et al., 2020; Caron et al., 2020). However,
all these previous approaches aimed for self-supervised rep-
resentation learning as an instance discrimination pretext
task with augmented data. On the other hand, we perform
simultaneous learning of class labels and the feature extrac-
tion networks for the cross-modal retrieval setting. More
recently (Chen et al., 2021) proposed a clustering-based
cross-modal retrieval method based on the semantic simi-
larity. However, our approach is mainly different from it in
that we adopt the OT-based class label assignment forming a
joint feature-label optimization, instead of simple fusion of
multi-modal features for clustering as in (Chen et al., 2021).

5 Experimental Results

We test the proposed SwAMP loss on several different types
of real-world cross-modal retrieval problems. For each
problem/dataset, we choose the most popular and success-
ful method in the literature, and replace its loss function
(mostly contrastive loss) with the proposed SwAMP loss to
demonstrate the performance improvement. To this end, for
fair comparison, we faithfully follow the same optimization
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Table 1: Text-video retrieval results on YouCook2.
Methods R@1 ↑ R@5 ↑ R@10 ↑ Med-R ↓
Random 0.03 0.15 0.3 1675
FV-CCA 4.6 14.3 21.6 75
Contrastive (No PT) 4.2 13.7 21.5 65
SwAMP (No PT) 4.8 14.5 22.5 57

Contrastive (PT) 8.2 24.5 35.3 24
SwAMP (PT) 9.4 24.9 35.3 22

strategy and hyperparameters as the baseline methods.

5.1 Text-based Video Retrieval

We first consider the text-to-video retrieval task where the
goal is to find the most relevant video clip for a given natural
language text query. We consider three datasets for this task:
i) YouCook2 (Zhou et al., 2018) of cooking videos and in-
structions, ii) MSR-VTT (Xu et al., 2016) of generic videos
and captions from YouTube, and iii) LSMDC (Rohrbach
et al., 2017) of movie clips and subtitles. All these datasets
provide pairs of video clip and text description, forming
a multi-modal paired data format (text, video) which con-
forms to our SwAMP framework.

For the raw text/video features and the feature extractor net-
works, as well as the training/test protocols, we follow the
methods in (Miech et al., 2019), and the details are described
in Appendix (Sec. C). Following (Miech et al., 2019), there
are two training strategies: i) No-pretraining (No-PT) where
the feature extraction networks are randomly initialized, and
the training is done on the training split of the dataset, and
ii) Pretraining (PT) where the feature extractors are first
pretrained on the large-scale HowTo100M dataset (Miech
et al., 2019), and finetuned on the target dataset. In (Miech
et al., 2019), they adopt the contrastive (triplet) loss for
training the feature extractors. Although we also compare
our approach with the state-of-the-arts, the main focus in
this experiment is to demonstrate the performance improve-
ment achieved by the proposed SwAMP loss against vanilla
contrastive learning. The SwAMP hyperparameter λ, the
weight/impact of the SwAMP loss against the contrastive
loss in (6) is chosen as λ = 0.25 for all three datasets,
except the LSMDC-PT case for which λ = 0.1. We also
choose temperature in softmax τ = 0.25, entropic regu-
larization trade-off in SK η = 5.0, the number of classes
K = 500, and the queue size 2, 048 for the SwAMP. The
other learning hyperparameters common in SwAMP and
contrastive losses are not changed from (Miech et al., 2019),
and summarized in Appendix (Sec. C).

YouCook2. This cooking video dataset collected from
YouTube, contains 89 recipes and 14K video clips anno-
tated with textual descriptions from paid human workers.
The test data are formed by taking 3.5K clips from the val-
idation set, and the test set comprises of 3, 350 pairs. The
retrieval performance metrics are recall-at-k (R@k) with

k = 1, 5, 10 and the median rank (Med-R). Hence, the
random guess attains R@1= 0.03% Med-R=1, 675. The re-
sults are summarized in Table 7. In the bottom four rows, we
see the performance improvement achieved by the proposed
SwAMP against the contrastive loss (Miech et al., 2019).
For both training strategies, No PT (random model initializa-
tion) and PT (initialized with the HowTo100M-pretrained
model), our SwAMP improves the retrieval performance
significantly (e.g., about 12% reduction in Median Rank
for the No PT case). SwAMP also outperform the CCA
baseline FV-CCA (Klein et al., 2015).

MSRVTT. This dataset (Xu et al., 2016) collected from
YouTube contains videos of specific categories including
music, sports, and movie. There are 200K video-caption
pairs obtained by human annotation. We follow the retrieval
training/test protocol of (Yu et al., 2018; Miech et al., 2019).
The test set consists of 1K pairs. As reported in Table 2, our
SwAMP loss improves the performance over the contrastive
learning significantly for both no-pretraining and pretraining
cases: about 24% in R@1 in the No PT case, and 27% in the
PT case. Furthermore, the SwAMP outperforms with large
margin the state-of-the-arts: C+LSTM+SA+FC7 (Torabi
et al., 2016), VSE-LSTM (Kiros et al., 2014), Temporal Tes-
sellation (Kauman et al., 2017), CT-SAN (Yu et al., 2017),
and JSFusion (Yu et al., 2018).

LSMDC. This dataset of movie video clips is comprised
of 101K video-caption pairs. The captions are collected
either from the movie scripts or the audio descriptions. The
test set contains 1K pairs. For this dataset, λ = 0.1 (im-
pact of the SwAMP loss against contrastive) for the PT
case. The results are shown in Table 2. Similar to the other
two datasets, our SwAMP is consistently better than the
contrastive learning (about 7 ∼ 9% in Median Rank).

5.2 Sketch-based Image Retrieval

In sketch-based image retrieval, the model takes a user’s
sketch (quick drawing) of an object as input query, and
retrieves the photo images that correspond to the same
object category as query’s. We follow the recent frame-
work of (Dey et al., 2019) which reports the state-of-
the-art performance on the three large-scale sketch-image
benchmarks: Sketchy-Extended (Sangkloy et al., 2016),
TU-Berlin-Extended (Eitz et al., 2012), and QuickDraw-
Extended (Dey et al., 2019). The datasets roughly consist
of 100–200 object classes with hundreds to thousands of
sketch/photo images for each class. For all these datasets,
we have zero-shot setting, meaning that training/test splits
have instances from disjoint object categories.

In this experiment we aim to show the improvement in the
retrieval performance when our SwAMP loss is augmented
to the existing loss function. To this end, we follow the same
embedding networks for images and sketches, as well as the
same loss function as the Doodle2Search. The loss func-
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Table 2: Text-Video retrieval results on MSRVTT and LSMDC.

Methods MSRVTT LSMDC

R@1 ↑ R@5 ↑ R@10 ↑ Med-R ↓ R@1 ↑ R@5 ↑ R@10 ↑ Med-R ↓
Random 0.1 0.5 1.0 500 0.1 0.5 1.0 500
C+LSTM+SA+FC7 4.2 12.9 19.9 55 4.3 12.6 18.9 98
VSE-LSTM 3.8 12.7 17.1 66 3.1 10.4 16.5 79
SNUVL 3.5 15.9 23.8 44 3.6 14.7 23.9 50
Temporal Tessellation 4.7 16.6 24.1 41 4.7 15.9 23.4 64
CT-SAN 4.4 16.6 22.3 35 4.5 14.1 20.9 67
JSFusion 10.2 31.2 43.2 13 9.1 21.2 34.1 36
Contrastive (No PT) 12.1 35.0 48.0 12 7.2 18.3 25.0 44
SwAMP (No PT) 15.0 38.5 50.3 10 7.7 19.3 27.7 40

Contrastive (PT) 14.9 40.2 52.8 9 7.1 19.6 27.9 40
SwAMP (PT) 19.0 42.4 55.2 8 8.3 20.0 28.9 37

Table 3: Sketch-based image retrieval results. The contrastive-learning-based Doodle2Search Dey et al. (2019) (denoted by
D2S) is compared with the proposed SwAMP learning.

Methods / Datasets Sketchy TU-Berlin QuickDraw

mAP mAP@200 P@200 mAP mAP@200 P@200 mAP mAP@200 P@200
ZSIH Shen et al. (2018) 25.40 - - 22.00 - - - - -
CVAE Yelamarthi et al. (2018) 19.59 22.50 33.30 0.50 0.90 0.30 0.30 0.60 0.30
D2S Dey et al. (2019) 36.91 46.06 37.04 10.94 15.68 12.08 7.52 9.01 6.75
SwAMP 40.32 51.94 40.81 17.63 24.49 19.75 8.19 11.62 9.10

tion consists of three losses: Triplet loss is the conventional
triplet loss, Domain loss uses an adversarial domain classi-
fier to penalize misalignment between embedding distribu-
tions of photo images and sketches, and Semantic loss urges
the embeddings of the photo images and sketches to recon-
struct the pretrained word embedding of the corresponding
object word. We also use the same attention-based embed-
ding networks for photo and sketch modalities. Then, we
add our SwAMP loss to the Doodle2Search’s loss with the
impact λ = 0.1 for all three datasets. We use the queue size
1000 (2000 for QuickDraw-Extended) and class cardinality
K = 500, softmax temperature τ = 0.25, entropic regular-
ization impact η = 5.0. The retrieval performances on the
three datasets are summarized in Table 3. The performance
metrics are mean average precision (mAP), mAP@200, and
the precision-at-200 (P@200). As shown, our SwAMP loss
when added to the existing contrastive-based loss, signif-
icantly improves the retrieval performance (about 9% in
mAP for Sketchy and about 60% for TU-Berlin).

5.3 Image-Text Retrieval

For the image-text cross-modal retrieval task, we follow
the features and protocols from the well-known stacked
cross attention network (SCAN) (Lee et al., 2018). In their
framework, each image is represented by a set of local
features V = {v1, . . . , vk}, where vi (∈ RD) = Wvfi+ bv
and fi’s are the CNN features extracted from salient image
regions detected by the Faster-R-CNN model (Ren et al.,
2015). The raw features fi’s are fixed and {Wv, bv} are
learnable parameters. The text (sentence) is also treated as a
set of word features E = {e1, . . . , en}, where ei (∈ RD) =

(hlr
i +hrl

i )/2 and h
lr/rl
i are the outputs of the bi-directional

GRU (Bahdanau et al., 2015; Schuster and Paliwal, 1997)
with the sequence of word embeddings as input. Both the
word embeddings and GRU parameters are learnable. These
image/text features contain rich local information, however,
one challenge is that both representations are sets, hence
the number of elements (k and n) can vary from instance to
instance.

In (Lee et al., 2018), they proposed a cross-modal attention
model, where each local feature from one modality is trans-
formed by the attention (Vaswani et al., 2017) with the set of
local features in the other modality; e.g., vi is transformed to
attn(vi; {ej}nj=1) = the weighted sum of values {ej}nj=1

with vi as a query and {ej}nj=1 as keys (this denoted by i-t,
while the other attention direction t-i can be used alterna-
tively). Then the similarity score between image V and
text E is defined as pool({cos(vi, attn(vi; {ej}nj=1))}Ki=1),
where cos(a, b) is the cosine similarity and pool is the pool-
ing operation, either of AV G (average) or LSE (log-sum-
exp). Then the triplet contrastive loss of (1) is employed.
Although the cross-attention is useful for capturing interac-
tion between local features, computing the similarity score
takes quadratic time in the number of local features in the
instances. This is time consuming compared to the simple
dot-product of the modality-wise embedding vectors (See
Table 12 for wall-clock times).

To have modality-wise succinct representation instead (for
SwAMP), we adopt the induced-set attention idea from
Set-Transformer (Lee et al., 2019). Specifically, we in-
troduce p learnable prototype (query) vectors {qj}pj=1,
qj ∈ RD. Then we compute the attention for each query
with V (or E), i.e., zj = attn(qj ; {vi}ki=1). We define
ϕimage(V ) = concat(z1, . . . , zp), similarly for ϕtext(E),
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Table 4: Image-text retrieval results on Flickr30K.

Methods Image → Text Text → Image

R@1 R@5 R@10 R@1 R@5 R@10
DAN Nam et al. (2017) 55.0 81.8 89.0 39.4 69.2 79.1
DPC Zheng et al. (2017) 55.6 81.9 89.5 39.1 69.2 80.9
VSE++ Faghri et al. (2018) 52.9 - 87.2 39.6 - 79.5
SCO Huang et al. (2018) 55.5 82.0 89.3 41.1 70.5 80.1
SCAN i-t AVG 67.9 89.0 94.4 43.9 74.2 82.8
SCAN t-i AVG 61.8 87.5 93.7 45.8 74.4 83.0
SCAN t-i AVG + i-t LSE 67.4 90.3 95.8 48.6 77.7 85.2

Contrastive-PAR 65.7 86.8 92.4 48.2 75.8 84.2
SwAMP-PAR 67.8 88.5 94.0 49.1 76.1 83.7

Table 5: Image-text retrieval results on MS-COCO.

Methods
5-fold (1K test images) Entire (5K test images)

Image → Text Text → Image Image → Text Text → Image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
DPC Zheng et al. (2017) 65.6 89.8 95.5 47.1 79.9 90.0 41.2 70.5 81.1 25.3 53.4 66.4
VSE++ Faghri et al. (2018) 64.6 - 95.7 52.0 - 92.0 41.3 - 81.2 30.3 - 72.4
GXN Gu et al. (2018) 68.5 - 97.9 56.6 - 94.5 42.0 - 84.7 31.7 - 74.6
SCO Huang et al. (2018) 69.9 92.9 97.5 56.7 87.5 94.8 42.8 72.3 83.0 33.1 62.9 75.5
PCME Chun et al. (2021) 68.8 - - 54.6 - - 44.2 - - 31.9 - -
SCAN i-t 69.2 93.2 97.5 54.4 86.0 93.6 46.4 77.4 87.2 34.4 63.7 75.7
SCAN t-i + i-t 72.7 94.8 98.4 58.8 88.4 94.8 50.4 82.2 90.0 38.6 69.3 80.4
Contrastive-PAR 71.8 94.3 97.9 56.8 86.9 93.8 48.4 78.1 88.1 34.3 64.4 76.2
SwAMP-PAR 72.6 94.6 98.0 57.4 87.6 94.1 49.7 79.1 88.3 35.0 65.1 76.6

where concat refers to concatenation. We share the same
{qj}pj=1 for both modalities. We also have multi-head ex-
tension. We call these modality-wise features as prototype
attention representation (PAR). Note that computing PAR
features has linear complexity in the number of local fea-
tures (p assumed constant), and the cross-modal similarity is
simply dot-product of PAR features, and can be computed in
linear time (See also Table 12 for comparison with SCAN’s
cross-modal attention).

We test our approach on the popular image-text retrieval
datasets, MS-COCO and Flickr30K. The details of the
datasets and training/test protocols are described in Ap-
pendix (Sec. D). The results are summarized in Table 10
and Table 11. We specifically highlight the comparison
between the contrastive loss and our SwAMP loss with
the modality-wise feature representation (Contrastive-PAR
vs. SwAMP-PAR). For the PAR features, we choose the
number of prototypes p = 20, attention weight tempera-
ture T = 0.5, and the number of heads H = 1 for Flickr,
and p = 10, T = 0.5, H = 2 for MS-COCO. For the
SwAMP hyperparameters, we use the impact of SwAMP
loss λ = 1.0, softmax temperature τ = 0.025, the num-
ber of classes K = 1, 000, queue size 1, 280 for both
datasets. SwAMP performs consistently better than the
contrastive loss and outperforms several state-of-the-arts
including the recent sophisticated probabilistic embedding
strategy (PCME) (Chun et al., 2021).

When compared with the computationally expensive SCAN,
SwAMP mostly outperforms SCAN except for the SCAN’s
best attention direction/combination choices. To see the
computational advantage of SwAMP-PAR, we compare the

Table 6: Running times (seconds) measured on (Core i7
3.50GHz CPU / 128GB RAM / 1 RTX-2080Ti GPU). Per-
batch times for training, entire times for test. For MS-COCO
test, times for 5K test images (1K test in parentheses).

Methods Flickr30K MS-COCO

Train Test Train Test
SCAN i-t AVG 0.35 336.9 0.33 9352.0 (350.3)
SwAMP-PAR 0.09 3.8 0.08 25.9 (16.3)

Figure 1: Impact of K (the number of classes) and λ.

actual training/test times for the two approaches in Table 12,
measured on the same machine with a single GPU (RTX
2080 Ti) and Core i7 3.50GHz CPU. Our SwAMP-PAR is
about 4 times faster than SCAN for training on both datasets,
while the difference becomes even more pronounced during
test; SwAMP-PAR is about two orders of magnitude faster
than the cross-modal attention model.

5.4 Ablation Study

We perform empirical study on the impact of two important
hyperparameters in our model: the number of classes K and
SwAMP loss trade-off λ.

Number of classes (K). Recall that the best K values we
chose were: K = 1000 for the image-text retrieval datasets
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and K = 500 for text-based video retrieval. To see how
the retrieval performance is affected by other choices of K,
we conduct experiments by varying K around the optimal
values. The results on MS-COCO (I → T ) and YouCook2
tasks are shown in Fig. 16 (Left). (More results on other
datasets can be found in Appendix (Fig. 4–8, Sec. B).)
Clearly, very small K has low retrieval performance (R@1),
and increasing K leads to improvement. However, beyond
certain points, there is no benefit of increasing K and we
even see performance degradation, which agrees with the
observations from previous work (Asano et al., 2020; Caron
et al., 2020). This is perhaps due to the difficulty of assign-
ing meaningful cluster labels in optimal transport. Overall,
with properly chosen K, SwAMP outperforms contrastive
learning, signifying that SwAMP’s grouping/clustering of
similar instances is more effective than vanilla instance dis-
crimination. The fact that the optimal K values are different
in two tasks (image-text and video-text) implies that the best
cardinality of semantic clusters is highly dependent on the
dataset characteristics (e.g., size and semantic diversity).

SwAMP impact (λ). The sensitivity to λ is shown in Fig. 16
(Right), and more results and further discussions are in
Appendix (Fig. 9–13, Sec. B).

5.5 Visualization of Learned Clusters

As qualitative analysis, we visualize the learned clusters to
see if they capture meaningful semantic information. On
MS-COCO (trained with the number of classes K = 1000),
we organize images and texts by their assigned cluster la-
bels using the learned prototype classification model (i.e.,
(7)). We first visually inspect individual clusters, images
and texts that belong to each cluster. As we show a few
examples in Fig. 2 (more in Appendix (Fig. 2,3, Sec. A)),
each cluster contains semantically coherent data samples.
Then we inspect texts (captions) in each cluster, and select a
few keywords, those words that appear the most frequently
in the texts. These keywords for each cluster consist of
objects (noun) and/or actions (verb) that faithfully describe
the cluster and data samples that belong to it. The full list
is shown in Appendix (Fig. 1, Sec. A), but to enumerate
a few of them (cluster ID: keywords), for instance, 0014:
giraffe/feeding, 0169: soccer/playing, 0283: bus/parked,
0405: pizza/oven, 0597: vase/flowers, 0713: dog/ball, 0818:
kite/flying, 0956: parking/meter.

Although the last three clusters in Fig. 2 all have the seman-
tic meaning of baseball, they have different details in either
activity or focus/scene: swing, base playing, and crowd
scene. This means that SwAMP finds clusters based on the
whole contents (objects, acitivities, and scenes), instead of
doing merely object-based clustering. Although we have
roughly equal numbers of samples per cluster, we found
that some clusters are overlapped with others in terms of
semantic meaning (redundant clusters in Appendix (Fig. 1,

Figure 2: Some randomly selected clusters with images
and texts that belong to them. Each cluster, titled by ID:
keywords, shows randomly chosen 5 images and 4 texts.

Sec. A)), constituting larger super-clusters. These clusters
are related to dominant data samples (e.g., cat, dog, tennis,
baseball). This implies that the SwAMP can effectively deal
with imbalance of semantic classes that can reside in data.

6 Conclusion

We have proposed a novel clustering-based loss function
for cross-modal retrieval. The swapped class assignment
over the modalities enables improved feature alignment with
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increased flexibility, while discovering meaningful latent
semantic classes. The efficacy of our approach was demon-
strated on several real-world cross-modal retrieval problems
in diverse modalities, text-video, sketch-photo, and image-
text, where our method achieved significant performance
improvement over the contrastive learning for all these tasks.
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Appendix

• Visualization of Learned Clusters (Sec. A)

• Ablation Study (Sec. B)

• (Detailed) Text-based Video Retrieval (Sec. C)

• (Detailed) Image-Text Retrieval (Sec. D)

• (Extra Experiments) Synthetic Data (Sec. E)

A Visualization of Learned Clusters

As qualitative analysis, we visualize the learned clusters to see if they capture meaningful semantic information. On
MS-COCO (trained with the number of classes K = 1000), we organize images and texts by their assigned cluster labels
using the learned prototype classification model,

p(y = j|xM ) =
exp(p⊤j ϕ

M (x)/τ)∑
l exp(p

⊤
l ϕ

M (x)/τ)
, M ∈ {A,B} (7)

in our SwAMP. We first visually inspect individual clusters, images and texts that belong to each cluster. Some examples are
shown in Fig. 4 and Fig. 5, each cluster contains semantically coherent data samples. Then we inspect texts (captions) in
each cluster, and select a few keywords, those words that appear the most frequently in the texts. These keywords for each
cluster consist of objects (noun) and/or actions (verb) that faithfully describe the cluster and data samples that belong to it.
The full list is provided in Fig. 3.

A.1 Clustering based on Whole Contents

In Fig. 4 and Fig. 5, looking at clusters:

• Group-A = (0100, 0234, 0359, 0405, 0428)

• Group-B = (0195, 0208, 0221, 0253)

• Group-C = (0180, 0683)

the clusters within these groups are all related to the semantic meaning of pizza, baseball, and cat, respectively. However,
they have different details in either activity or focus/scene: man eating, people and table, on plate, oven, and with woman for
Group-A; swing, on field, base playing, and crowd scene for Group-B; on bed and television for Group-C. This means that
SwAMP finds clusters based on the whole contents (objects, acitivities, and scenes), instead of doing merely object-based
clustering.

A.2 Class Imbalance

Although we have roughly equal numbers of samples per cluster, we can see many redundant/repeated clusters in Fig. 3.
This means that some clusters are overlapped with others in terms of semantic meaning, constituting larger super-clusters.
These clusters are related to dominant data samples (e.g., cat, dog, tennis, baseball). This implies that the SwAMP can
effectively deal with imbalance of semantic classes that can reside in data.
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B Ablation Study

In our experiments, we chose the hyperparameters by cross validation with grid search. We perform empirical study on the
impact of two important hyperparameters in our model: the number of classes K and SwAMP loss trade-off λ.

Number of classes (K). Recall that the best K values we chose were: K = 1000 for the image-text retrieval datasets
and K = 500 for text-based video retrieval. To see how the retrieval performance is affected by other choices of K, we
conduct experiments by varying K around the optimal values. The results are shown in Fig. 6, Fig. 7, Fig. 8, Fig. 9, and
Fig. 10. Clearly, very small K has low retrieval performance (R@1), and increasing K leads to improvement. However,
beyond certain points, there is no benefit of increasing K and we even see performance degradation, which agrees with the
observations from previous work (Asano et al., 2020; Caron et al., 2020). This is perhaps due to the difficulty of assigning
meaningful cluster labels in optimal transport. Overall, with properly chosen K, SwAMP outperforms contrastive learning,
signifying that SwAMP’s grouping/clustering of similar instances is more effective than vanilla instance discrimination.
The fact that the optimal K values are different in two tasks (image-text and video-text) implies that the best cardinality of
semantic clusters is highly dependent on the dataset characteristics (e.g., size and semantic diversity).

SwAMP loss trade-off (λ). We perform sensitivity analysis on λ, the strength of the SwAMP loss. For different values of
λ, the retrieval scores (R@1) are shown in Fig. 11, Fig. 12, Fig. 13, Fig. 14, and Fig. 15. Our model remains better than
contrastive learning for large intervals of different λ’s, and the performance is not very sensitive to λ.

C Text-based Video Retrieval

We consider the text-to-video retrieval task where the goal is to find the most relevant video clip for a given natural language
text query. We consider three datasets for this task: i) YouCook2 (Zhou et al., 2018) of cooking videos and instructions,
ii) MSR-VTT (Xu et al., 2016) of generic videos and captions from YouTube, and iii) LSMDC (Rohrbach et al., 2017)
of movie clips and subtitles. All these datasets provide pairs of video clip and its text description, forming a multi-modal
paired data format (text, video) which conforms to our SwAMP framework.

For the raw text/video features and the feature extractor networks, as well as the training/test protocols, we follow the
methods in (Miech et al., 2019). Whereas the details of the datasets and experimental setups are described in the subsequent
sections, the features are specifically built by the following procedures. First, the raw features are obtained by the pretrained
networks: (a) raw video features (4096D) are concatenation of frame-level and video-level features extracted from the
pretrained 2D/3D CNNs (the ImageNet pre-trained Resnet-152 (He et al., 2016) for 2D features and the Kinetics (Carreira
and Zisserman, 2017) pre-trained ResNeXt-101 16-frame model (Hara et al., 2018) for 3D features), (b) raw text features
(4096D) are the GoogleNews pre-trained word2vec embeddings (Mikolov et al., 2013) for the pre-processed transcribed
video narrations with the common stop words removed. Then the feature extractor networks ϕvideo(·) and ϕtext(·) transform
these raw features into 4096D features by the sigmoid-gated linear transform where the gating functions are two-layer linear
networks (Miech et al., 2018). We fix the raw features and train only the latter sigmoid-gated networks, which comprise
about 67M parameters.

Following (Miech et al., 2019), there are two training strategies: i) No-pretraining (No-PT) where the feature extraction
networks are randomly initialized, and the training is done on the training split of the dataset, and ii) Pretraining (PT) where
the feature extractors are first pretrained on the large-scale HowTo100M dataset (Miech et al., 2019), and finetuned on the
target dataset. In (Miech et al., 2019), they adopt the contrastive (triplet) loss for training the feature extractors. Although we
also compare our approach with the state-of-the-arts, the main focus in this experiment is to demonstrate the performance
improvement achieved by the proposed SwAMP loss against vanilla contrastive learning. The SwAMP hyperparameter λ,
the weight/impact of the SwAMP loss against the contrastive loss is chosen as λ = 0.25 for all three datasets, except the
LSMDC-PT case for which λ = 0.1. We also choose temperature in softmax τ = 0.25, entropic regularization trade-off in
SK η = 5.0, the number of classes K = 500, and the queue size 2, 048 for the SwAMP. The other learning hyperparameters
common in SwAMP and contrastive losses are not changed from (Miech et al., 2019).

YouCook2. This cooking video dataset collected from YouTube, contains 89 recipes and 14K video clips annotated with
textual descriptions from paid human workers. The test data are formed by taking 3.5K clips from the validation set, and the
test set comprises of 3, 350 pairs. The retrieval performance metrics are recall-at-k (R@k) with k = 1, 5, 10 and the median
rank (Med-R). Hence, the random guess attains R@1= 0.03% Med-R=1, 675. The results are summarized in Table 7. In
the bottom four rows, we see the performance improvement achieved by the proposed SwAMP against the contrastive
loss (Miech et al., 2019). For both training strategies, No PT (random model initialization) and PT (initialized with the
HowTo100M-pretrained model), our SwAMP improves the retrieval performance significantly (e.g., about 12% reduction in
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Table 7: Text-video retrieval results on YouCook2.
Methods R@1 ↑ R@5 ↑ R@10 ↑ Med-R ↓
Random 0.03 0.15 0.3 1675
FV-CCA 4.6 14.3 21.6 75
Contrastive (No PT) 4.2 13.7 21.5 65
SwAMP (No PT) 4.8 14.5 22.5 57

Contrastive (PT) 8.2 24.5 35.3 24
SwAMP (PT) 9.4 24.9 35.3 22

Table 8: Text-video retrieval results on MSRVTT.
Methods R@1 ↑ R@5 ↑ R@10 ↑ Med-R ↓
Random 0.1 0.5 1.0 500
C+LSTM+SA+FC7 4.2 12.9 19.9 55
VSE-LSTM 3.8 12.7 17.1 66
SNUVL 3.5 15.9 23.8 44
Temporal Tessellation 4.7 16.6 24.1 41
CT-SAN 4.4 16.6 22.3 35
JSFusion 10.2 31.2 43.2 13
Contrastive (No PT) 12.1 35.0 48.0 12
SwAMP (No PT) 15.0 38.5 50.3 10

Contrastive (PT) 14.9 40.2 52.8 9
SwAMP (PT) 19.0 42.4 55.2 8

Table 9: Text-Video retrieval results on LSMDC.
Methods R@1 ↑ R@5 ↑ R@10 ↑ Med-R ↓
Random 0.1 0.5 1.0 500
C+LSTM+SA+FC7 4.3 12.6 18.9 98
VSE-LSTM 3.1 10.4 16.5 79
SNUVL 3.6 14.7 23.9 50
Temporal Tessellation 4.7 15.9 23.4 64
CT-SAN 4.5 14.1 20.9 67
JSFusion 9.1 21.2 34.1 36
Contrastive (No PT) 7.2 18.3 25.0 44
SwAMP (No PT) 7.7 19.3 27.7 40

Contrastive (PT) 7.1 19.6 27.9 40
SwAMP (PT) 8.3 20.0 28.9 37

Median Rank for the No PT case). SwAMP also outperform the CCA baseline FV-CCA (Klein et al., 2015).

MSRVTT. This generic video-text dataset (Xu et al., 2016) collected from YouTube contains videos of specific categories
including music, sports, and movie. There are 200K video-caption pairs obtained by human annotation. We follow the
retrieval training/test protocol of (Yu et al., 2018; Miech et al., 2019). The test set consists of 1K pairs. As reported in
Table 8, our SwAMP loss improves the performance over the contrastive learning significantly for both no-pretraining and
pretraining cases: about 24% in R@1 in the No PT case, and 27% in the PT case. Furthermore, the SwAMP outperforms
with large margin the state-of-the-arts: C+LSTM+SA+FC7 (Torabi et al., 2016), VSE-LSTM (Kiros et al., 2014), Temporal
Tessellation (Kauman et al., 2017), CT-SAN (Yu et al., 2017), and JSFusion (Yu et al., 2018).

LSMDC. The LSMDC (Rohrbach et al., 2017)2 is a dataset of movie video clips, comprised of 101K video-caption pairs.
The captions are collected either from the movie scripts or the audio descriptions. The test set contains 1K pairs. For
this dataset, we use the SwAMP hyperparameter (impact of the SwAMP loss against the contrastive loss) λ = 0.1 for the
PT case. The results are shown in Table 9. Similar to the other two datasets, our SwAMP is consistently better than the
contrastive learning (about 7 ∼ 9% in Median Rank).

2https://sites.google.com/site/describingmovies/lsmdc-2016/movieretrieval

https://sites.google.com/site/describingmovies/lsmdc-2016/movieretrieval
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D Image-Text Retrieval

For the image-text cross-modal retrieval task, we follow the features and protocols from the well-known stacked cross
attention network (SCAN) (Lee et al., 2018). In their framework, each image is represented by a set of local features
V = {v1, . . . , vk}, where vi (∈ RD) = Wvfi + bv and fi’s are the CNN features extracted from salient image regions
detected by the Faster-R-CNN model (Ren et al., 2015). The raw features fi’s are fixed and {Wv, bv} are learnable parameters.
The text (sentence) is also treated as a set of word features E = {e1, . . . , en}, where ei (∈ RD) = (hlr

i + hrl
i )/2 and h

lr/rl
i

are the outputs of the bi-directional GRU (Bahdanau et al., 2015; Schuster and Paliwal, 1997) with the sequence of word
embeddings as input. Both the word embeddings and GRU parameters are learnable. These image/text features contain rich
local information, however, one challenge is that both representations are sets, hence the number of elements (k and n) can
vary from instance to instance.

In the original SCAN paper (Lee et al., 2018), they proposed a cross-modal attention model, where each local feature from
one modality is transformed by the attention (Vaswani et al., 2017) with the set of local features in the other modality; e.g.,
vi is transformed to attn(vi; {ej}nj=1) = the weighted sum of values {ej}nj=1 with vi as a query and {ej}nj=1 as keys (this
denoted by i-t, while the other attention direction t-i can be used alternatively). Then the similarity score between image
V and text E is defined as pool({cos(vi, attn(vi; {ej}nj=1))}Ki=1), where cos(a, b) is the cosine similarity and pool is the
pooling operation, either of AV G or LSE (log-sum-exp). Then the triplet contrastive loss is employed. For the details,
please refer to (Lee et al., 2018).

Note that in the SCAN, there is no succinct modality-wise embedding vector representation, but the similarity score between
instances of two modalities is rather computed by highly complex attention operations. Although this is helpful for capturing
the interactions between local features, computing the similarity score takes quadratic time in the number of elements (local
features) in the instances. This is time consuming compared to simple dot-product of the modality-wise embedding vectors
(See Table 12 for the actual running times compared with the approaches based on modality-wise feature representation).
Moreover, it is not applicable to our SwAMP approach since we need to predict the class labels for each modality from
modality-wise representation ϕimage(V ), ϕtext(E).

To have modality-wise representation, we adopt the idea of induced-set attention (ISA) from the Set Transformer (Lee et al.,
2019). Specifically, we introduce p learnable prototype (query) vectors {qj}pj=1 where qj ∈ RD. Then we compute the
attention for each query with V (or E), i.e., zj = attn(qj ; {vi}ki=1). Then we define ϕimage(V ) = concat(z1, . . . , zp),
similarly for ϕtext(E), where concat refers to concatenation. Thus the parameters for ϕimage() are {Wv, bv} and {qj}pj=1,
and the parameters for ϕtext() are the word embeddings, GRU parameters, and {qj}pj=1. We share the same {qj}pj=1 for
both modalities. We also have multi-head extension by computing these features multiple times and concatenating them. We
call these modality-wise features as prototype attention representation (PAR). Note that computing PAR features has linear
complexity in the number of local features (assuming p is constant), and the cross-modal similarity is simply dot-product of
PAR features, and can be computed in linear time (See also Table 12).

D.1 Datasets and Results

We test our approach on the popular image-text retrieval datasets, MS-COCO and Flickr30K. There are 31K images and five
captions for each image in Flickr30K. MS-COCO contains 123, 287 images, where each image is annotated with five text
descriptions. Following the widely-used split (Karpathy and Fei-Fei, 2015; Faghri et al., 2018), for the Flickr30K, we have
1K images for validation, 1K images for testing, and the rest for training. For MS-COCO, there are 5K test images (and 25K
captions, five captions for each image). We also follow two standard protocols for measuring the test retrieval performance
for MS-COCO: 1) using the entire 5K test images or 2) splitting the test set into 5 folds and report the average retrieval
performance over the 5 folds.

The results are summarized in Table 10 (Flickr) and Table 11 (MS-COCO). We specifically highlight the comparison between
the contrastive loss and our SwAMP loss with the modality-wise feature representation (Contrastive-PAR vs. SwAMP-PAR).
For the PAR features, we choose the number of prototypes p = 20, attention weight temperature T = 0.5, and the number
of heads H = 1 for Flickr, and p = 10, T = 0.5, H = 2 for MS-COCO. For the SwAMP hyperparameters, we use the
impact of SwAMP loss λ = 1.0, softmax temperature τ = 0.025, the number of classes K = 1, 000, queue size 1, 280 for
both datasets. As shown, the SwAMP loss performs consistently better than the contrastive loss. SwAMP also outperforms
several state-of-the-arts including the recent sophisticated probabilistic embedding strategy (Chun et al., 2021).

When compared with the computationally expensive SCAN, SwAMP mostly outperforms SCAN except for the SCAN’s
best attention direction/combination choices. Note that SwAMP uses the simple feature aggregation strategy (PAR) to have
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Table 10: Image-text retrieval results on Flickr30K.

Methods Image→ Text Text→ Image

R@1 R@5 R@10 R@1 R@5 R@10
DAN (Nam et al., 2017) 55.0 81.8 89.0 39.4 69.2 79.1
DPC (Zheng et al., 2017) 55.6 81.9 89.5 39.1 69.2 80.9
VSE++ (Faghri et al., 2018) 52.9 - 87.2 39.6 - 79.5
SCO (Huang et al., 2018) 55.5 82.0 89.3 41.1 70.5 80.1
SCAN i-t AVG 67.9 89.0 94.4 43.9 74.2 82.8
SCAN t-i AVG 61.8 87.5 93.7 45.8 74.4 83.0
SCAN t-i AVG + i-t LSE 67.4 90.3 95.8 48.6 77.7 85.2

Contrastive-PAR 65.7 86.8 92.4 48.2 75.8 84.2
SwAMP-PAR 67.8 88.5 94.0 49.1 76.1 83.7

Table 11: Image-text retrieval results on MS-COCO.

Methods
5-fold (1K test images) Entire (5K test images)

Image→ Text Text→ Image Image→ Text Text→ Image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
DPC (Zheng et al., 2017) 65.6 89.8 95.5 47.1 79.9 90.0 41.2 70.5 81.1 25.3 53.4 66.4
VSE++ (Faghri et al., 2018) 64.6 - 95.7 52.0 - 92.0 41.3 - 81.2 30.3 - 72.4
GXN (Gu et al., 2018) 68.5 - 97.9 56.6 - 94.5 42.0 - 84.7 31.7 - 74.6
SCO (Huang et al., 2018) 69.9 92.9 97.5 56.7 87.5 94.8 42.8 72.3 83.0 33.1 62.9 75.5
PCME (Chun et al., 2021) 68.8 - - 54.6 - - 44.2 - - 31.9 - -
SCAN i-t 69.2 93.2 97.5 54.4 86.0 93.6 46.4 77.4 87.2 34.4 63.7 75.7
SCAN t-i + i-t 72.7 94.8 98.4 58.8 88.4 94.8 50.4 82.2 90.0 38.6 69.3 80.4
Contrastive-PAR 71.8 94.3 97.9 56.8 86.9 93.8 48.4 78.1 88.1 34.3 64.4 76.2
SwAMP-PAR 72.6 94.6 98.0 57.4 87.6 94.1 49.7 79.1 88.3 35.0 65.1 76.6

Table 12: Running time comparison for SCAN (cross-modal attention) and our SwAMP-PAR. Running times (seconds) are
measured on the same machine (Core i7 3.50GHz CPU, 128GB RAM, and a single GeForce RTX-2080Ti GPU). We report
per-batch times for training, and entire retrieval times for test. For MS-COCO test, the running times for 5K test images
are reported, where times for 1K test images averaged over 5 folds are shown in the parentheses. For SCAN, when we use
features in both directions (e.g., t-i AVG + i-t LSE), the running times are roughly doubled.

Methods Flickr30K MS-COCO

Train Test Train Test
SCAN i-t AVG 0.35 336.9 0.33 9352.0 (350.3)
SwAMP-PAR 0.09 3.8 0.08 25.9 (16.3)

fast and succinct modality-wise feature representation, whereas SCAN relies on the cross-modal attention similarity scoring
model, which is computationally expensive. To see the computational advantage of SwAMP-PAR, we compare the actual
training/test times for the two approaches in Table 12, measured on the same machine with a single GPU (RTX 2080 Ti),
Core i7 3.50GHz CPU, and 128 GB RAM. As shown, our SwAMP-PAR is about 4 times faster than SCAN for training
on both datasets, while the difference becomes even more pronounced during test; SwAMP-PAR is about two orders of
magnitude faster than the cross-modal attention model.

E Synthetic Data

In this section we devise a synthetic dataset not only for performing the proof-of-concept test of our SwAMP algorithm, but
also analyze the impacts of the various hyperparameters and training options in the proposed algorithm. For the former, we
especially focus on the retrieval performance improvement achieved by our SwAMP compared to the contrastive loss or its
popular variants (e.g., online hard-example mining loss).

The dataset is constructed by the following procedure: We randomly generate 20 Gaussians in R5, each of which is
considered to represent a semantic class. For each Gaussian (class), we sample a latent vector z ∈ R5, and a pair of instances
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Table 13: Retrieval results on the synthetic data.

Error type Method R@1 ↑ R@5 ↑ R@10 ↑ Med-R ↓

Pair-based Contrastive 84.10 98.60 99.55 1
SwAMP 90.80 99.95 100.0 1

Class-based Contrastive 91.60 99.70 99.90 1
SwAMP 95.70 99.95 100.0 1

(xA ∈ R100, xB ∈ R100) is then generated by xA = fA(z) and xB = fB(z) where fA and fB are randomly initialized
fully-connected DNNs with two hidden layers of 50 units. We generate 500 pairs for each class that leads to 10, 000
data pairs, and split them into 7000/1000/2000 train/validation/test sets. The validation recall-at-1 (R@1) performance is
evaluated at every training epoch, and the model at the epoch with the best validation performance is selected as the final
model. Note that during training we only use the paired data (xA, xB) with the semantic class labels hidden to the training
algorithms.

For training, we adopt the embedding networks ϕA(xA) and ϕB(xB) as fully-connected neural nets with two hidden layers
of 50 units. The embedding dimension is chosen as 5. We train the model with this same network architecture, using the
contrastive loss and our SwAMP loss. For both loss functions, the batch size is 128, and the Adam optimizer (Kingma and
Ba, 2015) is used with learning rate 10−3, and the maximum epoch is 100.

For the contrastive loss, we adopt the (online) hard-example mining with the margin parameter α = 0.1. For the SwAMP
loss, the defaults parameters are as follows: temperature τ = 0.01 for the softmax classifier, the reciprocal impact of
the max-entropy regularizer for the Sinkhorn-Knopp η = 1/0.05 (i.e., we add the entropic regularizer with the weight
η−1 = 0.05 to the objective of the OT problem. Also, by default, we choose the number of classes K = 1000 and the queue
size 1, 280, 10 times the batch size (and greater than K). For both loss functions, the embedding networks are initialized
randomly.

For test, we perform the cross-modal retrieval task xA → xB , treating each xA in the test set as a query, retrieving xB from
the test set. There are two ways to define the retrieval error: i) pair-based which treats the retrieved xB as a correct retrieval
only if the query xA and the retrieved xB are found as a pair in the data, and ii) class-based which compares only the classes
of the query xA and the retrieved xB . Hence the pair-based error is more strict than the class-based since it counts only the
data item that appears in the data as correct retrieval, without comparing the semantic classes of the retrieved item and the
query.

E.1 Ablation study on hyperparameters

There are several hyperparameters in our SwAMP model, and we have conducted several ablation-type study on the impacts
of the hyperparameters. The hyperaparameters that are deemed to be the most critical are: i) the number of classes K, ii) the
size of the queues, iii) initialization of the feature extraction networks (either random initialization or pretrained one with
the contrastive loss), iv) entropic regularization trade-off η in Sinkhorn-Knopp, and v) the soft/hard cluster assignment after
OT clustering.

Number of classes (K). We vary the number of classes K for 200, 500, 1000, 2000, 3000, and record the R@1 scores for
both pair and class based error types for our SwAMP model. The results are shown in Fig. 16. We see that allowing more
clusters improves the performance. However, once K is around 1000 or greater than 1000, there is no significant benefit of
increasing K. This implies that SwAMP does not merely do instance discrimination, but seeks for grouping/clustering of
similar instances. Although we did not include it in the figure, having K = 20, i.e., the true number of semantic classes,
yielded poor performance (worse than K = 200). This means that it is very difficult to expect that the model would discover
the underlying semantic classes correctly.

Size of queues. Another important hyperparameter is the size of the queues, where the OT clustering is performed on the
latest features that are stored in the queues. In addition to the default queue size 1280 = 10 × 128 (batch size), we try
with different queue sizes {0, 1, 2, 5, 20} × 128. Note that the OT clustering is performed on the union of the features in
the queue and the current batch, hence zero queue size implies that we only use the current batch for OT clustering. The
results are reported in Fig. 17. As shown, increasing the queue sizes accordingly improves the performance, where with the
queue size of two times the batch size outperforms the contrastive loss. Also, not using the queues (“No queue”) resulted in
poor performance, signifying the importance of using the queues. Interestingly, too large queue size (20×) deteriorates the
performance, which might be explained by the negative effects of the stale features obtained several iterations ago from the
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old feature extractor networks. This suggests the trade off of the queue size: too small queue size does not generalize well to
the clustering of entire data, while too large queue size can be harmful due to the inconsistent stale features.

Initialization of feature extractor networks. In our default setup, the feature extractor networks ϕA(·) and ϕB(·) are
initialized randomly. Now we test the performance of the SwAMP when the feature extractor networks are initialized from
the pretrained ones by the contrastive loss training. We initially expected that this warm-start training may expedite the
training with the SwAMP loss, however, as the results in Fig. 18 indicates, it does not outperform the random initialization
although the warm-start is still better than contrastive loss training. This may imply that the SwAMP loss defines a very
different loss landscape from the contrastive loss, and the contrastive-loss optimized model may lie at the region far from the
optima of the SwAMP loss, thus the warm-start even hinders convergence to the SwAMP optima.

Impact of the entropic regularization (1/η). In the Sinkhorn-Knopp (SK) algorithm, we have the reciprocal trade-off 1/η
for the entropy term of the optimization variables q(y|x). Too much emphasizing the entropy term (by increasing 1/η or
decreasing η) would lead to near uniform q(y|x), which means that it carries little information about the meaningful classes,
and cluster assignment can be more or less random. On the other hand, having too small impact of the entropy term would
make the SK algorithm converge too slowly, and the output of the SK with only a few iterations would produce non-optimal
solutions. To see the impact, we vary 1/η from 0.01, 0.05 (default), and 0.1, and the results are shown in Fig. 19. We see
that there is slight performance degradation for small and large 1/η values from the optimal choice.

Soft or hard cluster assignment after OT. We also check if the hard cluster assignment thresholding after OT optimization
would be beneficial or not. Recall that the default is to use the output q(y|x) of the SK algorithm as it is (i.e., soft
cluster assignment). In the hard assignment we further threshold q(y|x) to have one-hot encoding, which is then used in
the cross-entropy loss optimization. As shown in Fig. 20, the hard assignment is harmful, which implies that retaining
uncertainty in cluster estimation is important to have accurate clustering and feature learning.
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Figure 3: 1000 clusters trained with MS-COCO. For each cluster, we depict a few most frequent keywords in the captions
that belong to the cluster.
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Figure 4: Some randomly selected clusters with images and texts that belong to them. Each cluster, titled by ID: keywords,
shows randomly chosen 5 images and 4 texts.
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Figure 5: More clusters (continued from Fig. 4).
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Figure 6: (Flickr30K) Impact of the number of classes (K).

Figure 7: (MS-COCO) Impact of the number of classes (K).

Figure 8: (YouCook2) Impact of the number of classes (K).

Figure 9: (MSRVTT) Impact of the number of classes (K).

Figure 10: (LSMDC) Impact of the number of classes (K).
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Figure 11: (Flickr30K) Impact of the SwAMP loss (λ).

Figure 12: (MS-COCO) Impact of the SwAMP loss (λ).

Figure 13: (YouCook2) Impact of the SwAMP loss (λ).

Figure 14: (MSRVTT) Impact of the SwAMP loss (λ).

Figure 15: (LSMDC) Impact of the SwAMP loss (λ).



SwAMP: Swapped Assignment of Multi-Modal Pairs for Cross-Modal Retrieval

Figure 16: (Synthetic data) Impact of the number of classes (K).

Figure 17: (Synthetic data) Impact of the size of the queues.

Figure 18: (Synthetic data) Impact of the initialization of feature extractor networks.

Figure 19: (Synthetic data) Impact of entropic regularization (1/η) in Sinkhorn-Knopp.

Figure 20: (Synthetic data) Soft (default) or hard cluster assignment after OT.
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