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Abstract

We study the problem of non-stationary dueling
bandits and provide the first adaptive dynamic
regret algorithm for this problem. The only two
existing attempts in this line of work fall short
across multiple dimensions, including pessimistic
measures of non-stationary complexity and non-
adaptive parameter tuning that requires knowl-
edge of the number of preference changes. We
develop an elimination-based rescheduling algo-
rithm to overcome these shortcomings and show
a near-optimal Õ(

√
SCWT ) dynamic regret bound,

where SCW is the number of times the Condorcet
winner changes in T rounds. This yields the first
near-optimal dynamic regret bound for unknown
SCW. We further study other related notions of
non-stationarity for which we also prove near-
optimal dynamic regret guarantees under addi-
tional assumptions on the preference model.

1 Introduction

Multi-Armed Bandits (MABs) (Thompson, 1933; Robbins,
1952; Lattimore and Szepesvári, 2018) are a well-studied on-
line learning framework, which can be used to model online
decision-making under uncertainty. Due to its exploration-
exploitation tradeoff, the MAB framework is able to model
situations such as clinical trials or job scheduling, where
the goal is to keep selecting the ‘best item’ in hindsight by
sequentially querying one item at a time and subsequently
observing a noisy reward feedback for the queried arm (Auer
et al., 2002; Agrawal and Goyal, 2012; Bubeck et al., 2012).

The MAB framework has been studied and generalized to
different settings, among which a popular variant known
as Dueling Bandits (DB) has gained much attention in the
machine learning community over the last two decades (Yue
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et al., 2012; Zoghi et al., 2014b, 2015; Wu and Liu, 2016).
Dueling bandits are a preference-based variant of multi-
armed bandits in which every round the learner selects a pair
of items (or arms) whereupon a noisy preference between
the two items is observed. Such a model is particularly
useful in applications where direct numerical feedback is
unavailable, but observed feedback or behavior implies a
preference of one item over the other. For instance, the
dueling bandit framework can be used for search engine
optimization through interleaved comparisons (Radlinski
and Craswell, 2013; Hofmann et al., 2011).

In the classical stochastic dueling bandit problem, it is as-
sumed that the underlying preferences between items re-
main fixed over time. However, in many applications, this
assumed stationarity of preferences is likely to be violated.
For example, user preferences over movies may change de-
pending on the season or other external influences. Despite
its strong practical motivation, regret minimization in non-
stationary dueling bandits has only recently been studied for
the fist time (Saha and Gupta, 2022; Kolpaczki et al., 2022).
In contrast to the classical stochastic (Yue et al., 2012; Zoghi
et al., 2014a; Bengs et al., 2021) and adversarial (Gajane
et al., 2015; Saha et al., 2021; Saha and Gaillard, 2022) du-
eling bandit problem, which measures performance in terms
of static regret w.r.t. a fixed benchmark (or best item in hind-
sight), in non-stationary dueling bandits we consider the
stronger dynamic regret, which compares the algorithm’s
selection against a dynamic benchmark every round.

In general, the achievable dynamic regret depends on the
amount of non-stationarity in the environment. Here, prior
work (Saha and Gupta, 2022; Kolpaczki et al., 2022) stud-
ied the number of changes in the preference matrix as a
measure of non-stationary complexity. While the number
of such preference switches indeed relates to the hardness
of the problem, it is, however, a pessimistic measure of
non-stationarity. For example, a change in the preference
between two widely suboptimal arms or a minor change
in the preference matrix under which the optimal arm re-
mains optimal should not significantly impact our ability
to achieve low dynamic regret. To this end, one question
that we aim to address in this paper for the non-stationary
dueling bandit problem is:
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Q.1: Can we guarantee low dynamic regret for stronger and
more meaningful notions of non-stationarity?

Moreover, prior work on non-stationary dueling ban-
dits (Saha and Gupta, 2022; Kolpaczki et al., 2022) as-
sumes knowledge of the non-stationary complexity, i.e. prior
knowledge of the total number of preference switches (or
total variation), which is a very impractical assumption to
impose. The second question we then address is:

Q.2: Can we achieve near-optimal dynamic regret in non-
stationary dueling bandits adaptively, without knowledge of
the underlying non-stationary complexity?

1.1 Our Contributions

We answer these two questions affirmatively. Our main
contribution is an algorithm, termed ANACONDA, that adap-
tively achieves near-optimal regret with respect to the num-
ber of ’best arm’ switches—a measure that is sensitive only
to the variations of the best arms in the preference sequence
and indifferent to any other ‘background noise’ due to sub-
optimal arms. More precisely, our contributions can be
listed as follows:

• Comparing Different Concepts of Non-Stationarity in
Dueling Bandits. We first give an overview over different
notions of non-stationarity measures for dueling bandits
and analyze their inter-dependencies towards a better under-
standing of the implications of one to another (Section 2.2).

• Proposing Stronger and More Meaningful Notions of
Non-Stationarity (towards Q.1). We propose three new
measures of non-stationarity for dueling bandits: (i) SCW,
which counts the number of times the Condorcet winner
changes; (ii) Ṽ , which measures the variation in the win-
ning probabilities of the Condorcet winner; and (iii) S̃CW,
which counts only the ‘significant variations’ in the Con-
dorcet winner (Section 2.2). The novelty of our proposed
non-stationarity measures lies in capturing only the non-
stationarity observed for the ‘best arms’ of the preference
sequence. They remain unaffected by any changes in the
suboptimal arms and are thus stronger notions of non-
stationarity than the previously studied preference shifts,
SP, or total variation, V . In particular, we show that
S̃CW ≤ SCW ≤ SP and Ṽ ≤ V justifying the strength of
our proposed non-stationarity measures.

• Adaptive Algorithm (towards Q.2). Besides using
weaker notions of non-stationary complexity, another draw-
back of the existing non-stationary dueling bandit works
are, in order to achieve near-optimal dynamic regret, they re-
quire exact knowledge of the non-stationarity present in the
environment (e.g., SP or V ), which are of course expected to
be unknown to the system/algorithm designed ahead of time.
Our next main contribution lies in designing an adaptive
algorithm (ANACONDA, Algorithm 1), that does not require
knowledge of any underlying non-stationary complexity—it

can adapt to any unknown number of best arm switches
SCW and yields a near-optimal regret bound of Õ

(√
SCWT

)
(Theorem 3.1, Section 3).1

• Improved and (Near-)Optimal Dynamic Regret
Bounds. Owing to the fact that SCW ≤ SP, our dynamic
regret bounds can be much tighter compared to the previous
results by Saha and Gupta (2022); Kolpaczki et al. (2022),
who show a regret guarantee of Õ

(√
SPT

)
(Remark 2.1).

Furthermore, our regret bound is also provably order optimal
in T and SCW as justified in Remark 3.1.

• Better Guarantees for Structured Preferences. In Sec-
tion 5, we analyze a special class of preference matrices,
which respect a type of transitivity, for which we can prove
even stronger dynamic regret guarantees of Õ

(√
S̃CWT

)
in

terms of Significant CW Switches S̃CW and Õ
(
Ṽ 1/3T 2/3

)
in

terms of Condorcet Winner Variation Ṽ . The optimality of
these bounds is justified in Remark 5.2 and Remark 5.3.

1.2 Related Work

The non-stationary MAB problem has been extensively stud-
ied for various non-stationarity measures, e.g. total varia-
tion (Besbes et al., 2014, 2015), distribution switches (Gariv-
ier and Moulines, 2011; Allesiardo et al., 2017; Auer et al.,
2019), or best arm switches (Abbasi-Yadkori et al., 2022;
Suk and Kpotufe, 2022). Moreover, its study has been ex-
tended to more complex setups such as linear bandits (Rus-
sac et al., 2019, 2020) and contextual MAB (Luo et al., 2018;
Chen et al., 2019; Wu et al., 2018). We will particularly take
inspiration from the recent advances of Auer et al. (2019);
Abbasi-Yadkori et al. (2022); Suk and Kpotufe (2022) that
were able to achieve near-optimal dynamic regret rates with-
out knowledge of the number of distribution (or best arm)
changes.

While the non-stationary MAB problem has seen much at-
tention in recent years, its DB counterpart remains widely
unexplored. The only two earlier works that address the non-
stationary DB problem are by Saha and Gupta (2022) and
Kolpaczki et al. (2022). However, these works are limited
in a) the weakness of the analyzed non-stationarity mea-
sures, namely, general preference switches or total variation
(see Section 2.2), and b) in the fact that their algorithms
require knowledge of the total amount of non-stationarity
in advance to achieve near-optimal dynamic regret. Here,
we improve upon prior work by designing an adaptive al-
gorithm ANACONDA that does not require knowledge of the
amount of non-stationarity in the environment and achieves
near-optimal dynamic regret w.r.t. the number of Condorcet
winner switches, a stronger notion of non-stationarity than
preference switches. A more comprehensive review of pre-
vious work that is related to the non-stationary MAB and
DB problem is provided in Appendix C.

1Here, the Õ notation hides logarithmic factors.
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2 Problem Setting

We consider preference matrices P ∈ [0, 1]K×K such that
P (a, b) indicates the probability of arm a being preferred
over arm b. Here, P satisfies P (a, b) = 1 − P (b, a) and
P (a, a) = 0.5 for all a, b ∈ [K]. We say that a dominates
b and write a ≻ b if P (a, b) > 0.5, i.e. arm a has a higher
chance of winning over arm b in a duel (a, b). A well-
studied notion of a good benchmark arm in dueling bandits
is the Condorcet Winner (CW): Given any preference matrix
P ∈ [0, 1]K×K , an arm a∗ ∈ [K] is called a Condorcet
winner of P if P (a∗, b) > 0.5 for all b ∈ [K]\{a∗} (Bengs
et al., 2021).

Note that any preference matrix with a total ordering over
the arms invariably has a Condorcet winner. For example,
assuming a total ordering 1 ≻ 2 ≻ . . . ≻ K implies that
the Condorcet winner is arm 1. Any RUM-based preference
matrix (Saha and Gopalan, 2019a, 2020; Soufiani et al.,
2013), or more generally any P with stochastic transitivity
(Yue and Joachims, 2009), always respects a total ordering.
However, note that CW-based preference matrices consider
a much bigger class of pairwise relations than total ordering.
In general, a preference matrix might not have a Condorcet
winner, which led to more general notions of benchmark
arms in DB, such as the Borda winner (Saha et al., 2021), the
Copeland winner Zoghi et al. (2015) or the von Neumann
winner (Dudı́k et al., 2015; Saha and Krishnamurthy, 2022).

2.1 Non-Stationary Dueling Bandits (NSt-DB)

We consider a decision space of K arms denoted by [K].
At each round t ∈ [T ], the task of the learner is to select
a pair of actions (at, bt) ∈ [K] × [K], upon which a pref-
erence feedback ot(at, bt) ∼ Ber(Pt(at, bt)) is revealed
to the learner according to the underlying preference ma-
trix Pt ∈ [0, 1]K×K , where the sequence of preferences
P1,P2, . . . ,PT is generated adversarially. For any such
preference matrix Pt, we denote by

δt(a, b) := Pt(a, b)− 1/2

the gap or preference-strength of arm a over arm b in round
t. We here assume that every preference matrix Pt has a
Condorcet winner, which we refer to by a∗t .

Static Regret in Dueling Bandits. In classical (stochastic)
dueling bandits, where it is assumed that P1 = . . . = PT =
P (for some fixed preference matrix P), the performance of
the learner is often measured w.r.t. the CW of P, defined as
the static regret:

R(T ) :=
T∑

t=1

δt(a
∗, at) + δt(a

∗, bt)

2
,

where a∗ is the CW of P. Note that here δt(a
∗, a) =

Pt(a
∗, a)− 1/2 essentially quantifies the net loss of arm a

against the fixed benchmark arm a∗.

However, regret with respect to any fixed benchmark (com-
parator arm) soon becomes meaningless when the underly-
ing preference matrices are changing over time, since no sin-
gle fixed arm may represent a reasonably ‘good benchmark’
over T rounds. Consider the following simple motivating
example:
Example 2.1. Let K = 2 and define

P1 =

[
0.5 1
0 0.5

]
, P2 =

[
0.5 0
1 0.5

]
.

Now, assume a preference sequence such that Pt = P1

for the first ⌊T/2⌋ rounds and Pt = P2 for the last ⌈T/2⌉
rounds. We see that a policy that plays any of the two
arms all T rounds, e.g. πt = 1 for all t ∈ [T ], has regret
O(1) against any fixed benchmark arm, as δt(1, 2) = 1/2
for the first T/2 rounds and δt(1, 2) = −1/2 for last T/2
rounds. However, against a dynamic benchmark, e.g. arm
1 for t < T/2 and arm 2 for t ≥ T/2, any policy that
plays a fixed arm all T rounds suffers O(T/2) regret (while
suffering only constant regret against any fixed benchmark).

Dynamic Regret in Dueling Bandits. Drawing motivation
from the above, we seek to formulate a more meaningful
notion of dueling bandit regret, where the benchmark at
every round is chosen dynamically based on Pt. More
precisely, letting a∗t be the CW of Pt, we define the dynamic
regret:

DR(T ) :=
T∑

t=1

δt(a
∗
t , at) + δt(a

∗
t , bt)

2
.

2.2 Measures of Non-Stationarity

Clearly, without any control over the amount of non-
stationarity in the sequence {Pt}t∈[T ], it is impossible for
any learner to achieve a sublinear o(T ) dynamic regret in
the worst case. To see this, consider the matrices from Ex-
ample 2.1 and note that for any choice of arms (at, bt), the
adversary can choose a matrix so as to guarantee instan-
taneous regret of at least 1/2. This consequently leads to
linear regret for the learner, implying that to achieve sub-
linear dynamic regret, we need to restrict the adversary in
terms of the total amount of non-stationarity it can induce in
the sequence {Pt}t∈[T ]. But what could be a good measure
of non-stationarity? In this paper, we study several of these
measures, which we will now formally introduce and put in
relation to one another.

1 Preference Switches. A non-stationarity measure that
has been studied in the previous NSt-DB literature is the
number of times Pt changes (Kolpaczki et al., 2022; Saha
and Gupta, 2022):

SP :=

T∑
t=2

1{Pt ̸= Pt−1}.



ANACONDA: An Improved Dynamic Regret Algorithm for Adaptive Non-Stationary Dueling Bandits

However, SP can be a quite pessimistic measure of non-
stationarity, as changes in the preference between two sub-
optimal arms or minor preference shifts that do not change
the CW are counted toward SP, whereas they should not
significantly affect the performance of a good learning algo-
rithm.

2 Condorcet Winner Switches. A stronger measure of
non-stationarity is then the total number of Condorcet Win-
ner Switches, i.e. the number of times the identity of a∗t
changes:

SCW :=

T∑
t=2

1{a∗t ̸= a∗t−1}.

Remark 2.1 (SP vs SCW). From the definition, we always
have SCW ≤ SP. In fact, it is easy to construct a scenario
where SCW ≪ SP: Assume K = 3 and consider the follow-
ing two preference matrices

P1 =

 0.5 0.55 0.55
0.45 0.5 1
0.45 0 0.5

, P2 =

 0.5 0.55 0.55
0.45 0.5 0
0.45 1 0.5

,
and a preference sequence {Pt}t∈[T ] such that Pt = P1

when t is odd and Pt = P2 otherwise. Then, SCW = 0
(since 1 is the CW for all t), whereas SP = T .

3 Significant Condorcet Winner Switches. Recently,
Suk and Kpotufe (2022) proposed a new (and strong) notion
of non-stationarity in multi-armed bandits, called Signifi-
cant Shifts, that aims to account only for severe distribution
shifts and comprises previous complexity measures. We can
define a similar concept for dueling bandits: Let ν0 := 1
and define νi+1 recursively as the first round in [νi, T ) such
that for all arms a ∈ [K] there exist rounds νi ≤ s1 <
s2 < νi+1 such that

∑s2
t=s1

δt(a
∗
t , a) ≥

√
K(s2 − s1). Let

S̃CW denote the number of such Significant CW Switches
ν1, . . . , νS̃CW . We immediately see that S̃CW ≤ SCW, as not
all CW Switches are also Significant CW Switches. For
example, a ’non-severe’ and quickly reverted change of the
Condorcet winner may not be counted towards S̃CW.

4 Total Variation. Another common notion of non-
stationarity studied in the multi-armed bandit literature is
the total variation present in the rewards (Besbes et al., 2014;
Luo et al., 2018). Its analogue for dueling bandits can be
defined as:

V :=

T∑
t=2

max
a,b∈[K]

|Pt(a, b)− Pt−1(a, b)| ,

which has been previously studied by Saha and Gupta
(2022). However, V can also be a pessimistic measure
of complexity, as it can be of order T even though the Con-
dorcet winner remains fixed throughout all rounds.

5 Condorcet Winner Variation. We can then formulate
a more refined version of total variation by accounting only
for the maximal drift in the winning probabilities of the
current Condorcet winner:

Ṽ :=

T∑
t=2

max
a∈[K]

|Pt(a
∗
t , a)− Pt−1(a

∗
t , a)| .

Remark 2.2 (V vs Ṽ ). It is clear from the definition that
Ṽ ≤ V . Moreover, we again see that the Condorcet Win-
ner Variation can be much smaller than the Total Variation,
i.e. Ṽ ≪ V . For example, in the problem instance of Re-
mark 2.1, we find that Ṽ = 0, whereas V = T . Thus, a
regret bound in terms of the Condorcet Winner Variation Ṽ
can potentially be much stronger.

3 Algorithm: ANACONDA

Following recent advances in non-stationary multi-armed
bandits by Auer et al. (2019); Chen et al. (2019); Abbasi-
Yadkori et al. (2022), and especially Suk and Kpotufe
(2022), we construct an episode-based algorithm with a
carefully chosen replay schedule.

Recall that we aim to minimize the dynamic regret w.r.t.
a changing benchmark a∗t . However, we quickly notice
that we cannot reliably track the dynamic regret of some
arm a, i.e.

∑
t δt(a

∗
t , a), as the identity of the benchmark,

a∗t , changes at unknown times. As a resolution to this,
the algorithmic idea that we deploy aims to detect relevant
changes in the preference matrix by tracking the static regret
maxa′∈[K]

∑s2
t=s1

δt(a
′, a) instead. It will be the main chal-

lenge of our analysis to ensure that properly timed replays
occur (and not too many of these) so that it is sufficient to
track the static regret to guarantee low dynamic regret.

In the following, we explain our algorithmic approach in
more detail. The algorithm is organized in episodes, denoted
ℓ. Similar to recent approaches to non-stationary multi-
armed bandits (Auer et al., 2019; Abbasi-Yadkori et al.,
2022; Suk and Kpotufe, 2022), the algorithm maintains a
set of good arms, Agood, and a replay schedule, {Bs,m}s,m,
within each episode. When no good arms are left inAgood, a
new episode begins and the set of good arms and the replay
schedule are being reset.

Here, ANACONDA (Algorithm 1) is the meta procedure that
initializes each episode by resetting the set of good arms
to [K], sampling a new replay schedule, and triggering the
root call of CondaLet(tℓ, T + 1− tℓ).

When active in round t, a run of CondaLet(t0,m0) (Al-
gorithm 2) samples two arms uniformly at random from
the active set of arms at round t, denoted At. The set
At is globally maintained by all calls of CondaLet and
reset to [K] at the beginning of each replay, i.e. call of
CondaLet. When a child replay CondaLet(t,m) is
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Algorithm 1 ANACONDA: Adaptive Non-stationAry CONdorcet Dueling Algorithm

1: input: horizon T
2: t← 1
3: while t ≤ T do
4: tℓ ← t � start of the ℓ-th episode
5: Agood ← [K]
6: for m ∈ {2, . . . , 2⌈log(T )⌉} and s ∈ {tℓ + 1, . . . , T} do � set replay schedule

7: Sample Bs,m ∼ Bern
(

1√
m(s−tℓ)

)
8: Run CondaLet(tℓ, T + 1− tℓ) � root replay in ℓ-th episode

Algorithm 2 CondaLet(t0,m0)

1: input: scheduled time t0, duration m0, replay schedule {Bs,m}s,m
2: initialize: t← t0, At ← [K]
3: while t ≤ T and t ≤ t0 +m0 and Agood ̸= ∅ do � return if no good arms are left
4: Play arm-pair (at, bt) ∈ At with each arm being selected with probability 1/|At|
5: Agood ← Agood \ {a ∈ [K] : ∃[s1, s2] ⊆ [tℓ, t) s.t. (2) holds} � eliminate bad arms from Agood

6: Alocal ← At � save active set of arms locally
7: t← t+ 1
8: if ∃m such that Bt,m = 1 then � check for scheduled child replays
9: Run CondaLet(t,m) with m = max{m ∈ {2, . . . , 2⌈log(T )⌉} : Bt,m = 1}

10: At ← Alocal \ {a ∈ [K] : ∃[s1, s2] ⊆ [t0, t) s.t. (2) holds} � eliminate bad arms from At

scheduled in round t, i.e. Bt,m = 1 for some m, the parent
algorithm, say CondaLet(t0,m0), is interrupted (before
eventually resuming if t ≤ t0 +m0). To not overwrite arm
eliminations of a parent by resetting At to [K] in children,
each version of CondaLet saves a local set of arms, Alocal,
before checking for children.

Gap Estimates. Recall the definition of the gap between
two arms as δt(a, b) = Pt(a, b)− 1/2. Based on observed
outcomes of duels, the ANACONDA maintains the following
importance weighted estimates of δt(a, b):

δ̂t(a, b) = |At|2 1{at=a,bt=b}ot(a, b)− 1/2. (1)

Wee see that whenever a, b ∈ At, i.e. both arms are in the
active set in round t, the estimator δ̂t(a, b) is an unbiased
estimate of δt(a, b), as we select a pair of arms uniformly at
random from At every round.

Elimination Rule. In Line 5 and Line 10 of Algorithm 2,
we eliminate an arm a ∈ [K] in round t if there exist rounds
0 ≤ s1 < s2 ≤ t such that

max
a′∈[K]

s2∑
t=s1

δ̂t(a
′, a) > C log(T )K

√
(s2 − s1) ∨K2 (2)

where C > 0 is some universal constant that does not de-
pend on T , K, or SCW, and can be derived from the regret
analysis.

3.1 Main Result

The main result of this paper is a Õ(
√
SCWT ) dynamic regret

bound of ANACONDA without knowledge of the number of
CW Switches SCW. When SCW ≪ SP, this bound substan-
tially improves upon the non-adaptive Õ(

√
SPT ) rates in

Saha and Gupta (2022) and Kolpaczki et al. (2022). In par-
ticular, as previously mentioned, the number of preference
switches SP can be a very pessimistic measure of complex-
ity. For example, a change in the preference between two
suboptimal arms, or a minor change of the winning prob-
abilities of the Condorcet winner under which it remains
optimal, should not substantially affect the performance of
a good algorithm (see Remark 2.1).

Theorem 3.1 (Dynamic Regret of ANACONDA). Let SCW

denote the unknown number of Condorcet Winner Switches
in the sequence {Pt}t∈[T ]. Let τ1, . . . , τSCW be the unknown
times of these switches and let τ0 := 1 and τSCW+1 := T .
For some constant c > 0, the dynamic regret of ANACONDA
is bounded as

DR(T ) ≤ c log3(T )K

SCW∑
i=0

√
τi+1 − τi.

An application of Jensen’s inequality shows that this implies
a dynamic regret bound of order Õ(K

√
SCWT ).

Corollary 3.1 (Dynamic Regret w.r.t. SCW). For some con-
stant c > 0, the dynamic regret of ANACONDA is bounded
as

DR(T ) ≤ c log3(T )K
√
(SCW + 1)T .
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Remark 3.1 (Regret Lower Bound and Justification of
Optimality of Theorem 3.1). Note that a lower bound of
Ω(
√
KSPT ) has recently been shown by Saha and Gupta

(2022), which can also be seen to give a lower bound
Ω(
√
KSCWT ) in terms of CW Switches SCW as SCW ≤ SP

(in particular, the lower bound problem instance used in
Saha and Gupta (2022) is precisely such that SCW = SP).
As a result, we find that the above bound is optimal up to
logarithmic factors in its dependence on SCW and T , while
its dependence on K may not be tight.

4 Regret Analysis of ANACONDA

We build on recent advances in non-stationary multi-armed
bandits, which are able to achieve near-optimal dynamic
guarantees (Auer et al., 2019; Abbasi-Yadkori et al., 2022;
Suk and Kpotufe, 2022) without knowledge of the non-
stationary complexity. A common basis of the regret analy-
sis in these works is a decomposition of the dynamic regret
using the notion of good arms.

Challenges in the Dueling Setting. More precisely,
within each episode ℓ, prior work in multi-armed bandits
(Auer et al., 2019; Abbasi-Yadkori et al., 2022; Suk and
Kpotufe, 2022) decomposes the regret of their algorithm’s
selection at into its relative regret against the last good arm
agℓ ∈ Agood, and the relative regret of agℓ against the best
arm a∗t . A key advantage of this decomposition is that track-
ing the relative regret of some arm a w.r.t. agℓ instead of
a∗t is much easier. In particular, since agℓ is by definition
considered good throughout the episode, it is always ac-
tively played, which guarantees unbiased estimates of the
gap between any played arm a and the last good arm agℓ .

However, pairwise preferences are generally not transitive,
let alone linear, so that a triangle inequality does not hold,
i.e. δt(a∗t , a) ̸≤ δt(a

∗
t , a

g
ℓ ) + δt(a

g
ℓ , a). In NSt-DB, we

can thus generally not rely on agℓ as a benchmark. Instead,
in contrast to prior work in multi-armed bandits, we face
the difficulty of having to argue directly that we can track
the dynamic regret

∑
t δt(a

∗
t , a) sufficiently well without a

proxy benchmark such as agℓ .

Key Ideas to Overcome the Challenges. To overcome
these challenges, we consider every fixed arm a ∈ [K]
in isolation and split the horizon into the rounds before
arm a gets eliminated from Agood and the rounds after it
gets eliminated from Agood in episode ℓ. Letting taℓ be the
elimination round of arm a, we will then argue that taℓ will
occur sufficiently early to guarantee low regret (in episode
ℓ) before round taℓ . For the rounds after elimination from
Agood, it will be key to dissect each possible replay of the
eliminated arm and obtain replay-specific regret bounds,
where we distinguish between ’confined’ and ’unconfined’
replays of arms. We now give an outline of our regret
analysis.

4.1 Proof Sketch of Theorem 3.1

In the following, we let c̃ > 0 denote a positive constant that
does not dependent on T , K, or SCW, but may change from
line to line. To begin our analysis, we state a concentration
bound on the martingale difference sequence δ̂t(a, b) −
E[δ̂t(a, b) | Ft−1] as it can be found in similar form in
(Beygelzimer et al., 2011) and (Suk and Kpotufe, 2022).

Lemma 4.1. Let E be the event that for all rounds 1 ≤ s1 <
s2 ≤ T and all arms a, b ∈ [K]:∣∣∣∣∣

s2∑
t=s1

δ̂t(a, b)−
s2∑

t=s1

E
[
δ̂t(a, b) | Ft−1

]∣∣∣∣∣ (3)

≤ c1 log(T )
(
K
√
(s2 − s1) +K2

)
for a sufficiently large constant c1 > 0 and where F =
{Ft}t∈N0

denotes the canonical filtration. Then, event E
occurs with probability at least 1− 1/T 2.

Note that our elimination rule (2) has been chosen in accor-
dance with the above concentration bound.

Bounding Regret Within Episodes. We proceed by
bounding regret within each episode separately. Recall
that we let τ1 < . . . < τSCW denote the (unknown) rounds
in which the Condorcet winner changes. We then refer to
the interval [τi, τi+1) as the i-th phase, i.e. the interval for
which a∗t = a∗τi for all t ∈ [τi, τi+1).

Let Phases(t1, t2) = {i : [τi, τi+1)∩[t1, t2) ̸= ∅} be the set
of phases i such that [τi, τi+1) intersects with the interval
[t1, t2). Our main claim is the following upper bound on
the dynamic regret within each episode:

E

[
tℓ+1−1∑
t=tℓ

δt(a
∗
t , at) + δt(a

∗
t , bt)

2

]
(4)

≤ c̃K log3(T )E

 ∑
i∈Phases(tℓ,tℓ+1)

√
τi+1 − τi

 .

By conditioning on tℓ and carefully applying the tower
property, we can rewrite the expected dynamic regret within
an episode in terms of fixed arms a ∈ [K]:

Lemma 4.2. We have

E

[
tℓ+1−1∑
t=tℓ

δt(a
∗
t , at) + δt(a

∗
t , bt)

2

]

= E

[
K∑

a=1

tℓ+1−1∑
t=tℓ

δt(a
∗
t , a)

|At|
1{a∈At}

]
.

In a next step, we split the RHS into the rounds before a
fixed arm a ∈ [K] has been eliminated from the good set,
and the rounds after a has been eliminated. Recall taℓ to be
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the round in episode ℓ in which arm a is eliminated from
Agood and consider

E

[
K∑

a=1

taℓ−1∑
t=tℓ

δt(a
∗
t , a)

|At|

]
︸ ︷︷ ︸

R1(ℓ)

+E

[
K∑

a=1

tℓ+1−1∑
t=taℓ

δt(a
∗
t , a)

|At|
1{a∈At}

]
︸ ︷︷ ︸

R2(ℓ)

where we could drop the indicator in R1(ℓ), since Agood ⊆
At always. The remainder of our analysis is mostly con-
cerned with showing that both, R1(ℓ) and R2(ℓ), are upper
bounded by the RHS in (4).

Regret Before Elimination. The main difficulty in bound-
ing R1(ℓ) lies in the fact that some arm could have been
eliminated due to being suboptimal, only to become the
Condorcet winner soon after. As a result, large regret could
go undetected, as the current Condorcet winner is not being
actively played anymore. To this end, we have to argue that
with high probability there will always be a replay scheduled
that eliminates any bad arm from Agood in a timely manner,
thereby eventually triggering a restart.

Here, we specifically consider calls of CondaLet(s,m)
that provably eliminate bad arms from Agood. Importantly,
by construction of our elimination rule (2), we can guarantee
on the concentration event E that any replay that is scheduled
within some phase i will actively play the Condorcet winner
of said phase.

Lemma 4.3. On event E , no call of CondaLet(s,m) with
τi ≤ s < τi+1 eliminates arm a∗i before round τi+1.

Roughly speaking, we can then argue that a replay that
eliminates arm a will be scheduled with high probability
before the smallest round s(a) > tℓ such that

s(a)∑
t=tℓ

δt(a
∗
t , a) ≳

√
s(a)− tℓ.

In other words, arm a is going to be eliminated from Agood
before it suffers too much regret. Since taℓ is defined as
the round in episode ℓ in which a is eliminated from Agood,
we must have taℓ < s(a), which implies that the inner sum
in R1(ℓ) is at most of order

√
taℓ − tℓ for every fixed arm

a ∈ [K]. Finally, using that√
taℓ − tℓ ≤

∑
i∈Phases(tℓ,taℓ )

√
τi+1 − τi

and summing over all arms, we obtain the desired bound (4).
Note that here summing over arms can be seen to account for
a log(K) factor which we coarsely upper bound by log(T ).

Regret After Elimination. R2(ℓ) can be viewed as the
regret due to replaying arms after they have been eliminated
from the good set Agood. We here distinguish between two
types of replays:

Definition 4.1. We call CondaLet(s,m) confined if there
exists i ∈ Phases(tℓ, T ) s.t. [s, s + m] ⊆ [τi, τi+1). In
turn, we say that CondaLet(s,m) is unconfined if for all
i ∈ Phases(tℓ, T ), we have [s, s+m] ⊆ [τi, τi+1).

To bound the regret within a confined replay, we recall that
according to Lemma 4.3, on the concentration event E , no
replay will eliminate the Condorcet winner within the phase
it is scheduled in. Thus, whenever some arm a is being
played by a confined replay, we obtain unbiased estimates
of δt(a∗t , a). It is then straightforward to show that for any
confined CondaLet(s,m), we have that

∑s+m
t=s δt(a

∗
t , a)

is at most of order
√
m.

A similar line of argument does not work for unconfined
replays, as they intersect with several phases. We then
face a similar difficulty as when bounding R1(ℓ), where the
Condorcet winner of the current phase could have been elim-
inated (from the replay) in an earlier phase. Using similar ar-
guments than for bounding R1(ℓ), we show that for any un-
confined CondaLet(s,m), we have that

∑s+m
t=s δt(a

∗
t , a)

is at most of order
√
s− tℓ +

√
m.

Lastly, recall that in episode ℓ a replay CondaLet(s,m)
is scheduled with probability 1/

√
m(s−tℓ). Crucially, any

unconfined replay scheduled in [τi, τi+1) must have duration
at least m ≥ τi+1 − s (otherwise it is not unconfined).
Careful summation over confined and unconfined replays
then yields the desired upper bound (4).

Counting Episodes. Lastly, we show that ANACONDA
will only restart if there has been a CW switch.

Lemma 4.4. On event E , for all episodes ℓ but the last there
exists a change of the CW tℓ ≤ τi < tℓ+1.

This follows directly from the fact that on the concentration
event E the current CW will never be eliminated fromAgood.
Thus, if there is a restart, i.e. every arm has been elimi-
nated from Agood, there must have been a change of CW.
Lemma 4.4 thus tells us that any phase intersects with at
most two episodes. Summing the RHS of (4) over episodes
then gives the claimed upper bound of

E

[
T∑

t=1

δt(a
∗
t , at) + δt(a

∗
t , bt)

2

]

≤ 2c̃K log3(T )E

SCW∑
i=1

√
τi+1 − τi

 .

A detailed proof of Theorem 3.1 is given in Appendix A.

5 Tighter Bounds under SST and STI

We show that ANACONDA can in fact yield a stronger re-
gret guarantee in terms of a more refined notion of non-
stationarity, Significant Condorcet Winner Switches (see
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Section 2.2), under additional assumptions on the preference
sequence P1, . . . ,PT , namely, Strong Stochastic Transitiv-
ity (SST) and Stochastic Triangle Inequality (STI) (Yue and
Joachims, 2009; Yue et al., 2012; Yue and Joachims, 2011).
Let a, b, c ∈ [K] and let a ≻t b denote that a is preferred
over b in round t.

Assumption 1 (Strong Stochastic Transitivity). Every pref-
erence matrix Pt satisfies that if a ≻t b ≻t c, we have
δt(a, c) ≥ δt(a, b) ∨ δt(b, c).

Assumption 2 (Stochastic Triangle Inequality). Every pref-
erence matrix Pt satisfies that if a ≻t b ≻t c, we have
δt(a, c) ≤ δt(a, b) + δt(b, c).

Remark 5.1 (Example of SST & STI). Among the prefer-
ence models that satisfy Assumption 1 and Assumption 2,
are utility-based models with a symmetric and increasing
link function σ. In these models, every arm a has an as-
sociated (time-dependent) utility ut(a) and the probabil-
ity of arm a winning a duel against arm b is given by
Pt(a ≻ b) = σ(ut(a) − ut(b)), where σ is an increas-
ing function with σ(x) = 1− σ(−x) and σ(0) = 1/2 that
maps utility differences to probabilities (Yue et al., 2012;
Bengs et al., 2021).

5.1 Improved Dynamic Regret Analysis

Compared to Theorem 3.1, we now show how ANACONDA
can achieve tighter regret guarantees in terms of both, Sig-
nificant CW Switches and CW Variation.

1 Significant CW Switches. Under Assumption 1 and
Assumption 2, we are able to obtain the following adaptive
dynamic regret bound w.r.t. S̃CW.

Theorem 5.1. Let S̃CW be the unknown number of
Significant Condorcet Winner Switches. Under Assump-
tion 1 and Assumption 2, ANACONDA has dynamic regret
Õ
(
K
√

S̃CWT
)
.

Remark 5.2. Recall from Section 2.2, since S̃CW ≤ SCW

(as not all CW Switches are also Significant CW Switches),
Theorem 5.1 gives an even tighter dynamic regret guaran-
tee for the class of non-stationary preference sequences
with SST and STI. Also note, this bound does not violate
the Ω(

√
KSPT ) lower bound as claimed in 3.1, as the

lower bound is shown for a worst-case preference sequence
{Pt}t∈[T ] where S̃CW = SCW = SP.

Proof Overview. With some additional effort, Assumption 1
and Assumption 2 allow us to utilize a dynamic regret
decomposition similar to prior work on non-stationary
multi-armed bandits, which yields a regret expression with
episode-wise fixed benchmark arms. We can then reuse part
of the regret analysis from Theorem 3.1 to show the claimed
regret bound. Details can be found in Appendix B.

We want to give a brief intuition about why additional as-
sumptions are necessary when bounding dynamic regret
w.r.t. Significant CW Switches S̃CW opposed to general CW
Switches SCW.2 Consider a phase [νi, νi+1) in the sense
of Significant CW Switches as defined in Section 2.2. As
previously mentioned, the definition of a Significant CW
Switch allows for several (non-severe) CW changes within
each phase [νi, νi+1). As a result, we cannot guarantee that
there will be any intervals during which the CW remains
fixed, which would enable us to reliably estimate the relative
regret

∑
t δt(a

∗
t , a) so as to eliminate bad arms. Roughly

speaking, assuming SST and STI enables us to identify bad
arms based on knowledge of

∑
t δt(a

′, a) for some tem-
porarily fixed benchmark a′. More details and a complete
proof can be found in Appendix B.

2 Condorcet Winner Variation. Recall the definition
of the CW Variation Ṽ from Section 2.2. As a consequence
of Theorem 5.1, we can now show that ANACONDA also
achieves near-optimal dynamic regret w.r.t. Ṽ .

Corollary 5.1. Let Ṽ be the unknown Condorcet Win-
ner Variation in the sequence {Pt}t∈[T ]. Under Assump-
tion 1 and Assumption 2, ANACONDA has dynamic regret
Õ
(
K
√
T + Ṽ 1/3(KT )2/3

)
.

Remark 5.3. By definition, we have Ṽ ≤ V , which
means that Corollary 5.1 may yield a tighter dynamic regret
bound than the (non-adaptive) Õ

(
KV )1/3T 2/3

)
guarantee

by Saha and Gupta (2022). In view of the lower bound
of Ω

(
(KV )1/3T 2/3

)
shown in (Saha and Gupta, 2022), the

presented regret guarantee is also tight up to logarithmic fac-
tors and a factor of K1/3. Note again that the lower bound
by Saha and Gupta (2022) is not violated as their lower
bound uses a worst-case preference sequence {Pt}t∈[T ]

where Ṽ = V .

6 Discussion and Future Work

We studied the problem of dynamic regret minimization in
non-stationary dueling bandits and proposed an adaptive
algorithm that yields provably optimal regret guarantees in
terms of strong notions of non-stationary complexity. Our
proposed algorithm is the first to achieve optimal dynamic
dueling bandit regret without prior knowledge of the under-
lying non-stationary complexity.

While our results certainly close some of the practical open
problems in preference elicitation in time varying preference
models, it also leads many new questions along the line. In
particular, as an extension to this work, one obvious ques-
tion would be to understand non-stationary dueling bandits
for more general preference matrices: What happens if the

2Note that this is a limitation of our regret analysis. It is an open
question whether it is possible to achieve O(

√
S̃CWT ) dynamic

regret in NSt-DB with general preference models.
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preference sequence does not have a Condorcet winner in
each round? What could be a good dynamic benchmark in
that case? Hereto related, another open question is whether
it is possible to obtain dynamic regret bounds in terms of
Significant CW Switches (S̃CW) for general preference se-
quences (without additional transitivity assumptions)? Ex-
tending the considered pairwise preference setting to more
general subset-wise feedback (Saha and Gopalan, 2018,
2019b; Ghoshal and Saha, 2022) would be another interest-
ing problem from a practical point of view.
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Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret anal-
ysis of stochastic and nonstochastic multi-armed bandit

problems. Foundations and Trends® in Machine Learn-
ing, 5(1):1–122, 2012.

Yifang Chen, Chung-Wei Lee, Haipeng Luo, and Chen-
Yu Wei. A new algorithm for non-stationary contextual
bandits: Efficient, optimal, and parameter-free. In Pro-
ceedings of the 32nd Conference on Learning Theory, 99:
1–30, 2019.

Miroslav Dudı́k, Katja Hofmann, Robert E Schapire, Alek-
sandrs Slivkins, and Masrour Zoghi. Contextual dueling
bandits. In Conference on Learning Theory, pages 563–
587, 2015.

Miroslav Dudik, Katja Hofmann, Robert E Schapire, Alek-
sandrs Slivkins, and Masrour Zoghi. Contextual dueling
bandits. Conference on Learning Theory, pages 563–587,
2015.

Pratik Gajane, Tanguy Urvoy, and Fabrice Clérot. A relative
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tℓ First round in the ℓ-th episode
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A Proof of Theorem 3.1

We organize the proof of Theorem 3.1 as follows. Section A.1 contains basic preliminary facts that will be the foundation of
the upcoming proof. Section A.2 then bounds the regret any fixed arm suffers within each episode before being eliminated
from the good set. Complementary to this, Section A.3 then deals with the regret an arm suffers after being eliminated.

A.1 Preliminaries

In this preliminary section, we introduce a concentration bound on the sum of our estimates δ̂t in Section A.1.1. We
then show in Section A.1.2 that the beginning of a new episode implies that the Condorcet winner has changed (on the
concentration event), which will be useful later. Finally, Section A.1.3 decomposes the regret in terms episodes, arms, and
rounds, which will form the basis of our analysis.

A.1.1 Martingale Concentration Bound

We will rely on a similar martingale tail bound as Beygelzimer et al. (2011) and Suk and Kpotufe (2022), which is based on
a version of Freedman’s inequality given below.
Lemma A.1 (Theorem 1 in Beygelzimer et al. (2011)). Let (Xt)t∈N be a martingale difference sequence w.r.t. some filtration
(Ft)t∈N0

. Assume that is Xt is almost surely uniformly bounded, i.e. Xt ≤ R a.s. for some constant R. Moreover, suppose
that

∑t
s=1 E[X2

s | Fs−1] ≤ Vt a.s. for some sequence of constants (Vt)t∈N. Then, for any δ ∈ (0, 1), with probability at
least 1− δ, we have

t∑
s=1

Xs ≤ (e− 1)
(√

Vt log(1/δ) +R log(1/δ)
)
. (5)

Proof. See Theorem 1 in Beygelzimer et al. (2011) and Lemma 1 in Suk and Kpotufe (2022).

We now apply the above concentration bound to the martingale difference sequence δ̂t(a, b)− E[δ̂t(a, b) | Ft−1].
Lemma A.2. Let E be the event that for all rounds s1 < s2 and all arms a, b ∈ [K]:∣∣∣∣∣

s2∑
t=s1

δ̂t(a, b)−
s2∑

t=s1

E
[
δ̂t(a, b) | Ft−1

]∣∣∣∣∣ ≤ c1 log(T )
(
K
√

(s2 − s1) +K2
)

(6)

for an appropriately large constant c1 > 0 and where F = {Ft}t∈N0
is the canonical filtration generated by observations

in past rounds. Then, event E occurs with probability at least 1− 1/T 2.

Proof. Note that δ̂t(a, b)− E[δ̂t(a, b) | Ft−1] is naturally a martingale difference, since E
[
δ̂t(a, b)− E[δ̂t(a, b) | Ft−1] |

Ft−1

]
= 0 a.s. Using that |At| ≤ K, we have that Xt ≤ 2K2 a.s. for all rounds t. Moreover, we get that

s2∑
t=s1

E
[
δ̂2t (a, b) | Ft−1

]
≤

s2∑
t=s1

|At|4 E
[
1{at=a,bt=b} | Ft−1

]
=

s2∑
t=s1

|At|2 ≤ K2(s2 − s1).

We can thus apply Lemma A.1 with R = K2 and Vt = 2K2t. Using |x− y| ≤ |x|+ |y| and taking union bounds over a, b
and s1, s2, we then obtain Lemma A.2.

A.1.2 Episodes and Condorcet Winner Switches

Lemma A.3. On event E , for each episode [tℓ, tℓ+1) with tℓ+1 ≤ T , there exists a change of the CW τi ∈ [tℓ, tℓ+1).

This implies that any phase [τi, τi+1) will intersect with at most two episodes.

Proof. The start of a new episode means that every arm a ∈ [K] has been eliminated from Agood at some round in
taℓ ∈ [tℓ, tℓ+1). As a result, there must exist an interval [s1, s2] ⊆ [tℓ, t

a
ℓ ) and some arm a′ ∈ [K] so that the elimination rule

(2) holds. Using Lemma A.2, we then find that for some constant c2 > 0:
s2∑

t=s1

E
[
δ̂t(a

′, a) | Ft−1

]
> c2 log(T )K

√
(s2 − s1) ∨K2. (7)
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Note that by construction of δ̂t(a′, a), we always have δt(a
′, a) ≥ E[δ̂t(a′, a) | Ft−1] since

E[δ̂t(a′, a) | Ft−1] =

{
δt(a

′, a) a′, a ∈ At

−1/2 otherwise.
(8)

Thus, in view of inequality (7), there exists no arm a ∈ [K] such that maxa′ δt(a
′, a) = 0 for all t ∈ [tℓ, tℓ+1), i.e. no fixed

arm is optimal throughout the episode and there must have been a change of Condorcet winner.

A.1.3 Decomposing Regret across Episodes and Arms

We will bound regret of the algorithm withing each episode separately, i.e. we consider

E

[
tℓ+1−1∑
t=tℓ

δt(a
∗
t , at) + δt(a

∗
t , bt)

2

]
, (9)

where tℓ is the first round in episode ℓ and a∗t is the Condorcet winner in round t ∈ [T ].

Recall that, every round t ∈ [T ], the algorithm selects an arm a uniformly at random from the active set At. It will then be
useful to rewrite (11) in terms of fixed arms a ∈ [K].

Lemma A.4. We can write (11) in terms of the regret suffered by fixed arms:

E

[
tℓ+1−1∑
t=tℓ

δt(a
∗
t , at) + δt(a

∗
t , bt)

2

]
= E

[
K∑

a=1

tℓ+1∑
t=tℓ

δt(a
∗
t , a)

|At|
1{a∈At}

]
(10)

Proof. As the algorithm independently and symmetrically selects two arms (at, bt) in each round (Line 4 in Algorithm 2),
we can focus on bounding regret for one of the two arms, say at, by writing

E

[
tℓ+1−1∑
t=tℓ

δt(a
∗
t , at) + δt(a

∗
t , bt)

2

]
= E

[
tℓ+1−1∑
t=tℓ

δt(a
∗
t , at)

]
. (11)

Conditioning on tℓ and using the tower property, we then further find that

E

[
tℓ+1∑
t=tℓ

δt(a
∗
t , at)

]
= E

[
E

[
tℓ+1∑
t=tℓ

δt(a
∗
t , at) | tℓ

]]

= E

[
T∑

t=tℓ

E
[
1{t<tℓ+1}E [δt(a

∗
t , at) | Ft−1] | tℓ

]]

= E

[
T∑

t=tℓ

∑
a∈At

E
[
1{t<tℓ+1} | tℓ

] δt(a∗t , a)
|At|

]
= E

[
tℓ+1∑
t=tℓ

∑
a∈At

δt(a
∗
t , a)

|At|

]
,

where we used that 1{t<tℓ+1} is Ft−1-measurable and

E [δt(a
∗
t , at) | Ft−1] =

∑
a∈At

δt(a
∗
t , a)

|At|
.

Lastly, Lemma A.4 then follows from rewriting the sum over a ∈ At using the indicator 1{a∈At} and swapping the order of
the sums.

In an important next step, we split the dynamic regret for each fixed arm a ∈ [K] into:

(i) the regret we suffer from playing arm a in the ℓ-th episode before its elimination from Agood,

(ii) the regret we suffer from (re)playing arm a in the ℓ-th episode after its elimination from Agood.
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Recall that taℓ ∈ [tℓ, tℓ+1) denotes the time that arm a is eliminated from Agood in episode ℓ. Using Lemma A.4, we then
decompose the dynamic regret in episode ℓ as

E

[
tℓ+1−1∑
t=tℓ

δt(a
∗
t , at) + δt(a

∗
t , bt)

2

]
= E

 K∑
a=1

taℓ−1∑
t=tℓ

δt(a
∗
t , a)

|At|


︸ ︷︷ ︸

R1(ℓ)

+E

 K∑
a=1

tℓ+1−1∑
t=taℓ

δt(a
∗
t , a)

|At|
1{a∈At}


︸ ︷︷ ︸

R2(ℓ)

, (12)

where for R1(ℓ) we used that a ∈ Agood implies a ∈ At by construction of these sets. For every fixed arm, R1(ℓ)
corresponds to the regret suffered before said arm is eliminated from the master set. Accordingly, R2(ℓ) is the regret due to
replaying an arm after its elimination from the master set. The remainder of the proof is mainly concerned with bounding
R1(ℓ) and R2(ℓ) appropriately.

A.2 Bounding R1(ℓ): Regret Before Elimination

We begin by assuming w.l.o.g. that t1ℓ ≤ · · · ≤ tKℓ so that for each round t < taℓ all arms a′ ≥ a are element in Agood ⊆ At.
As a result, we have |At| ≥ K + 1− a for all t ≤ taℓ , and thus

E

 K∑
a=1

taℓ−1∑
t=tℓ

δt(a
∗
t , a)

|At|

 ≤ E

 K∑
a=1

taℓ−1∑
t=tℓ

δt(a
∗
t , a)

K + 1− a

 . (13)

As we can see, the denominator will eventually account for a factor of log(K) ≈
∑K

a=1 1/a. We now concentrate on
bounding the inner sum in (13), i.e. the regret of any fixed arm before being eliminated in the ℓ-th episode.

A.2.1 Bounding E[
∑taℓ−1

t=tℓ
δt(a

∗
t , a)] for any fixed arm a ∈ [K]

This section is devoted to proving the following upper bound.
Lemma A.5. For some constant c > 0:

E

taℓ−1∑
t=tℓ

δt(a
∗
t , a)

 ≤ c log2(T )K E

 ∑
i∈Phases(tℓ,taℓ )

√
τi+1 − τi

+
K

T 2
+

1

T
. (14)

To prove Lemma A.5, we will divide the interval [tℓ, taℓ ) into segments over the course of which arm a suffers large regret
and show that not too many of such segments will occur in interval [tℓ, taℓ ), i.e. until arm a is being eliminated from Agood.
The definition of such bad segments is analogous to their construction in Abbasi-Yadkori et al. (2022) and Suk and Kpotufe
(2022). Whereas prior work utilizes such segments to bound the regret of the last arm considered good in an episode, i.e. the
last arm in Agood, we will instead derive a regret bound for any fixed arm a. While the according regret bound will be in
some sense weaker, it will still be sufficiently tight for our purposes. We here follow the notation in Suk and Kpotufe (2022).
Definition A.1 (Bad Segments). Fix tℓ and let [τi, τi+1) be any phase intersecting [tℓ, T ). For an arm a, define rounds
si,j(a) ∈ [tℓ ∨ τi, τi+1) recursively as follows: let si,0(a) = tℓ ∨ τi and define si,j+1(a) as the smallest round in
(si,j(a), τi+1) such that arm a satisfies for some constant c3 > 0:

si,j+1(a)∑
t=si,j(a)

δt(a
∗
i , a) > c3 log(T )K

√
si,j+1(a)− si,j(a), (15)

if such round si,j+1(a) exists. Otherwise, we let si,j+1(a) = τi+1 − 1. We refer to the intervals [si,j , si,j+1) as bad
segments if (15) is satisfied. If a segment does not satisfy (15), we refer to them as non-bad segments.3

Note that the concept of bad segments will become useful later as, for a fixed tℓ, by definition of the bad segments, we can
always upper bound the dynamic regret on an interval [si,j(a), si,j+1(a)) by

si,j+1(a)−1∑
t=si,j(a)

δt(a
∗
t , a) ≤ c3 log(T )K

√
si,j+1(a)− si,j(a). (16)

3Note that by definition every segment but the last segment in a given phase must always satisfy (15)
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We now define the bad round for an arm a as the smallest round when the aggregated regret of bad segments exceeds√
interval length regret.

Definition A.2 (Bad Round). Fix tℓ and some arm a. The bad round s(a) > tℓ is defined as the smallest round which
satisfies for some universally fixed constant c4 > 0:∑

(i,j) : si,j+1(a)<s(a)

√
si,j+1(a)− si,j(a) > c4 log(T )

√
s(a)− tℓ, (17)

where the sum is over all bad segments with si,j+1(a) < s(a).

For a given episode ℓ, we will show that arm a is eliminated with high probability by the time the bad round s(a) occurs. To
this end, we will introduce perfect replays, i.e. those runs of CondaLet which are properly timed and eliminate arm a
before it aggregates large regret.

A.2.2 Perfect Replays

The following result will become very useful and makes the intuition precise that on the concentration event the Condorcet
winner will not be eliminated. More precisely, any run of CondaLet(s,m) scheduled in phase i will never eliminate a∗i
inside phase i as long as our concentration bound holds.

Lemma A.6. On event E , no run of CondaLet(s,m) with s ∈ [τi, τi+1) ever eliminates arm a∗i before round τi+1.

Proof. Suppose the contrary that some CondaLet(s,m) with s ∈ [τi, τi+1) eliminates arm a∗i before round τi+1. Then,
we must have for some arm a ∈ [K] and interval [s1, s2] ⊆ [s, τi+1) that

C log(T )K
√
(s2 − s1) ∨K2 <

s2∑
t=s1

δ̂t(a, a
∗
i ), (18)

which using the concentration bound (6) implies on event E that

c2 log(T )K
√
(s2 − s1) ∨K2 <

s2∑
t=s1

E
[
δ̂t(a, a

∗
i ) | Ft−1

]
≤

s2∑
t=s1

δt(a, a
∗
i ), (19)

where the last inequality holds by merit of (8). Now, by the definition of arm a∗i as the Condorcet winner in phase i, we
must have δt(a, a

∗
i ) ≤ 0 for all t ∈ [τi, τi+1) and all a ∈ [K]. Lemma A.6 then follows from contradiction.

This leads to the following important property of CondaLet that states that properly timed replays of sufficient length will
eliminate arms from Agood in the course of their bad segments. We call such calls of CondaLet perfect replays.

Proposition A.1 (Perfect Replay). Suppose that event E holds. Let [si,j(a), si,j+1(a)) be a bad segment w.r.t. arm a

and let s̃i,j(a) =
⌈ si,j(a)+si,j+1(a)

2

⌉
be the midpoint of the interval. It holds that any run of CondaLet(s,m) with

s ∈ [si,j(a), s̃i,j(a)] and m ≥ si,j+1(a)− si,j(a) will eliminate arm a from Agood. We refer to such calls of CondaLet as
perfect replays w.r.t. arm a.

Proof. Let CondaLet(s,m) be a replay such that s ∈ [si,j(a), s̃i,j(a)] and m ≥ si,j+1(a)− si,j(a). As any bad segment
is by definition contained inside a phase, Lemma A.6 tells us that a∗i ∈ At for all t ∈ [s̃i,j(a), si,j+1(a)]. Recall that the
estimates δ̂t(a∗i , a) are unbiased if a, a∗i ∈ At and we are thus able to obtain unbiased estimates of

∑si,j+1(a)

t=s̃i,j(a)
δt(a

∗
i , a).

What is left to show is that in fact arm a suffers sufficiently large regret to cause its elimination on this interval. To this end,
by definition of the bad segments and basic algebraic manipulation, we find that

si,j+1(a)∑
t=s̃i,j(a)

δt(a
∗
i , a) =

si,j+1(a)∑
t=si,j(a)

δt(a
∗
i , a)−

s̃i,j(a)−1∑
t=si,j(a)

δt(a
∗
i , a)

(15)
≥ c3 log(T )K

(√
si,j+1(a)− si,j(a)−

√
s̃i,j(a)− 1− si,j(a)

)
≥ c3

4
log(T )K

√
si,j+1(a)− s̃i,j(a).
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Using that
∑si,j+1(a)

t=s̃i,j(a)
δ̂t(a

∗
i , a) is an unbiased estimate of

∑si,j+1(a)

t=s̃i,j(a)
δt(a

∗
i , a) and applying the concentration bound (6),

this shows that arm a satisfies the elimination rule (2) over interval [s̃i,j(a), si,j+1(a)] and will thus be eliminated by
CondaLet(s,m).

A.2.3 Perfect replays are scheduled w.h.p.

Following Suk and Kpotufe (2022), we will now show that a perfect replay that eliminates arm a is scheduled before
round s(a) with high probability. A replay CondaLet(s,m) is scheduled if Bs,m = 1 and the random variables Bs,m

with s ≥ tℓ are conditionally independent on tℓ (see Line 7 in Algorithm 1). We are thus interested in perfect replays
CondaLet(s,m) such that for any bad segment [si,j(a), si,j+1(a)) with si,j+1(a) < s(a), we have s ∈ [si,j(a), s̃i,j(a)]
and m ≥ si,j+1(a) − si,j(a). Moreover, we define mi,j as the smallest element in {2, . . . , 2⌈log(T )⌉} such that mi,j ≥
si,j+1(a) − si,j(a), which implies that si,j+1(a) − si,j(a) ≥ mi,j

2 . We will obtain the high probability guarantee via
concentration on the sum

X(tℓ, s(a)) =
∑

(i,j) : si,j+1(a)<s(a)

s̃i,j(a)∑
s=si,j(a)

Bs,mi,j . (20)

Lemma A.7. Let E ′(tℓ) denote the event that X(tℓ, s(a)) ≥ 1 for all arms a, i.e. a perfect replay is scheduled before round
s(a). We have P(E ′(tℓ) | tℓ) ≥ 1−K/T 3.

Proof. Recalling that Bs,m | tℓ ∼ Bernoulli
(

1√
m(s−tℓ)

)
, we find that

E[X(tℓ, s(a)) | tℓ] ≥
1√
2

∑
(i,j) :

si,j+1(a)<s(a)

s̃i,j(a)− si,j(a)√
si,j+1(a)− si,j(a)

√
s(a)− tℓ

≥ 1

4

∑
(i,j) :

si,j+1(a)<s(a)

√
si,j+1(a)− si,j(a)

s(a)− tℓ

(17)
≥ c4

4
log(T )

For c4 sufficiently large the standard Chernoff bound tells us that

P
(
X(tℓ, s(a)) ≤

E[X(tℓ, s(a)) | tℓ]
2

| tℓ
)
≤ exp

(
−E[X(tℓ, s(a)) | tℓ]

8

)
≤ 1

T 3
.

The desired bound then follows from taking a union bound over all arms in [K].

Now, on event E ∩E ′(tℓ), it must hold that taℓ < s(a) for all arms a ∈ [K], since otherwise a would have been eliminated by
some perfect replay before round taℓ (by definition of event E ′(tℓ)). As the bad round s(a) is defined as the smallest round
satisfying (17), we then have

∑
(i,j) : si,j+1(a)<taℓ

√
si,j+1(a)− si,j(a) ≤ c4 log(T )K

√
taℓ − tℓ. (21)

Hence, in view of equation (16), over the bad segments, the regret of arm a is at most of order log2(T )
√
taℓ − tℓ. Moreover,

for every last segment in some phase i, [si,j , si,j+1(a)), as well as the final segment [si,j(a), taℓ ), we know that the regret
suffered from playing a is upper bounded by c3 log(T )

√
τi+1 − τi by definition of non-bad segments (Definition A.1).

Therefore, on event E ∩ E ′(tℓ), it follows from equation (21) and the above that

taℓ−1∑
t=tℓ

δt(a
∗
t , a) ≤ c5K log2(T )

∑
i∈Phases(tℓ,taℓ )

√
τi+1 − τi, (22)
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where we used that
√
taℓ − tℓ ≤

∑
i∈Phases(tℓ,taℓ )

√
τi+1 − τi. Finally, we obtain Lemma A.5 by taking expectation and using

that E ∩ E ′(tℓ) holds with high probability,

E

taℓ−1∑
t=tℓ

δt(a
∗
t , a)

 ≤ E

[1{E∩E′(tℓ)}

taℓ−1∑
t=tℓ

δt(a
∗
t , a) | tℓ

]+ T
(
P(Ec) + P(E ′(tℓ)c | tℓ)

)

≤ c5K log2(T )E

 ∑
i∈Phases(tℓ,taℓ )

√
τi+1 − τi

+
1

T
+

K

T 2
.

A.2.4 Summing Over Arms

Note that taℓ ≤ tℓ+1 for all a ∈ [K] by definition of taℓ . Then, summing over all arms, it follows from Lemma A.5 and (13)
that for some constant c6 > 0:

E

 K∑
a=1

taℓ−1∑
t=tℓ

δt(a
∗
t , a)

|At|

 ≤ c6K log3(T )E

 ∑
i∈Phases(tℓ,tℓ+1)

√
τi+1 − τi

 , (23)

where we loosely upper bound log(K) by log(T ).

A.3 Bounding R2(ℓ): Regret After Elimination

Before we can begin, we will have to lay some groundwork to simplify the analysis in later steps. Recall the definition of
bad segments from Section A.2 and define for every phase [τi, τi+1) intersecting with [taℓ , tℓ+1), i.e. i ∈ Phases(taℓ , tℓ+1),
the segments [si,j(a), si,j+1) as in Definition A.1.

We will split the regret due to bad segments, i.e. those that satisfy (15), from the regret due to non-bad segments, i.e. the last
segments in a phase that do no satisfy (15). For a fixed arm a ∈ [K], we let bad(a) denote the rounds t ∈ [tℓ, tℓ+1) such
that t ∈ [si,j(a), si,j+1(a)) for any bad segment [si,j(a), si,j+1(a)).

By the definition of a non-bad segment (w.r.t. arm a), we know that that there is at most one such segment in every phase
and that the regret of arm a in each segment is upper bounded by c3 log(T )

√
τi+1 − τi, where [τi, τi+1) is the phase that

contains the segment. To take care of the denominator |At|, assume w.l.o.g. that there is a run of CondaLet(taℓ ,m) that
remains active and uninterrupted until the final round T .4 We can then reorder arms a ∈ [K] according to the round that
they are being eliminated by CondaLet(taℓ ,m), which gives |At| ≥ K + 1− a whenever a ∈ At. As before, this yields a
factor of log(K) when summing over all arms. We then bound R2(ℓ) over non-bad segments as

E

 K∑
a=1

tℓ+1−1∑
t=taℓ

δt(a
∗
t , a)

|At|
1{a∈At,t̸∈bad(a)}

 ≤ c3K log(K) log(T )E

 ∑
i∈Phases(taℓ ,tℓ+1)

√
τi+1 − τi

 . (24)

The more challenging task is now to bound R2(ℓ) for rounds in bad segments. Recall that, for a fixed arm a ∈ [K], the sum
in question relates to the expected regret suffered within an episode from replaying arm a after it has been eliminated from
Agood, i.e. after time taℓ . We begin by a straightforward upper bound. To this end, for a given replay CondaLet(s,m), let
M(s,m, a) be the last round in [s, s+m], where arm a is active in CondaLet(s,m) and all of its children. Then,

E

 K∑
a=1

tℓ+1−1∑
t=taℓ

δt(a
∗
t , a)

|At|
1{a∈At,t∈bad(a)}

 ≤ E

 K∑
a=1

tℓ+1−1∑
s=tℓ+1

∑
m

1{Bs,m=1}

M(s,m,a)∑
t=s∨taℓ

δt(a
∗
t , a)

|At|
1{t∈bad(a)}

 , (25)

where the most inner sum on the right hand side is for m ∈ {2, . . . , 2⌈log(T )⌉}. We will keep the convention that whenever a
sum over m is not further specified, it will be over the above set. Note that (25) is a loose upper bound. While of course
only a single call of CondaLet can be active at any point in time, we here sum over every possible replay and ignore the
potential nesting and interleaving of replays. In particular, this upper bound is justified as each δt(a

∗
t , a) is non-negative

4Note that this is w.l.o.g. when bounding 1/|At| as any interrupting call of CondaLet would only increase |At| by resetting it to [K].
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tℓ taℓ tℓ+1s s+m

confined replay

M s′ s′ +m′

unconfined replay

M ′τi

a∗i a∗i+1

Figure 1: For some episode [tℓ, tℓ+1) and arm a ∈ [K], an example of a confined replay and a unconfined replay, where
M = M(s,m, a) and M ′ = M(s′,m′, a). When a replay CondaLet(s′,m′) intersects with more than one phase, the
CW in the next phase [τi, τi+1), denoted a∗i+1, could be evicted before the beginning of that phase, i.e. in the interval [s′, τi).

by definition of the CW a∗t . The looseness of (25) will pose no obstacle, as the remainder of our upper bounds will be
sufficiently tight as we will see.

Again, we first take care of the dependence on K due to the denominator on the right hand side of (25). Note that for a fixed
CondaLet(s,m) if ak is the k-th arm to be eliminated by CondaLet(s,m), then mint∈[s,M(s,m,ak)] |At| ≥ K + 1− k.
Similarly to before, this will result in a multiplicative log(K) term when eventually switching the order of the sums and
summing over all arms. For now, we therefore focus on the expression

E

tℓ+1−1∑
s=tℓ+1

∑
m

1{Bs,m=1}

M(s,m,a)∑
t=s∨taℓ

δt(a
∗
t , a)1{t∈bad(a)}

 (26)

for any fixed arm a ∈ [K]. To deal with this quantity, it will be helpful to distinguish between two types of replays, i.e. calls
of CondaLet, which we refer to as confined and unconfined replays.
Definition A.3 (Confined and Unconfined Replays). For a fixed tℓ, we call CondaLet(s,m) confined if there exists
i ∈ Phases(tℓ, T ) such that [s, s+m] ⊆ [τi, τi+1), i.e. the replay intersects with a single phase only. In turn, we say that
CondaLet(s,m) is unconfined if for all i ∈ Phases(tℓ, T ), we have [s, s+m] ̸⊆ [τi, τi+1).

An illustration of confined and unconfined replays is given in Figure 1.

We proceed by upper bounding the inner sum
∑M(s,m,a)

t=s∨taℓ
δt(a

∗
t , a)1{t∈bad(a)} for confined and unconfined replays separately.

The bound for confined replays comes with no major intricacies, whereas bounding the regret due to unconfined replays is
slightly more involved.

A.3.1 Bounding Regret for Confined Replays

We begin by bounding, the inner sum
∑M(s,m,a)

t=s∨taℓ
δt(a

∗
t , a) for any confined replay in terms of the replay duration m.

Lemma A.8. On event E , for any fixed arm a and confined replay (s,m), it holds that

M(s,m,a)∑
t=s∨taℓ

δt(a
∗
t , a) ≤ c2 log(T )K

√
m.

Proof of Lemma A.8. Consider any confined replay CondaLet(s,m) with [s, s+m] ⊆ [τi, τi+1) for some phase i. This
implies that on interval [s, s+m] the Condorcet winner remains the same, i.e. a∗t = a∗i for all t ∈ [s, s+m]. Now, recall
from Lemma A.6 that, on event E , arm a∗i will not be eliminated inside of [s, s +m] as it is a subset of phase [τi, τi+1).
As a result, we must have a, a∗i ∈ At for all t ∈ [s ∨ taℓ ,M(s,m, a)] and our estimate δ̂t(a

∗
i , a) is thus unbiased. Since

M(s,m, a) is the last round that arm a is retained by CondaLet(s,m) (and its children), it follows from the elimination
rule (2) and the concentration bound (6) that

M(s,m,a)∑
t=s∨taℓ

δt(a
∗
i , a) ≤ c2 log(T )K

√
M(s,m, a)− s ∨ taℓ ≤ c2 log(T )K

√
m,

where the last inequality uses that M(s,m, a) ≤ s+m.
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A.3.2 Bounding Regret for Unconfined Replays

Lemma A.9. On event E ∩ E ′′(tℓ), for any fixed arm a and unconfined replay (s,m), it holds that

M(s,m,a)∑
t=s∨taℓ

δt(a
∗
t , a)1{t∈bad(a)} ≤ c5 log

2(T )K
(√

s− tℓ + 2
√
m
)
.

Here, the event E ′′(tℓ) is a concentration event similar to that in Lemma A.7 and will be defined in the following.

Proof of Lemma A.9. Consider any unconfined replay CondaLet(s,m) with s ∈ [tℓ, tℓ+1). Let i be the phase so that
s ∈ [τi−1, τi). We can then split the sum over t ∈ [s ∨ taℓ ,M(s,m, a)] into the rounds before the Condorcet winner changes
for the first time within [s, s+m] and the remaining rounds, i.e.

M(s,m,a)∑
t=s∨taℓ

δt(a
∗
t , a) =

τi−1∑
t=s∨taℓ

δt(a
∗
i , a) +

M(s,m,a)∑
t=τi

δt(a
∗
t , a). (27)

Note that the interval [τi,M(s,m, a)] can itself span over several phases. The first sum on the right hand side can be
bounded as in Lemma A.8. Using Lemma A.6, the elimination rule, and the concentration bound, we get

τi−1∑
t=s∨taℓ

δt(a
∗
i , a) ≤ c2 log(T )K

√
m.

The second sum cannot be bounded in a similar way, as we cannot guarantee that the Condorcet winner in some round
t ∈ [τi,M(s,m, a)] has not been eliminated in prior rounds [s ∨ taℓ , τi). For example in Figure 1, the unconfined replay
CondaLet(s′,m′) could have eliminated a∗i+1 on interval [s′, τi) before it became the Condorcet winner. We may therefore
fail to detect that a suffers large regret without additional replays.

To resolve this difficulty, we can reuse part of the arguments from Section A.2. Define the bad segments [sk,j(a), sk,j+1(a))
for k ≥ i as in Definition A.1. Similarly to before, we now define the bad round s′(a) as the smallest round s′(a) > τi such
that for the same constant c4 > 0 as in (17)∑

(k,j) : sk,j+1(a)<s′(a)

√
sk,j+1(a)− sk,j(a) > c4 log(T )

√
s′(a)− tℓ, (28)

where the sum is over all bad segments with k ≥ i and sk,j+1(a) < s′(a).

Importantly, for this definition of s′(a) and with the sum X(tℓ, s
′(a)) defined accordingly, the high probability guarantee of

Lemma A.7 still holds. This implies that a perfect replay (see Proposition A.1) that eliminates arm a (from the unconfined
replay CondaLet(s,m)) is scheduled w.h.p. before the bad round s′(a) occurs. Let the corresponding event denote E ′′(tℓ)
as in Lemma A.7.

The round M(s,m, a) was defined as the last round for which a is retained in CondaLet(s,m) and all of its children. Hence,
on event E ∩ E ′′(tℓ), we must have M(s,m, a) < s′(a) as otherwise a would have been eliminated from CondaLet(s,m)
(or one of its children) before round M(s,m, a), a contradiction. By merit of (16), this yields∑

(k,j) : sk,j+1(a)<M(s,m,a)

√
sk,j+1(a)− sk,j(a) ≤ c4 log(T )K

√
M(s,m, a)− tℓ

The regret on the final segment [sk,j(a),M(s,m, a)] can trivially be bounded by c3 log(T )K
√
m, as it must be a non-bad

segment and M(s,m, a)− sk,j(a) ≤ m. Finally, in view of (16), it follows that

M(s,m,a)∑
t=s∨taℓ

δt(a
∗
t , a)1{t∈bad(a)} ≤ c5 log

2(T )K(
√
M(s,m, a)− tℓ +

√
m)

≤ c5 log
2(T )K(

√
s− tℓ + 2

√
m),

where the second inequality uses
√
M(s,m, a)− tℓ ≤

√
s− tℓ +

√
m, since M(s,m, a) ≤ s+m and s ≥ tℓ.
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A.3.3 Combining Confined and Unconfined Replays

We will now conclude the bound on R2(ℓ). To this end, recall that the replay schedule is chosen according to Bs,m | tℓ ∼
Bern

(
1/

√
m(s− tℓ)

)
. Then, conditioning on tℓ, we have

E

[
tℓ+1∑

s=tℓ+1

∑
m

1{Bs,m}

]
= E

[
T∑

s=tℓ+1

∑
m

E
[
1{Bs,m} | tℓ

]
E
[
1{s<tℓ+1} | tℓ

]]
= E

tℓ+1−1∑
s=tℓ+1

1√
m(s− tℓ)

 .

Moreover, note that we can rewrite a sum over s ∈ [tℓ + 1, tℓ+1) as a double sum over i ∈ Phases(tℓ, tℓ+1) and s ∈
[τi ∨ (tℓ +1), τi+1 ∧ tℓ+1). For unconfined replays, we notice that when CondaLet(s,m) is scheduled with s ∈ [τi, τi+1),
it must hold that m ≥ τi+1 − s, as CondaLet(s,m) would otherwise not be unconfined.

Now, combining Lemma A.8 and Lemma A.9, we obtain

E

1{E∩E′′(tℓ)}

K∑
a=1

tℓ+1−1∑
t=taℓ

δt(a
∗
t , a)

|At|
1{a∈At,t∈bad(a)}



≤ E

1{E∩E′′(tℓ)}

tℓ+1−1∑
s=tℓ+1

∑
m

1{Bs,m=1}

M(s,m,a)∑
t=s∨taℓ

δt(a
∗
t , a)

|At|
1{t∈bad(a)}


≤ c2K log(K) log(T )E

[
tℓ+1−1∑
s=tℓ

∑
m

√
m√

m(s− tℓ)

]

+ c5K log(K) log2(T )E

 ∑
i∈Phases(tℓ,tℓ+1)

τi+1−1∑
s=τi

∑
m≥τi+1−s

√
s− tℓ + 2

√
m√

m(s− tℓ)



≤ c2K log3(T )E
[√

tℓ+1 − tℓ

]
+ c5K log3(T )E

 ∑
i∈Phases(tℓ,tℓ+1)

τi+1−1∑
s=τi

1√
τi+1 − s

+ 2
√

tℓ+1 − tℓ



≤ c7K log3(T )E

2 ∑
i∈Phases(tℓ,tℓ+1)

√
τi+1 − τi +

∑
i∈Phases(tℓ,tℓ+1)

√
τi+1 − τi + 4

∑
i∈Phases(tℓ,tℓ+1)

√
τi+1 − τi



≤ 7c7K log3(T )E

 ∑
i∈Phases(tℓ,tℓ+1)

√
τi+1 − τi

 .

We here repeatedly used that
∑n

k=1 1/
√
k ≤ 2

√
n in the third and fourth inequality. In particular, the fourth inequality

holds as
√
tℓ+1 − tℓ ≤

∑
i∈Phases(tℓ,tℓ+1)

√
τi+1 − τi and

τi+1−1∑
s=τi

1√
τi+1 − s

=

τi+1−τi−1∑
s=1

1√
s
≤

√
τi+1 − τi.

Further note that, as explained before, the denominator |At| can be seen to account for a factor of log(K), which we loosely
upper bounded by log(T ). Together with (24), we then obtain for some constant c8 > 0 the desired bound of

E

 K∑
a=1

tℓ+1−1∑
t=taℓ

δt(a
∗
t , a)

|At|
1{a∈At}

 ≤ c8K log3(T )E

 ∑
i∈Phases(tℓ,tℓ+1)

√
τi+1 − τi

 . (29)
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A.4 Summing Over Episodes

In Section A.2 and Section A.3, we bounded the regret of arms within an episode before and after their elimination,
respectively. Combining (23) and (29), and summing over episodes, we then obtain

E

[
T∑

t=1

δt(a
∗
t , at) + δt(a

∗
t , bt)

2

]
≤ c9K log3(T )E

1{E}

L∑
ℓ=1

∑
i∈Phases(tℓ,tℓ+1)

√
τi+1 − τi

+
1

T
.

Now, on the concentration event E , Lemma A.3 tells us that any phase [τi, τi+1) intersects with at most two episodes. Recall
that τ0 := 1 and τSCW+1 := T . It then follows from the above that

E

[
T∑

t=1

δt(a
∗
t , at) + δt(a

∗
t , bt)

2

]
≤ 2c9K log3(T )

SCW∑
i=0

√
τi+1 − τi +

1

T
.

B Missing Details from Section 5

B.1 Significant CW Switches

Let us first recall the definition of Significant Condorcet Winner Switches from Section 2.2. Let ν0 := 1 and define νi+1

recursively as the first round in [νi, T ) such that for all arms a ∈ [K] there exist rounds νi ≤ s1 < s2 < νi+1 such that

s2∑
t=s1

δt(a
∗
t , a) ≥

√
K(s2 − s1). (30)

Let S̃CW denote the number of such Significant CW Switches ν1, . . . , νS̃CW . The key idea of Suk and Kpotufe (2022) when
developing this notion of non-stationarity (for multi-armed bandits) is that a restart in exploration is only warranted if there
are no safe arms left to play, i.e. there is no arm left that does not suffer regret (30) on some interval [s1, s2]. For every phase
[νi, νi+1), we denote by asi the last safe arm in phase i, i.e. the last arm to satisfy (30) in phase i. Moreover. we define the
sequence of safe arms as ast = asi for t ∈ [νi, νi+1).

Significant CW Switches are able to reconcile switch-based non-stationarity measures such as CW Switches SCW and
variation-based non-stationarity measures such as the CW Variation Ṽ . More specifically, it naturally holds that S̃CW ≤ SCW

and Corollary 5.1 shows that near-optimal dynamic regret w.r.t. S̃CW also implies near-optimal dynamic regret w.r.t. Ṽ .

B.2 Proof of Theorem 5.1

For convenience, we recall the assumptions of Theorem 5.1.

Assumption 1 (Strong Stochastic Transitivity). Every preference matrix Pt satisfies that if a ≻t b ≻t c, we have
δt(a, c) ≥ δt(a, b) ∨ δt(b, c).

Assumption 2 (Stochastic Triangle Inequality). Every preference matrix Pt satisfies that if a ≻t b ≻t c, we have
δt(a, c) ≤ δt(a, b) + δt(b, c).

We see that together Assumption 1 and Assumption 2 imply a more general type of triangle inequality for any triplet
a, b, c ∈ [K] with a ≻ b and a ≻ c.

Lemma B.1. Under Assumption 1 and Assumption 2, for any triplet a, b, c ∈ [K] with a ≻t b and a ≻t c, it holds that

δt(a, c) ≤ 2δt(a, b) + δt(b, c).

Proof. Suppose that b ≻t c. Then, the claim follows directly from the stochastic triangle inequality, since δt(a, c) ≤
δt(a, b) + δt(b, c). Suppose that c ≻t b. Leveraging strong stochastic transitivity of the triplet a ≻t c ≻t b, we have

δt(a, b) ≥ δt(a, c) ∨ δt(c, b).

This implies that δt(a, c) ≤ δt(a, b) as well as δt(c, b) ≤ δt(a, b). By definition of the gaps, this also yields |δt(b, c)| ≤
δt(a, b), since c ≻t b. Consequently, it holds that δt(a, c) ≤ 2δt(a, b) + δt(b, c).
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As briefly discussed in Section 5, these assumptions on the preference sequence P1, . . . ,PT allow us to decompose the
dynamic regret so that we can compare against a temporarily fixed benchmark.

We can w.l.o.g. assume that a∗t ≻t at and a∗t ≻t a
s
t . To see that this assumption is valid, note that a∗t is the Condorcet

winner in round t and it is then easy to verify that Lemma B.1 also holds if a∗t equals one (or both) of at and ast . Applying
Lemma B.1 to a∗t , ast and at, we have

δt(a
∗
t , at) ≤ 2δt(a

∗
t , a

s
t ) + δt(a

s
t , at).

Recalling equation (11) from Section A, we then get the following decomposition of the dynamic regret within each episode
as

E

[
tℓ+1−1∑
t=tℓ

δt(a
∗
t , at) + δt(a

∗
t , bt)

2

]
≤ 2E

[
tℓ+1−1∑
t=tℓ

δt(a
∗
t , a

s
t )

]
︸ ︷︷ ︸

R̃1(ℓ)

+E

[
tℓ+1−1∑
t=tℓ

δt(a
s
t , at)

]
︸ ︷︷ ︸

R̃2(ℓ)

.

B.2.1 Bounding R̃1(ℓ)

We can bound R̃1(ℓ) directly using the definition of Significant CW Switches. By definition of asi as the last safe arm in
phase [νi, νi+1), i.e. the last arm to satisfy (30) for some interval [s1, s2] ⊆ [νi, νi+1), it holds that

νi+1∑
t=νi

δt(a
∗
t , a

s
i ) ≤

√
K(νi+1 − νi).

We can then sum over all phases i ∈ [S̃CW] to obtain

T∑
t=1

δt(a
∗
t , a

s
t ) ≤

S̃CW∑
i=1

√
K(νi+1 − νi).

B.2.2 Bounding R̃2(ℓ)

As briefly mentioned in the main text, the difficulty in bounding
∑tℓ+1−1

t=tℓ
δt(a

∗
t , at) for Significant CW Switches is that

the identity of the Condorcet winner, i.e. a∗t , may change several times within each significant phase i ∈ [S̃CW]. This
makes accurately tracking δt(a

∗
t , a) (nearly) impossible even across small intervals and the arguments that we used to prove

Theorem 3.1 fail.

In contrast, when we consider the relative regret of at against the last safe arm ast (or sequence thereof), this difficulty can
be resolved. Considering ast (instead of a∗t ) as a benchmark ensures that within each phase i ∈ [S̃CW] the comparator arm is
fixed, since ast = asi for all t ∈ [νi, νi+1). Hence, the relative regret w.r.t. ast can still be dealt with. In particular, the proof of
Theorem 3.1 from Section A can be seen to hold with minor changes when swapping a∗t for ast and considering significant
phases ν1, . . . , νS̃CW . For completeness, we reformulate and prove two important lemmas from Section A that relied on
properties of a∗t and τ1, . . . , τSCW . We want to emphasise that we here again rely on Assumption 1 and Assumption 2.

The following lemma shows that the beginning of a new episode implies a Significant CW Switch, i.e. every arm suffers at
least (30) much regret over some interval within the episode.

Lemma B.2 (Lemma A.3 for S̃CW). On event E , for each episode [tℓ, tℓ+1) with tℓ+1 ≤ T , there exists a Significant CW
Switch νi ∈ [tℓ, tℓ+1).

Proof. The start of a new episode means that every arm a ∈ [K] has been eliminated from Agood at some round in
taℓ ∈ [tℓ, tℓ+1). As a result, there must exist an interval [s1, s2] ⊆ [tℓ, t

a
ℓ ) and some arm a′ ∈ [K] so that the elimination rule

(2) holds. Using Lemma A.2, we then find that for some constant c2 > 0:

s2∑
t=s1

E
[
δ̂t(a

′, a) | Ft−1

]
> c2 log(T )K

√
(s2 − s1) ∨K2. (31)
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Note that by construction of δ̂t(a′, a), we always have δt(a
′, a) ≥ E[δ̂t(a′, a) | Ft−1] since

E[δ̂t(a′, a) | Ft−1] =

{
δt(a

′, a) a′, a ∈ At

−1/2 otherwise.
(32)

Applying Lemma B.1 to the triplet (a∗t , a
′, a), we get that δt(a∗t , a) ≥ 2δt(a

∗
t , a

′) + δt(a
′, a) ≥ δt(a

′, a). Thus, (31) tells
us that there exists no arm a ∈ [K] such that for all [s1, s2] ⊆ [tℓ, tℓ+1)

s2∑
t=s1

δt(a
∗
t , a) <

√
K(s2 − s1).

In other words, there is no arm that remains safe to play throughout the episode and there must have been a Significant CW
Switch νi ∈ [tℓ, tℓ+1).

The following lemma ensures that the last safe arm asi within phase i is not being eliminated before round νi+1 by any
replay CondaLet(s,m) that is scheduled in said phase.

Lemma B.3 (Lemma A.6 for ast ). On event E , no run of CondaLet(s,m) with s ∈ [νi, νi+1) ever eliminates arm asi
before round νi+1.

Proof. Suppose on the contrary that some CondaLet(s,m) with s ∈ [νi, νi+1) eliminates arm asi before round νi+1.
Then, we must have for some arm a ∈ [K] and interval [s1, s2] ⊆ [s, νi+1) that

C log(T )K
√
(s2 − s1) ∨K2 <

s2∑
t=s1

δ̂t(a, a
s
i ), (33)

In view of the concentration bound (6), this implies on event E that

c2 log(T )K
√
(s2 − s1) ∨K2 <

s2∑
t=s1

E
[
δ̂t(a, a

s
i ) | Ft−1

]
≤

s2∑
t=s1

δt(a, a
s
i ), (34)

where the last inequality holds by merit of (32). Now, by the definition of asi as the last safe arm in phase i, it must hold that
δt(a, a

s
i ) <

√
K(s2 − s1) for all t ∈ [νi, νi+1) and all a ∈ [K]. This stands in contradiction to the above which proves

Lemma B.3.

Now, following the same steps as in the proof of Theorem 3.1 in Section A, we obtain for some constant c̃ > 0

R̃2(ℓ) ≤ c̃K log3(T )E

 ∑
i∈PhasesS̃CW (tℓ,tℓ+1)

√
νi+1 − νi

 ,

where νS̃CW+1 := T and PhasesS̃CW(t1, t2) := {i ∈ [S̃CW] : [νi, νi+1) ∩ [t1, t2) ̸= ∅}. Lastly, in view of the modified
Lemma B.2, it follows that (cf. Section A.4)

DR(T ) = E

[
T∑

t=1

δt(a
∗
t , at) + δt(a

∗
t , bt)

2

]
≤ 2̃cK log3(T )

S̃CW∑
i=0

√
νi+1 − νi. (35)

An application of Jensen’s inequality shows that DR(T ) ≤ Õ(K
√
S̃CWT ).

B.3 Proof of Corollary 5.1

Recall the definition of the Condorcet Winner Variation from Section 2.2:

Ṽ :=

T∑
t=2

max
a∈[K]

|Pt(a
∗
t , a)− Pt−1(a

∗
t , a)| .
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We define the CW Variation over phase [νi, νi+1) as Ṽ[νi,νi+1) :=
∑νi+1

t=νi+1 maxa∈[K] |Pt(a
∗
t , a)− Pt−1(a

∗
t , a)|. Note that

in view of the bound in (35), it suffices to show that
∑S̃CW

i=0 K
√
νi+1 − νi ≤ K

√
T + Ṽ 1/3(KT )2/3.

Consider a phase [νi, νi+1) with 0 ≤ i < S̃CW. By definition of Significant CW Switches, every arm a ∈ [K] must satisfy
on some interval [s1, s2] ⊆ [νi, νi+1) that

s2∑
t=s1

δt(a
∗
t , a) ≥

√
K(s2 − s1).

In particular, this is also the case for the Condorcet winner a∗νi+1
in round νi+1. Then, since

√
s2 − s1 >

∑s2
t=s1

1
νi+1−νi

,

there exists a round t ∈ [s1, s2] such that δt(a∗t , a
∗
νi+1

) ≥
√

K
νi+1−νi

. We then have√
K

νi+1 − νi
≤ δt(a

∗
t , a

∗
νi+1

)

≤ δt(a
∗
t , a

∗
νi+1

) + δνi+1
(a∗νi+1

, a∗t )

≤ δt(a
∗
t , a

∗
νi+1

)− δνi+1
(a∗t , a

∗
νi+1

)

≤
∣∣∣δt(a∗t , a∗νi+1

)− δνi+1
(a∗t , a

∗
νi+1

)
∣∣∣

=
∣∣∣Pt(a

∗
t , a

∗
νi+1

)− Pνi+1(a
∗
t , a

∗
νi+1

)
∣∣∣

≤
νi+1∑

s=t+1

max
a∈[K]

|Pt(a
∗
t , a)− Pt−1(a

∗
t , a)| ≤ Ṽ[νi,νi+1],

where we used that δνi+1(a
∗
νi+1

, a∗t ) ≥ 0 and δνi+1(a
∗
νi+1

, a∗t ) = −δt(a∗t , a∗νi+1
) in the second and third inequality,

respectively. We can now apply Hölder’s inequality to obtain

S̃CW∑
i=0

K
√
νi+1 − νi ≤ K

√
T +

S̃CW−1∑
i=0

K
√
νi+1 − νi

≤ K
√
T +

 S̃CW∑
i=0

√
K

νi+1 − νi

1/3  S̃CW∑
i=0

K5/4(νi+1 − νi)

2/3

≤ K
√
T +

 S̃CW∑
i=0

Ṽ[νi,νi+1)

1/3

K5/6 T 2/3

= K
√
T + Ṽ 1/3K5/6 T 2/3.

The above dependence on K can be improved to K4/9 (which is even smaller than the K2/3 dependence in Corollary 5.1) by
modifying the definition of Significant CW Switches so that νi+1 is the first round in [νi, T ) such that for all arms a ∈ [K]
there exist rounds νi ≤ s1 < s2 < νi+1 with

s2∑
t=s1

δt(a
∗
t , a) ≥ K

√
s2 − s1.

It is straightforward to check that Theorem 5.1 holds true also for this definition of Significant CW Switches.

C More Related Work

Related to the non-stationary dueling bandit problem studied in this paper are adversarial dueling bandits Ailon et al. (2014);
Gajane et al. (2015); Saha et al. (2021); Sui et al. (2017). Here, Ailon et al. (2014) was the first to study the dueling bandit



Thomas Kleine Buening, Aadirupa Saha∗

problem in an adversarial setup and introduced a popular sparring idea, which has been picked up by many follow-up
works Gajane et al. (2015); Dudik et al. (2015); Saha et al. (2021); Saha and Gupta (2022). The settings in Ailon et al.
(2014) and Gajane et al. (2015) are restricted to utility-based preference models, where each arm has an associated utility in
each round. This entails a complete ordering over the arms in each round, which only covers a small subclass of [K]× [K]
preference matrices. Moreover, Gajane et al. (2015) assume that the feedback includes not only the winner but also the
difference in the utilities between the winning and losing arm, which is more similar to MAB feedback and than the 0/1
one bit preference feedback considered by us. Saha et al. (2021) consider the dueling bandit setup for general adversarial
preferences, but they measure performance in terms of (static) regret w.r.t. Borda-scores. This measure of regret is very
different from our preference-based regret objective. In general, the adversarial dueling bandit problem aims to minimize
static regret w.r.t. some fixed benchmark a∗, whereas we study dynamic regret w.r.t. a time-varying benchmark a∗t . As
discussed in Section 2, static regret can be an undesirable measure of performance when no single fixed arm represents a
reasonably good benchmark over all rounds (see Example 2.1).

Another somewhat related line of work considers the sleeping dueling bandit problem, where the action space is non-
stationary (as opposed to the preference sequence). The objective here is to be competitive w.r.t. the best active arm at each
round. Saha and Gaillard (2021) studies the setup for adversarial sleeping but assumes a fixed preference matrix across all
rounds.
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