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Abstract

Tensor decomposition methods have proven ef-
fective in various applications, including com-
pression and acceleration of neural networks. At
the same time, the problem of determining op-
timal decomposition ranks, which present the
crucial parameter controlling the compression-
accuracy trade-off, is still acute. In this paper,
we introduce MARS — a new efficient method
for the automatic selection of ranks in general
tensor decompositions. During training, the pro-
cedure learns binary masks over decomposition
cores that “select” the optimal tensor structure.
The learning is performed via relaxed maxi-
mum a posteriori (MAP) estimation in a spe-
cific Bayesian model and can be naturally em-
bedded into the standard neural network training
routine. Diverse experiments demonstrate that
MARS achieves better results compared to pre-
vious works in various tasks.

1 INTRODUCTION

Tensor decomposition methods are leveraged in various
areas of machine learning, such as multi-way data anal-
ysis (Cichocki et al., 2009), higher-order representation
learning (Castellana and Bacciu, 2019), recommender sys-
tems (Frolov and Oseledets, 2017), and many others (Ji
et al., 2019). Perhaps the most famous and perspective
application of these techniques is deep neural networks
(DNNs) tensorization (Cichocki et al., 2017). Decompo-
sition methods cope with redundancy in DNNs parame-
terization via an efficient representation of neural network
parameters as decomposed tensors. Recent works on ap-
plying tensor decomposition techniques in neural networks
have demonstrated the success of this approach for com-
pression, speed-up, and regularization of DNN models. For
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instance, Tucker (Tucker, 1966) and canonical polyadic
(CP) (Carroll and Chang, 1970) tensor decompositions are
widely used for compressing and accelerating convolu-
tional neural networks (Lebedev et al., 2015; Kim et al.,
2016; Kossaifi et al., 2019), and Tensor Train (TT) (Os-
eledets, 2011) decomposition has been successfully applied
for tensorization of a variety of neural networks layers,
like fully-connected (FC) (Novikov et al., 2015), convo-
lutional (Garipov et al., 2016), recurrent (Yang et al., 2017;
Yu et al., 2017), embedding (Hrinchuk et al., 2020), etc.

Probably the main crux of the tensorization approach is
the need to carefully select decomposition hyperparame-
ters, namely the ranks. Tensor decomposition ranks deter-
mine the shape of the core tensors in the decomposition (the
cores) and hence are responsible for the trade-off between
the quality of the model and the required computational and
memory resources. Therefore, decomposition ranks repre-
sent extremely important hyperparameters. Yet, the prob-
lem of finding an efficient way to select optimal ranks in
a general tensor decomposition automatically still remains
unresolved. Typical hyperparameter selection techniques,
like cross-validation, are poorly suited for the choice of
multiple tensor ranks. Hence, the common practice is to set
all ranks equal and validate a single hyperparameter. How-
ever, such a simplification is quite coarse and might sig-
nificantly degrade model performance compared to a non-
uniform ranks selection, which we empirically demonstrate
in our experiments.

In this work, we present Masked Automatic Ranks Selection
(MARS) — a new efficient method for dynamic selection
of tensor decomposition ranks grounded in the Bayesian
framework. The main idea is to learn binary masks that
cover decomposition cores and “select” only the slices re-
quired for the best model performance, thus automatically
adjusting the optimal ranks arrangement. We also pro-
pose a way to reformulate the emerged NP-hard discrete
problem via scalable continuous optimization. MARS op-
erates end-to-end with model training without introducing
any noticeable additional computational overhead. In sum,
our major contributions consist in 1) proposing a general
scheme for automatic ranks selection and 2) developing an
efficient scalable method for applying that scheme.
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In the experiments, we demonstrate that our method is
applicable for various tensorized neural networks (TNNs)
and even more general tensorized models (Appendix D).
We evaluate MARS on a variety of tasks and architec-
tures involving convolutional, fully-connected, and embed-
ding tensorized layers and demonstrate its ability to im-
prove previous results on tensorization in terms of com-
pression, accuracy, and speed-up. Our code is available at
https://github.com/MaxBourdon/mars.

1.1 Related work

Here we highlight related work on tensor rank determina-
tion with a focus on application to deep learning. We refer
to Appendix A for more related literature on tensorization.

Kim et al. (2016) perform full DNN compression via ap-
proximating FC and convolutional layers with low-rank
matrix factorization and Tucker-2 tensor decomposition,
respectively, where ranks are estimated with a special
Bayesian matrix rank selection technique (Nakajima et al.,
2012). However, the involved training procedure consist-
ing of decomposition of the pre-trained model and fine-
tuning of the decomposed model turned out to be ineffi-
cient. The MUSCO algorithm (Gusak et al., 2019), which
repeatedly performs decomposition and fine-tuning steps,
partially resolved this disadvantage. Lately, Cheng et al.
(2020) proposed a reinforcement learning-based rank se-
lection scheme for TNNs, which, however, also introduces
extra computational requirements by separating agent and
model training. In contrast, MARS operates end-to-end
with model training without splitting it into stages, which
is naturally more preferable. Moreover, it is not confined to
specific types of tensor decompositions, models, or tasks.

Existing methods for automatic rank selection that also
take advantage of the Bayesian approach cover only cer-
tain types of tensor decompositions (Rai et al., 2014; Zhao
et al., 2015; Xu et al., 2020, 2021; Fang et al., 2021)
or are based on peculiarities of the task, e.g., tensor ap-
proximation (Mørup and Hansen, 2009) or linear regres-
sion (Guhaniyogi et al., 2017). These approaches mostly
embody structured pruning of the decomposition cores. For
instance, Hawkins and Zhang (2021) propose a specific
shrinking coupling prior distribution over TT-cores and
perform Bayesian inference to obtain Low-Rank Bayesian
Tensorized Neural Networks (LR-BTNN). We, instead,
propose a general-purpose ranks selection technique appli-
cable for any tasks and decompositions.

Alternative procedures for obtaining low-rank tensor rep-
resentation, e.g., those utilizing nuclear norm minimiza-
tion (Phien et al., 2016; Imaizumi et al., 2017; Shi et al.,
2021), also leverage properties of the particular objective
and/or suggest excessively computationally complex algo-
rithms involving a series of SVDs. This makes such ap-
proaches impracticable in the domain of deep learning.

MARS does not impose any significant extra computations
for obtaining a low-rank tensorized solution, since slice-
wise mask multiplication is a much less computationally
expensive operation than tensors contraction.

2 MARS

In this section, we introduce the necessary notions regard-
ing tensors, decompositions, and general tensorized models
and describe the details of the proposed method.

2.1 Tensors, decompositions, and tensorized models

Tensors By a d-dimensional tensor, we mean a multi-
dimensional array A ∈ Rn1×···×nd of real numbers, e.g.,
vectors and matrices are 1- and 2-dimensional tensors, re-
spectively. We denote A(i1, . . . , id) as element (i1, . . . , id)
of a tensor A. We use notation dims (A) = (n1, . . . , nd)
to denote the tuple of dimensions of a tensor A.

Contraction of two tensors A ∈ Rn1×···×nd and B ∈
Rm1×···×md′ with nd = m1 results in a tensor AB ∈
Rn1×···×nd−1×m2···×md′ :

AB(i1, . . . , id−1, j2, . . . , jd′) =

=

nd∑
id=1

A(i1, . . . , id)B(id, j2, . . . , jd′). (1)

The contraction operation can also be naturally generalized
to multiple modes. In this case, summation in eq. (1) is per-
formed over these modes, and dimensions of the resulting
tensor will contain the dimensions of both tensors A and B
excluding the contracted ones.

A special case of contraction (up to modes permutation) for
a tensor A ∈ Rn1×···×nd and a matrix B ∈ Rmk×nk is their
mode-k product A×kB ∈ Rn1×···×nk−1×mk×nk+1×···×nd :

(A×k B) (i1, . . . , ik−1, jk, ik+1, . . . , id) =

=

nk∑
ik=1

A(i1, . . . , id)B(jk, ik).

We also introduce mode-k broadcast Hadamard product of
a tensor A ∈ Rn1×···×nd and a vector b ∈ Rnk which is a
tensor A⊙k b with the same dimensions as A and elements

(A⊙k b) (i1, . . . , id) = A(i1, . . . , id)b(ik).

Tensor decompositions In general, we assume that ten-
sor decomposition of a d-dimensional tensor A consists of
a set of simpler tensors G = {Gk} called cores of the de-
composition. The original tensor can be expressed (up to
modes permutation) via these cores as a sequence of con-
tractions.

https://github.com/MaxBourdon/mars
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For the Tensor Train decomposition G = {G1, . . . ,Gd},
Gk ∈ Rrk−1×nk×rk , r0 = rd = 1 and

A = G1G2 . . .Gd,

i.e., tensor A is directly obtained from the Tensor Train
cores as a sequence of contractions.

For the Tucker decomposition G = {G, U1, . . . , Ud}, Uk ∈
Rnk×rk , G ∈ Rr1×···×rd and

A = G ×1 U1 · · · ×d Ud,

i.e., tensor A is expressed via mode-k products of the core
tensor G and matrices Uk which is again a sequence of con-
tractions up to modes permutation.

The set of numbers r = {rk}, the intermediate dimensions
of the contracted cores modes, are called ranks of the de-
composition. Clearly, they define the expressivity of the
decomposition on the one hand and the number of the oc-
cupied parameters on the other.

Tensorized models Consider any model parameterized
by a tensor A decomposed into cores G.1 In practice, it is
often convenient (in terms of memory and computations) to
utilize tensors in the decomposed format explicitly. In other
words, given a particular decomposition, one could rewrite
model operations more efficiently via the cores G directly,
without the need of reconstructing the full tensor A. Hence,
a single large parameter tensor can be substituted with a set
of smaller tensors to obtain a more compact model. We
call such models, parameterized by the cores of the decom-
posed tensors, tensorized models and assume that their in-
ference is performed directly via these cores.

A typical example of a tensorized model is a neural net-
work with decomposed layers, or tensorized neural net-
work. Representing layer parameters via a decomposed
tensor may result in substantial memory and computational
savings. For most NN layers, there is a variety of decom-
posed representations: factorized FC-layer, Tucker-2 con-
volutional layer, various TT-layers, etc. We provide more
detail in Appendix B.

Ultimately, in a tensorized model, the shapes of the decom-
position cores simultaneously influence model flexibility
and complexity. The key hyperparameter that determines
them are decomposition ranks, as discussed earlier. Fur-
ther, we describe the details of the proposed method for
ranks selection in arbitrary tensorized models.

2.2 The proposed method

Consider a predictive tensorized model, which defines a
distribution over output y conditioned on input x, with

1For simplicity, we consider a single-tensor model, though the
same applies to models with multiple tensors.

cores G: p (y | x,G). We assume that the initial shapes
of the cores (i.e., ranks r) are fixed in advance. Our goal is
to shrink them optimally: remove redundant ranks without
significant accuracy drop to achieve maximum compres-
sion and speed-up.

MARS suggests obtaining such reduced structures via mul-
tiplying slices of the cores by binary masking vectors,
mostly consisting of zeros. Zeroed slices are not be in-
volved in tensors contractions and, therefore, the whole
model workflow. Hence, such slices can be freely removed
from the cores. In this way, non-zero masks elements
would “select” only slices required for the effectual model
performance, automatically determining the optimal cores
shapes. Figure 1 illustrates the concept.

Figure 1: A schematic illustration of the MARS concept:
slices of the core tensor G along mode k are multiplied
by elements of the binary mask mk; only “selected” non-
zero slices will participate in model inference, therefore,
the core shape can be reduced.

Formally, given a dataset (X,Y ) = {(xi, yi)}Ni=1, consider
the following discriminative Bayesian model:2

p (Y,m,G | X) =

N∏
i=1

p (yi | xi,G⊙m) p (m) p (G) ,

(2)
where m = {mk | mk ∈ {0, 1}rk} is a set of binary
vectors, or masks, one-to-one corresponding to the decom-
position ranks, G ⊙ m = {Gk ⊙m} is a set of masked
cores:

Gk ⊙m := Gk ⊙k1 mk1 · · · ⊙kp mkp ,

rk1
, . . . , rkp

∈ dims (Gk) are all ranks belonging to the di-
mensions of the core Gk. The likelihood p (y | x,G⊙m)
is defined by the tensorized model, so, for example, it can
be (exponent of negative) cross-entropy loss for classifica-
tion tasks. Note that in model (2), we completely remove
the dependency between cores and masks unlike, e.g., the
widely known spike-and-slab prior model (Ishwaran and
Rao, 2005). This allows to ensure universality of our ap-
proach by accepting arbitrary couplings of the cores in gen-
eral decompositions.

2The presented model can be straightforwardly extended to
other non-discriminative settings even with no available data
points, see Appendix D for a concrete example.
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We assume the factorized Bernoulli prior over masks with
the success probability π, which is a natural hyperparame-
ter of our model regulating the intensity of compression:

p (m) = p (m | π) =
∏
k

rk∏
s=1

πmk(s)(1−π)1−mk(s). (3)

This prior term is the key ingredient that allows achieving
low-rank solutions as it sparsifies the selection masks. Note
that instead of adjusting several or even dozens of ranks
in the decomposition, one needs to validate only one hy-
perparameter in our model (along with careful initializa-
tion). Furthermore, in our experiments, we found that π
does influence the final compression-accuracy trade-off but
not crucially (see Appendix E). Taking π ≈ 10−2 is usu-
ally a good choice. Note that setting π to values more than
0.5 is of no use, as therefore, the prior term would foster
dense masks, which contradicts with obtaining a low-rank
solution corresponding to mostly zero-valued masks.

We also put the factorized zero-mean Gaussian with a large
variance as the prior distribution over the cores p (G). It
serves as a slight L2 regularization and we have empirically
found that it helps to balance the coefficients in the cores,
stabilize the training process and improve test accuracy. We
did not conduct a thorough search for the optimal values of
the prior variance and used the same fixed value of 102 in
all our experiments.

In this work, we consider finding maximum a posteriori
(MAP) estimates of parameters G and m in model (2):

N∑
i=1

log p (yi | xi,G⊙m) + log p (m)+

+ log p (G) −→ max
m,G

. (4)

Naturally, this problem implies discrete optimization over
binary masks and, hence, is infeasible due to exhaustive
search in the general case. To tackle this, we first substitute
problem (4) with an equivalent:

Em∼q(m)

[
N∑
i=1

log p (yi | xi,G⊙m) + log p (m)

]
+

+ log p (G) −→ max
q(m),G

, (5)

where the family of distributions q(m) includes all deter-
ministic ones, i.e., taking only a single value. The solutions
of problems (4) and (5) coincide according to Lemma 1.

Lemma 1 For an arbitrary scalar function F (x) with at-
tainable maximum the following problems are equivalent:

max
x

F (x) ≡ max
q(x)

Ex∼q(x) [F (x)]

if the family of distributions q(x) includes degenerate ones.

Proof. The statement follows from the fact that for any
distribution q(x) we have

Ex∼q(x)F (x) ≤ F (x∗), (6)

where x∗ = argmaxx F (x), and eq. (6) turns into equality
when q(x) = δ(x− x∗). ■

Next, we constrain q(m) to be a factorized Bernoulli dis-
tribution over each mask element mk(s) with parameters
ϕ = {ϕk(s)}. Note that this family meets the requirement
to include all degenerate solutions in order to ensure equiv-
alence of eq. (4) and eq. (5). Now the problem (5) translates
into the following:

Em∼qϕ(m)

[
N∑
i=1

log p (yi | xi,G⊙m)

]
+

+
∑
k

rk∑
s=1

[ϕk(s) log π + (1− ϕk(s)) log(1− π)] +

+ log p (G) −→ max
ϕ,G

. (7)

One can notice that adding the q entropy term into eq. (7)
yields the evidence lower bound (ELBO) maximization, a
well-known Bayesian technique for the variational poste-
rior approximation, with a factorized Bernoulli variational
distribution. However, we do not perform variational in-
ference with MARS, but look for a single-point solution
instead. We discuss this further at the end of the article.

We solve the maximization problem (7) with the stochas-
tic gradient method. To calculate low-variance stochastic
gradients w.r.t. parameters ϕ in eq. (7), we use the repa-
rameterization trick (Kingma and Welling, 2013). To this
end, we soften the discrete samples from qϕ(m) in the ex-
pectation term via the Binary Concrete relaxation (Maddi-
son et al., 2017; Jang et al., 2017) with temperature, which
defines “discreteness” of the relaxed samples, decaying to
zero in the course of training. After training, we round the
probabilities ϕ to binary masks mMAP and use a compact
solution with reduced cores GMAP ⊙mMAP to predict for
a new data sample x∗: p (y∗ | x∗,GMAP ⊙mMAP ).

Algorithm 1 summarizes the training procedure. RB(ϕ, τ)
denotes the Relaxed Bernoulli distribution, which is Binary
Concrete with temperature τ and location ϕ

1−ϕ . Sampling
from RB(ϕ, τ) is as simple as applying a differentiable op-
eration

σ

(
log(u)− log(1− u) + log(ϕ)− log(1− ϕ)

τ

)
to u ∼ U[0,1], where σ(x) = 1/(1 + e−x) is a logistic sig-
moid function. Note that Algorithm 1 is essentially an SGD
on a regularized loss, therefore they have similar compu-
tational complexity; it can be considered extremely light-
weight compared to other (e.g., SVD-based) rank selection
schemes.
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Algorithm 1 MARS relaxed MAP learning procedure
Input: data (X,Y ), prior parameter π, temperature τ ,
batch size B
Output: MAP estimate of cores GMAP and masks
mMAP

Initialize G and ϕ
repeat

Sample masks m̂ = {m̂k(s) ∼ RB(ϕk(s), τ)}
Sample a mini-batch of objects {(xil , yil)}Bl=1

L :=
∑B

l=1 log p (yil | xil ,G⊙ m̂)

gϕ := ∂L
∂G⊙m̂

∂G⊙m̂
∂m̂

∂m̂
∂ϕ + log

(
π

1−π

)
gG := ∂L

∂G⊙m̂
∂G⊙m̂

∂G + ∂ log p(G)
∂G

Update ϕ using stochastic gradient gϕ
Update G using stochastic gradient gG
Decay τ

until stop criterion is met
Define GMAP := G
Define mMAP := round(ϕ)

3 EXPERIMENTS

In this section, we present the results of the conducted ex-
periments with MARS that show its ability to improve pre-
vious results on DNN tensorization. In Appendix D, we
also provide additional experiments involving a different
tensorized model to demonstrate that MARS is a general
ranks selection scheme not confined to TNNs only.

We train tensorized models using MARS according to Al-
gorithm 1. The learned hard binary masks are then ap-
plied to the trained cores to remove excess ranks and ob-
tain a compact architecture that is used during test-time
inference. Careful parameter initialization is required for
optimal performance and training. We propose to initial-
ize logits of ϕ using the normal distribution centered at
some value α, which is an important hyperparameter with
a role similar to that of hyperparameter π. We refer to Ap-
pendix C for more details on implementation.

Our experiments are conducted in three ways to prove the
efficiency and versatility of MARS. First, we show how
MARS can restore the actual ranks when the ground truth
(GT) is known (Section 3.1, Appendix D). Second, we
compare with alternative approaches for Bayesian rank se-
lection (Sections 3.2, 3.4 and 3.5) to show that MARS can
perform just as well, being a more general method. Third,
we apply MARS to various practical tensorized models
to show that it can significantly improve previous results
where ranks were mostly selected using cross-validation
(Sections 3.3 and 3.4). In tables, we report mean ± std
where applicable.

Table 1: True rank restoring with MARS in a toy linear
classification task with a factorized parameter matrix. Re-
sults are averaged over 10 runs.

GT rank r∗ Reduced R Accuracy Baseline

8 8.4± 0.5 91.8± 0.6% 87.3%
12 12.6± 0.7 89.5± 0.7% 85%
16 18± 1.3 85.4± 0.7% 82.8%

3.1 Toy experiment

Our first experiment serves as a mere proof of concept. We
evaluate our method on a toy linear classification task with
a factorized parameter matrix to verify how MARS can ap-
proximate the true rank.

Let N , D, C, r∗, R denote, respectively, the number of
samples, input, output dimensions, the ground truth rank
of the problem, and the initial rank of the parameters to be
reduced. At first, we sample elements of the input matrix
X ∈ RN×D i.i.d. from the standard normal distribution.
We similarly sample the ground truth parameter matrices
U∗ ∈ RD×r∗ and V ∗ ∈ Rr∗×C . After that, we obtain the
output matrix Y = OHE(XU∗V ∗) of size (N,C), where
OHE denotes row-wise argmax one-hot encoding opera-
tion. Finally, we initialize the learnable parameter matrices
U ∈ RD×R and V ∈ RR×C and train a linear classifier
with a factorized parameter matrix UV using MARS to re-
duce the initial rank R > r∗ and restore the GT rank r∗.

We fixed N = 10000, D = 128, C = 32, R = 32 and
varied r∗. Namely, we considered three cases: r∗ = 8,
r∗ = 12, and r∗ = 16. We took π = 10−2 and α = −4,
α = −3.5, and α = −3 for each case, respectively. We
evaluated models on a separate test set and trained a vanilla
linear classifier as a baseline.3

We report the results averaged over 10 runs in Table 1. As
can be seen, MARS can rather accurately restore the true
rank r∗ starting from a higher initial value R. Furthermore,
the obtained models are not only more compact but also
exhibit better test accuracy than the baseline.

As neural network training encounters a manifold of differ-
ent local minima, the problem of revealing the “true rank”
of a tensorized DNN, rather than a simple linear model, is
ill-posed: it highly depends on initialization, optimization,
and hyperparameters. Yet, that can be especially useful for
ensembling, which will be discussed further.

3.2 MNIST 2FC-Net

In this experiment, we compare MARS against the LR-
BTNN method of Hawkins and Zhang (2021) on the

3We have also tried a factorized baseline with R = 32 but
obtained much worse results and decided not to include it.
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MNIST (LeCun, 1998) dataset. In this task, both methods
aim to automatically select ranks in a relatively small im-
age classification neural network with two TT-decomposed
fully-connected layers of sizes 784 × 625 and 625 × 10.
As proposed by Hawkins and Zhang (2021), we take
the following dimensions factorization of the TT-layers:
(n1, n2, n3, n4) = (7, 4, 7, 4), (m1,m2,m3,m4) =
(5, 5, 5, 5) and (n1, n2) = (25, 25), (m1,m2) = (5, 2) for
the first and second layer, respectively. All the initial ranks
are set to 20, which gives 18× compression at the start.

Table 2: Compression/accuracy on MNIST with 2FC-Net.
Results are averaged over 10 runs.

Model Compression Accuracy

Baseline 1× 98.2%
Baseline-TT 18× 97.7%
LR-BTNN 137× 97.8%
MARS (soft) 141± 18.6× 98.2± 0.11%
MARS (hard) 205± 30.9× 97.9± 0.19%

We execute MARS in two modes for this task: soft com-
pression mode (α = −1.5, π = 10−1) and hard com-
pression mode (α = −1.75, π = 10−2). In each mode,
we trained 10 networks from different random initializa-
tions and averaged the results. Table 2 shows that MARS
surpasses the approach of Hawkins and Zhang (2021) in
this task both in terms of compression and final accuracy,
even though LR-BTNN is specifically tailored for the Ten-
sor Train decomposition.

We would also like to note that an ensemble of small MAP
networks, obtained in the soft compression mode, gives the
accuracy of 98.9%. We argue that compact TNN ensem-
bling might be a promising research direction.

Figure 2 shows the bar plot of ϕ values of the three masks
corresponding to the first TT-layer. We see that the relaxed
MAP estimate is actually quite close to the deterministic
binary masks. After rounding to strictly binary values and
applying the resulted masks to the TT-cores, the ranks of
the first layer shrink to (r0, r1, r2, r3, r4) = (1, 4, 3, 4, 1)
which leads to more than 556× layer compression.
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Figure 2: Learned binary masks probabilities ϕ corre-
sponding to the first TT-layer in MNIST 2FC-Net. Note
that the relaxed MARS MAP estimate is quite close to the
deterministic solution.

3.3 Sentiment analysis with TT-embeddings

A recent work of Hrinchuk et al. (2020) leverage Tensor
Train decomposition for compressing embedding layers in
various NLP models. The authors propose to convert the
matrix of embeddings into the TT-format alike TT-FC lay-
ers. They provide a heuristic to automatically determine
optimal (in terms of the occupied memory) factorization
of dimensions in TT-matrices given the number of factors
d. However, in their experiments, the ranks in the TT-
decomposition were still manually set equal to some pre-
defined value.

We repeat their experiment on the sentiment analysis task
and apply MARS on top of the tensorized model. The
model consists of a TT-embedding layer with ranks equal
to 16, followed by an LSTM, which performs sentiment
classification. The authors evaluated on two datasets:
IMDB (Maas et al., 2011) and Stanford Sentiment Tree-
bank (SST) (Socher et al., 2013). On each dataset they
tried three tensorized models: with d = 3, d = 4 and d = 6
factors in the TT-matrix of embeddings, respectively. On
IMDB, the authors obtained both maximal accuracy and
compression with the model using d = 6 factors. On SST,
the best compression was achieved at d = 6, while the best
accuracy was achieved at d = 3. Thus, we choose the best
model on IMDB and the medium one (d = 4) on SST and
train them with MARS. We set π = 10−2 in both models
and α = −0.25, α = −1.0 for the first and the second one,
respectively.

Table 3 presents the obtained results. Automatic ranks
selection with MARS allowed to significantly improve
both quality and compression of the best IMDB TT-
model. On SST, we managed to overtake the best com-
pressing and best performing models with a medium
model trained using our method. The final selected ranks
are (r0, r1, r2, r3, r4, r5, r6) = (1, 8, 11, 15, 16, 16, 1) and
(r0, r1, r2, r3, r4) = (1, 6, 14, 14, 1) for IMDB and SST
MARS TT-models, respectively. We hypothesize that such
an escalating rank distribution could be explained by the
hierarchical indexing in TT-embeddings, where first TT-
cores are responsible for indexing large blocks in the em-
bedding matrix, and subsequent cores index inside those
blocks. The compressed model might find only a few large
blocks in the whole embedding matrix relevant for pre-
diction, thus, the first cores could be made less expres-
sive. On the whole, one can see that setting decomposition
ranks equal, which is a common heuristics in tensorized
networks, is quite inefficient as opposed to the nonuniform
ranks selection.

3.4 MNIST LeNet-5

In Wang et al. (2018) Tensor Ring (TR) decomposi-
tion (Zhao et al., 2016), a generalization of the Tensor Train
decomposition, was applied to compress convolutional net-
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Table 3: Compression and accuracy on sentiment analysis
with TT-embedding layers. TT-d denotes TT-embedding
with d factors.

Dataset Model Compression Accuracy

IMDB
Baseline 1× 88.6%
TT-6 441× 89.7%
MARS + TT-6 559× 90.1%

SST

Baseline 1× 37.4%
TT-3 78× 41.5%
TT-6 307× 39.9%
MARS + TT-4 340× 42.4%

works. Such neural networks with TR-decomposed convo-
lutions and FC-layers are called Tensor Ring Nets (TRNs).
The authors compared their approach against Kim et al.
(2016), where Tucker-2 and low-rank matrix factorization,
which represent a simpler decomposition family, are used
for the same purpose. In one of the experiments, both
methods were evaluated on compressing and accelerating
LeNet-5 (LeCun et al., 1998), a relatively small convolu-
tional neural network with 2 convolutional layers, followed
by 2 fully-connected layers, on the MNIST dataset. TRN
significantly surpassed the simpler Tucker approach.

In this experiment, we demonstrate that even using less ex-
pressive types of decompositions, one can achieve results
comparable to TRN by training with MARS. Namely, we
apply Tucker-2 decomposition to the second convolution
and low-rank factorization to the first FC-layer, as the other
layers occupy less than 1.3% of all model parameters. We
automatically select the two Tucker-2 decomposition ranks
r1, r2 and the matrix rank r3 using our method, starting
from r1 = r2 = 20, r3 = 100 (2.9× compression at the
start). We initialize the mean value of ϕ logits α with zero
and set π = 10−2.

The averaged results over 5 runs are presented in Table 4.
MARS enhanced compression of the Tucker model by a
factor of 5 with about the same quality, making it compa-
rable to TRN, which is based on a significantly more com-
plex decomposition family. We would like to note that the
Tucker model already has an inner mechanism of ranks se-
lection, yet, it can only approximate the ranks required for
the layers decomposition, after which the model is fine-
tuned. MARS performs end-to-end ranks selection with
model training, which leads to significantly better results.

Another important achievement of our model is the abil-
ity to actually accelerate networks.4 Even though TR-
decomposition allows achieving better compression, it,
however, slows down the inference. The authors argue that

4We do not specify run times in other experiments, as this in-
formation is not provided in the related works; however, we have
observed acceleration in other cases as well.

such an effect is caused by the suboptimality of the existing
hard- and software for tensor routines. Using simpler layer
factorizations, we managed to speed up LeNet-5 by 1.2×.

Similarly to the previous experiment, we measured the
quality of the ensemble of LeNet-5 networks compressed
with MARS. Ensembling aids to improve model test accu-
racy up to 99.5%. Note that the ensemble of 5 networks
compressed by 10× still requires twice less memory than
the original model and, provided parallel computing, can
even work faster.

We recognize the power of the Tensor Ring decomposition
in compressing neural networks. Since in TRN all decom-
position ranks are set equally, we believe that MARS could
further improve its results and leave it for future work.

3.5 CIFAR-10 ResNet-110

The main experiment of Hawkins and Zhang (2021) con-
sisted in applying their LR-BTNN method to ResNet-
110 (He et al., 2016) on CIFAR-10 dataset (Krizhevsky
et al., 2014). The authors used Tensor Train decomposition
for compressing all convolutional layers except for the first
ResNet block (first 36 layers) and the 1× 1 convolutions.

However, they implemented a simplified scheme of decom-
posing convolutions, which we call naive. At first, the
numbers of input and output channels N and M are fac-
tored into N =

∏d
k=1 nk, M =

∏d
k=1 mk. After that,

the 4-dimensional convolutional kernel with kernel size k
is reshaped into a (2d + 1)-way tensor with dimensions
(n1, . . . , nd,m1, . . . ,md, k

2). The reshaped tensor is then
decomposed into Tensor Train with 2d + 1 cores. Such
a scheme could be fruitful in terms of compression, yet
it does not have a potential for efficient computing due
to the need to construct the full convolutional tensor from
the TT-cores on each forward pass. Unlike this method,
Garipov et al. (2016) proposed to represent convolutions as
k2N×M matrices in TT-format based on the fact that most
frameworks reduce the convolution operation to a matrix-
by-matrix multiplication. We call the scheme of Garipov
et al. (2016) proper. This approach, for instance, was lever-
aged to achieve more than 4× better energy efficiency and
5× acceleration compared to state-of-the-art solutions on a
special TT-optimized hardware (Deng et al., 2019).

We repeat the ResNet experiment of Hawkins and Zhang
(2021) with MARS using both naive and proper schemes
for TT-decomposition of convolutions. The original pa-
per does not provide much detail on the experiment setting,
however, we could deduce that the authors used d = 2 and
d = 3 factors for the second and third ResNet block, re-
spectively, i.e., in the second block, they reshaped convolu-
tional kernels from (32, 32, 3, 3) to (8, 4, 8, 4, 9) and in the
third one from (64, 64, 3, 3) to (4, 4, 4, 4, 4, 4, 9). In order
to obtain similar number of TT-cores for the proper scheme,
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Table 4: Compression, accuracy, and speed-up on MNIST with LeNet-5. TRN-r denotes the TRN model with the same
Tensor Ring rank r. Speed-up is evaluated as the ratio of test time per 10000 samples of the baseline and the given model,
as proposed in Wang et al. (2018). Results are averaged over 5 runs.

Model Compression Accuracy Speed-up

Baseline 1× 99.2% 1.0×
Tucker 2× 99.1% 0.58×
TRN-10 39× 98.6% 0.48×
TRN-15 18× 99.2% 0.97×
TRN-20 11× 99.3% 0.73×
MARS + Tucker 10± 0.8× 99.0± 0.07% 1.19± 0.01×

we choose the following respective shapes of convolutional
TT-matrices: (2, 2) × (3, 2) × (3, 2) × (4, 2) × (4, 2) and
(2, 2) × (2, 2) × (3, 2) × (3, 2) × (4, 2) × (4, 2). At the
start, all ranks equal 20, which gives 2.7× and 2.3× com-
pression of the naive and proper models, respectively. We
set π = 10−2, α = 2.25 and π = 4 ·10−3, α = 3.0 in those
models, respectively.

The results are given in Table 5. Using the naive scheme,
MARS achieved the results comparable to LR-BTNN: it
performed slightly worse in compression but better in accu-
racy. Proper TT-decomposition of convolutions and train-
ing with MARS allowed to reach the same quality as with
the naively decomposed baseline TT-model but at a signifi-
cantly higher compression ratio, which once again empha-
sizes the efficiency of the Garipov et al. (2016) scheme and
nonuniform rank distribution in tensorized models.

Table 5: Compression and accuracy on CIFAR-10 with
ResNet-110. We put the type of the used decomposition
scheme in parentheses.

Model Compression Accuracy

Baseline 1× 92.6%
Baseline (naive) 2.7× 91.1%
LR-BTNN (naive) 7.4× 90.4%
MARS (naive) 7.0× 90.7%
MARS (proper) 5.5× 91.1%

4 CONCLUSION AND DISCUSSION

In this paper, we present MARS, the method for efficient
automatic selection of ranks in tensorized models leverag-
ing arbitrary tensor decompositions. The basic principle of
MARS is learning binary masks along with overall model
training that cover the cores of the decomposition and au-
tomatically select the optimal structure. We perform learn-
ing of masks and model parameters via relaxed MAP esti-
mation in a special Bayesian probabilistic model. The ex-
periments demonstrate that our technique can improve the
accuracy and compression of tensorized models with man-
ually selected ranks and surpasses or performs comparably

with alternative rank selection methods specialized on con-
crete types of tensor decompositions.

It is widely known that the ensembling of deep neural
networks leads to significant quality improvement (Lak-
shminarayanan et al., 2017; Lobacheva et al., 2020). In
our experiments, we observed a similar trend with ensem-
bles of compact MARS-trained networks. However, usual
DNN ensembles require training and evaluating several
neural networks, which might be inapplicable in resource-
constrained environments. By contrast, the whole ensem-
ble of tensorized networks often occupies less memory than
a single standard model. This opens a very promising
prospect for future research.

MARS obtains a single MAP estimate of masks. However,
learning the variational distribution over binary masks or
sampling from the posterior could allow efficient ensem-
bling of compact tensorized models. We noted in Section 2
that our objective (7) resembles ELBO up to the entropy
term. Unfortunately, our preliminary experiments in vari-
ational inference with factorized Bernoulli qϕ(m) led to
distributions with overly low variance. In other words,
sampling from qϕ(m) did not improve accuracy compared
to the model spawned by its mode. This might mean that
fully-factorized Bernoulli distribution cannot appropriately
approximate the true posterior due to numerous correla-
tions between mask variables. However, it is quite effective
for finding the MAP estimate. We believe that more flex-
ible variational families, e.g., those based on hierarchical
models, may better approximate the posterior, and leave it
for future study.

Other research directions may include improvements of
the model and the learning method, for instance, trying
REINFORCE-like algorithms (Williams, 1992) for opti-
mization over discrete masks. Applying MARS to other
types of tensor decompositions (like TR-decomposition)
and tensorized models is also very intriguing.

In Appendix F, we provide more discussion on the limita-
tions of this research, its perspectives, and possible societal
impact.
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F., Fox, E., and Garnett, R., editors, Advances in Neu-
ral Information Processing Systems, volume 32, pages
5552–5562. Curran Associates, Inc.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delv-
ing deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In Proceedings of
the IEEE international conference on computer vision,
pages 1026–1034.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep
residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016,
pages 770–778.

Hrinchuk, O., Khrulkov, V., Mirvakhabova, L., Orlova, E.,
and Oseledets, I. (2020). Tensorized embedding lay-
ers. In Proceedings of the 2020 Conference on Empiri-
cal Methods in Natural Language Processing: Findings,
pages 4847–4860.

Imaizumi, M., Maehara, T., and Hayashi, K. (2017). On
Tensor Train rank minimization : Statistical efficiency
and scalable algorithm. In Advances in Neural Informa-
tion Processing Systems 30: Annual Conference on Neu-
ral Information Processing Systems 2017, 4-9 December
2017, Long Beach, CA, USA, pages 3933–3942.



MARS: Masked Automatic Ranks Selection in Tensor Decompositions

Ishwaran, H. and Rao, J. S. (2005). Spike and slab vari-
able selection: frequentist and bayesian strategies. The
Annals of statistics, 33(2):730–773.

Jang, E., Gu, S., and Poole, B. (2017). Categorical
reparametrization with gumble-softmax. In Interna-
tional Conference on Learning Representations.

Ji, Y., Wang, Q., Li, X., and Liu, J. (2019). A survey on
tensor techniques and applications in machine learning.
IEEE Access, 7:162950–162990.

Khrulkov, V., Hrinchuk, O., Mirvakhabova, L., Orlova, E.,
and Oseledets, I. (2019). Tensorized Embedding Lay-
ers For Efficient Model Compression. arXiv preprint
arXiv:1901.10787.

Kim, Y., Park, E., Yoo, S., Choi, T., Yang, L., and Shin, D.
(2016). Compression of deep convolutional neural net-
works for fast and low power mobile applications. In 4th
International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Con-
ference Track Proceedings.

Kingma, D. P. and Ba, J. (2015). Adam: A method for
stochastic optimization. In 3rd International Conference
on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceed-
ings.

Kingma, D. P. and Welling, M. (2013). Auto-encoding vari-
ational bayes. arXiv preprint arXiv:1312.6114.

Kossaifi, J., Bulat, A., Tzimiropoulos, G., and Pantic,
M. (2019). T-net: Parametrizing fully convolutional
nets with a single high-order tensor. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 7822–7831.

Krizhevsky, A., Nair, V., and Hinton, G. (2014). The
cifar-10 dataset. online: http://www. cs. toronto.
edu/kriz/cifar. html, 55.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017).
Simple and scalable predictive uncertainty estimation us-
ing deep ensembles. In Advances in neural information
processing systems, pages 6402–6413.

Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, I. V., and
Lempitsky, V. S. (2015). Speeding-up convolutional neu-
ral networks using fine-tuned cp-decomposition. In 3rd
International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Con-
ference Track Proceedings.

LeCun, Y. (1998). The MNIST database of handwritten
digits. http://yann. lecun. com/exdb/mnist/.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324.

Li, C. and Sun, Z. (2020). Evolutionary topology search for
tensor network decomposition. In International Confer-
ence on Machine Learning, pages 5947–5957. PMLR.

Li, C., Zeng, J., Tao, Z., and Zhao, Q. (2022). Permutation
search of tensor network structures via local sampling. In
International Conference on Machine Learning, pages
13106–13124. PMLR.

Li, C. and Zhao, Q. (2021). Is rank minimization of the
essence to learn tensor network structure? Second Work-
shop on Quantum Tensor Networks in Machine Learning
(QTNML), 35th Conference on Neural Information Pro-
cessing Systems (NeurIPS 2021).

Lobacheva, E., Chirkova, N., Kodryan, M., and Vetrov,
D. P. (2020). On power laws in deep ensembles.
Advances in Neural Information Processing Systems,
33:2375–2385.

Louizos, C., Welling, M., and Kingma, D. P. (2018). Learn-
ing sparse neural networks through l 0 regularization. In
International Conference on Learning Representations.

Ma, X., Zhang, P., Zhang, S., Duan, N., Hou, Y., Zhou,
M., and Song, D. (2019). A tensorized transformer for
language modeling. In Advances in Neural Information
Processing Systems, pages 2229–2239.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y.,
and Potts, C. (2011). Learning word vectors for senti-
ment analysis. In Proceedings of the 49th annual meet-
ing of the association for computational linguistics: Hu-
man language technologies-volume 1, pages 142–150.
Association for Computational Linguistics.

Maddison, C., Mnih, A., and Teh, Y. (2017). The concrete
distribution: A continuous relaxation of discrete random
variables. In International Conference on Learning Rep-
resentations.

Mørup, M. and Hansen, L. K. (2009). Automatic relevance
determination for multi-way models. Journal of Chemo-
metrics, 23(7-8):352–363.

Nakajima, S., Tomioka, R., Sugiyama, M., and Babacan,
S. D. (2012). Perfect dimensionality recovery by varia-
tional Bayesian PCA. In Advances in Neural Informa-
tion Processing Systems, pages 971–979.

Novikov, A., Podoprikhin, D., Osokin, A., and Vetrov,
D. P. (2015). Tensorizing neural networks. In Ad-
vances in Neural Information Processing Systems 28:
Annual Conference on Neural Information Processing
Systems 2015, December 7-12, 2015, Montreal, Quebec,
Canada, pages 442–450.

Oseledets, I. V. (2011). Tensor-Train decomposition. SIAM
J. Scientific Computing, 33(5):2295–2317.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. (2019). Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neu-
ral Information Processing Systems, pages 8024–8035.



Maxim Kodryan, Dmitry Kropotov, Dmitry Vetrov

Phien, H. N., Tuan, H. D., Bengua, J. A., and Do, M. N.
(2016). Efficient tensor completion: Low-rank tensor
train. CoRR, abs/1601.01083.

Rai, P., Wang, Y., Guo, S., Chen, G., Dunson, D., and
Carin, L. (2014). Scalable bayesian low-rank decom-
position of incomplete multiway tensors. In Interna-
tional Conference on Machine Learning, pages 1800–
1808. PMLR.

Shi, Q., Cheung, Y.-M., and Lou, J. (2021). Robust tensor
SVD and recovery with rank estimation. IEEE Transac-
tions on Cybernetics.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C. D., Ng, A. Y., and Potts, C. (2013). Recursive deep
models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on em-
pirical methods in natural language processing, pages
1631–1642.

Tucker, L. R. (1966). Some mathematical notes on three-
mode factor analysis. Psychometrika, 31(3):279–311.

Wang, W., Sun, Y., Eriksson, B., Wang, W., and Aggarwal,
V. (2018). Wide compression: Tensor ring nets. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 9329–9338.

Williams, R. J. (1992). Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256.

Xu, L., Cheng, L., Wong, N., and Wu, Y.-C. (2020). Learn-
ing tensor train representation with automatic rank de-
termination from incomplete noisy data. arXiv preprint
arXiv:2010.06564.

Xu, L., Cheng, L., Wong, N., and Wu, Y.-C. (2021). Prob-
abilistic tensor train decomposition with automatic rank
determination from noisy data. In 2021 IEEE Statisti-
cal Signal Processing Workshop (SSP), pages 461–465.
IEEE.

Yang, Y., Krompass, D., and Tresp, V. (2017). Tensor-
Train recurrent neural networks for video classification.
In Proceedings of the 34th International Conference on
Machine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017, pages 3891–3900.

Yu, R., Zheng, S., Anandkumar, A., and Yue, Y.
(2017). Long-term forecasting using Tensor-Train
RNNs. CoRR, abs/1711.00073.

Zhao, Q., Zhang, L., and Cichocki, A. (2015). Bayesian
sparse tucker models for dimension reduction and tensor
completion. arXiv preprint arXiv:1505.02343.

Zhao, Q., Zhou, G., Xie, S., Zhang, L., and Cichocki,
A. (2016). Tensor ring decomposition. arXiv preprint
arXiv:1606.05535.



MARS: Masked Automatic Ranks Selection in Tensor Decompositions

A ADDITIONAL RELATED WORK

In this section, we provide additional related work on neural networks tensorization and optimal decomposition topology
estimation, which goes beyond the scope of our study.

Tensor methods allow achieving significant compression, acceleration, and sometimes even quality improvement of neural
networks. In Lebedev et al. (2015), 4-dimensional convolutional kernel tensors are decomposed with CP decomposition.
The authors were able to accelerate a network by more than 8 times without significantly decreasing accuracy. In Novikov
et al. (2015), TT-decomposition was leveraged to achieve up to 200000× compression of fully-connected layers in a VGG-
like network. Hrinchuk et al. (2020) used a similar approach to compress embedding layers in NLP models, which in some
cases led to a noticeable quality increase due to the induced regularization. In Yang et al. (2017) the authors managed
to achieve comparable performance with state-of-the-art models on very high-dimensional video classification tasks using
orders of magnitude less complex TT-tensorized recurrent neural networks. Recently, Ma et al. (2019) applied Block-Term
tensor decomposition (BTD) (De Lathauwer, 2008), a combination of CP and Tucker decompositions, to efficiently com-
press Multi-linear attention layers in Transformers and improved the single-model SoTA in language modeling. However,
in all of these works, ranks selection was done manually for each decomposed layer.

A series of works has recently emerged based on greedy/evolutionary algorithms to learn the optimal tensor network
topology (Hayashi et al., 2019; Li and Sun, 2020; Hashemizadeh et al., 2020; Li and Zhao, 2021; Li et al., 2022). These
methods tackle a more general problem than optimal ranks selection in a concrete decomposition and, hence, impose overly
complex multi-step algorithms to be directly applied for full DNN tensorization (mainly, these approaches consider simpler
tasks like plain tensor decomposition or tensor completion).

B TENSORIZED LAYERS

In this section, we provide details concerning different tensorized neural network layers used in this work.

The simplest example of a decomposed layer is a fully-connected layer approximated via low-rank matrix factorization. In
this case the matrix of weights W ∈ RM×N is represented via contraction (or matrix product) of two low-rank matrices
U1 ∈ RM×r and U2 ∈ Rr×N :

W = U1U2.

Mapping the input x ∈ RN through these matrices in series leads to FLOPs reduction from O (MN) to O (r(M +N)),
which could give a significant gain when r is smaller than M and N .

Similarly, Tucker-2 decomposition of a convolutional kernel (Kim et al., 2016) results in three consecutive smaller-sized
convolutions. Namely, the convolutional kernel K ∈ RCin×Cout×k×k, where Cin, Cout are the numbers of input and
output channels and k is the kernel size, decomposes into two matrices U1 ∈ RCin×r1 , U2 ∈ RCout×r2 and a smaller
4-dimensional tensor G ∈ Rr1×r2×k×k via the partial Tucker decomposition as:

K = G ×1 U1 ×2 U2.

Convolution operation with such a kernel can be rewritten as the following series of simpler convolutions: 1 × 1-
convolution, reducing the number of channels from Cin to r1, k × k-convolution with r1 input and r2 output channels
and again 1 × 1-convolution, restoring the number of output channels from r2 to Cout. This trick helps to compress and
speed up convolutions when the number of intermediate channels (i.e., ranks) is smaller than Cin and Cout.

In a fully-connected TT-layer (TT-FC) (Novikov et al., 2015), the matrix of weights W ∈ RM×N , input and output vectors
x ∈ RN and y ∈ RM are reshaped into tensors W ∈ R(m1,n1)×···×(md,nd), X ∈ Rn1×···×nd and Y ∈ Rm1×···×md ,
respectively, where M =

∏d
k=1 mk, N =

∏d
k=1 nk. Then W is converted into the TT-format with 4-dimensional cores

G = {G1, . . . ,Gd}, Gk ∈ Rrk−1×mk×nk×rk . The linear mapping y = Wx translates into a series of contractions:5

Y = G1 . . .GdX ,

which, calculated from right to left, yields the computational complexity O
(
dr2nmax{M,N}

)
, where r is the maximal

TT-rank, n = maxk=1...d nk. Similar technique, based on matrices represented in TT-format, or TT-matrices, underlies
most other types of TT-layers.

5Strictly speaking, contractions over two modes nk and rk.
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C IMPLEMENTATION DETAILS

Our implementation is based on tt-pytorch6 library (Khrulkov et al., 2019), which provides the minimal required tools
for working with TT-decomposition in neural networks using PyTorch (Paszke et al., 2019).

Initialization We use the Glorot-like (Glorot and Bengio, 2010) initialization for the TT-cores, implemented in the library
and described in the corresponding paper, and the Kaiming Uniform initialization (He et al., 2015) for the Tucker-2 cores
and matrices, which is default in PyTorch. We discovered that initialization and parameterization of masks probabilities
matter: we use the logit reparameterization and initialize logits of ϕ from the normal distribution with scale 10−2 and mean
α, which is a hyperparameter (concrete values were chosen with a simple cross-validation procedure and are provided in
each experiment). Variance of the normal prior over cores p (G) is fixed and equals 102.

Choosing the initial rank is generally a non-trivial problem that can be attributed to common sparsifying/pruning tech-
niques. We can state, however, that MARS does not significantly depend on this hyperparameter (as long as it is set
somewhat reasonably) and is able to restore the ground truth rank from different initializations, as, e.g., demonstrated
in Section 3.1 in the main text. We have empirically observed that running MARS from a higher initial rank with a slight
tuning of π and/or α hyperparameters produces similar results in most cases.

Training In practice, to assist optimization, we do not multiply each of the decomposition cores, coupled via a shared
mode, by the same corresponding relaxed binary mask, but instead perform only one multiplication. For instance, in
Tucker-2 convolutional layer with masks m = {m1,m2} we apply the respective mask multiplication directly to the
results of the first and second convolutions7 instead of carrying out U1 ⊙2 m1, U2 ⊙2 m2, G ⊙1 m1 ⊙2 m2. We use the
cross-entropy loss as the negative model log-likelihood. We use Adam (Kingma and Ba, 2015) as the optimizer of choice.
The temperature τ is exponentially decayed from 10−1 to 10−2 in the course of training. We discovered that hard concrete
trick (Louizos et al., 2018), i.e., stretching the Binary Concrete distribution and then transforming its samples with a hard-
sigmoid, allows achieving better results due to inclusion of {0, 1} into the support. We also found that warming up with
a plain tensorized model for several epochs can help optimization, therefore, we do not apply masks multiplication at the
first epochs in most of our experiments.

In Tensor Train models we do not shrink the first and the last ranks, as they equal 1 by definition.

D ADDITIONAL EXPERIMENT: MARS WITH OTHER TENSORIZED MODELS

In this section, we demonstrate that MARS provides a unified way to select ranks in arbitrary models leveraging decom-
posed tensors that we name tensorized models, thus it should not be considered solely as a compression technique for
neural networks. Namely, we consider a low-rank tensor approximation task as an illustrative example. We emphasize
that our method can be naturally extended to other tasks by substituting the given likelihood with other cost functions
depending on tensor parameters.

First, we construct a 4-dimensional tensor A with shape dims (A) = (d, d, d, d), d = 8 from a random Tucker decomposi-
tion with ranks r = {r, r, r, r}, r = 4, i.e.,

A = GA ×1 U
A
1 · · · ×4 U

A
4 ,

where cores GA ∈ Rr×r×r×r, UA
k ∈ Rd×r, k = 1 . . . 4 are randomly initialized from a standard normal distribution.

Then we consider a tensorized model parameterized by cores GB =
{
GB, UB

1 , . . . , U
B
4

}
, where GB ∈ RR×R×R×R, UB

k ∈
Rd×R, k = 1 . . . 4, R = 8, with the log-likelihood defined as a negative MSE between tensor

B
(
GB) = GB ×1 U

B
1 · · · ×4 U

B
4

and tensor A, i.e.,

log p
(
GB) = − 1

d4
∥∥B (

GB)−A
∥∥2 .

In other words, this model approximates the given tensor A with an 8-rank Tucker decomposition. Due to redundancy
induced by the construction of A (GT rank is r = 4), this model naturally requires ranks selection.

6https://github.com/KhrulkovV/tt-pytorch
7We remind that Tucker-2 convolution decomposes into three consecutive smaller convolutions.

https://github.com/KhrulkovV/tt-pytorch
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We applied MARS with π = 10−2 and α = −0.5 to the described model. We trained using standard gradient descent
with LR 10−2 for 104 epochs to achieve full convergence. Mean results over 10 runs are the following: ranks r =
{4.7, 4.4, 4.6, 4.2} and log-likelihood log p

(
GB) = −0.027, which is very close to the GT solution. For comparison, a

typical MSE value between two random tensors initialized according to the scheme of A is ≈ 300.

Moreover, we trained a similar model with R = r = 4 without MARS (because there are no more extra ranks) and achieved
a log-likelihood value of only ≈ −0.15. We believe that more degrees of freedom in the redundant model helps MARS
find a more optimal solution than even starting from the GT ranks. It would be interesting to get a deeper theoretical insight
explaining the differences in the experimental results of the direct learning methods with lower ranks and MARS.

In this synthetic experiment, we demonstrated that MARS is applicable for tensorized models other than tensorized neural
networks and can be used to efficiently restore GT ranks in, e.g., low-rank tensor approximation task. Yet, we can expect
that other methods, e.g., Tucker-ARD (Mørup and Hansen, 2009), tailored explicitly for automatic ranks determination in
tensor approximation, might exhibit similarly on this simple problem. Further extension of MARS to other tasks along
with a detailed comparison with relevant baselines is future work.

E ABLATION STUDY: INFLUENCE OF HYPERPARAMETER π

In this section, we report the results of an ablation experiment concerning the influence of the value of hyperparameter
π in MARS on the final model performance and compression. Specifically, we repeat the 2FC-Net MNIST experiment
from Section 3.2 using soft-mode initialization (α = −1.5) with different values of π. We present the results in Figure 3.
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Figure 3: Test accuracy (left) and compression (right) for different values of hyperparameter π. Mean ± std over 5 runs is
reported for each value of π.

As can be seen from the plots, the final test accuracies of the trained models are similar and weakly depend on the value of
hyperparameter π. At the same time, there is a tendency for compression to gradually decrease with increasing π, which
fully corresponds to its role in our model. Note also that too high values of π can lead to inconsistent results and harm
performance, since the prior term in model (2) loses its ability to promote sparse mask solutions to select optimal ranks.

In the end, we conclude that taking π ≈ 10−2 is a reasonable choice to achieve satisfactory compression-accuracy trade-off
in most situations.

F LIMITATIONS AND SOCIETAL IMPACT

In this section, we want to discuss the limitations and possible societal impact of our work.

We position our method, MARS, as a general and efficient way to select ranks in various tensorized models. While we
demonstrate its possible applicability to other tasks in the previous section, in our main experiments, we mostly concentrate
on tensorized neural networks, since they are widely known in the community and overall recognized as a promising
direction. Further development of MARS and its evaluation on other tensor models and problems is a promising future
research.



Maxim Kodryan, Dmitry Kropotov, Dmitry Vetrov

Another limitation of our work is the simplicity of the considered family of distributions over masks. We conjecture that
more advanced variational families could put our inference method beyond a simple MAP estimate and/or further improve
MARS performance. We also find this an important direction for future studies.

While modern DNN models continue increasing the total number of learnable parameters, they require more computational
resources than ever before. This circumstance under no doubts imposes negative environmental influence. As discussed
in Appendix A, tensor methods allow a significant reduction of occupied resources and energy consumption. We hope
that our method will further disseminate these methods and serve to promote environmental protection. To the best of our
knowledge, we cannot find any negative consequences from the misuse of the paper’s contribution.
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