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Abstract

Determining subgroups that respond especially
well (or poorly) to specific interventions (medi-
cal or policy) requires new supervised learning
methods tailored specifically for causal inference.
Bayesian Causal Forest (BCF) is a recent method
that has been documented to perform well on data
generating processes with strong confounding of
the sort that is plausible in many applications.
This paper develops a novel algorithm for fitting
the BCF model, which is more efficient than the
previous Gibbs sampler. The new algorithm can
be used to initialize independent chains of the
existing Gibbs sampler leading to better poste-
rior exploration and coverage of the associated
interval estimates in simulation studies. The new
algorithm is compared to related approaches via
simulation studies as well as empirical analysis.

1 INTRODUCTION

Causal effect estimation of binary interventions on con-
tinuous outcomes has been a problem of great interest in
disciplines of applied research including social sciences, ed-
ucation, public health, and policy research. In recent years,
the focus of many applied projects has been switching from
average treatment effects (ATE) to conditional average treat-
ment effects (CATE). While ATE findings are instructive
for a general understanding of intervention effectiveness,
CATE estimation enables the discovery of subpopulations
whose effects deviate from average (which could be of criti-
cal importance for groups that experience an effect opposite
in sign to the ATE).

There are two state-of-the-art methods in CATE estima-
tion. The first is Bayesian Causal Forest (Hahn et al., 2020),
which allows for separate regularization on the prognostic
and treatment functions and relies on Bayesian Additive Re-
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gression Trees (Chipman et al., 2010). The second is Causal
Random Forests (Wager and Athey, 2018), which extends
Random Forests (Breiman, 2001) to causal inference.

The Bayesian Causal Forest model was documented to per-
form well in a number of separate, rigorous simulation
studies (McConnell and Lindner, 2019; Hahn et al., 2019;
Dorie et al., 2019; Wendling et al., 2018). It was used to
estimate CATEs in the high-profile Growth Mindset inter-
vention (Yeager et al., 2019), as well as other applied work
(Ghosh et al., 2020; King et al., 2019; Bail et al., 2020;
Bryan et al., 2019).

The contribution of this paper is two-fold. First, we apply
the computational strategies of Accelerated BART (He and
Hahn, 2021) to fit a BCF model, which we call the Accel-
erated Bayesian Causal Forest (XBCF) model. Second, we
propose a procedure warm-start BCF, that utilizes trees ob-
tained from a fitted XBCF model to initialize the BCF fitting
procedure, allowing for more efficient posterior space ex-
ploration. Both methods provide similar or better coverage
and are many orders of magnitude (15x and 100x) faster
compared to the BCF model, making them powerful tools
for working with data sets that contain hundreds of thou-
sands of observations. In general, warm-start BCF provides
superior results compared to XBCF, but requires additional
runtime and computational memory space, which makes
XBCF particularly valuable for very large data sets.

2 BACKGROUND

2.1 Notation

Let Yi represent the scalar response variable, Zi denote a
binary treatment variable, and xi represent a length d row
vector of observed control variables for observation i. Let Y
and Z be length n column vectors comprising variables Yi

and Zi, respectively; let X denote the n×d matrix of control
variables. We will use lowercase Roman letters, such as y
and z, to denote the values assumed by variables. Our data
will consist of n independent observations (Yi, Zi,xi).

Following the potential outcomes framework (Imbens and
Rubin, 2015), let Yi(1) and Yi(0) represent the outcomes
under treatment and control, respectively; each observed
response may be expressed as Yi = ZiYi(1)+(1−Zi)Yi(0).
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Throughout, we assume the following standard conditions
licensing regression estimates of treatment effects:

1. SUTVA (Stable Unit Treatment Value Assumption):
No treatment assignment to a particular individual
should affect the observed outcomes on other individu-
als and that there is no variation in treatment.

2. Strong ignorability assumption: First, there are no
unmeasured confounders:

Yi(0), Yi(1) ⊥⊥ Zi | Xi.

Second, every individual has a non-zero probability of
being assigned to either treatment arm:

0 < Pr(Zi = 1 | xi) < 1.

Under these assumptions, the CATE of units with covariates
x may be estimated as the difference between two identified
conditional expectations:

τ(x) := E(Y | x, Z = 1)−E(Y | x, Z = 0).

Further assuming a mean-zero additive error,

Yi = f(xi, Zi) + ϵi, ϵi ∼ N(0, σ2),

it follows that E(Yi | xi, Zi = zi) = f(xi, zi) and

τ(xi) := f(xi, 1)− f(xi, 0).

In the XBCF method, these conditional expectations are
estimated using the aforementioned Bayesian tree ensemble
method Accelerated BART (XBART) of He et al. (2019),
which is related to a well-known method called Bayesian
Additive Regression Trees, or BART (Chipman et al., 2010).

2.2 BART

BART represents the outcome of interest as a sum of an
unknown function f(·) and an error term,

Yi = f(xi) + ϵi, ϵi ∼ N(0, σ2) (1)

The mean function f(x) is represented as a sum of many
piecewise constant binary regression trees

f(x) =

L∑
l=1

gl(x;Tl,ml) (2)

where Tl denotes a regression tree, which represents a parti-
tion of the covariate space (say A1, . . . ,AB(l)) and consists
of a set of internal decision nodes and a set of terminal nodes
(or leaves) which correspond to each element of the partition.
Each element of the partition Ab is assigned a leaf parameter
value, mlb, and ml = (ml1, · · · ,mlB(l)) denotes the vector
corresponding to all leaf parameters of the l-th tree, Tl. The
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Figure 1: An example binary tree, with the corresponding
partition of the sample space and the step function.

piecewise constant function comprising the partition and the
leaf parameters is defined as gl(x) = mlb if x ∈ Ab; see
Figure 1 for a demonstration.

Within each leaf, the mean parameters are given independent
normal priors, mlb ∼ N(0, ν). The prior over trees p(Tl)
is specified by the probability of a node having children at
depth d as α(1 + d)−β , α ∈ (0, 1), β ∈ [0,∞) to induce
regularization of size of the tree (Chipman et al., 1998).

BART explores the posterior of the trees by a random walk
Metropolis-Hastings Markov chain Monte Carlo (MCMC)
algorithm. It can be slow to converge and limits the broader
adoption of BART, especially for large datasets.

2.3 XBART

XBART was introduced to improve the fitting time of BART-
like models. XBART blends regularization and stochastic
search strategies from Bayesian modeling with computa-
tionally efficient techniques ranging from recursive parti-
tioning approaches to tree-fitting. XBART fits the same
sum-of-trees ensemble model as BART, but regrows each
tree recursively at each iteration according to a stochastic
process inspired by Bayesian updating.

We review the stochastic tree-growing approach of XBART
(Algorithm 1). Let C denote a matrix of cutpoint candidates
with elements cjk, where j = 1, . . . , p indexes a variable
and k indexes a candidate cutpoint. Assume the leaf param-
eter m has prior N(0, ν). At each node, the probability of
splitting at cutpoint cjk is proportional to

L(cjk) ∝ exp

{
1

2

[
log

(
σ2

σ2 + νnl
jk

)
+

+
ν

σ2(σ2 + νnl
jk)

(
sljk

)2
+ log

(
σ2

σ2 + νnr
jk

)

+
ν

σ2(σ2 + νnr
jk)

(
srjk
)2]}

,

(3)

where σ2 is the residual variance as in equation (1), nl
jk and

nr
jk are the number of observations in the left or right child

node if split at the splitting rule cjk, and sljk and srjk are the
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corresponding sufficient statistics for the children nodes:

sljk =
∑

xi∈Aleft
jk

yi, srjk =
∑

xi∈Aright
jk

yi

sall = sljk + srjk =

n∑
i=1

yi,

(4)

where n = nl
jk + nr

jk is number of observations in the
current node. The probability of not splitting anywhere
(no-split option) is proportional to

L(∅) ∝ |C|
(
(1 + d)β

α
− 1

)
×

exp

{
1

2

[
log

(
σ2

σ2 + νn

)
+

ν

σ2(σ2 + νn)
s2all

]}
,

(5)

where |C|1 is the total number of candidate splitting rules,
and d is the depth of the current node in the tree. The tree
is fitted recursively where at each node, a cutpoint (or the
no-splitting option) is randomly drawn from a multinomial
distribution using probabilities (3) and (5). If no-splitting is
sampled, or other pre-set stopping conditions are satisfied,
the current node becomes a terminal (leaf) node, and its as-
sociated leaf parameter m is updated by conjugate Gaussian
sampling. To form an ensemble of trees, XBART uses a
similar strategy as Bayesian backfitting, residualizing the
data with respect to the partial fit corresponding to the forest.
Specifically, the h-th tree is grown to fit the partial residual
of all other trees: y −

∑
l ̸=h gl(x;Tl,ml).

He and Hahn (2021) details how these strategies contribute
to the improved efficiency of XBART over BART as well
as improved posterior coverage of interval estimates ob-
tained by initializing multiple Markov chains at XBART
estimates. Here, we adapt the XBART approach to the BCF
model and demonstrate comparable performance gains in
the heterogeneous treatment effect setting.

2.4 Bayesian Causal Forest

Hahn et al. (2020) demonstrate the inability of BART to han-
dle confounding for certain simple data generative processes
(DGPs) via simulation studies. They refine the BART model
to overcome this limitation with several modifications. First,
rather than representing f(x, z) as a single BART model, as
in Hill (2011), they propose using the representation

f(xi, zi) = µ(xi) + τ(xi)zi, (6)

where µ and τ are prognostic and treatment functions, re-
spectively; both are given independent BART priors, per-
mitting control and treatment effects to be regularized in-
dependently. Second, they propose including an estimate
of the propensity score π̂i = P (Zi = 1 | xi) to combat

1For heuristics about categorical and continuous variables, see
Appendix A.

Algorithm 1 Grow From Root (GFR)
1: Input: GFR(y,X, σ, d, T, node).
2:
3: Calculate full sufficient statistics sall by (4).
4: for cjk ∈ C, partition data to left and right sides do
5: Calculate sljk and srjk by equation (4).
6: Calculate L(cjk) by equation (3).
7: end for
8: Calculate probability of no-split L(∅) by equation (5).
9: Draw a cutpoint or no-split using probability L(cjk) and L(∅).

10: if no-split is chosen or stop conditions are met then
11: Update leaf parameter mnode.
12: return.
13: else
14: Create two new nodes as children of node, denoted

left node and right node.
15: Sift the data into left node and right node.
16: GFR(yleft,Xleft, σ, d+ 1, T, left node)
17: GFR(yright,Xright, σ, d+ 1, T, right node)

18: end if
19: Output: The grown tree T , including the vector of sampled

leaf parameters, m.

unintended bias of treatment effects due to the regulariza-
tion of µ. See Hahn et al. (2020) for more details on this
phenomenon, which the authors refer to as regularization in-
duced confounding (RIC). We also refer readers to Hahn and
Herren (2022) and Herren and Hahn (2020) for a discussion
on finite sample properties of non-parametric propensity
score methods.

Finally, adding scaling factors b0 and b1 in the model makes
the priors invariant with respect to which group is desig-
nated as the treated group. An additional scaling factor, a,
enhances the learning of the prognostic term.

Putting these modifications together, the complete Bayesian
causal forest (BCF) model is

yi = aµ̃(xi, π̂i) + bzi τ̃(xi) + ϵi, ϵi ∼ N(0, σ2)

a ∼ N(0, 1), b0, b1 ∼ N(0, 1/2)
(7)

According to the parametrization above, treatment effects
are given by τ(xi) = (b1 − b0)τ̃(xi).

Computationally, BCF is built upon the same random walk
Metropolis-Hastings algorithm that underpins BART. As
such, it suffers from the same slow fitting time on large data
sets and the same slow posterior exploration.

3 ACCELERATED BCF

3.1 The model

We now describe our first contributed method, which we
call Accelerated BCF, or XBCF. The XBCF model differs in
one substantive respect from the model presented in Hahn
et al. (2020): the error standard deviations σ0 and σ1 are
allowed to differ between the control and treatment groups,
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respectively, whereas the original BCF model (7) has a com-
mon shared residual standard deviation. Thus, the XBCF
model is

yi = aµ̃(xi, π̂i) + bzi τ̃(xi) + ϵi, ϵi ∼ N(0, σ2
zi),

a ∼ N(0, 1), b0, b1 ∼ N(0, 1/2),
(8)

and µ̃ and τ̃ are represented as sums of trees:

µ̃(xi, π̂i) =

L∑
l=1

ul(xi, π̂i;Tl,m
T
l ),

τ̃(xi) =

K∑
k=1

vk(xi;Sk,m
S
k ),

where L,K represent the number of trees, Tl, Sk rep-
resent individual trees, and mT

l ,m
S
k denote vectors of

scalar means associated with the leafs nodes of Tl and
Sk, respectively. We will reference the forests of trees as
T = {Tl,m

T
l }Ll=1 and S = {Sk,m

S
k }Kk=1 for prognostic

and treatment terms, respectively. Following BCF, we in-
clude a column vector of (estimated) propensity scores π̂ as
an additional covariate for the prognostic term.

3.2 Model fitting procedure

The XBCF fitting algorithm uses a similar “backfitting” strat-
egy as BART and XBART, iterating tree-by-tree through
two forests (corresponding to the prognostic and treatment
terms) rather than just one. The tree and parameter updates
at each iteration are based on the following “residuals”:

Prognostic residual: v ≡ y − aµ̃(X, π̂),

Treatment residual: t ≡ y − b · τ̃(X),

Total residual: r ≡ y − aµ̃(X, π̂)− b · τ̃(X),

(9)

where b is a length n vector with i-th component equal to
bzi , and ‘·’ denotes element-wise multiplication. The update
steps for trees Tl or Sk, depend on the vectors of partial
residuals, which are obtained by subtracting the partial fit
(corresponding to the forests without the current tree) from
the observed response variable:

rT−l ≡ r + aul(X, π̂;Tl,m
T
l ), l = 1, . . . , L,

rS−k ≡ r + b · vk(X;Sk,m
S
k ), k = 1, . . . ,K.

(10)

With these terms defined, the sequence of stochastic updates
is as follows:

1. Stage 1: update prognostic forest. We first grow
L trees comprising the forest for the prognostic term
µ(xi, π̂i). For each of the trees (l = 1, . . . , L) the
sequence of updates is the following:

(a) Tl,m
T
l | rT−l, σ

2
0 , σ

2
1 , a, b0, b1, which is done

compositionally as

i. Tl | rT−l, σ
2
0 , σ2

1

ii. mT
l | Tl, σ

2
0 , σ

2
1 , a, b0, b1

(b) a | t, Tl

(c) b0, b1 | v, Tl

(d) σ2
0 , σ

2
1 | r.

2. Stage 2: update treatment forest. We then grow
K trees comprising the forest for the treatment term
τ(xi). The sequence of updates for each tree Sk (k =
1, . . . ,K) is similar:

(a) Sk,m
S
k | rS−k, σ

2
0 , σ

2
1 , a, b0, b1, which is done

compositionally as
i. Sk | rS−k, σ2

0 , σ2
1

ii. mS
k | Sk, σ

2
0 , σ

2
1 , a, b0, b1

(b) a | t, Sk

(c) b0, b1 | v, Sk

(d) σ2
0 , σ

2
1 | r,

These two stages are repeated I times, which we refer to as
“sweeps”. Pseudocode is given in Algorithm 2. Although
we use conditioning notation, note that these stochastic
updates are not full conditional distributions in the usual
Gibbs sampling sense. The tree-growing updates (Stage
1(a) and Stage 2(a)) are given in Algorithm 1, applied to
the partial residuals defined in expression 10. Parameter
updates are detailed in the next subsection.

After I sweeps, the CATE estimate for individuals with
features x is calculated as an average of the (b1 − b0)τ̃(x)
samples, as if one were taking a traditional posterior mean.

3.2.1 Parameter updates

If the no-split option is selected, or other pre-set stopping
conditions are satisfied, the current node becomes a leaf
node, and the associated leaf parameter is updated as fol-
lows (lines 8 and 16 in Algorithm 2). This update is a
conditionally conjugate Gaussian mean update; we incorpo-
rate the control group and treatment group data sequentially
to accommodate their differing variances (σ2

0 and σ2
1):

νn0 =

(
1

ν
+

n0

d20

)−1

, βn0 =
ȳ0
d20

νn0 ,

νn =

(
1

νn0

+
n1

d21

)−1

, βn =

(
βn0

νn0

+
ȳ1
d21

)
νn,

where ν is the prior variance over the mean, d0 = σ0

b0
, d1 =

σ1

b1
; n0, n1 are the number of individuals in the control and

treatment groups respectively for this leaf node, and ȳ0, ȳ1
are the corresponding partial residual means of these two
groups in this leaf node. The leaf mean parameter is then
sampled according to m ∼ N(βn, ν

2
n).

Model parameters a, b0, b1, σ0, σ1 are sampled after each
tree update for a total of L + K times per sweep. After
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Algorithm 2 Accelerated Bayesian Causal Forest (XBCF)
1: Input: y,X, L,K, I
2: Initialize r, v, t, partial residuals rT−l, r

S
−k and scale parameters

a, b0, b1, σ0, σ1.
3: for iter in 1 to I do
4: for l in 1 to L do
5: Compute partial residual rT−l by equation (10).
6: Create new node to initialize tree T iter

l with root node.
7: GFR(rT−l,X, σ2

0 , σ
2
1 , d = 0, T iter

l , new node).
8: Update leaf parameter mT,iter

h for T iter
l .

9: Update full residual r, v by equation (9).
10: Sample a, b0, b1, σ0, σ1 based on r, v, t.
11: end for
12: for k in 1 to K do
13: Compute partial residual rS−k by equation (10).
14: Create new node to initialize tree S iter

k with root node.
15: GFR(rS−k,X, σ2

0 , σ
2
1 , d = 0, S iter

k , new node).
16: Update leaf parameter mS,iter

k for S iter
k .

17: Update full residual r, t by equation (9).
18: Sample a, b0, b1, σ0, σ1 based on r, v, t.
19: end for
20: end for
21:
22: output: {{T iter

l ,mT,iter
l }Ll=1, {S iter

k ,mS,iter
k }Kk=1}Iiter=1, I pos-

terior draws of the prognostic and treatment forests, and
{aiter, biter

0 , biter
1 , σiter

0 , σiter
1 }Iiter=1, I posterior draws of other

model parameters.

updating trees, the model parameters are sampled based on
the residual vectors in equation (9) – the prognostic residual
v, the treatment residual t and the total residual r (lines 9 and
17 in Algorithm 2). Since the general update sequence is
similar for the two stages above, we will provide an explicit
update scheme for each step for Stage 2 only.

In order to update parameter a we first reshape (8) in a
regression problem, where the treatment residual vector t,
with each component divided by the corresponding σzi , is
the response variable:

y1−bz1τ(x1)

σz1

...
yn−bznτ(xn)

σzn

 =


µ(x1)
σz1

...
µ(xn)
σzn

 a+


ϵ1
σz1

...
ϵn
σzn

 .

Then updating a is essentially implemented as a two-step
regression update:

νn0
=

(
1 +

µt
0µ0

σ2
0

)−1

, βn0
=

tt0µ0

σ2
0

νn0
;

νn =

(
1

νn0

+
µt
1µ1

σ2
1

)−1

, βn =

(
βn0

νn0

+
tt1µ1

σ2
1

)
νn,

where µ0 is a vector with elements corresponding to µ(·)
evaluated at rows of X for which zi = 0, and similarly for
µ1; t0 is the part of residual vector t corresponding to only
individuals with zi = 0, and similarly for t1. The parameter
a is then sampled according to a ∼ N(βn, ν

2
n).

For the scaling factors b0 and b1, we rearrange (8) in the
form of a linear regression problem, where the prognostic
residual vector v, with each component divided by corre-
sponding σzi , is the response variable:

y1−aµ(x1)
σz1

...
yn−aµ(xn)

σzn

 =


τ(x1)z1

σz1

τ(x1)(1−z1)
σz1

...
...

τ(xn)zn
σzn

τ(xn)(1−zn)
σzn

[
b0
b1

]
+


ϵ1
σz1

...
ϵn
σzn

 .

We then update b0, b1 as the regression coefficients. We first
update their sampling parameters as follows:

νn0 =

(
1
1
2

+
τ t0τ0
σ2
0

)−1

, βn0 =
vt0τ0
σ2
0

νn0 ;

νn1
=

(
1
1
2

+
τ t1τ1
σ2
1

)−1

, βn1
=

vt1τ1
σ2
1

νn1
,

where τ0 is a vector with elements corresponding to τ(·)
evaluated at rows of X for which zi = 0, and similarly for
τ1; m0 is the part of residual vector m corresponding to only
individuals with zi = 0, and similarly for m1. Then b0 and
b1 are sampled as b0 ∼ N(βn0

, ν2n0
), b1 ∼ N(βn1

, ν2n1
).

Lastly, updating the residual variances σ2
0 and σ2

1 is a condi-
tionally conjugate inverse-Gamma update:

σ2
0 ∼ IG

(
n0 + κ0

2
,

2

rt0r0 + s0

)
σ2
1 ∼ IG

(
n1 + κ1

2
,

2

rt1r1 + s1

)
,

where n0, n1 are the total number of individuals fit in the
control and treatment groups respectively, r0, r1 are the total
residuals for the same corresponding groups; κ0, κ1, s0, s1
are hyperparameters of the inverse-Gamma prior.

4 WARM-START BCF

Preliminary work on simulation studies revealed that cover-
age of both BCF and XBCF often does not reach the desired
nominal rate. On the one hand, complex Bayesian models
do not guarantee a nominal coverage rate of credible inter-
vals. On the other hand, very poor coverage is obviously
undesirable. One contributor to under-coverage is inade-
quate Monte Carlo exploration of the posterior distribution,
resulting in artificially narrow reported intervals. Because
XBCF provides a fast approximation to the BCF posterior,
initializing the BCF MCMC at XBCF trees rather than roots
is a promising strategy to improve posterior exploration.

Specifically, we propose the following: First, use XBCF
(s sweeps, b burn-in) to obtain the tree draws for each of
the s−b sweeps after the burn-in period. Second, initial-
ize s−b BCF Markov chains at the forests obtained from
XBCF. Initializing BCF on the trees obtained from XBCF
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Table 1: Results of root mean squared error (RMSE), interval coverage (Coverage) and interval length (I.L.) for ATE and
CATE estimators under various settings. Sample size is 500. Time is running time in seconds.

Homogeneous Treatment Heterogeneous Treatment

Prognostic Method RMSE Coverage I.L. Time RMSE Coverage I.L. TimeTerm ATE CATE ATE CATE ATE CATE ATE CATE ATE CATE ATE CATE

Linear

ws-BCF 0.24 0.33 0.92 0.97 0.98 1.70 1.92 0.24 1.05 0.88 0.93 1.00 3.47 1.95
XBCF 0.26 0.31 0.84 0.90 0.89 1.29 0.23 0.26 1.28 0.80 0.76 0.90 2.70 0.24
BCF 0.24 0.34 0.90 0.96 0.96 1.65 4.69 0.23 1.07 0.90 0.84 0.96 2.98 4.98

ps-BART 0.30 0.53 0.87 0.98 1.02 2.62 10.32 0.28 1.18 0.84 0.93 1.06 3.72 10.49
CRF 0.39 0.57 0.80 0.83 1.23 1.62 0.21 0.45 1.41 0.76 0.74 1.38 2.59 0.21

BART 0.39 0.61 0.67 0.96 1.00 2.57 10.35 0.38 1.21 0.72 0.92 1.03 3.66 10.57
BART-f0f1 0.59 1.03 0.36 0.95 1.03 4.14 12.83 0.54 1.39 0.56 0.93 1.07 5.06 12.84

lm 0.19 0.30 0.94 0.99 0.90 1.74 1.54 0.23 0.40 0.92 0.97 0.96 1.93 1.44

Nonlinear

ws-BCF 0.33 0.48 0.95 0.99 1.65 2.78 1.92 0.33 1.48 0.94 0.91 1.61 4.63 1.93
XBCF 0.35 0.48 0.88 0.92 1.49 2.09 0.23 0.36 1.62 0.88 0.78 1.45 3.59 0.24
BCF 0.32 0.46 0.94 0.98 1.63 2.65 4.60 0.33 1.52 0.93 0.86 1.58 4.27 4.75

ps-BART 0.41 0.88 0.90 0.99 1.72 4.70 10.42 0.40 1.57 0.92 0.93 1.7 5.53 10.46
CRF 0.44 0.69 0.84 0.90 1.53 2.50 0.20 0.56 1.62 0.74 0.79 1.67 3.5 0.21

BART 0.55 0.95 0.76 0.98 1.63 4.44 10.39 0.55 1.58 0.76 0.93 1.59 5.29 10.45
BART-f0f1 1.44 2.56 0.12 0.85 1.71 7.56 12.86 1.39 2.71 0.10 0.86 1.68 7.88 12.88

lm 1.89 2.14 0.03 0.45 1.73 3.97 1.41 1.81 2.20 0.06 0.50 1.71 4.26 1.31

substantially reduces the necessary burn-in period for the
BCF MCMC algorithm. We call this initialization strategy
warm-start BCF, or ws-BCF.

We recommend retrieving 40 forests from XBCF and respec-
tively initializing 40 independent BCF chains using those
forests, with 10 burn-in iterations and 100 iterations post
burn-in as a default setting. Running BCF for so few itera-
tions is much faster compared to the regular BCF model, and
it also grants additional time gains coming from a straight-
forward chain parallelization. For all experiments in this
paper, we used eight cores which we believe is very common
for modern machines.

The findings of Ronen et al. (2022) shed light on certain
issues with mixing in BART-based models, which could be
alleviated by seeding techniques like our warm-start method.
Studying the simplified version of BART, the authors ob-
served that the first split in the tree could create a bottleneck
for the mixing of the chain, and overcoming this bottle-
neck is more difficult with larger amounts of data. With a
warm-start approach described above, the BCF chains are
initialized at sets of stochastically grown trees that are likely
to differ in their overall structure and have a greater variety
of splitting rules at the top the trees.

5 SIMULATION STUDIES

5.1 Simulation 1: Small data

First, we reproduce the simulation study of Hahn et al.
(2020), focusing on estimating CATE on the basis of three
metrics: average root mean square error, coverage, and av-
erage interval length. The data are generated according to
four different processes: the conditional expectation can be

linear or nonlinear, and the treatment effect can be homo-
geneous or heterogeneous. The covariate vector x contains
five variables; three are continuous, standard normal ran-
dom variables, one is dichotomous, and one is unordered
categorical with three levels (denoted 1, 2, 3). Specifically,
the treatment effect is either

τ(x) =

{
3 homogeneous,
1 + 2x2x5 heterogeneous,

and the prognostic function is defined as either

µ(x) =

{
1 + g(x4) + x1x3 linear,
−6 + g(x4) + 6|x3 − 1| nonlinear,

where g(1) = 2, g(2) = −1 and g(3) = −4. The propen-
sity function is given by

π(xi) = 0.8Φ(3µ(xi)/s− 0.5x1) + 0.05 + ui/10,

where s is the standard deviation of µ(x) taken over the
observed sample, with ui ∼ Uniform(0, 1). Including µ in
the treatment probability induces strong confounding.

The set of methods that we use to estimate treatment effects
on this data includes our two new methods proposed in this
paper, XBCF and warm-start BCF; the original BCF method;
a naive version of BART with binary treatment assignment
added as a non-distinguished covariate; ps-BART, which
in addition to the treatment assignment also incorporates
propensity score estimates as another covariate; BART-f0f1,
which fits two separate BART models for the treatment and
control groups; Causal Random Forest (Wager and Athey,
2018), which also incorporates propensity score estimates;
and a Bayesian linear model with a horseshoe prior (Car-
valho et al., 2010) on the regression coefficients.
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Table 2: Results of root mean squared error (RMSE), inter-
val coverage (Coverage) and interval length (I.L.) for ATE
and CATE estimators for the simulation study with 100,000
datapoints and 50 covariates. The number in parenthesis for
BCF indicates the number of burn-in and follow-up itera-
tions. The column Time is running time in seconds. The
results are averaged over 50 independent replications.

Method RMSE Coverage I.L. TimeATE CATE ATE CATE ATE CATE

ws-BCF 0.006 0.064 0.960 0.805 0.023 0.159 334
XBCF 0.006 0.076 0.900 0.685 0.025 0.157 43
BCF(4) 0.015 0.098 0.640 0.513 0.022 0.109 2494
BCF(10) 0.011 0.085 0.78 0.55 0.022 0.107 6084

For each of the methods, we averaged the results on the
three metrics over 200 independent replications. The re-
sults on a sample of n = 500 data points are presented
in Table 1. For this simulation study, we used the default
recommended settings for all of the methods. Two methods,
warm-start BCF and Causal Random Forest, took advantage
of parallelization on eight cores.

Broadly, we recapitulate the findings of Hahn et al. (2020).
Their key takeaways are that one, the propensity score is an
important feature for accurate estimation of treatment effects
in problems with strong confounding, and two, separate
regularization of µ and τ improves estimation accuracy.
Here, we highlight the differences between BCF, XBCF,
and warm-start BCF.

• warm-start BCF always performs better than regular
BCF in CATE estimation, in both RMSE and coverage.

• XBCF provides the most narrow credible interval
length, but often under covers compared to BCF and
warm-start BCF.

• Overall, warm-start BCF provides the best coverage
among all three methods, for both ATE and CATE.

5.2 Simulation 2: Large data

An additional simulation is designed to compare the per-
formance and computational speed of XBCF, warm-start
BCF, and the original BCF on large data. Here the time
comparisons and CATE coverage are the main interest, as
we expect these methods will concur on any data set given
sufficient run time.

We generate n = 100, 000 data points with p = 50 covari-
ates (25 continuous and 25 binary) as the input matrix. Of
those 50 variables, we choose two possibly overlapping sets
of 10, sampled uniformly, to contribute to the treatment and
prognostic functions, respectively. The data is unbalanced
on average, with approximately 2

3 data points in the control
group, and treatment effects were stratified into 10 levels.
Full details of the DGP are available in the supplement.

Table 3: Results of root mean squared error (RMSE), inter-
val coverage (Coverage) and interval length (I.L.) for ATE
and CATE estimators for the simulation study with 500,000
datapoints and 250 covariates. The column Time is running
time in seconds. The results are averaged over 50 indepen-
dent replications.

Method RMSE Coverage I.L. TimeATE CATE ATE CATE ATE CATE

ws-BCF 0.002 0.056 0.90 0.708 0.095 0.128 3376
XBCF 0.003 0.063 0.86 0.626 0.097 0.119 1121

Table 2 shows that warm-start BCF with default parameters
(100 iterations over 40 sweeps) performs better than the
original BCF MCMC in all estimands of interest and espe-
cially improves in coverage. In general, MCMC methods
need to run for long enough in order to converge, and when
we run the original BCF for a significantly larger amount
of iterations (10,000 after 10,000 iterations of burn-in), we
still see that it does not match the performance of warm-
start BCF, despite taking 15 times longer. While XBCF
doesn’t reach the levels of coverage that warm-start BCF
does, the method still surpasses the standard BCF MCMC
in all aspects while being 100 times faster.

5.3 Simulation 3: Largest data

Finally, we focus on estimating the performance of our pro-
posed two methods in an even larger sample size. With a
DGP similar to the simulation in Section 5.2, we generate
samples of n = 500, 000 data points with p = 250 covari-
ates (125 continuous and 125 binary). We also increase
the complexity of the problem by sampling two sets of 50
variables (instead of 10) to contribute to the prognostic and
treatment functions, respectively. The results provided in
Table 3 support the observed trend that warm-start BCF
helps improve the coverage, with both methods finishing
computations within an hour.

We did not include BCF in the latter simulation due to
excessive run time demands. However, we would like to
point out two potential issues of the method with regard
to large data. First, as a BART-based model, BCF is ex-
pected to suffer from a greater degree of poor mixing as
the number of observations increases (Ronen et al., 2022);
this would lead to even longer run times till convergence
than on smaller sample sizes. Second, as the method would
need to run very long, even saving posterior draws every
few hundred iterations, the output matrix may grow past
RAM size. Warm-start BCF overcomes both of these issues.

5.4 Hardware specifications

The experiments underlying Tables 1 and 2 were performed
on a Linux machine with an Intel(R) Core(TM) i7-8700K
CPU @ 3.70GHz processor and 64GB RAM; 8 cores were
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Table 4: ATE estimates and respective lengths of the 95%
credible/confidence intervals for the set of methods we con-
sidered.

Method ATE CI length Time
ws-BCF 0.68 1.02 1.50

XBCF 0.62 0.91 0.52
BCF 0.67 1.02 8.02

ps-BART 0.67 0.98 11.07
BART 0.68 0.99 11.26

BART-f0f1 0.73 1.04 13.26
CRF 0.64 1.18 0.45

used for warm-start BCF and CRF parallelization.

The experiment with n = 500, 000 observations underlying
Table 3 was performed on a more powerful Linux machine
with an Intel Xeon Gold 5318Y CPU @ 2.1GHz processor
and 314GB RAM; but 8 cores were used for warm-start
BCF parallelization.

6 EMPIRICAL DEMONSTRATION

For empirical demonstration, we analyze data on student
classroom performance in language arts classes collected
from two public schools in Portugal during the 2005-2006
school year (Cortez and Silva, 2008). The data is available
at the UCI Machine Learning Repository and was used in
Cortez and Silva (2008) to predict students’ final grades.
The rich covariates in this data set make it possible to pose
several questions regarding the causal impact of students’
attributes on their final scores. Here, we focus on estimating
the treatment effect of which school was attended, Gabriel
Pereira (GP) or Mousinho da Silveira (MS). The course
grade is an award on a 20-point scale.

From the original data set, which contained information
on 649 students, we omit students whose final score is 0.
We also restrict our analysis to those who state that they
intend to pursue higher education, bringing the sample size
to n = 570 students. We control for the following variables:

• age: age in years at the time of the survey (numeric)

• address: indicator whether student lives in a city or in
a rural area (binary)

• famrel: quality of family relationship (5 levels)

• famsize: indicator whether student’s family has more
than 3 members or not (binary)

• famsup: family educational support (binary)

• Fedu: father’s education level (5 levels)

• Fjob: father’s job (5 categories)

• health: student’s current health status (5 levels)

• internet: internet access at student’s home (binary)

• Medu: mother’s education level (5 levels)

• Mjob: mother’s job (5 categories)

• nursery: indicator of attending nursery school (binary)

• Pstatus: parent’s cohabitation status (binary)

• reason: reason to choose this school (4 categories)

• sex: student’s sex assigned at birth (binary)

6.1 Treatment effect estimation

All methods considered in the simulation study are used here
as well, except for the linear model. Table 4 reports point
estimates and interval lengths (for 95% credible intervals
for the Bayesian methods and for the 95% confidence in-
terval for the Causal Random Forest method). All methods
estimate the ATE to be in the range 0.6-0.8, with interval
estimates lying above zero, suggesting a small positive aver-
age treatment effect.

Although the ATE estimates broadly concur, CATE esti-
mates vary substantially across methods. Table 5 shows
the correlation matrix of CATE estimates obtained from
different methods. As desired, BCF and warm-start BCF
are strongly positively correlated.

Table 5: The correlation matrix of CATE estimates obtained
from different methods.

CRF BART BART-f0f1 ps-BART BCF XBCF
BART 0.65

BART-f0f1 0.63 0.88
ps-BART 0.63 0.87 0.99

BCF 0.73 0.62 0.73 0.71
XBCF 0.63 0.63 0.64 0.61 0.49

ws-BCF 0.76 0.73 0.83 0.82 0.98 0.57

6.2 Subgroup analysis

Posterior inference for subgroup average treatment effects
can be obtained directly from the posterior draws sampled
from warm-start BCF.

To discover subgroups of interest, we fit a regression tree to
the posterior point estimates of the CATE, using the set of
all covariates available from the original dataset; the result-
ing tree defines subgroups for which the CATE estimates
differ. This should be considered a convenient form of pos-
terior exploration and not a separate inference procedure.
Posterior inferences are obtained simply as the sample av-
erage effects calculated according to each posterior draw.
Of particular interest is the posterior difference between
subgroup treatment effects: posterior credible intervals of
this quantity allow us to determine if the difference between
subgroups is statistically convincing.

The left panel in Figure 2 represents the fitted tree to pos-
terior point estimates obtained from warm-start BCF. Sub-
group 1, which benefited most from treatment, with sub-
group ATE estimate of 1.3 points, consisted of 50 students
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with the following characteristics: mother doesn’t have a
higher education degree (Medu < 4); family relationship is
perceived by the student as average or lower (famrel < 4);
there is educational support from the family (famsup ≥ 2).

At the other end of the spectrum we have Subgroup 2, which
benefited the least from the treatment, with the subgroup
ATE estimate of -0.46 points, consisting of 11 students with
the following characteristics: mother has a higher education
degree (Medu ≥ 4); father’s job is teacher; there is no
educational support from the family (famsup < 2).

The posterior difference in subgroup ATE is shown in the
middle panel of Figure 2. The majority of differences are
above 0; the 95% posterior credible interval is (−0.2, 4.7).

Although it makes sense intuitively that students whose par-
ents have less education may stand to benefit more from
better in-school instruction, the fact that those students are
receiving at-home support while the children of teachers are
not defied expectation. We speculate that the reason a pupil
whose father is a teacher would not receive at-home support
is if the student is not in need of assistance. If this were the
case, it would suggest that better in-school instruction bene-
fits students who are not already excelling; this is consistent
with the estimated subgroup average prognostic effects (see
right panel in Figure 2) as well as with previous literature
on educational interventions (Yeager et al., 2019).

7 SUMMARY

This paper introduces a novel algorithm for fitting the
Bayesian causal forest model, a popular method for causal
inference problems with heterogeneous treatment effects.
Our warm-start BCF method produces BCF models capable
of fitting substantially larger datasets than could be fit with
the previous random walk Metropolis-Hastings algorithm,
which can under-explore the vast space of regression tree
ensembles. Furthermore, warm-start BCF produces superior
results comapred to BCF in a much (15x) shorter runtime.

The XBCF method also provides improved coverage com-
pared to BCF (though inferior to warm-start BCF) on large
datasets, while running 100x faster. XBCF can be used
on datasets of size up to ≈ 1 million in our experiments.
Additionally, even on smaller data sets, the warm-start BCF
algorithm provides better interval estimates of conditional
average treatment effects in simulations, a property that we
believe to hold for empirical analyses as well, as the warm-
start BCF intervals tend to be longer. We hope to apply our
approach to large observational health databases.

In an extension of this work, Wang et al. (2022) augments
Gaussian processes to XBCF to extrapolate non-overlapping
region of treatment and control groups. Future directions
include adapting the work for other causal inference meth-
ods that call for regularized regression, such as instrumental
variables approaches or regression discontinuity designs.

SOFTWARE AVAILABILITY

Both warm-start BCF and XBCF are available in R; de-
tails on installation and use are available at https://
github.com/JingyuHe/bcf2. Warm-start BCF is
expected to be available on CRAN as part of the next
bcf package version. XBCF is expected to become avail-
able on CRAN as part of the XBART package (https:
//github.com/JingyuHe/XBART), and it has a stan-
dalone Python implementation xbcausalforest.
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Figure 2: (Left) A single deterministic tree fit to the individual-level treatment estimates of warm-start BCF. The top number
in each box is the average subgroup treatment effect, the lower number indicates the percentage of the total sample. (Middle)
The histogram of differences in means of Subgroup 1 and Subgroup 2 over all posterior draws of warm-start BCF. (Right)
Posterior draws of subgroup average treatment and prognostic effects for the two subgroups.
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A HEURISTICS FOR CATEGORICAL AND CONTINUOUS VARIABLES

Recall Equation (3), the split criterion for each cutpoint candidate. We implicitly assume that all cutpoint candidates are
equally weighted. If all variables in X are continuous, and each variable has an equal number of candidates, then all
variables are equally weighted as well. However, if X contains a mixture of continuous and categorical variables, they may
have different weights, since the number of candidates for them can be different: users can, at most, choose split candidates
equal to the number of classes for categorical variables. It is therefore possible to adjust Equation (3) for the j-th categorical
variable by a − log(num cutpointsj,categorical) + log(num cutpointscontinuous) term to induce a uniform prior on variables,
but not cutpoint candidates. Neither option is inherently correct, but they may induce different results, especially when
the number of candidates is quite different for continuous and categorical variables. In this paper, we use the fist strategy
(equally weighted cutpoints) for the small sample simulation from Section 5.1, and the second strategy for the large sample
simulations from Sections 5.2 and 5.3.

B DATA GENERATING PROCESSES FOR SIMULATION STUDIES 2 AND 3

Here we describe the Data Generating Process (DGP) for the simulation studies described in Sections 5.2 and 5.3. We will
use the variable v to distinguish between the two simulations, with v = 1 for the DGP in Section 5.2 and v = 5 for the one
in Section 5.3. We are interested in data that meet two criteria:

1. All input covariates are correlated;

2. Only some of those covariates are causally relevant.

First, we generate a feature matrix X meeting criteria (1), with n = 100000v observations and p = 50v features (half of
them are continuous and the other half are binary).

From the set of covariates, we then choose at random two subsets of 10v variables, S1 and S2; we allow for these subsets to
overlap. We then generate two vectors of length 50v, α and β, component-wise for k = 1, ..., 50 as follows:

αk =

{
0, k ∈/ S1

ak, k ∈ S1

and βk =

{
0, k ∈/ S2

bk, k ∈ S2

where ak, bk ∼ N(0, 1). The vectors α and β are used for generation of the treatment and prognostic functions as described
below.

To meet criteria (2), we only want some of the input features to be causally relevant, so we define the prognostic function in
a way that only variables from S2 impact the output of the function:

µ(x) =

(
x · β√
10v

)2

.

Similarly, only variables from S1 impact the output of the treatment function for this DGP, which is defined as a multilevel
step-function. With the treatment function for this DGP, we intended to limit heterogeneity while having non-linearity of
treatment.

Before we proceed to the treatment function, we will introduce two auxiliary functions which we utilized on the way to
generating the treatment effects. First, we define function t as

t(x) =
x · α√
10v

.

We compute its minimum m = min
i

t(xi) and range r = max
i

t(xi) − min
i

t(xi) over rows xi of the input matrix X

(i = 1, ..., 100000v). Then we define an auxiliary step-function τ∗ as

τ∗(x) =


1, t(x) ∈ [m,m+ 1

10r)
2, t(x) ∈ [m+ 1

10r,m+ 2
10r)

...
...

10, t(x) ∈ [m+ 9
10r,m+ r]
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We also compute a scaling factor as the portion of the ratio between ranges of µ(·) and τ(·), evaluated at the rows xi of
input matrix X (i = 1, ..., 100000v):

h = 0.1×
max

i
µ(xi)−min

i
µ(xi)

max
i

τ∗(xi)−min
i

τ∗(xi)

This scaling factor ensures that the treatment effects are not too large compared to the prognostic effects. We finally define
the treatment function as follows:

τ(x) = hτ∗(x).

Similar to simulation study in Section 3, we include µ in defining the treatment probability to induce strong confounding:

π(x) = 0.05 + 0.9(2Φ(µ(x))− 1).

Lastly, we compute the binary vector of treatment assignments z as follows: zi ∼ B(π(xi)).

Then for every individual observation i we compute the outcome variable in the following way:

yi = µ(xi) + τ(xi)zi + 0.6κϵi, ϵi ∼ N(0, 1),

where κ is the standard deviation of µ(x) taken over the observed sample.

C ADDITIONAL RESULTS FOR SIMULATION STUDY 1

We repeated the same simulation study shown in Table 1 of the paper, but with a smaller sample size of n = 250, to match
the structure of the full simulation study in the original BCF paper. Table 6 presents the results of all considered methods on
the estimands of interest obtained following the DGPs described in Section 5.1 of the paper, but on this smaller sample size
of n = 250.

Table 6: Results of root mean squared error (RMSE), interval coverage (Coverage) and interval length (I.L.) for ATE and
CATE estimators with different combinations of treatment term and prognostic term types. Sample size is 250. The column
Time is running time in seconds.

Homogeneous Treatment Heterogeneous Treatment

Prognostic Method RMSE Coverage I.L. Time RMSE Coverage I.L. TimeTerm ATE CATE ATE CATE ATE CATE ATE CATE ATE CATE ATE CATE

Linear

ws-BCF 0.29 0.42 0.96 0.99 1.45 2.40 1.73 0.35 1.37 0.9 0.91 1.51 4.32 1.73
XBCF 0.31 0.37 0.91 0.95 1.33 1.81 0.14 0.38 1.55 0.88 0.77 1.35 3.36 0.14
BCF 0.30 0.45 0.96 0.98 1.43 2.39 2.53 0.35 1.39 0.88 0.87 1.47 4.07 2.63

ps-BART 0.32 0.61 0.94 0.99 1.49 3.27 5.83 0.40 1.75 0.88 0.86 1.64 4.38 6.03
CRF 0.43 0.56 0.83 0.88 1.57 1.86 0.10 0.55 1.76 0.82 0.72 1.96 2.89 0.10

BART 0.45 0.73 0.80 0.96 1.44 3.22 5.95 0.53 1.78 0.76 0.84 1.57 4.32 6.03
BART-f0f1 0.67 1.16 0.57 0.96 1.46 4.74 7.70 0.66 1.65 0.62 0.93 1.56 5.76 7.81

lm 0.28 0.44 0.96 0.99 1.35 2.64 1.51 0.36 0.58 0.86 0.96 1.35 2.82 1.44

Nonlinear

ws-BCF 0.52 0.68 0.94 0.97 2.46 3.86 1.73 0.53 1.84 0.93 0.91 2.41 5.89 1.73
XBCF 0.55 0.67 0.88 0.94 2.24 2.99 0.13 0.59 1.96 0.86 0.80 2.15 4.70 0.14
BCF 0.52 0.69 0.93 0.97 2.43 3.79 2.51 0.50 1.89 0.93 0.89 2.38 5.64 2.56

ps-BART 0.75 1.20 0.84 0.98 2.56 5.90 5.95 0.74 2.16 0.84 0.89 2.58 6.60 5.94
CRF 0.87 1.01 0.65 0.82 2.15 3.06 0.09 0.93 2.12 0.64 0.72 2.45 4.10 0.09

BART 1.11 1.47 0.56 0.94 2.39 5.65 5.94 1.11 2.30 0.56 0.86 2.40 6.36 6.02
BART-f0f1 2.08 3.15 0.10 0.83 2.38 8.68 7.93 1.96 3.32 0.14 0.83 2.38 9.12 7.89

lm 1.82 2.28 0.24 0.69 2.55 5.68 1.41 1.64 2.28 0.37 0.75 2.51 6.01 1.33

D OBSERVATIONAL DATA

The data set for the empirical data demonstration is publicly available at the UCI Machine Learning Repository (https:
//archive.ics.uci.edu/ml/datasets/Student+Performance).

https://archive.ics.uci.edu/ml/datasets/Student+Performance
https://archive.ics.uci.edu/ml/datasets/Student+Performance

