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Abstract

We propose a meta-learning method to improve
the anomaly detection performance on unseen
target tasks that have only unlabeled data. Exist-
ing meta-learning methods for anomaly detection
have shown remarkable performance but require
labeled data in target tasks. Although they can
treat unlabeled data as normal assuming anoma-
lies in the unlabeled data are negligible, this as-
sumption is often violated in practice. As a re-
sult, the methods have low performance. Our
method meta-learns with related tasks that have
labeled and unlabeled data such that the expected
test anomaly detection performance is directly
improved when the anomaly detector is adapted
to given unlabeled data. Our method is based on
autoencoders (AEs), which are widely used neu-
ral network-based anomaly detectors. We model
anomalous attributes for each unlabeled instance
in the reconstruction loss of the AE, which are
used to prevent the anomalies from being re-
constructed; they can remove the effect of the
anomalies. We formulate adaptation to the un-
labeled data as a learning problem of the last
layer of the AE and the anomalous attributes.
This formulation enables the optimum solution to
be obtained with a closed-form alternate update
formula, which is preferable to efficiently maxi-
mize the expected test anomaly detection perfor-
mance. The effectiveness of our method is exper-
imentally shown with four real-world datasets.

1 INTRODUCTION

Anomaly detection is an important problem in machine
learning, which attempts to detect anomalies or outliers that
do not conform to the expected normal pattern (Chandola
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et al., 2009; Ruff et al., 2021; Salehi et al., 2021). Anomaly
detection has been successfully used in various applica-
tions such as intrusion detection (Dokas et al., 2002), fraud
detection (Kou et al., 2004), medical diagnosis (Fernando
et al., 2020), and failure detection (Idé et al., 2017).

Many unsupervised anomaly detection methods have been
proposed such as autoencoders (AEs) (Sakurada and Yairi,
2014), isolation forests (IFs) (Liu et al., 2008), and one-
class support vector machines (OSVMs) (Schölkopf et al.,
2001). Since they use only unlabeled data, which are easy
to prepare, they are widely used in practice. To learn the
anomaly detectors from unlabeled data, they assume that
most unlabeled instances are normal. However, this as-
sumption is often violated in real-word applications. For
example, in cyber security, normal behavior-based detec-
tion systems collect unlabeled data of each user to model
the user’s normal pattern. If the user is infected with mal-
ware, the dataset is contaminated by a large amount of
anomalous activities. Moreover, even if unlabeled data
contain few anomalies, these methods can be affected by
the anomalies, often resulting in low performance (Chala-
pathy et al., 2017; Beggel et al., 2019).

When the label (normal or anomalies) information of
each instance is available, supervised or semi-supervised
anomaly detection methods can improve the performance
(Ruff et al., 2019; Yamanaka et al., 2019; Akcay et al.,
2018). However, labeled data are often difficult to col-
lect since annotation requires domain expertise and is time-
consuming. Especially, when there are many target tasks
(e.g., there are many new users appearing one after an-
other), the data are more difficult to collect for every task.

Although labeled data are difficult to collect in a target task,
they might be available in related tasks, called source tasks.
In the above example, anomalous and normal data might
be obtained from other users who have existed for a long
time. Several meta-learning methods have been recently
proposed that use labeled data in multiple source tasks for
anomaly detection on unseen target tasks (Frikha et al.,
2021; Iwata and Kumagai, 2021; Kumagai et al., 2019;
Kruspe, 2019; Ding et al., 2021). Meta-learning is formu-
lated as a bilevel optimization problem. In the inner opti-
mization problem, task-specific models are adapted to the
given task-specific instances, called a support set. In the
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Figure 1: Overview of our meta-learning procedure. (1) For each training iteration, we randomly sample unlabeled in-
stances (support set) and labeled instances (query set) from a randomly selected source task. (2) We calculate task repre-
sentation z from the support set by neural networks. (3) Each instance is embedded to a task-specific embedded space by
neural networks with z. (4) Initial anomalous attributes A0 are calculated by neural networks with the support set. (5) Lin-
ear transformation matrix of the AE W is adapted by minimizing the reconstruction error of the support set while adapting
anomalous attributes A. (6) AUC is calculated on the query set and is backpropagated to update all neural networks.

outer optimization problem, common parameters shared
across all tasks are meta-learned to improve the expected
test performance when the task-specific model adapted in
the inner problem is used. Although these methods are use-
ful, they require normal data (Frikha et al., 2021; Kumagai
et al., 2019; Kruspe, 2019) or both normal and anomalous
data (Iwata and Kumagai, 2021; Ding et al., 2021) in tar-
get tasks. Thus, they are inappropriate when only unla-
beled target data are available. Further, simply treating un-
labeled data as normal data significantly degrades their per-
formance, which will be demonstrated in our experiments.

In this paper, we propose a method to learn anomaly detec-
tors appropriate for unseen target tasks that have only unla-
beled data by meta-learning with multiple source tasks. We
assume that each source task has both labeled (anomalous
and normal) and unlabeled data. The anomaly score of each
instance is calculated based on the reconstruction error of
AE, which is modeled by neural networks, and has been
used in various anomaly detection problems (Sakurada and
Yairi, 2014; Kumagai et al., 2019; Chen et al., 2017).

With the proposed method, the inner problem corresponds
to adapting the AE to the given unlabeled support set. To
effectively adapt to various tasks, task-specific AEs need to
be constructed. To this end, we calculate a vector repre-
sentation of each task by permutation-invariant neural net-
works (Zaheer et al., 2017) that take the support set as in-
put. This task representation contains information of the
support set. With the task representation, the AE first non-
linearly encodes each instance to a task-specific embed-
ding space appropriate for the task. Then, the AE decodes
each embedded instance into the original space by a lin-
ear transformation. By minimizing the reconstruction er-
rors between instances and reconstructed ones, the AE can
learn the normal pattern when data are all normal. How-
ever, since the unlabeled support set may contain anomalies
in our setting, minimizing the reconstruction errors of all
unlabeled data causes performance degradation. To tackle

this problem, we introduce anomalous attributes for each
unlabeled instance in the reconstruction loss of the AE,
which are used to prevent the anomalies from being recon-
structed, as in recent studies (Chalapathy et al., 2017; Zhou
and Paffenroth, 2017). By estimating both the anomalous
attributes and the linear transformation matrix of the AE
with the support set, we can effectively learn the normal
pattern while removing the effects of the anomalies. Our
formulation enables the inner problem to be solved by a
closed-form alternative update formula, which is prefer-
able for the efficient meta-learning. Moreover, the pro-
posed method has an advantage in terms of interpretability
since we can identify the anomalies in the support set by
investigating the anomalous attributes. We further model
the initial anomalous attributes of each support instance by
neural networks that take both the instance and the task rep-
resentation as input. By this modeling, we can obtain good
initial anomalous attributes for each task and can efficiently
adapt to the task even with a few updates.

In the outer problem, we meta-learn all the neural net-
works such that the anomaly detection performance im-
proves when the AE is adapted to the support set. All pa-
rameters of the neural networks are common parameters
shared across all tasks. Since the solution of the inner prob-
lem is differentiable and can be easily calculated due to the
closed-form update formula, we can solve the bilevel opti-
mization problem efficiently by a gradient descent method.
We use the differential approximation of the area under the
ROC curve (AUC) as the objective function in the outer
problem, which is often used in previous anomaly detection
studies since the AUC can precisely evaluate the perfor-
mance in class-imbalanced problems (Bekkar et al., 2013;
Iwata and Yamanaka, 2019; Kumagai et al., 2019). By
maximizing the expected test AUC, we can learn accurate
anomaly detectors for unseen target tasks from unlabeled
target data. Figure 1 shows the overview of our meta-
learning procedure.
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2 RELATED WORK

Many unsupervised anomaly detection methods have been
proposed such as AE-based methods (Sakurada and Yairi,
2014; Somepalli et al., 2021; Perera et al., 2019; Gong
et al., 2019; Yoon et al., 2021; Zong et al., 2018),
classification-based methods (Ruff et al., 2018; Golan and
El-Yaniv, 2018; Bergman and Hoshen, 2019), and density
estimation-based methods (An and Cho, 2015; Zong et al.,
2018; Ren et al., 2019; Phan and Idé, 2019). These methods
can treat unlabeled data as normal data to learn the normal
pattern (anomaly detectors). However, they do not have
an explicit mechanism to exclude anomalies in unlabeled
data. To robustly learn anomaly detectors from unlabeled
data, several techniques has been proposed such as using
soft margins (Schölkopf et al., 2001), ensemble learning
(Liu et al., 2008; Aryal et al., 2014), noise robust prob-
abilistic modeling (Eduardo et al., 2020), using gradient
properties (Wang et al., 2019), and using robust statistics
(Rousseeuw and Hubert, 2011). Among them, an approach
to model anomalous attributes of training data and exclude
them from a detector’s training is widely used due to its per-
formance and interpretability (Xiong et al., 2011; Huang
et al., 2009). Especially, robust AEs, which model anoma-
lous attributes in the AE framework, work well by using the
high expressive capability of neural networks (Chalapathy
et al., 2017; Zhou and Paffenroth, 2017). We incorporate
this approach in our meta-learning framework since its for-
mulation enables us to solve the inner problem efficiently
and effectively as described later. Although these methods
are effective, they often greatly deteriorate the performance
when the effect of the anomalies is not small (Zhang et al.,
2021; Zhou and Paffenroth, 2017). Semi-supervised or su-
pervised approaches use labeled data to improve the per-
formance (Ruff et al., 2019; Akcay et al., 2018; Pang et al.,
2019; Zhang et al., 2021). Although they are useful, they
cannot be applied to our problem where there are no labeled
data in target tasks.

Transfer learning methods for anomaly detection, which
use source data and unlabeled target data, have been pro-
posed (Vincent et al., 2020; Michau and Fink, 2021; Fan
et al., 2021). They usually treat only two tasks (source
and target tasks) and require target data in the training
phase. In contrast, the proposed method treats multiple
tasks and does not require any target data in the (meta-
)training phase. After meta-learning with source tasks, the
proposed method can quickly and effectively adapt to target
tasks given unlabeled target data in the test phase, which is
especially preferable when many target tasks appear one
after another.

Many meta-learning methods have recently been proposed
that aim to efficiently and effectively adapt to new tasks
by using multiple tasks (Hospedales et al., 2020). Al-
though most are designed for few-shot classification, there

are several methods for anomaly detection (Frikha et al.,
2021; Iwata and Kumagai, 2021; Kumagai et al., 2019;
Kruspe, 2019; Ding et al., 2021; Dahia and Pamplona Se-
gundo, 2021; Huang et al., 2022). Meta-learning meth-
ods for anomaly detection based on model-agnostic meta-
learning (MAML) (Finn et al., 2017) have been proposed
(Frikha et al., 2021; Wu et al., 2021; Lu et al., 2020). In
the inner problem, the MAML-based methods adapt the
whole parameters of neural networks to the support set by
gradient descent methods. Since they require the second-
order derivative of the whole parameters for training, they
have considerable computation and memory burdens (Ra-
jeswaran et al., 2019; Bertinetto et al., 2018). In contrast,
the proposed method adapts two parameter matrices (lin-
ear transformation and anomalous attribute matrices), and
the adapted parameters are obtained by simple calculation
with the closed-from update formula, which achieves more
efficient adaptation. Some methods are based on encoder-
decoder-based meta-learning methods such as neural pro-
cesses (NPs) (Garnelo et al., 2018a,b) that perform effi-
cient adaptation by forwarding the support set to neural net-
works (Kumagai et al., 2019; Oladosu et al., 2020). They
use only neural networks for the adaptation and do not di-
rectly minimize the loss of the support set when adapting
to target tasks. Thus, they might have difficulty perform-
ing effective adaptation. In contrast, the proposed method
explicitly minimizes reconstruction errors of support in-
stances, which leads to more effective adaptation. All these
methods assume normal data or both normal and anoma-
lous data in target tasks. Therefore, they will not work
well when there are only unlabeled target data. Zhao et al.
(2021) proposed a recommendation method for unsuper-
vised anomaly detection algorithms such as OSVMs and
IFs using labeled data in source tasks. This method only
recommends an algorithm and cannot learn its detector.

Several methods use the meta-learning techniques such as
MAML for learning from noisy labeled data (Zheng et al.,
2021; Ren et al., 2018; Shu et al., 2019; Wang et al., 2020;
Zhang et al., 2019). These methods assume a single task
that has clean labeled and noisy labeled data. Unlike the
proposed method, they cannot handle multiple tasks and
are not methods for anomaly detection.

Some methods have been proposed for robust few-shot
classification (Zhu et al., 2020; Killamsetty and Li, 2022;
Chen et al., 2020; Liang et al., 2022). They learn classi-
fiers from noisy labeled data by meta-learning in source
tasks. Although the proposed method requires unlabeled
data in target tasks, they require noisy labeled data in target
tasks. In addition, they are also not designed for anomaly
detection. To the best of our knowledge, there are no meta-
learning methods for robust anomaly detection on target
tasks containing only unlabeled data.
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3 PROPOSED METHOD

3.1 Problem Setup

Let Xt := {xtn}Nt
n=1 be a set of unlabeled instances in the

t-th task, where xtn ∈ RD is the D-dimensional feature
vector of the n-th unlabeled instance of the t-th task and
Nt is the number of the unlabeled instances in the t-th task.
Similarly, let XA

t := {xA
tn}

NA
t

n=1 and XN
t := {xN

tn}
NN

t
n=1 be

anomalous and normal instances of the t-th task, respec-
tively. We assume that feature vector size D is the same
across all tasks, but the joint distribution of instances and
labels can differ across tasks. In the training phase, T
source tasks D := {Xt ∪ XA

t ∪ XN
t }Tt=1 are given. Al-

though we assume that each source task has anomalous
instances in the main paper, our method can also handle
source tasks that do not contain anomalous instances, as
described in Section A. In the test phase, we are given un-
labeled instances (support set) S := {xn}NS

n=1 in a target
task, which is different from source tasks. Our aim is to
identify whether any instance x in the target task is anoma-
lous or not.

3.2 Model

We present our model that outputs an anomaly score
s(x;S) of instance x given unlabeled support set S. First,
our model calculates a task representation from S by us-
ing permutation-invariant neural networks (Zaheer et al.,
2017):

z := g

(
1

NS

NS∑
n=1

f(xn)

)
∈ RK , (1)

where f and g are any feed-forward neural networks. Since
summation is permutation-invariant, the neural network in
Eq. (1) outputs the same vector even when the order of
support instances varies. In addition, this neural network
can handle different numbers of instances. Thus, the neu-
ral network in Eq. (1) is well defined as functions for set
inputs. Task representation z contains information of the
empirical distribution of instances in the support set. The
proposed method can use any other permutation-invariant
function such as summation (Zaheer et al., 2017) and set
transformer (Lee et al., 2019a) for the task representations.

With the proposed method, anomaly score s(x;S) is de-
fined by the reconstruction error of AE:

s(x;S) :=‖ x−Wh([x, z]) ‖22, (2)

where [·, ·] is concatenation, h : RD+K → RJ is a feed-
forward neural network as the encoder, W ∈ RD×J is a
linear weight matrix as the decoder, and ‖ · ‖2 is `2 norm.
Since this score depends on z, it can change its properties
to fit the task in accordance with z. Linear decoder W is

important for deriving the analytical update formula, as dis-
cussed later. For anomaly detection, AE is usually trained
with normal data, and thus the reconstruction errors of nor-
mal instances become low. In contrast, the reconstruction
errors of anomalous instances can be expected to be high
since anomalies are not learned. However, the support set
may contain anomalies in our setting, and thus minimiz-
ing the reconstruction errors of all instances would cause
performance degradation.

To deal with this problem, we consider the following con-
vex loss function to be minimized:

L(W,A;S) :=
1

NS

NS∑
n=1

‖ xn + an −Wh([xn, z]) ‖22

+
λ

NS

NS∑
n=1

‖ an ‖1 +µ ‖W ‖2F, (3)

where an ∈ RD represents anomalous attributes for the n-
th instance xn, A := (a1, . . . ,aNS )> ∈ RNS×D, ‖ · ‖1
is `1 norm, ‖ · ‖F is Frobenius norm, and λ and µ are
positive real numbers, respectively. Standard AEs (i.e., the
case of A = 0 in Eq. (3)) force the reconstruction error
to be smaller even if anomalies in the support set are more
difficult to reconstruct than the other support instances. In
contrast, the proposed method can avoid forcing such erro-
neous reconstruction by estimating non-zero anomalous at-
tributes an for such instances. In other words, by minimiz-
ing Eq. (3), we can expect that linear weight matrix W can
be learned without being affected by anomalies. By adapt-
ing only W with fixed neural network h, we can obtain the
optimal solution of Eq. (3). Several studies have shown
the adaptation of only the last layer performs quite well
(Bertinetto et al., 2018; Lee et al., 2019b; Kumagai et al.,
2021). By the `1 regularizer, many attributes of A become
zeros, which is natural since the number of anomalies is
usually not large. We note that if there is no regularization
(λ = 0), the optimal solution becomes trivial (A = −XS
and W = 0.)

The loss in Eq. (3) can be minimized by alternatively up-
dating W and A with the following update rules:

W =
1

NS
(XS+A)>HS

(
1

NS
H>SHS + µIJ

)−1

, (4)

A = sgn(HSW
>−XS)

[
|HSW>−XS |−

λ

2
1NS1

>
D

]
+

,

(5)

where XS := (x1, . . . ,xNS )> ∈ RNS×D, HS :=

(h([x1, z]), . . . , h([xNS , z]))
> ∈ RNS×J , IJ is a J-

dimensional identity matrix, 1c is a c-dimensional vector
whose elements are all one, sgn is a sign function, and
[·]+ = ReLU(·). sgn(·), [·]+, and | · | are applied to
each component of the matrix. The first step Eq. (4) is
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derived from the condition of stationary points ∂L
∂W = 0

for fixed A. Similarly, the second step Eq. (5) is derived
by minimizing L w.r.t. A for fixed W, which is equiv-
alent to using the soft thresholding operator (Bach et al.,
2011). In Eq. (4), µ > 0 makes matrix ( 1

NS
H>SHS +µIS)

positive-definite. By repeating a large number of iterations
of Eqs. (4) and (5), we can obtain the optimum solution
of Eq. (3). However, many iterations can be problem-
atic in the meta-learning since they significantly increase
the computation cost (Rajeswaran et al., 2019; Bertinetto
et al., 2018). To alleviate this problem, good initial pa-
rameters for each task need to be estimated. To this end,
the proposed method models the initial parameters of A,
A0 := (a01, . . . ,a0NS )> ∈ RNS×D, by the following
neural networks:

a0n := v([xn, z]) ∈ RD, (6)

where v is any feed-forward neural networks. Since initial
anomalous attributes a0n for n-th instance xn depend on z,
a0n can take appropriate values in accordance with z. This
neural network is meta-learned such that it outputs good
initial anomalous attributes as described in Section 3.3. By
using an adapted linear weight matrix W∗ that is obtained
after I iterations of Eqs. (4) and (5), the anomaly score is
calculated by

s∗(x;S) =‖ x−W∗h([x, z]) ‖22 . (7)

We note that our formulation is not restricted to AEs. For
example, it can be easily applied to DeepSVDD (Ruff et al.,
2018), which is a widely used anomaly detection method.
We describe the details in Section B.

3.3 Training

We explain the training procedure for our model. In this
subsection, we use notation S as a support set in source
tasks. The common parameters to be meta-learned Θ are
parameters of neural networks f , g, h, and v, and regular-
ization parameters λ and µ. In the outer problem, we want
to improve expected test AUC when the AE adapted in the
inner problem with support set S is used:

max
Θ

Et∼{1,...,T}E(S,Q)∼Dt
[AUC(Q;S,Θ)] , (8)

where E is expectation, Q = {xA
n}

NA
n=1 ∪ {xN

m}
NN
m=1 is

labeled data drawn from the same task as support set S,
called a query set, and

AUC(Q;S,Θ) =

1

NANN

NA∑
n=1

NN∑
m=1

I(s∗(x
A
n ;S,Θ) > s∗(x

N
m;S,Θ)), (9)

where I is the indicator function, i.e., I(U) = 1 when U is
true, I(U) = 0 otherwise, and s∗(x;S,Θ) is an anomaly

Algorithm 1 Training procedure of our model.

Require: Datasets in source tasks D, support set size NS ,
query set size NQ, and the number of iterations for
solving the inner problem I

Ensure: Common parameters of our model Θ
1: repeat
2: Randomly sample task t from {1, . . . , T}
3: Randomly sample support set S with size NS from

XU
t

4: Randomly sample query set Q with size NQ from
XA
t ∪XN

t

5: Calculate task representation z from S by Eq. (1)
6: Calculate initial anomalous attributes A0 from S by

Eq. (6)
7: for l := 1 to I do
8: Update linear weights W and anomalous at-

tributes A with S by Eqs. (4) and (5)
9: end for

10: Calculate the smoothed AUC on Q by Eq. (10)
11: Update common parameters Θ with the gradients of

the smoothed AUC
12: until End condition is satisfied;

score of x with the AE adapted to support set S in Eq. (7).
Here, we explicitly describe the dependency of common
parameter Θ for clarity. Since the AUC takes a high value
when anomalous instances take higher anomaly scores than
normal ones, it is the successfully used metric in class-
imbalanced problems such as anomaly detection (Bekkar
et al., 2013; Iwata and Yamanaka, 2019). To make the AUC
differentiable, we use the following smoothed approxima-
tion of the AUC:

ÃUC(Q;S,Θ) =

1

NANN

NA∑
n=1

NN∑
m=1

σ(s∗(x
A
n ;S,Θ)− s∗(xN

m;S,Θ)), (10)

where σ(u) = 1
1+exp(−u) is the sigmoid function used

for the smoothed approximation of the indicator function
(Iwata and Yamanaka, 2019). Since the anomaly score
s∗(x;S,Θ) is easily obtained by the closed-form update
formula in Eqs. (4) and (5), the outer problem in Eq. (8)
is efficiently constructed. In addition, the outer problem is
differentiable since anomaly score s∗(x;S,Θ) is differen-
tiable. Thus, we can solve it by a stochastic gradient de-
scent method. Algorithm 1 shows the pseudocode for our
training procedure. For each iteration, we randomly sample
task t from source tasks (Line 2). From unlabeled dataXU

t ,
we randomly sample support set S (Lines 3). From labeled
data XA

t ∪ XN
t , we randomly sample query set Q (Lines

4). We note that even when there are only labeled data in a
task, we can sample unlabeled data from labeled data with-
out using label information. We calculate task representa-
tion z (Line 5) and initial anomalous attributes A0 from S
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(Line 6). We iteratively update linear weight matrix W and
anomalous attributes A with S by Eqs. (4) and (5) (Lines 7
– 9). Using the adapted linear weight matrix W∗, we cal-
culate the smoothed AUC on query setQ (Line 10). Lastly,
the common parameters Θ are updated with the gradient of
the smoothed AUC (Line 11).

4 EXPERIMENTS

4.1 Data

We used four real-world datasets: Omniglot, Mnist-r, Iso-
let, and IoT. These datasets have been commonly used
in meta-learning for anomaly detection studies (Kruspe,
2019; Frikha et al., 2021; Kumagai et al., 2019, 2021) 1.
Omniglot consists of hand-written images of 964 charac-
ters (classes) from 50 alphabets (Lake et al., 2015). Each
class has 20 images and its feature dimension is 784.
Mnist-r is created from the Mnist dataset by rotating the
images (Ghifary et al., 2015). This dataset has six domains
(six rotating angles) with 10 class (digit) labels. Each class
of each domain has 100 instances and its feature dimen-
sion is 256. Isolet consists of 26 letters (classes) spoken
by 150 speakers, and speakers are grouped into five groups
(domains) by speaking similarity (Fanty and Cole, 1990).
Each instance is represented as a 617-dimensional vector.
IoT is real network traffic data for cyber security, which
are generated from nine IoT devices (domains) infected
by malware (Meidan et al., 2018). Each instance is repre-
sented by a 115-dimensional vector. For each domain, we
randomly used 500 normal and 500 malicious (anomalous)
instances.

For Omniglot, we first randomly split all 964 classes into
three groups: 764, 100, and 100 classes. Then, follow-
ing previous anomaly detection studies (Frikha et al., 2021;
Kruspe, 2019; Ruff et al., 2018, 2019), we created anomaly
detection tasks by regarding one class in a group as nor-
mal and the others in the same group as anomalous. By
changing normal classes, we created 764 source, 100 val-
idation, and 100 target anomaly detection tasks. Note that
creating tasks in the same dataset is a standard procedure
in meta-learning (for anomaly detection) studies (Frikha
et al., 2021; Kruspe, 2019; Kumagai et al., 2019, 2021;
Snell et al., 2017; Finn et al., 2017), and data do not over-
lap in the source, validation, and target tasks. For Mnist-
r, we first split all six domains into four, one, and one.
Then, by using the same procedure for Omniglot, we cre-
ated 40 source, 10 validation, and 10 target anomaly detec-
tion tasks. Similarly, for Isolet, we split all five domains
into three, one, and one, and then created 78 source, 26
validation, and 26 target anomaly detection tasks. IoT has
a natural multiple task structure, so we directly split all

1We did not use other datasets, such as Fashion-MNIST (Xiao
et al., 2017) and MVTec AD (Bergmann et al., 2021), since they
do not have multiple domains or tasks.

nine domains into six source, two validation, and one target
anomaly detection tasks. For each dataset, we randomly
created 10 different source/validation/target anomaly de-
tection task splits.

For each source/validation task, we set the number of la-
beled data to be lr times the number of all normal data
in the task. We investigated the cases of lr = 0.1, 0.2,
and 0.3. Within the labeled data, 10% of instances are
anomalous and 90% are normal. We used the remain-
ing normal instances in each task as part of the unlabeled
data. We injected the remaining anomalous instances into
the unlabeled data so that its anomaly ratio became ar.
For each task, ar was uniformly randomly selected from
{0.1, 0.2, 0.3, 0.4, 0.5}. Thus, unlabeled data in each task
had different numbers of anomalies. We note that labeled
and unlabeled data in each task have different anomaly ra-
tios in our setting, which is a challenging setting since the
anomaly ratio in unlabeled data is not easy to estimate
from labeled data (Saerens et al., 2002; Du Plessis and
Sugiyama, 2014). For each target task, we set the num-
ber of unlabeled data (support set) NS to half of all normal
data in the task. We evaluated mean test AUCs on the target
tasks by changing anomaly ratios in the target support set
within {0.1, 0.2, 0.3, 0.4, 0.5}.

4.2 Comparison Methods

We compared the proposed method with 11 existing meth-
ods: OSVM (Schölkopf et al., 2001), IF (Liu et al., 2008),
AE (Sakurada and Yairi, 2014), robust AE (RAE) (Cha-
lapathy et al., 2017), deep autoencoding Gaussian mix-
ture model (DAGM) (Zong et al., 2018), MAML-based
methods (MAML) (Frikha et al., 2021), NP-based meth-
ods (NP and transfer anomaly detection with neural pro-
cesses (TNP) (Kumagai et al., 2019)), prototypical network
(Snell et al., 2017) -based methods (Proto (Dahia and Pam-
plona Segundo, 2021) and robust Proto (RProto) (Zhu et al.,
2020)), and metacleaner-based method (MC) (Zhang et al.,
2019).

OSVM, IF, AE, and DAGM are widely used unsupervised
anomaly detection methods. RAE is an extension of AE
made robust to outliers by modeling anomalous attributes
of data. These methods use only the target unlabeled sup-
port set for training. We evaluated these methods to inves-
tigate the effectiveness of using source tasks. MAML, NP,
TNP, and Proto are meta-learning methods for one-class
anomaly detection. These methods use unlabeled support
sets assuming that anomalies in the unlabeled data are neg-
ligible. In the inner problem, MAML adapts binary classi-
fiers to the unlabeled support set with cross-entropy loss to
meta-learn the initial classifier parameters by a gradient-
based method. NP and TNP are encoder-decoder-based
meta-learning methods. They infer task-specific AEs from
the unlabeled support set by permutation-invariant neural
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Table 1: Average test AUCs [%] over different label ratios in source tasks within {0.1, 0.2, 0.3} and anomaly ratios in
target unlabeled support set within {0.1, 0.2, 0.3, 0.4, 0.5}. Boldface denotes the best and comparable methods according
to the paired t-test and the significance level of 5 %.

Data Ours OSVM IF AE RAE DAGM NP TNP MAML Proto RProto MC
Omniglot 86.23 66.63 60.17 68.39 68.39 63.36 50.07 50.18 53.26 75.83 80.07 75.22
Mnist-r 85.19 77.10 73.57 80.99 80.99 76.47 58.69 61.62 72.37 71.71 75.57 70.88
Isolet 95.69 87.93 92.54 91.61 91.63 61.11 75.03 78.31 90.03 90.54 93.97 90.50
IoT 95.94 84.16 32.09 84.09 87.38 69.87 70.53 93.42 88.79 58.53 53.85 80.09
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Figure 2: Average and standard errors of test AUCs over different label ratios in source tasks when changing anomaly
ratios in target unlabeled support set.

networks. Proto is a representative method of metric-based
meta-learning methods. This method first embeds each un-
labeled support instance by neural networks and calculates
a prototypical vector by averaging embedded support data.
The anomaly score of an instance is calculated on the ba-
sis of the distance between the embedded instance and the
prototypical vector. We note that Proto can be regarded
as a meta-learning extension of DeepSVDD (Ruff et al.,
2018) since the prototypical vector is the support set de-
pendent center vector of DeepSVDD. In the outer problem,
MAML, NP, and Proto maximize the AUC as in the pro-
posed method. TNP maximizes the sum of the AUC and
negative reconstruction error of normal query data. RProto
and MC are meta-learning methods from noisy labeled
data. In the inner problem, RProto calculates the represen-
tative vector while removing anomalous embedded support
instances that are far from the other embedded data. MC
uses a weighted prototype vector in Proto to remove out-
liers, where the weight is outputted by a neural network
from an input instance. We condition the neural network
for weights by task representation vectors used in the pro-
posed method to deal with the task’s diversity. In the outer
problem, RProto and MC maximize the AUC. We evalu-
ated the comparison methods with the cross-entropy loss in
the outer problem in Section F.3.

4.3 Hyperparameter Settings

For OSVM, IF, AE, RAE, and DAGM, we reported the best
test AUCs by changing their hyperparameters. For other
meta-learning methods including the proposed method, we
reported test AUCs when hyperparameters were used that

were determined on the basis of mean AUC on validation
tasks. For all neural network-based methods, we used the
Adam optimizer (Kingma and Ba, 2014) with a learning
rate of 10−3. The validation AUC was also used for early
stopping to avoid over-fitting. Query set size NQ was set
to the number of labeled data on each task. The neural net-
work architectures and hyperparameter candidates in our
experiments are described in Sections D and E.

4.4 Results

Table 1 shows the average test AUCs over different label
ratios in source tasks and anomaly ratios in the target unla-
beled support set. The proposed method outperformed the
other methods with all datasets by a large margin. Unsuper-
vised anomaly detection methods (OSVM, IF, AE, RAE,
and DAGM) performed worse than the proposed method,
which indicates the effectiveness of using information in
related tasks. Among the meta-learning methods, NP and
TNP did not work particularly well with most datasets.
This is because both methods are encoder-decoder-based
methods and thus have difficulty performing effective adap-
tation by only neural networks. MAML outperformed NP
and TNP since it adapts to the support set by target-specific
training. RProto outperformed Proto since it is an outlier-
robust method. The proposed method clearly outperformed
these all meta-learning methods by properly incorporat-
ing the robust anomaly detection mechanism in the meta-
learning framework.

Figure 2 shows the average and standard errors of test
AUCs when changing anomaly ratios in the target unla-
beled support set. As the anomaly ratio increases, the per-



Meta-learning for Robust Anomaly Detection

0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300
Label Ratio in Source Task

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

AU
C

Ours
OSVM
IF
AE
RAE
DAGM
MAML
NP
TNP
Proto
RProto
MC

(a) Omniglot

0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300
Label Ratio in Source Task

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

AU
C

Ours
OSVM
IF
AE
RAE
DAGM
MAML
NP
TNP
Proto
RProto
MC

(b) Mnist-r

0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300
Label Ratio in Source Task

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

AU
C

Ours
OSVM
IF
AE
RAE
DAGM
MAML
NP
TNP
Proto
RProto
MC

(c) Isolet

0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300
Label Ratio in Source Task

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

Ours
OSVM
IF
AE
RAE
DAGM
MAML
NP
TNP
Proto
RProto
MC

(d) IoT

Figure 3: Average and standard errors of test AUCs over different anomaly ratios in target unlabeled support set when
changing label ratios in source tasks.

Table 2: Ablation study: average test AUCs [%] over different label ratios in source tasks and anomaly ratios in target
unlabeled support set. Boldface denotes the best and comparable methods according to the paired t-test and the significance
level of 5 %.

Data Ours w/o A w/o Initial w/o Iter w/o hTask w/o ATask w/o Task
Omniglot 86.23 82.36 83.73 84.16 86.13 85.77 86.02
Mnist-r 85.19 80.97 81.56 82.57 81.73 85.26 81.19
Isolet 95.69 92.83 94.03 93.84 95.61 95.61 95.34
IoT 95.94 95.32 95.32 80.11 95.22 93.68 96.28

Figure 4: An example of estimated anomaly attributes of
the target unlabeled support set A when anomaly rate in
the support set is 0.4 in Mnist-r. We plotted the absolute
values of the attributes of A. The lighter color indicates
higher absolute values (the dark purple represents zeros).
The first 20 instances are anomalous, and the other 30 in-
stances are normal. The proposed method captured anoma-
lous attributes in the first 20 instances as expected.

formance of all methods tended to decrease. This is be-
cause the normal pattern is difficult to learn from unlabeled
data when the anomaly ratio is large. However, the pro-
posed method outperformed the other methods over almost
all anomaly ratios with all datasets. By properly incorporat-
ing a mechanism to eliminate anomalies in the adaptation,
our method worked well even with large anomaly ratios.

Figure 3 shows the average and standard errors of test
AUCs when changing label ratios in source tasks. The per-
formance of all meta-learning methods tended to increase
as the label ratio increases because they can precisely eval-
uate the models adapted in the inner problems when there
are many labels. The proposed method outperformed the
other methods over all label ratios with all datasets.

Table 2 shows an ablation study of our model. We eval-
uated six variants of our model: w/o A, w/o Initial, w/o
Iter, w/o hTask, w/o ATask, and w/o Task. w/o A is our
model without anomalous attributes A in Eq. (3). w/o Ini-
tial is our model without initial anomalous attributes A0

estimated by neural networks in Eq. (6). This model set
A0 = 0 as in the previous studies (Zhou and Paffenroth,
2017). w/o Iter is our model without iterative adaptation
with Eqs. (4) and (5). This model directly uses A0 in Eq.
(6) as estimated anomalous attributes A and then W is de-
termined by Eq. (4). w/o hTask is our model without task
representation z in the encoder neural network h of Eq. (3).
w/o ATask is our model without z in initial anomalous at-
tributes A0 in Eq. (6). w/o Task is our model without z in
both h and A0. The proposed method showed the best or
comparable results with all datasets. Especially, it clearly
outperformed w/o A with most datasets, which indicates
the effectiveness of estimating A to remove harmful effects
of the anomalies. w/o Initial and w/o Iter did not work well
with most datasets. This result indicates that both estimat-
ing A0 and explicit support set adaptation are essential in
our framework. w/o hTask, w/o ATask, and w/o Task out-
performed the other variants. However, by using task repre-
sentation z in both h and A0, the proposed method tended
to outperform these three methods. Overall, these results
show the effectiveness of our model design.

Figure 4 shows one example of estimated anomalous at-
tributes in the target unlabeled support set by the proposed
method. We confirmed that the anomalous instances have
more non-zero anomalous attributes than the normal ones
do. Since the proposed method precisely captured the
anomalous attributes in the unlabeled data as expected, it
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(a) Ours (normal) (b) Ours (anomaly) (c) w/o A (normal) (d) w/o A (anomaly)

Figure 5: Examples of the reconstructed instances in target unlabeled support set in Mnist-r. In each paired image, left and
right images represent the original and reconstructed images, respectively. w/o A reconstructed not only the normal image
(digit ‘1’) but also the anomalous one (digit ‘8’). The proposed method correctly reconstructed the normal image (digit
‘1’) but fails to reconstruct the anomalous data (digit ‘8’) as expected.
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Figure 6: Average and standard errors of test AUCs over different anomaly ratios in target unlabeled support set and label
ratios in source tasks when changing the number of iterations I for solving the inner problem of the proposed method.

Table 3: Training and testing computational time in seconds of meta-learning methods on Mnist-r.

Ours NP TNP MAML Proto RProto MC
Train 222.4 49.0 49.4 348.7 42.9 47.0 61.2
Test 0.059 0.029 0.028 0.116 0.023 0.022 0.027

worked well by removing the harmful effects of the anoma-
lies. The ability to identify anomalous attributes in the
support set is an important practical property as the inter-
pretability.

Figure 5 shows examples of the reconstructed normal and
anomalous instances in the target unlabeled support set.
Both the proposed method and w/o A, which is our model
without anomalous attributes A, precisely reconstructed
the normal instance (digit ‘1’). However, w/o A also re-
constructed the anomalous instance (digit ‘8’) since it min-
imizes the reconstruction errors of all unlabeled instances.
In contrast, the proposed method did not reconstruct the
anomaly instance and thus worked well.

Figure 6 shows average and standard errors of test AUCs
when changing the number of iterations I for solving the
inner problem of the proposed method. For all datasets, the
performance of the proposed method tended to improve as
the number of iterations I increased. This is because large
I can accurately solve our inner problems. However, the
proposed method performed well even with few iterations
(I = 10) with all datasets. This is because the proposed
method was meta-learned such that few iterations lead to
good solutions for anomaly detection.

Table 3 shows the training and testing time in seconds
of meta-learning methods on Mnist-r. We used a com-
puter with a 2.20 GHz CPU. The computation time of
MAML was much longer than those of the other methods
because it requires iterative optimization for all neural net-
work parameters in the inner problem. Although the pro-
posed method had a much longer computation time than
NP, TNP, Proto, RProto, and MC, which do not require
iterative adaptation, it outperformed the other methods in
terms of anomaly detection by a large margin as described
in Table 1.

5 CONCLUSION

We proposed a meta-learning method for robust anomaly
detection that can learn accurate anomaly detectors from
unlabeled data in unseen target tasks while removing the
harmful effects of anomalies in the unlabeled data. Our ex-
periments demonstrated that the proposed method outper-
formed various existing anomaly detection methods with
various anomaly-noise ratios in four real-world datasets.
For future work, we plan to extend our framework to robust
anomaly detection for structured data such as time-series
and graphs.
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A OBJECTIVE FUNCTION IN OUTER OPTIMIZATION PROBLEMS WITHOUT
ANOMALOUS DATA

The proposed method can treat source tasks that do not contain labeled anomalous data. For these source tasks, we
maximize the negative reconstruction error on labeled normal data in the outer problem instead of the AUC in Eq. (9):

− 1

NN

NN∑
m=1

‖ xN
m −W∗h([xN

m, z]) ‖22 .

By maximizing the negative reconstruction error of normal data, the proposed method can learn the normal pattern of data,
which is useful for anomaly detection.

B OUR FORMULATION WITH SVDD

When we use DeppSVDD, an anomaly score of instance x given support set S, s(x;S), is calculated by

s(x;S) :=‖ c−Wh([xn, z]) ‖22,

where c ∈ RC is the predefined fixed center vector, h : RD+K → RJ is a feed-forward neural network, and W ∈ RC×J
is a linear weight matrix. The loss function in the inner optimization problem Eq. (3) becomes

L(W,A;S) :=
1

NS

NS∑
n=1

‖ c + an −Wh([xn, z]) ‖22 +
λ

NS

NS∑
n=1

‖ an ‖1 +µ ‖W ‖2F .

When λ = ∞, this loss function is equivalent to that of DeepSVDD since A = 0. By minimizing this loss, the proposed
method learns W while avoiding anomalies approaching center vector c.

C DOWNLOAD LINKS OF REAL-WORLD DATASETS

We used four real-world datasets for our experiments: Omniglot2, Mnist-r3, Isolet4, and IoT5.

D NETWORK ARCHITECTURES

For the proposed method, a three(two)-layered feed-forward neural network was used for f(g) in Eq. (1). For f , the
number of hidden and output nodes was 32. For h in Eq. (2), a three-layered feed-forward neural network with 32 hidden
and 32 output nodes was used (J = 32). For v in Eq. (6), a four-layered feed-forward neural network with 32 hidden nodes
was used. For AE, RAE, DAGM, NP, and TNP, a four-layered feed-forward neural network with 32 hidden nodes was used
for AE networks. For estimation networks in DAGM, a three-layered feed-forward neural network with 32 hidden nodes
was used. For MAML, a four-layered feed-forward neural network with 32 hidden nodes was used for binary classifiers.
For Proto, RProto, and MC, a four-layered feed-forward neural network with 32 hidden was used for instance embedding
networks. For the task representation vectors in NP, TNP, and MC, the same neural network architectures as the proposed
method (f and g) were used. For weight networks in MC, a four-layered feed-forward neural network with 32 hidden
nodes was used. All neural networks used the ReLU function as their activation functions. We implemented all neural
network-based methods on the basis of PyTorch (Paszke et al., 2017). All experiments were conducted on a Linux server
with an Intel Xeon CPU and a NVIDIA GeForce GTX 1080 GPU.

E HYPERPARAMETERS

For OSVM, the RBF kernel was used and outlier fraction parameter ν was selected from {0.1, 0.3, 0.5}. For IF, the
number of base estimators was chosen from {50, 100, 200}. For AE, RAE, and DAGM, the number of training iterations

2https://github.com/shashankhalo7/Omniglot meta learning
3https://github.com/ghif/mtae
4http://archive.ics.uci.edu/ml/datasets/ISOLET
5https://archive.ics.uci.edu/ml/datasets/detection of IoT botnet attacks N BaIoT



Meta-learning for Robust Anomaly Detection

40 60 80 100 120
K

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850

AU
C Ours

RAE

(a) Omniglot

40 60 80 100 120
K

0.81

0.82

0.83

0.84

0.85

AU
C

Ours
RAE

(b) Mnist-r

40 60 80 100 120
K

0.92

0.93

0.94

0.95

AU
C Ours

RAE

(c) Isolet

40 60 80 100 120
K

0.88

0.90

0.92

0.94

0.96

AU
C

Ours
RAE

(d) IoT

Figure 7: Average and standard errors of test AUCs over different anomaly ratios in target unlabeled support set and label
ratios in source tasks when changing the dimension of task representations K of the proposed method.

Table 4: Detailed analysis of effects of modeling initial anomalous attributes: average test AUCs [%] and training compu-
tational time in seconds on Mnist-r.

Ours w/o Initial w/o Initial w/o Initial w/o Initial
Metric (I = 10) (I = 10) (I = 20) (I = 30) (I = 50)
Train Time 222.4 190.7 317.9 467.9 808.9
Test AUC 85.19 81.56 81.96 81.90 81.78

was selected from {100, 500, 1000}. For RAE, `1-regularization parameter λ was chosen from {10−2, 10−1, . . . , 102}.
For DAGM, the number of mixture components was chosen from {2, 4} and regularization parameters were set to the
recommended values in the original paper: λ1 = 0.1 and λ2 = 0.005. For these methods, we reported the best test AUCs.
For all methods except for OSVM, IF, AE, RAE, and DAGM, hyperparameters were determined on the basis of mean AUC
on validation tasks. For the proposed method, NP, TNP, and MC, the dimension of task representation was selected from
{32, 64, 128}. For the proposed method, the initial value for `1- regularization trainable parameter λ was selected from
{10−1, 1, 10}. We set the initial value of `2- regularization trainable parameter µ to 10−1. The iteration number in the inner
problem I was set to 10. For TNP, regularization parameter λ was selected from {1, 10, 102, 103}. For MAML, the step
size and the iteration number in the inner problem were chosen from {10−1, 10−2} and {5, 10}, respectively. For Proto,
RProto, and MC, the dimension of output nodes was chosen from {32, 64, 128}. For all neural network-based methods,
we used the Adam optimizer (Kingma and Ba, 2014) with a learning rate of 10−3. The validation AUC was also used for
early stopping to avoid over-fitting. The maximum number of training iterations was set to 10, 000 except for MAML. For
MAML, it was chosen from {10, 000, 30, 000} to improve the performance. Query set size NQ was set to the number of
labeled data on each task.

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 Dependency of Dimension of Task Representations

Figure 7 shows average and standard errors of test AUCs when changing the dimension of task representation vectors K.
The proposed method performed better than RAE over allK with all datasets. Therefore, the proposed method is relatively
robust against K values.

F.2 Detailed Analysis of Modeling Initial Anomalous Attributes A0

We showed the effectiveness of modeling initial anomalous attributes with neural networks in the ablation study (Table 2).
Here, we further analyzed its effect in detail. Specifically, we investigated whether w/o Initial, which is our method with
fixed initial anomalous attributes A0 = 0, can perform well when the iterations for solving the inner problem I are
increased. Table 4 shows the mean test AUCs and the training time of the proposed method and w/o Initial. As the iteration
number I was increased, the training time of w/o Initial significantly increased. However, the performance of w/o Initial
did not improve much. This would be because many iterations expand the computation graph of neural networks, and
this makes the optimization difficult. In contrast, the proposed method performed well even if the number of iterations I
was small (I = 10) by modeling the initial anomalous attributes with neural networks. This result supports the validity of
modeling initial anomalous attributes.



Atsutoshi Kumagai, Tomoharu Iwata, Hiroshi Takahashi, Yasuhiro Fujiwara

Table 5: Comparison with meta-learning methods using the cross-entropy loss: average test AUCs [%] over dif-
ferent label ratios in source tasks within {0.1, 0.2, 0.3} and anomaly ratios in target unlabeled support set within
{0.1, 0.2, 0.3, 0.4, 0.5}. The first letter ‘C’ stands for the cross-entropy loss. Boldface denotes the best and compara-
ble methods according to the paired t-test and the significance level of 5 %.

Data Ours C-NP C-MAML C-Proto C-RProto C-MC
Omniglot 86.23 49.80 52.00 80.46 85.19 80.02
Mnist-r 85.19 50.29 71.48 67.61 73.85 69.32
Isolet 95.69 50.20 89.95 88.49 94.00 91.73
IoT 95.94 90.78 92.09 77.44 81.35 84.06

Table 6: Average test AUCs [%] with the anomaly ratio in labeled source data is 0.01 over different label ratios in source
tasks within {0.1, 0.2, 0.3} and anomaly ratios in target unlabeled support set within {0.1, 0.2, 0.3, 0.4, 0.5}. Boldface
denotes the best and comparable methods according to the paired t-test and the significance level of 5 %.

Data Ours OSVM IF AE RAE DAGM NP TNP MAML Proto RProto MC
Omniglot 86.23 66.63 60.17 68.39 68.39 63.36 50.07 50.18 53.26 75.83 80.07 75.22
Mnist-r 82.77 77.10 73.57 80.99 80.99 76,47 52.92 58.03 66.45 68.75 72.08 68.41
Isolet 95.58 87.93 92.54 91.61 91.63 61.11 72.03 78.37 89.28 89.25 93.47 89.63
IoT 93.59 84.16 32.09 84.09 87.38 69.87 60.46 90.65 84.04 59.35 51.55 85.97
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Figure 8: Average and standard errors of test AUCs over different label ratios in source tasks when changing anomaly
ratios in target unlabeled support set within {0.0, 0.01, 0.05}.

F.3 Comparison Methods with Cross-entropy Loss

In the main paper, the comparison methods use the AUC in the outer problem as in the proposed method for fair
comparisons. We additionally evaluate the comparison methods (NP, MAML, Proto, RProto, and MC) with the cross-
entropy loss. To use the cross-entropy loss, we transformed the anomaly score of each method s(x) ∈ R≥0 by function
snew(x) = ε+s(x)

1+s(x) ∈ [ε, 1), where ε is 10−8. Table 5 shows the average test AUCs for each dataset. The proposed method
clearly outperformed these methods with all datasets.

F.4 Results with Small Anomaly Ratios in Labeled Source Data

We investigated the performance of the proposed method when the anomaly ratio in labeled source data is small (0.01)
since many anomalous labeled data might be difficult to collect in real-world applications. Table 6 shows the results.
Although all methods tended to perform worse than the methods with the anomaly ratio of 0.1 in the main paper, the
proposed method clearly outperformed the other methods. These results show that the proposed method works robustly
even when labeled data contain few anomalies.

F.5 Results with Small Anomaly Ratios in Target Unlabeled Support Sets

We investigated the performance of the proposed method when the anomaly ratio in target unlabeled support sets is small
since unlabeled data might contain few anomalies in real-world applications. Figures 8 show the results when changing
anomaly ratios in target unlabeled support sets within {0.0, 0.01, 0.05}. The proposed method outperformed the other
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Table 7: Average test AUCs [%] with different numbers of source tasks T on Omniglot.

T = 10 T = 30 T = 100 T = 250 T = 500 T = 764
Ours 72.30 72.06 77.74 83.13 85.29 86.23
RAE 68.39 68.39 68.39 68.39 68.39 68.39

Table 8: Average test AUCs [%] when 10% of source tasks have labeled anomalous data. Boldface denotes the best and
comparable methods according to the paired t-test and the significance level of 5 %.

Data Ours OSVM IF AE RAE DAGM NP TNP Proto RProto MC
Omniglot 72.66 66.63 60.17 68.39 68.39 63.36 50.06 50.19 67.74 69.91 68.37
Mnist-r 81.04 77.10 73.57 80.99 80.99 76.47 51.11 52.16 60.31 61.80 62.54
Isolet 92.22 87.93 92.54 91.61 91.63 61.11 50.22 64.73 77.33 82.53 77.56
IoT 91.38 84.16 32.09 84.09 87.38 69.87 90.86 88.88 77.74 86.94 87.82

methods with all datasets except for Mnist-r. Especially, the proposed method worked well even when the unlabeled data
did not contain anomalies (the anomaly ratio was 0.0). For Mnist-r, although AE and RAE worked well due to the small
anomaly ratios, the proposed method still performed comparably.

F.6 Results with Different Numbers of Source Tasks

The meta-learning methods generally require many source tasks to learn how to learn. Therefore, it is interesting to
evaluate the proposed method’s performance with different numbers of source tasks. Table 7 shows the average test AUCs
with different numbers of source tasks on Omniglot. Here, we used the Omniglot since it has many tasks. As the number of
source tasks increased, the performance of the proposed method tended to increase. The results suggest that it is essential
for the proposed method to be meta-learned on various source tasks. However, even when the number of source tasks was
small (e.g., T = 10), the proposed method outperformed RAE, which only learns with target unlabeled data. This result
shows that the proposed method is effective even when many source tasks cannot be prepared, which might often be in
practice. Note that this claim is also supported by results with IoT, which has a small number of source tasks (T = 6), in
Table 1.

F.7 Results without Anomalous Data in Some Source Tasks

In the main paper, we evaluated the proposed method when all source tasks have labeled anomalous data. However, in
practice, it may be difficult to prepare such source tasks since anomalous data are rare. Therefore, we investigated the
performance of the proposed method when there are two types of source tasks: tasks with and without labeled anomalous
data. Table 8 shows the average test AUCs when 10% of source tasks have labeled anomalous data (90% of source tasks
have only labeled normal data and unlabeled data) in each dataset. For source tasks without labeled anomalous data, AE-
based meta-learning methods (the proposed method, NP, and TNP) used the reconstruction error on normal data as the
objective function of outer problems as described Section A. Other meta-learning methods (Proto, RProto, and MC) used
the distance between embedded normal data and the prototype vector as the objective function as in DeepSVDD (Ruff
et al., 2018). We did not evaluate MAML because it is not trivial to properly handle only normal data in outer problems.
The proposed method outperformed the other methods. These results suggest that the proposed method is effective even
when most of the source tasks have no anomalous data.

G LIMITATIONS

The proposed method uses multiple source tasks to improve anomaly detection performance on unseen target tasks. How-
ever, when source and target tasks are significantly different, the performance on the target tasks risks degrading. This
is known as “negative transfer,” and overcoming it is one of the important problems in transfer/meta-learning studies.
Developing methods to automatically remove negative effects of such tasks is a promising research direction.

The proposed method also assumes that the feature space is the same across all tasks, which may hinder its practicality
in some applications. However, this assumption is not unique to the proposed method but is common to almost all meta-
learning methods (for anomaly detection) (Snell et al., 2017; Finn et al., 2017; Bertinetto et al., 2018; Rajeswaran et al.,
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2019; Kumagai et al., 2021; Frikha et al., 2021; Kruspe, 2019; Kumagai et al., 2019). Even if the feature space is the same,
there are many practical applications. For example, as mentioned in Section 1, imagine building user-specific anomaly
detectors based on user-behavior logs in a service that has multiple users. Within the same service, each users log is
usually written in the same format (features). For anomaly product detection from images in factories (visual inspection),
images from each factory can be rescaled identically. Developing meta-learning methods for anomaly detection that can
handle different feature spaces is also a promising research direction.

The proposed method can improve anomaly detection performance as the number of source tasks increases. However,
when the number of source tasks is small, the performance improvement might be not large. To deal with this problem,
one possible solution is to use task-augmentation methods (Yao et al., 2021). Combining them with our problem would be
one of the most critical research topics.

H NEGATIVE SOCIAL IMPACTS

The proposed method has some potential risks to be addressed when it is deployed to real-world applications. First,
although we experimentally demonstrated that the proposed method outperformed existing methods, it is not perfect; that
is, it may cause false positives or false negatives, which may lead to wrong decision making in some cases. To mitigate
this, people can use the proposed method as a support tool for their detailed analysis. Second, the proposed method needs
to access datasets obtained from multiple tasks. When each dataset is provided from different owners such as companies,
sensitive information in the dataset risks being stolen and abused by malicious people that use the proposed method. To
evade this risk, we suggest promoting research for developing transfer/meta-learning without accessing raw datasets.
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