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Abstract

Estimating conditional average treatment effects
(CATE) is challenging, especially when treat-
ment information is missing. Although this is a
widespread problem in practice, CATE estima-
tion with missing treatments has received little
attention. In this paper, we analyze CATE es-
timation in the setting with missing treatments
where unique challenges arise in the form of co-
variate shifts. We identify two covariate shifts
in our setting: (i) a covariate shift between the
treated and control population; and (ii) a co-
variate shift between the observed and missing
treatment population. We first theoretically show
the effect of these covariate shifts by deriving
a generalization bound for estimating CATE in
our setting with missing treatments. Then, mo-
tivated by our bound, we develop the missing
treatment representation network (MTRNet), a
novel CATE estimation algorithm that learns a
balanced representation of covariates using do-
main adaptation. By using balanced represen-
tations, MTRNet provides more reliable CATE
estimates in the covariate domains where the
data are not fully observed. In various experi-
ments with semi-synthetic and real-world data,
we show that our algorithm improves over the
state-of-the-art by a substantial margin.

1 INTRODUCTION

Estimating conditional average treatment effects (CATE) is
crucial for decision-making in many application domains
such as economics (Smith and Todd, 2005; Baum-Snow
and Ferreira, 2015), marketing (Wang et al., 2015; Li et al.,
2016; Hatt and Feuerriegel, 2020), and medicine (Alaa and
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van der Schaar, 2017). For example, a doctor deciding on
a personalized treatment plan based on patient characteris-
tics. Extensive work focuses on using machine learning to
estimate CATE (e. g., Shalit et al., 2017; Alaa and van der
Schaar, 2018; Yoon et al., 2018; Athey et al., 2019; Frauen
and Feuerriegel, 2022). However, existing work has given
little attention to settings where treatment information is
missing.

Missing treatment information is common in many real-
world applications (Kennedy, 2020). For instance, Zhang
et al. (2016) describe the Consortium on Safe Labor study,
where the question of interest is the causal effect of moth-
ers’ body mass index (BMI) on infants’ weight. In this
study, BMI was missing for about half of the subjects. An-
other example is provided by Ahn et al. (2011), where the
authors analyze the effect of physical activity on colorec-
tal cancer using data from the Molecular Epidemiology of
Colorectal Cancer study. However, information on phys-
ical activity was missing for around 20 % of the subjects.
Further, Molinari (2010) gives numerous examples of miss-
ing treatment information in survey settings. Missing treat-
ment information can create additional challenges for treat-
ment effect estimation. Motivated by needs in practice, the
question is how one can reliably estimate CATE even when
treatment information is missing.

In this paper, we analyze the problem of estimating CATE
with missing treatment information. We consider a causal
structure where both treatment and treatment missingness
are affected by covariates. In such setting, we have two
covariate shifts: (i) a covariate shift between the treated
and control population; and (ii) a covariate shift between
the observed and missing treatment population. These co-
variate shifts increase CATE estimation error in covariate
domains where we lack fully observed data. For instance,
if low-income patients are reluctant to share information
about their treatment, they can be largely underrepresented
in the observed treatment population, and, hence, CATE es-
timation for low-income patients might be unreliable due to
the lack of observed treatment data. We theoretically show
the effect of these covariate shifts by deriving a generaliza-
tion bound for estimating CATE in our setting with missing
treatments. Our derivation shows that the expected CATE
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estimation error is bounded by the sum of (i) the standard
estimation error; (ii) the distance between the covariate dis-
tributions of the treated and control population; and (iii) the
distance between the covariate distributions of the observed
and missing treatment population.

Our generalization bound reveals that we need to account
for the two covariate shifts when estimating CATE in
our setting with missing treatments. Motivated by our
bound, we propose the missing treatment representation
network (MTRNet), a novel CATE estimation algorithm
for our setting with missing treatments. MTRNet makes
use of representation learning (Bengio et al., 2013) and do-
main adaptation (Ganin et al., 2016) to address the covari-
ate shifts while aiming at a low CATE estimation error. In
particular, MTRNet uses adversarial learning to learn a bal-
anced representation of covariates which is neither predic-
tive of treatment nor of treatment missingness. By using
balanced representations, we reduce the CATE estimation
error in domains that have different covariate distributions
than the one in which we fully observe data, and, thus, we
improve the overall performance. In various experiments
with semi-synthetic and real-world data, we demonstrate
that our MTRNet yields superior CATE estimates in our
setting with missing treatment information compared to the
state-of-the-art.

We list our main contributions1 as follows:

1. We analyze the problem of estimating CATE with
missing treatment information. To the best of our
knowledge, existing literature on CATE estimation
has previously overlooked this setting.

2. We derive a generalization bound that shows different
sources of error that we need to account for when es-
timating CATE in the setting with missing treatments.

3. We develop MTRNet, a novel CATE estimation al-
gorithm based on our generalization bound. Across
various experiments, we demonstrate that MTRNet
provides superior CATE estimates in our setting with
missing treatments compared to the state-of-the-art.

2 RELATED WORK

We review two streams in the literature that are partic-
ularly relevant to our problem (i. e., CATE estimation
with missing treatments): (i) methods for average treat-
ment effect (ATE) estimation with missing treatments, and
(ii) methods for CATE estimation in the standard setting
that address the covariate shift between the treated and con-
trol population.

1Code available at:
https://github.com/mkuzma96/MTRNet

(i) ATE estimation with missing treatments. Only a
few methods have been developed for estimating treatment
effects in the setting with missing treatment information.
These methods primarily focus on identification and es-
timation of average treatment effects. Williamson et al.
(2012) proposed a doubly robust augmented inverse proba-
bility weighted estimator for ATE that deals with both con-
founding and missing treatments. Zhang et al. (2016) com-
bined standard causal inference and missing data models
to create a triply robust estimator for ATE. Both estima-
tors are semi-parametric and thus offer certain robustness
to misspecification; however, they are restricted to standard
parametric models as nuisance functions. Kennedy (2020)
proposed a nonparametric estimator for ATE in the miss-
ing treatment setting that can incorporate flexible machine
learning models for nuisance functions.

The major difference between the existing literature
on treatment effect estimation with missing treatments
(Williamson et al., 2012; Zhang et al., 2016; Kennedy,
2020) and our work is that our focus is not on ATE but on
CATE estimation. In fact, the existing methods focus only
on identification and direct estimation of ATE. As such,
they cannot be straightforwardly adapted to CATE estima-
tion and are thus not applicable to our setting. To the best of
our knowledge, we are the first to study CATE estimation
with missing treatment information.

(ii) CATE estimation in the standard setting. Numerous
methods have been proposed for estimating CATE (e. g.,
Alaa and van der Schaar, 2018; Yoon et al., 2018; Athey
et al., 2019). Here, we focus on methods that address the
covariate shift between the treated and control population,
as our work deals with covariate shifts for CATE estima-
tion as well. Johansson et al. (2016) were the first to iden-
tify the covariate shift problem when estimating CATE. In
order to account for the covariate shift, the authors pro-
pose an algorithm that learns a balanced representation of
covariates by enforcing domain invariance through distri-
butional distances. Shalit et al. (2017) extended their work
by deriving a more flexible family of algorithms for this
task. The authors also provide an intuitive generalization
bound for CATE estimation that theoretically shows the ef-
fect of the covariate shift. Building on top of these works,
other methods were proposed for addressing the covariate
shift between the treated and control population, some of
which include learning weighted representations (Johans-
son et al., 2018; Assaad et al., 2021; Hatt et al., 2022a) and
learning overlapping representations (Zhang et al., 2020).

In our work, we also address the covariate shift between
the treated and control population since we have a CATE
estimation problem. However, we consider a more general
setting with missing treatments where we identify an ad-
ditional covariate shift between the observed and missing
treatment population that needs to be accounted for. This
covariate shift, as well as the setting with missing treat-
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ments in general, was not studied by any prior work on
CATE estimation. Moreover, due to having two covariate
shifts, our proposed algorithm is designed to learn a covari-
ate representation that is balanced over multiple domains.
This requires a tailored approach that differentiates from
the above methods.

3 PROBLEM SETUP

Let T = {0, 1} denote whether a treatment is applied,
and let R = {0, 1} denote whether the treatment infor-
mation is observed (or missing). Further, we refer to a
covariate space X ⊆ Rd and an outcome space Y ⊆ R.
We describe the outcomes of different treatments using
the Rubin-Neyman potential outcomes framework (Rubin,
2005). We assume a distribution p(t, r, x, y0, y1) with the
following variables: treatment assignment T ∈ T , treat-
ment missingness R ∈ R, covariates X ∈ X , and po-
tential outcomes Y0, Y1 ∈ Y . We observe only one po-
tential outcome, i. e., we observe Y ∈ Y , where Y = Y0

or Y = Y1, depending on the assigned treatment T = t.
The observed potential outcome corresponding to the as-
signed treatment t is called the factual outcome, and the
unobserved potential outcome corresponding to the other
treatment possibility (i. e., 1 − t) is called the counter-
factual outcome. We have data for n individuals given
by D = {(ti, ri, xi, yi)}ni=1, where ti is observed only if
ri = 1. That is, some of treatment information is missing.

Our objective is to estimate the conditional average treat-
ment effect (CATE)2 for an individual with covariates X =
x from data D with missing treatment information. This is
given by

τ(x) := E [Y1 − Y0 | X = x ]. (1)

We make the following assumptions about our setting with
missing treatments (the causal structure of our problem is
illustrated in Fig. 1):

Assumption 1 (Consistency, T -Positivity, T -Ignorability).

(i) Y = Y0 if T = 0, and Y = Y1 if T = 1 (Consistency);

(ii) 0 < p(T = 1 | X = x) < 1 if p(x) > 0 (T -Positivity);

(iii) Y0, Y1 ⊥⊥ T | X = x (T -Ignorability).

Assumption 1 are the standard assumptions for identifica-
tion of treatment effects from data. T -Ignorability is often
referred to as ‘no hidden confounders’ assumption3, mean-
ing that all variables that affect both treatment T and po-
tential outcomes Y0 and Y1 are measured in covariates X .

Assumption 2 (R-Positivity, R-Ignorability).

2Also known as the individualized treatment effect (ITE).
3Also known as exchangeability (Melnychuk et al., 2022) or

strong ignorability (Hatt et al., 2022b)

R

X

T Y

Figure 1: Overview of the causal structure in our setting.

(i) 0 < p(R = 1 | X = x) < 1 if p(x) > 0 (R-Positivity);

(ii) R ⊥⊥ T, Y0, Y1 | X = x (R-Ignorability).

Assumption 2 corresponds to a standard variant of missing
at random (MAR) assumption: the missingness depends
only on the fully observed part of the data (in our case on
the covariates X). Together, Assumption 1 and Assump-
tion 2 allow for identification of treatment effects from data
with missing treatment information (Zhang et al., 2016;
Kennedy, 2020).

Note that Assumption 1 and Assumption 2 can also hold in
cases where covariates X are: (i) independent of treatment
T , (ii) independent of treatment missingness R, or (iii) in-
dependent of both treatment T and treatment missingness
R. Hence, our setting is not restrictive in the sense that
we require covariates to affect both treatment and treatment
missingness, rather, it is more general and also applicable
in cases where covariates do not affect one of the two, or
do not affect either of the two.

The fundamental problem of causal inference is that coun-
terfactual outcomes (i. e., outcomes under a different treat-
ment than the one assigned) are unobserved. Addition-
ally, in our setting, we also have missing treatment infor-
mation. Unobserved counterfactual outcomes and missing
treatments preclude direct estimation of CATE from data.
However, under Assumption 1, we have E [Yt | X = x ] =
E [Y | X = x, T = t ], and, under Assumption 2, we have
E [Y | X = x, T = t ] = E [Y | X = x, T = t, R = 1 ].
Hence, in our setting, we can unbiasedly estimate CATE
by learning a function ft : X → Y for t = 0, 1, such
that ft(x) approximates E [Y | X = x, T = t, R = 1 ]
for which we have fully observed data. Then, we have the
CATE estimator given by

τ̂(x) = f1(x)− f0(x). (2)

Learning ft(x) for t = 0, 1 from data is a standard ma-
chine learning problem for which various methods can be
used. However, while the above assumptions ensure un-
biased estimation of f0(x) and f1(x) from data, the esti-
mators can have high variance when the covariate distri-
butions between treatment groups (T = 0 and T = 1)
and/or between treatment missingness groups (R = 0 and
R = 1) differ. To illustrate this with an example, con-
sider a job training program (treatment T ) offered to high-
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and low-skilled workers (covariate X). Let us assume that
low-skilled workers rarely decide to participate in the pro-
gram (i. e., T = 0 predominantly) and also rarely share the
information about their participation (i. e., R = 0 predom-
inantly). In this case, we can have a high error when esti-
mating f0(x) and f1(x) for low-skilled workers due to the
lack of observed treatment data for this group. Moreover,
we can have an even higher error when estimating f1(x)
since not many low-skilled workers participated in the job
training program (i. e., even when we observe the treatment
for low-skilled workers, we have T = 0 predominantly).

Hence, in the presence of different covariate distributions,
standard methods may give unreliable CATE estimates due
to high estimation variance in the covariate domains where
observed data are lacking. The problem is that we fully
observe data only from distribution p(x, t, R = 1) (i. e.,
the factual domain with observed treatment), but reliable
CATE estimation also requires accurate outcome predic-
tions in the missing treatment domain (p(x, t, R = 0)),
as well as in the counterfactual domain (p(x, 1 − t, r)).
However, for both, we do not have fully observed data
(i. e., we have missing treatment information and missing
counterfactual outcomes, respectively). By observing that
p(x, t, r) = p(x) p(t | x) p(r | x) (under the causal struc-
ture in Fig. 1), we see that the differences in the covariate
distributions between these domains come from distribu-
tional differences (i) between p(t | x) and p(1− t | x), and
(ii) between p(R = 1 | x) and p(R = 0 | x). We frame
these distributional differences as covariate shifts.

Therefore, we identify two covariate shifts in our setting
with missing treatments: (i) a covariate shift between the
treated and control population, and (ii) a covariate shift
between the observed and missing treatment population.
These covariate shifts could lead to high CATE estimation
errors in covariate domains where data are not fully ob-
served. In this paper, we develop a novel CATE estimation
algorithm which addresses these covariate shifts and thus
provides more reliable CATE estimates by reducing the es-
timation error. In the following section, we first mathemat-
ically show the effect of these covariate shifts by deriving
a generalization bound for CATE estimation in our setting
with missing treatments. The bound then serves as a theo-
retical foundation for our proposed algorithm.

4 THEORY: GENERALIZATION BOUND

Our intuition from the previous section suggests that the
expected error of CATE estimation depends on three error
sources: (i) the standard estimation error; (ii) the covari-
ate shift between the treated and control population; and
(iii) the covariate shift between the observed and missing
treatment population. Here, we mathematically underpin
this intuition and, to this end, derive a generalization bound
in three steps:

• Step 1. We bound the overall loss with the sum of the
factual loss and the counterfactual loss (Lemma 1).

• Step 2. We bound the factual and counterfactual loss
in the missing treatment domain using the correspond-
ing losses in the observed treatment domain and the
distance between the covariate distributions of the ob-
served and missing treatment population (Lemma 2).

• Step 3. We bound the counterfactual loss in the
observed treatment domain using the corresponding
factual loss and the distance between the covariate
distributions of the treated and control population
(Lemma 3).

The lemmas then imply our main theoretical result pro-
vided in Theorem 1: the expected error of CATE estima-
tion with missing treatments is bounded by the sum of
(i) the factual loss in the observed treatment domain (i. e.,
the standard generalization error); (ii) the covariate distri-
bution distance between the treated and control population;
and (iii) the covariate distribution distance between the ob-
served and missing treatment population. The proofs and
further details on theoretical results are in Supplement A.

In order to derive the generalization bound for CATE es-
timation, we define the (overall) estimation error in our
setting. The standard CATE estimation error is given by
the expected precision in estimation of heterogeneous ef-
fect (PEHE) (Hill, 2011), which is basically the mean
squared error of estimating τ(x). We adjust the PEHE for
our setting with missing treatments and define the PEHE
loss of a function f as

ϵPEHE(f) =

∫
X×R

(τ̂(x)− τ(x))
2
p(x, r) dxdr. (3)

We consider ft = ht ◦ Φ for t = 0, 1, where Φ : X → Z
is a representation function, and ht : Z → Y is a hy-
pothesis defined over the representation space Z . Hence,
we have ft(x) = ht(Φ(x)). We further use f and the
pair (Φ, h) interchangeably. We assume that the represen-
tation Φ : X → Z is a one-to-one function and define
Ψ : Z → X to be the inverse of Φ, such that Ψ(Φ(x)) = x
for all x ∈ X . Moreover, by mapping the covariate space
X with distribution p onto the representation space Z , the
representation Φ induces a corresponding distribution pΦ
over Z .

Step 1. In the first step, we bound the overall PEHE loss
ϵPEHE(f) with a sum of losses in the factual and counter-
factual domain. Let LY : Y × Y → R+ be a loss function
(e. g., squared loss). Then, we define the expected loss of
Φ and h for a covariates-treatment pair (x, t) as

lh,Φ(x, t) =

∫
Y
LY (yt, ht(Φ(x))) p(Yt = yt | x) dyt.

(4)
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Note that the expected loss lh,Φ(x, t) for a given pair (x, t)
does not depend on treatment missingness, since R is con-
ditionally independent of Yt given X . The expected factual
and counterfactual losses of Φ and h are given by

ϵF(h,Φ) =

∫
X×R×T
lh,Φ(x, t) p(x, r, t) dx dr dt, (5)

ϵCF(h,Φ) =

∫
X×R×T
lh,Φ(x, t) p(x, r, 1− t) dxdr dt. (6)

Lemma 1 Let Φ : X → Z be an invertible representation
function and ht : Z → Y for t = 0, 1 a hypothesis. Let
LY : Y × Y → R+ be the squared loss. Then, we have

ϵPEHE(h,Φ) ≤ 2
(
ϵF(h,Φ) + ϵCF(h,Φ)− 4σ2

Y

)
, (7)

where σ2
Y is the minimal variance of potential outcomes as

defined in Definition 8 of Supplement A.

Lemma 1 provides a bound on ϵPEHE(Φ, h) using the sum
of the factual and counterfactual loss, i. e., ϵF(h,Φ) and
ϵCF(h,Φ). However, the problem is that, for R = 0,
we neither can estimate ϵF(h,Φ) and ϵCF(h,Φ) from data
due to missing treatment information nor can we estimate
ϵCF(h,Φ) in general due to missing counterfactual out-
comes. Here, our idea is to bound these inestimable terms
using their estimable counterparts and corresponding distri-
butional distances induced by the representation. Hence, in
Step 2, we bound the factual and counterfactual loss in the
missing treatment domain using the corresponding losses
in the observed treatment domain and the distance between
the observed and missing treatment population (Lemma 2).
Then, in Step 3, we bound the counterfactual loss in the
observed treatment domain using the factual loss in the
observed treatment domain and the distance between the
treated and control population (Lemma 3). The three lem-
mas then directly imply our final bound (Theorem 1).

Step 2. We first introduce notation for the corresponding
factual and counterfactual loss in the observed and missing
treatment domain. We also define a distributional distance
metric. We use superscripts to denote when we condition
on a given variable, e. g., pR=0(x) = p(x | R = 0). Then,
the expected factual and counterfactual losses of Φ and h in
the domain R = r for r = 0, 1, (i. e., missing and observed
treatment domain) are given by

ϵR=r
F (h,Φ) =

∫
X×T

lh,Φ(x, t) p
R=r(x, t) dxdt, (8)

ϵR=r
CF (h,Φ) =

∫
X×T

lh,Φ(x, t) p
R=r(x, 1− t) dxdt. (9)

To measure distributional distances, we use the integral
probability metric (IPM), which is a class of metrics be-
tween probability distributions (Müller, 1997; Sriperum-
budur et al., 2012). Let G be a function family consisting
of functions g : S → R. For a pair of distributions p1, p2

over some space S, the IPM is defined by

IPMG(p1, p2) = sup
g∈G

∣∣∣∣ ∫
S
g(s) (p1(s)− p2(s)) ds

∣∣∣∣. (10)

Thus, IPMG(·, ·) is a pseudo-metric on the space of proba-
bility functions over S. For a sufficiently rich function fam-
ily G, IPMG(·, ·) is a true metric over the corresponding set
of probabilities, i. e., IPMG(p1, p2) = 0 ⇒ p1 = p2.

Lemma 2 Let Φ : X → Z be an invertible representation
and Ψ its inverse. Let pΦ be the distribution induced by Φ
over Z . Let v = p(R = 0). Let G be a family of functions
k : Z → R and IPMG(·, ·) the integral probability metric
induced by G. Let ht : Z → Y for t = 0, 1 be a hypothesis.
Assume there exists a constant BΦ > 0, such that, for t =
0, 1, the function gΦ,h(z) :=

1
BΦ

lh,Φ(Ψ(z), t) ∈ G. Then,
we have

ϵF(h,Φ) + ϵCF(h,Φ)

≤ ϵR=1
F (h,Φ) + ϵR=1

CF (h,Φ) (11)

+ 2 v BΦ IPMG

(
pR=0
Φ (z), pR=1

Φ (z)
)
.

Step 3. The remaining inestimable term following
Lemma 2 is the counterfactual loss in the observed treat-
ment domain. However, we cannot estimate it due to miss-
ing counterfactual outcomes. Hence, in Lemma 3, we
bound this term as well.

Lemma 3 Let Φ : X → Z be an invertible representation
and Ψ its inverse. Let pΦ be the distribution induced by Φ
over Z . Let u = p(T = 0). Let G be a family of functions
g : Z → R and IPMG(·, ·) the integral probability metric
induced by G. Let ht : Z → Y for t = 0, 1 be a hypothesis.
Assume there exists a constant BΦ > 0, such that, for t =
0, 1, the function gΦ,h(z) :=

1
BΦ

lh,Φ(Ψ(z), t) ∈ G. Then,
we have

ϵR=1
CF (h,Φ)

≤u ϵR=1,T=1
F (h,Φ) + (1− u) ϵR=1,T=0

F (h,Φ) (12)

+BΦ IPMG

(
pR=1,T=0
Φ (z), pR=1,T=1

Φ (z)
)
.

Given the above lemmas, we state the generalization bound
as the main result of our paper in Theorem 1.

Theorem 1 Let Φ : X → Z be an invertible representation
and Ψ its inverse. Let pΦ be the distribution induced by Φ
over Z . Let v = p(R = 0). Let G be a family of func-
tions g : Z → R and IPMG(·, ·) the integral probability
metric induced by G. Let ht : Z → Y for t = 0, 1 be
a hypothesis. Let LY : Y × Y → R+ be the squared loss
function. Assume there exists a constant BΦ > 0, such that,
for t = 0, 1, the function gΦ,h(z) :=

1
BΦ

lh,Φ(Ψ(z), t) ∈ G.
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Then, we have

ϵPEHE(h,Φ)

≤ 2

[
ϵR=1,T=1
F (h,Φ) + ϵR=1,T=0

F (h,Φ) (13)

+BΦ IPMG(p
R=1,T=0
Φ (z), pR=1,T=1

Φ (z))

+ 2 v BΦ IPMG

(
pR=0
Φ (z), pR=1

Φ (z)
)
− 4σ2

Y

]
.

Theorem 1 shows that the expected CATE estima-
tion error ϵPEHE(h,Φ) for a representation Φ and
hypothesis h is bounded by a sum of (i) the stan-
dard generalization error for that representation
(ϵR=1,T=1

F (h,Φ) + ϵR=1,T=0
F (h,Φ)); (ii) the distance

between the treated and control distributions induced by
the representation (IPMG(p

R=1,T=0
Φ (z), pR=1,T=1

Φ (z)));
and (iii) the distance between the observed and missing
treatment distributions induced by the representation
(IPMG(p

R=0
Φ (z), pR=1

Φ (z))). The bound shows different
sources of error when estimating CATE with missing
treatments, i. e., the standard generalization error and the
two covariate shifts formalized using the IPM metric.

We make a few additional remarks regarding the derived
generalization bound. The IPM terms reflect the two de-
scribed covariate shifts. Both evaluate to zero in case
that the covariate distributions are balanced with respect
to treatment and treatment missingness, i. e., when co-
variates X neither affect treatment T nor treatment miss-
ingness R. The IPM term that reflects the distribution
imbalance with respect to treatment missingness (i. e.,
IPMG(p

R=0
Φ (z), pR=1

Φ (z))) is scaled by the probability of
missingness v = p(R = 0), meaning that its relative im-
portance depends on v. In other words, when we have a
small probability of treatment missingness, the correspond-
ing covariate shift between the observed and missing treat-
ment population is relatively less important compared to
the other two sources of error. Moreover, when the prob-
ability of missingness, v, equals zero, our generalization
bound reduces to the generalization bound for CATE esti-
mation in the standard setting (Shalit et al., 2017). Hence,
we provide a different bound in a more general setting.

The derived generalization bound holds for any given in-
vertible representation Φ and hypothesis h that satisfy
the conditions of Theorem 1. Given empirical data and
representation-hypothesis space, we can upper bound the
loss terms ϵR=1,T=1

F (h,Φ) and ϵR=1,T=0
F (h,Φ) with their

empirical counterparts and model complexity terms by ap-
plying standard machine learning theory (Shalev-Shwartz
and Ben-David, 2014). This naturally leads to a CATE
estimation algorithm based on representation learning that
minimizes the upper bound in Eq. (13): (i) by minimizing
the empirical version of the loss terms ϵR=1,T=1

F (h,Φ) and
ϵR=1,T=0
F (h,Φ), and (ii) by minimizing respective IPM

terms using either the empirical IPM distances as in Shalit
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R
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GRL
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Figure 2: Overview of our MTRNet.

et al. (2017) or via adversarial learning (Ganin et al., 2016).
Here, we use adversarial learning.

5 CATE ESTIMATION ALGORITHM

In this section, we propose the missing treatment represen-
tation network (MTRNet), our algorithm for CATE estima-
tion in the setting with missing treatment information. The
architecture of MTRNet is shown in Fig. 2. For given data
D = {(ti, ri, xi, yi)}ni=1, MTRNet minimizes a novel em-
pirical loss based on our generalization bound from Theo-
rem 1. The corresponding objective function is given by

min
Φ,h
∥Φ∥=1

1

no

∑
∀i:ri=1

wi LY (hti(Φ(xi)), yi) + λ ∥Wh∥22

− α
1

no

∑
∀i:ri=1

LT (kt(Φ(xi)), ti) (14)

− β
1

n

n∑
i=1

LR(kr(Φ(xi)), ri),

with wi =
ti
2u + 1−ti

2 (1−u) , u = 1
no

∑
∀i:ri=1

ti, and no =
n∑

i=1

ri.

In Eq. (14), we replaced the theoretical loss terms
from the bound by their corresponding empir-
ical ones. The standard generalization error,
i. e., ϵR=1,T=1

F (h,Φ) + ϵR=1,T=0
F (h,Φ), is re-

placed by a weighted outcome prediction loss,
wi LY (hti(Φ(xi)), yi), where the weights reflect
the size of the treated and control population. The
IPM terms, i. e., IPMG

(
pR=1,T=0
Φ (z), pR=1,T=1

Φ (z)
)

and IPMG

(
pR=0
Φ (z), pR=1

Φ (z)
)
, are minimized by

adding a negative prediction loss for treatment (i. e.,
LT (kt(Φ(xi)), ti) with prediction function kt), as well as
for treatment missingness (i. e., LR(kr(Φ(xi)), ri) with
prediction function kr), respectively. The rationale for
minimizing the IPM terms through maximizing the predic-
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Algorithm 1 Learning algorithm for MTRNet
Input: Data D = {(ti, ri, xi, yi)}ni=1; loss functions: LY , LT and LR; hy-

perparameters b, η, λ, α, β; and network architecture with weights WΦ, Wh,
Wkt , Wkr

Output: Optimal representation Φ∗ and hypothesis h∗ with weights W∗
Φ and W∗

h

1: repeat
2: Randomly sample mini-batch of size b fromD
3: Compute no, u, and wi for i = 1, . . . , b using Eq. (14)
4: Compute g1 = ∇WΦ

1
no

∑
∀i:ri=1

wi LY (hti
(Φ(xi)), yi)

5: Compute g2 = ∇WΦ
1

no

∑
∀i:ri=1

LT (kt(Φ(xi)), ti)

6: Compute g3 = ∇WΦ
1
b

b∑
i=1

LR(kr(Φ(xi)), ri)

7: Compute g4 = ∇Wh
1

no

∑
∀i:ri=1

wi LY (hti
(Φ(xi)), yi)

8: Compute g5 = ∇Wkt

1
no

∑
∀i:ri=1

LT (kt(Φ(xi)), ti)

9: Compute g6 = ∇Wkr

1
b

b∑
i=1

LR(kr(Φ(xi)), ri)

10: Update weights

WΦ ← WΦ − η (g1 + αg2 + βg3),

Wh ← Wh − η (g4 + 2λWh),

Wkt ← Wk + ηαg5,

Wkr ← Wr + ηβg6

11: until convergence

tion losses is the following: For a covariate representation
Φ, when prediction loss LR is large, the representation is
not predictive of R, and, hence, it is not informative of
whether a data point belongs to the group R = 0 or the
group R = 1. Consequently, the distribution pΦ induced
by the representation for the group R = 0 is similar to the
one for the group R = 1, which means that the correspond-
ing IPM term, i. e., IPMG

(
pR=0
Φ (z), pR=1

Φ (z)
)
, is small.

Hence, maximizing LR (i. e., minimizing −LR) aims to
minimize the corresponding IPM term. The rationale for
T is analogous. We maximize these prediction losses for a
representation Φ using adversarial learning with gradient
reversal layer (GRL). The GRL reverses the gradient for
representation layers during learning such that the learned
representation aims to maximize the prediction loss instead
of minimizing it (Ganin et al., 2016). Since constant BΦ

cannot be evaluated for a general function family (Shalit
et al., 2017), we use hyperparameters α and β to trade-off
outcome prediction accuracy and reducing the respective
IPM distances. We also introduce an L2-regularization
with parameter λ for the weights of the hypothesis layers
Wh, and use batch normalization to fix the norm of Φ.

MTRNet outputs the optimal Φ and h based on the above
objective. The learning algorithm is given in Algorithm 1.
To train MTRNet, we use Adam (Kingma and Ba, 2015)
and run Algorithm 1 for a given number of iterations. The
network architecture of MTRNet comprises three represen-
tation layers for representation Φ, three hypothesis layers
for hypothesis ht, for each t = 0, 1, and one layer for
each prediction function, kt and kr. We use exponential
linear unit (ELU) (Clevert et al., 2016) activation function
with dropout. The hyperparameters include: representation

layer size, hypothesis layer size, number of iterations, batch
size, learning rate, dropout rate, λ, α, and β. We choose hy-
perparameters via cross-validation with a 70/20/10 split.
Further implementation details are given in Supplement B.

6 EXPERIMENTS

In this section, we show the effectiveness of our MTRNet
for CATE estimation with missing treatments and, to do
so, we use both semi-synthetic and real-world data. To
this end, we demonstrate that, by addressing the covariate
shifts, MTRNet reduces CATE estimation error across dif-
ferent covariate domains and thus provides superior overall
performance compared to baseline methods.

Baselines. CATE estimation with missing treatments has
been overlooked by the existing literature. Hence, appro-
priate baselines are missing. Instead, we need to construct
baselines by combining CATE estimation methods in the
standard setting with different methods for dealing with
missing data. Here, we use the following CATE estima-
tion methods: (i) linear model (OLS) fitted for each treat-
ment group; (ii) causal forest (CF) (Athey et al., 2019);
(iii) treatment agnostic representation network (TARNet)
(Shalit et al., 2017); and (iv) counterfactual regression max-
imum mean discrepancy (CFRMMD) (Shalit et al., 2017).
Note that none of above methods address the covariate shift
between the observed and missing treatment population
since neither our setting nor this particular covariate shift
were considered by the existing work.

We combine the above methods with common methods
for dealing with missing data (Williamson et al., 2012):
(i) deleting data points with missing treatment (del);
(ii) imputing missing treatments using a machine learning
model (imp); and (iii) re-weighting data points with ob-
served treatment by the inverse probability of treatment be-
ing observed (rew). In cases (i) and (ii), we first apply a
missing data method to the initial data to deal with miss-
ing treatment information, and then, apply a CATE estima-
tion method on the resulting complete data. In case (iii),
we first estimate a model for the probability that the treat-
ment is observed given covariates by using the initial data,
and, then, apply a CATE estimation method on the com-
plete part of the initial data (i. e., data with observed treat-
ment), where each data point is weighted by the inverse
of the estimated probability that the treatment is observed
given its covariates. For imputation and re-weighting, we
use random forest to model the respective probabilities. By
combining the above CATE estimation methods with meth-
ods for dealing with missing data, we obtain 12 baselines in
total. We name the baselines using the CATE method name
and the method for dealing with missing data as subscript
(e. g., OLSdel means OLS combined with deletion of data
points with missing treatment).

Datasets. We conduct experiments with three benchmark
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Method IHDP (
√
ϵ̂PEHE) Twins (

√
ϵ̄PEHE) Jobs (R̂Pol(πf ))

Overall Tobserved Tmissing Overall Tobserved Tmissing Overall Tobserved Tmissing

OLSdel 1.21± .41 1.14± .33 1.25± .50 .29± .00 .26± .00 .32± .00 .35± .00 .36± .00 .42± .00
OLSimp 1.62± .39 1.49± .36 1.75± .48 .29± .00 .26± .00 .32± .00 .35± .00 .34± .00 .50± .00
OLSrew 1.24± .38 1.19± .30 1.28± .48 .29± .00 .26± .00 .32± .00 .37± .00 .36± .00 .50± .00
CFdel 1.53± .41 1.51± .42 1.52± .47 .29± .00 .26± .00 .32± .00 .32± .01 .32± .02 .42± .05
CFimp 1.68± .53 1.64± .50 1.71± .59 .29± .00 .26± .00 .32± .00 .32± .02 .31± .03 .42± .00
CFrew 1.51± .42 1.49± .42 1.51± .48 .29± .00 .26± .00 .32± .00 .32± .02 .31± .03 .41± .03
TARNetdel 1.19± .21 1.26± .24 1.11± .18 .29± .00 .26± .00 .32± .00 .27± .02 .26± .02 .44± .07
TARNetimp 1.76± .54 1.54± .38 1.94± .80 .29± .00 .26± .00 .32± .00 .27± .02 .26± .02 .45± .08
TARNetrew 1.15± .11 1.16± .17 1.13± .17 .29± .00 .26± .00 .32± .00 .26± .02 .25± .02 .42± .08
CFRMMDdel 1.22± .23 1.25± .23 1.17± .33 .29± .00 .26± .00 .32± .00 .32± .03 .31± .03 .44± .06
CFRMMDimp 1.50± .31 1.41± .29 1.58± .42 .30± .01 .27± .01 .33± .01 .27± .02 .26± .03 .38± .04
CFRMMDrew 1.29± .32 1.31± .27 1.27± .40 .29± .00 .26± .00 .32± .00 .32± .03 .32± .03 .41± .06
MTRNet (ours) 1.00± .23 1.03± .25 0.96± .28 .28± .00 .26± .00 .31± .00 .23± .04 .24± .05 .28± .06

* Lower is better (best in bold).

Table 1: Results of experiments on three benchmark datasets (mean averaged over 10 runs ± standard deviation).

datasets for CATE estimation but modify them such that
treatment information is partially missing. Note that our
method is directly applicable for CATE estimation from ob-
servational data with missing treatments in practice. How-
ever, available observational datasets with missing treat-
ments cannot be used to evaluate the estimated CATE since
the true CATE is unknown. Hence, we use the best practice
for evaluating CATE estimation, and modify benchmark
datasets for CATE estimation such that they fit to our set-
ting with missing treatment information. The mechanism
for introducing missingness is designed such that treatment
missingness R depends on covariates X (as in our setting,
see Fig. 1). This way, we introduce both missing treat-
ments and the covariate shift between the observed and
missing treatment population. The proportion of data with
missing treatment information is controlled by a parameter
m ∈ (0, 1), and the magnitude of the covariate shift by a
parameter q ∈ (0, 1). Details are in Supplement B.

We use the following benchmark datasets: (i) IHDP (Hill,
2011; Shalit et al., 2017; Hatt and Feuerriegel, 2021):
a semi-synthetic dataset with covariates from a random-
ized experiment and outcomes simulated using a domain-
specific probabilistic model. Hence, noiseless outcomes
and the true CATE are available for this dataset. (ii) Twins
(Almond et al., 2005; Yoon et al., 2018; Hatt and Feuer-
riegel, 2021): a semi-synthetic dataset where the treatment
assignment is simulated. Here, we do not observe the true
CATE but we observe both potential outcomes. (iii) Jobs
(LaLonde, 1986; Smith and Todd, 2005; Shalit et al., 2017):
real-world dataset that combines a randomized controlled
trial (RCT) and a larger observational dataset. Here, we
do not have information about the true CATE; however, the
randomized portion of the data still allows for evaluating
CATE estimation error using policy risk (explained later).

Performance metrics. We evaluate the CATE estima-
tion performance in different ways depending on the above
datasets, i. e., depending on whether the true CATE is avail-

able. (i) IHDP: we use the empirical PEHE given by
ϵ̂PEHE = 1

n

∑n
i=1(τ̂(x) − τ(x))2, thereby reflecting that

we have access to the true CATE. (ii) Twins: we use the
observed PEHE given by ϵ̄PEHE = 1

n

∑n
i=1(τ̂(x)− (y1i −

y0i))
2 since we observe both potential outcomes, Y1 and

Y0, but we cannot access information on the true CATE.
(iii) Jobs: we cannot evaluate the PEHE loss because we
can neither access the true CATE nor the counterfactual
outcomes. Instead, we use the policy risk that measures the
average loss in value when treating according to the policy
suggested by a CATE estimator. For a given model f , we
define the policy πf (x) to be: treat πf (x) = 1 if τ̂(x) > 0,
and do not treat πf (x) = 0 otherwise. Then, the policy risk
is given by RPol(πf ) = 1−

(
E[Y1 | πf (x) = 1] p(πf (x) =

1)+ E[Y0 | πf (x) = 0] p(πf (x) = 0)
)
. Here, we compute

the empirical policy risk R̂Pol(πf ) using the randomized
portion of the data.

Results. Table 1 shows the performance of our MTRNet
vs. the 12 baselines for different experiments using the
IHDP, Twins, and Jobs datasets. We report the mean perfor-
mance averaged over 10 runs with the corresponding stan-
dard deviation. For each dataset, we report the overall error,
the error in the observed treatment domain (Tobserved), and
the error in the missing treatment domain (Tmissing).

We make two important observations. (i) MTRNet
achieves the lowest overall error across all three datasets.
This shows that our algorithm is effective for CATE es-
timation in the setting with missing treatments. On top
of that, it provides superior CATE estimates compared to
the state-of-the-art baselines. (ii) The improvement in the
overall CATE estimation by MTRNet comes from a sub-
stantially better performance in the missing treatment do-
main. Hence, by addressing the covariate shift between
the observed and missing treatment population, MTRNet
achieves a lower error when estimating CATE in the miss-
ing treatment domain (i. e., the covariate domain where
CATE estimation is impeded due to the lack of fully ob-



Milan Kuzmanovic, Tobias Hatt, Stefan Feuerriegel

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Proportion of missing treatment data m

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

√
ε̂ P

E
H
E

MTRNet (ours) CFRMMDimp TARNetimp OLSimp CFimp

Figure 3: IHDP results for varying parameter m.

served data) compared to the baselines which ignore this
covariate shift. This stresses the importance of addressing
this aforementioned covariate shift in settings with miss-
ing treatment information. So far, this issue that has been
overlooked by previous literature.

The results in Table 1 were obtained in experiments where
the proportion of missing treatment data was fixed to m =
0.5. In Fig. 3, we show the results of IHDP experiments
when varying parameter m. These results show the perfor-
mance of MTRNet and the four CATE estimation methods
combined with a method for imputing missing treatments
(similar results with deletion and re-weighting are given in
Supplement C). We see that, as we increase the proportion
of data with missing treatment information (m), the perfor-
mance gap between our MTRNet (in red) and the baseline
methods (in blue) becomes larger. This means that address-
ing the covariate shift between the observed and missing
treatment population becomes more important, the higher
is the probability that treatments are missing, which is also
in line with our theoretical result in Theorem 1. Hence, ad-
dressing the covariate shift between the observed and miss-
ing treatment population is essential for reliable CATE es-
timation in settings with missing treatments, especially in
case of large rates of missing treatments.

7 DISCUSSION

In this paper, we analyzed CATE estimation in the setting
with missing treatments, which, as shown above, presents
unique challenges in the form of covariate shifts. Specifi-
cally, we identified two covariate shifts in our setting: (i) a
covariate shift between the treated and control population,
and (ii) a covariate shift between the observed and miss-
ing treatment population. While the covariate shift (i) has
been addressed in the existing CATE estimation literature,
both the setting with missing treatments and the covariate
shift (ii) have been overlooked by the existing work.

We fill this research gap from both theoretical and prac-
tical perspective. First we derived a generalization bound
for CATE estimation with missing treatments that theoret-
ically shows the effect of the two covariate shifts. Then,

based on our bound, we proposed MTRNet, a novel CATE
estimation algorithm that addresses these covariate shifts in
our setting with missing treatments. We demonstrated that
our MTRNet achieves superior performance in estimating
CATE, especially in the missing treatment domain since it
is the only CATE estimation algorithm that addresses the
covariate shift between the observed and missing treatment
population. The performance gain becomes even more pro-
nounced when m, i. e., the treatment missingness rate, is
large. The importance of our work is reflected by omnipres-
ence of missing treatments in real-world applications. This
holds true for both observational and RCT studies. More-
over, our MTRNet has direct practical implications as it
provides more reliable CATE estimates that can improve
personalized decision-making in many application areas,
including personalized medicine.
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A PROOF OF THEOREM 1

In our problem setup, we assume a distribution p(t, r, x, y0, y1) with the following variables: assigned treatment T ∈ T =
{0, 1}, treatment missingness R ∈ R = {0, 1}, covariates X ∈ X = Rd, and potential outcomes Y0, Y1 ∈ Y = R. We
observe only one of the two potential outcomes, i. e., we observe Y ∈ Y = R, where Y = Y0 or Y = Y1, depending on the
assigned treatment T = t. The observed potential outcome corresponding to the assigned treatment t is called the factual
outcome, and the unobserved potential outcome corresponding to the other treatment possibility (i. e., 1 − t) is called the
counterfactual outcome.

Our objective is to estimate the conditional average treatment effect (CATE) for an individual with covariates X = x.

Definition 1 The conditional average treatment effect (CATE) for an individual with covariates X = x is given by

τ(x) : = E [Y1 − Y0 | X = x ].

We make the following assumptions needed for identification of CATE in the setting with missing treatments:

Assumption 1 (Consistency, T -Positivity, T -Ignorability).

(i) Y = Y0 if T = 0, and Y = Y1 if T = 1 (Consistency);

(ii) 0 < p(T = 1 | X = x) < 1 if p(x) ̸= 0 (T -Positivity);

(iii) Y0, Y1 ⊥⊥ T | X = x (T -Ignorability).

Assumption 2 (R-Positivity, R-Ignorability).

(i) 0 < p(R = 1 | X = x) < 1 if p(x) ̸= 0 (R-Positivity);

(ii) R ⊥⊥ T, Y0, Y1 | X = x (R-Ignorability).

Under the above assumptions we have that E [Yt | X = x ] = E [Y | X = x, T = t ] = E [Y | X = x, T = t, R = 1 ].
Hence, we can unbiasedly estimate CATE from data by learning a function ft : X → Y for t = 0, 1. However, such
estimation can have high variance in the presence of covariate shifts.

In this work, we simultaneously address: (i) the covariate shift between the observed and the missing treatment population,
and (ii) the covariate shift between the treated and the control population. We use a representation learning approach with
ft = ht ◦ Φ, where Φ : X → Z is a representation function, and ht : Z → Y for t = 0, 1 is a hypothesis defined over the
representation space Z . Hence, we have ft(x) = ht(Φ(x)). Below, we define the estimator of CATE.

Definition 2 The CATE estimator for an individual with covariates X = x is given by

τ̂(x) = h1(Φ(x))− h0(Φ(x)) = f1(x)− f0(x).

The estimation error for our setting with missing treatment information is given by the expected precision in estimation of
heterogeneous effect (PEHE), i. e., the mean squared error in estimating τ(x).

Definition 3 The PEHE loss of Φ and h is given by

ϵPEHE(h,Φ) =

∫
X×R

(τ̂(x)− τ(x))
2
p(x, r) dxdr.

We make the following assumption about the representation function Φ.

Assumption 3 The representation Φ : X → Z is a differentiable, invertible function. We assume that Z is the image of X
under Φ and define Ψ : Z → X to be the inverse of Φ, such that Ψ(Φ(x)) = x for all x ∈ X .

By mapping the covariate space X onto the representation space R, the representation Φ induces a corresponding distribu-
tion pΦ.

Definition 4 For a representation function Φ : X → Z and for a distribution p defined over X , let pΦ be the distribution
induced by Φ over Z .

Let LY : Y × Y → R+ be a loss function, e. g., absolute or squared loss.
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Definition 5 Let Φ : X → Z be a representation function and ht : Z → Y for t = 0, 1 a hypothesis defined over the
representation space Z . We define the expected loss for the covariates-treatment pair (x, t) as

lh,Φ(x, t) =

∫
Y
LY (yt, ht(Φ(x))) p(Yt = yt | X = x) dyt.

Note that the expected loss lh,Φ(x, t) for a given pair (x, t) does not depend on treatment missingness, since we have
conditional independence between R and Yt given X . Next, we define losses in the factual and counterfactual domain, and
the variance of Yt with respect to the distribution p(x, r, t).

Definition 6 The expected factual and counterfactual losses of Φ and h are given by

ϵF(h,Φ) =

∫
X×R×T
lh,Φ(x, t) p(x, r, t) dx dr dt,

ϵCF(h,Φ) =

∫
X×R×T
lh,Φ(x, t) p(x, r, 1− t) dx dr dt.

Definition 7 For t = 0, 1, we define
mt(x) := E[Yt | X = x ].

Definition 8 The variance of Yt with respect to the distribution p(x, r, t) is given by

σ2
Yt
(p(x, r, t))

=

∫
X×R×Y
(yt −mt(x))

2 p(yt | x) p(x, r, t) dyt dxdr,

and we define

σ2
Yt

= min{σ2
Yt
(p(x, r, t)), σ2

Yt
(p(x, r, 1− t))},

σ2
Y = min{σ2

Y0
, σ2

Y1
}.
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Lemma 1 For any function f : X × T → Y and distribution p(x, r, t) over X ×R× T , we have∫
X×R×T
(ft(x)−mt(x))

2 p(x, r, t) dx dr dt

= ϵF(h,Φ)− σ2
Y1
(p(x, r, T = 1))− σ2

Y0
(p(x, r, T = 0))

≤ ϵF(h,Φ)− 2σ2
Y

and ∫
X×R×T

(ft(x)−mt(x))
2 p(x, r, 1− t) dxdr dt

= ϵCF(h,Φ)− σ2
Y1
(p(x, r, T = 0))− σ2

Y0
(p(x, r, T = 1))

≤ ϵCF(h,Φ)− 2σ2
Y ,

where ϵF(h,Φ) and ϵCF(h,Φ) are with respect to the squared loss.

Proof.

ϵF(h,Φ)

=

∫
X×R×T

lh,Φ(x, t) p(x, r, t) dxdr dt

=

∫
X×R×T ×Y

LY (yt, ht(Φ(x))) p(yt | x) p(x, r, t) dyt dx dr dt

=

∫
X×R×T ×Y

(ft(x)− yt)
2 p(yt | x) p(x, r, t) dyt dx dr dt (15)

=

∫
X×R×T ×Y

(ft(x)−mt(x))
2 p(yt | x) p(x, r, t) dyt dxdr dt (16)

+

∫
X×R×T ×Y

(mt(x)− yt)
2 p(yt | x) p(x, r, t) dyt dxdr dt

+

∫
X×R×T ×Y

2 (ft(x)−mt(x)) (mt(x)− yt) + · · ·

+ p(yt | x) p(x, r, t) dyt dxdr dt

=

∫
X×R×T
(ft(x)−mt(x))

2 p(x, r, t) dx dr dt (17)

+ σ2
Y1
(p(x, r, T = 1)) + σ2

Y0
(p(x, r, T = 0)).

We obtain Eq. (15) for the squared loss function LY and by using ht(Φ(x)) = ft(x). Then, Eq. (17) follows from
Definition 8 by summing the second term of Eq. (16) over the space T , i. e., for t = 0, 1 and because the third term in
Eq. (16) evaluates to zero since mt(x) =

∫
Y ytp(yt | x) dyt. We show the proof for ϵF(h,Φ). The proof for ϵCF(h,Φ) is

analogous.
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Lemma 2 (Bound on PEHE loss).

ϵPEHE(h,Φ) ≤ 2
(
ϵF(h,Φ) + ϵCF(h,Φ)− 4σ2

Y

)
,

where ϵF(h,Φ) and ϵCF(h,Φ) are with respect to the squared loss.

Proof.

ϵPEHE(h,Φ)

=

∫
X×R

(τ̂(x)− τ(x))2 p(x, r) dxdr

=

∫
X×R

(
(h1(Φ(x))− h0(Φ(x)))− · · ·

− (m1(x)−m0(x))
)2

p(x, r) dxdr

=

∫
X×R

(
(f1(x)− f0(x))− (m1(x)−m0(x))

)2
p(x, r) dx dr

=

∫
X×R

(
(f1(x)−m1(x)) + (m0(x)− f0(x))

)2
p(x, r) dx dr

≤ 2

∫
X×R

(
(f1(x)−m1(x))

2 + (m0(x)− f0(x))
2
)
p(x, r) dx dr (18)

=2

∫
X×R
(f1(x)−m1(x))

2 p(x, r) dxdr

+ 2

∫
X×R
(f0(x)−m0(x))

2 p(x, r) dxdr

=2

∫
X×R
(f1(x)−m1(x))

2 p(x, r, T = 1) dxdr (19)

+ 2

∫
X×R
(f1(x)−m1(x))

2 p(x, r, T = 0) dx dr

+ 2

∫
X×R
(f0(x)−m0(x))

2 p(x, r, T = 1) dx dr

+ 2

∫
X×R
(f0(x)−m0(x))

2 p(x, r, T = 0) dx dr

=2

∫
X×R×T
(ft(x)−mt(x))

2 p(x, r, t) dxdr dt

+ 2

∫
X×R×T
(ft(x)−mt(x))

2 p(x, r, 1− t) dxdr dt

≤ 2
(
ϵF(h,Φ)− 2σ2

Y

)
+ 2

(
ϵCF(h,Φ)− 2σ2

Y

)
(20)

=2
(
ϵF(h,Φ) + ϵCF(h,Φ)− 4σ2

Y

)
.

We have Eq. (18) because (x+y)2 ≤ 2 (x2+y2), Eq. (19) because p(x, r) = p(x, r, T = 1)+p(x, r, T = 0), and Eq. (20)
because of Lemma 1. Note that the bound can be straightforwardly adapted to the case of the absolute loss function by
applying the triangle inequality in Eq. (18). In such case, the standard deviation would be replaced by the mean absolute
deviation and the multiplying factor would be 1 instead of 2.
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Further, we define the factual and counterfactual loss in the missing and observed treatment domain, as well as the integral
probability metric (IPM). We use superscripts to denote when we condition on a given variable, e. g., pR=0(x) = p(X =
x | R = 0).

Definition 9 The expected factual and counterfactual losses of Φ and h in the missing (R = 0) and observed (R = 1)
treatment domain are given by

ϵR=1
F (h,Φ) =

∫
X×T

lh,Φ(x, t) p
R=1(x, t) dxdt,

ϵR=0
F (h,Φ) =

∫
X×T

lh,Φ(x, t) p
R=0(x, t) dxdt,

ϵR=1
CF (h,Φ) =

∫
X×T

lh,Φ(x, t) p
R=1(x, 1− t) dx dt,

ϵR=0
CF (h,Φ) =

∫
X×T

lh,Φ(x, t) p
R=0(x, 1− t) dx dt.

Lemma 3. Let v = p(R = 0). Then, we have

ϵF(h,Φ) = (1− v) ϵR=1
F (h,Φ) + v ϵR=0

F (h,Φ),

ϵCF(h,Φ) = (1− v) ϵR=1
CF (h,Φ) + v ϵR=0

CF (h,Φ).

The proof follows directly from Definition 6 and Definition 9, by noting that v = p(R = 0) and 1− v = p(R = 1).

Definition 10 Let G be a function family consisting of functions g : S → R. For a pair of distributions p1, p2 over S, we
define the integral probability metric (IPM) as

IPMG(p1, p2) = sup
g∈G

∣∣∣∣ ∫
S
g(s) (p1(s)− p2(s)) ds

∣∣∣∣.
Thus, IPMG(·, ·) is a pseudo-metric on the space of probability functions over S. For a sufficiently rich function family
G, IPMG(·, ·) is a true metric over the corresponding set of probabilities, i. e., IPMG(p1, p2) = 0 ⇒ p1 = p2.
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Lemma 4 Let Φ : X → Z be an invertible representation and Ψ its inverse. Let pΦ be the distribution induced by Φ over
Z . Let v = p(R = 0). Let G be a family of functions k : Z → R and IPMG(·, ·) the integral probability metric induced
by G. Let ht : Z → Y for t = 0, 1 be a hypothesis. Assume there exists a constant BΦ > 0, such that, for t = 0, 1, the
function gΦ,h(z) :=

1
BΦ

lh,Φ(Ψ(z), t) ∈ G. Then, we have

ϵF(h,Φ) + ϵCF(h,Φ)

≤ ϵR=1
F (h,Φ) + ϵR=1

CF (h,Φ)

+ 2 v BΦ IPMG

(
pR=0
Φ (z), pR=1

Φ (z)
)
.

Proof.

ϵF(h,Φ) + ϵCF(h,Φ)

= (1− v) ϵR=1
F (h,Φ) (21)

+ v ϵR=0
F (h,Φ) + (1− v) ϵR=1

CF (h,Φ) + v ϵR=0
CF (h,Φ)

= ϵR=1
F (h,Φ) + ϵR=1

CF (h,Φ)

+ v (ϵR=0
F (h,Φ)− ϵR=1

F (h,Φ) + ϵR=0
CF (h,Φ)− ϵR=1

CF (h,Φ))

= ϵR=1
F (h,Φ) + ϵR=1

CF (h,Φ)+ (22)

v

(∫
X×T
lh,Φ(x, t) (p

R=0(x, t)− pR=1(x, t)) dxdt

+

∫
X×T
lh,Φ(x, t) (p

R=0(x, 1− t)− pR=1(x, 1− t)) dxdt

)
=ϵR=1

F (h,Φ) + ϵR=1
CF (h,Φ)+ (23)

v

(∫
X×T
lh,Φ(x, t) p(t | x)(pR=0(x)− pR=1(x)) dxdt

+

∫
X×T
lh,Φ(x, t) p(1− t | x)(pR=0(x)− pR=1(x)) dxdt

)
= ϵR=1

F (h,Φ) + ϵR=1
CF (h,Φ) (24)

+ v

∫
X×T
lh,Φ(x, t) (p

R=0(x)− pR=1(x)) dxdt

= ϵR=1
F (h,Φ) + ϵR=1

CF (h,Φ)

+ v

∫
Z×T
lh,Φ(Ψ(z), t) (pR=0

Φ (z)− pR=1
Φ (z)) dz dt

= ϵR=1
F (h,Φ) + ϵR=1

CF (h,Φ)

+ v BΦ

(∫
Z

1

BΦ
lh,Φ(Ψ(z), 1) (pR=0

Φ (z)− pR=1
Φ (z)) dz

+

∫
Z

1

BΦ
lh,Φ(Ψ(z), 0) (pR=0

Φ (z)− pR=1
Φ (z)) dz

)
≤ ϵR=1

F (h,Φ) + ϵR=1
CF (h,Φ)

+ 2 v BΦ sup
g∈G

∣∣∣∣ ∫
Z
g(z) (pR=0

Φ (z)− pR=1
Φ (z)) dz

∣∣∣∣
= ϵR=1

F (h,Φ) + ϵR=1
CF (h,Φ)

+ 2 v BΦ IPMG(p
R=0
Φ (z), pR=1

Φ (z)).

Here, Eq. (21) follows from Lemma 3, Eq. (22) uses Definition 9, Eq. (23) follows from Assumption 2 since T is inde-
pendent of R given X , and Eq. (24) holds true because p(t | x) + p(1 − t | x) = 1. The rest of the proof relies on the
assumptions in Lemma 4 and Definition 10.
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Next, we define the factual and counterfactual loss in the treated and the control domain, within the observed treatment
domain. Subsequently, we provide a bound for the counterfactual loss.

Definition 11 The expected control (T = 0) and treated (T = 1) losses in the observed treatment domain are given by

ϵR=1,T=1
F (h,Φ) =

∫
X
lh,Φ(x, 1) p

R=1,T=1(x) dx,

ϵR=1,T=0
F (h,Φ) =

∫
X
lh,Φ(x, 0) p

R=1,T=0(x) dx,

ϵR=1,T=1
CF (h,Φ) =

∫
X
lh,Φ(x, 1) p

R=1,T=0(x) dx,

ϵR=1,T=0
CF (h,Φ) =

∫
X
lh,Φ(x, 0) p

R=1,T=1(x) dx.

Lemma 5. Let u = p(T = 0). Then, we have

ϵR=1
F (h,Φ) = (1− u) ϵR=1,T=1

F (h,Φ) + u ϵR=1,T=0
F (h,Φ),

ϵR=1
CF (h,Φ) = u ϵR=1,T=1

CF (h,Φ) + (1− u) ϵR=1,T=0
CF (h,Φ).

The proof follows directly from Definition 9 and Definition 11, by noting that u = p(T = 0) and 1− u = p(T = 1).
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Lemma 6 Let LY : Y × Y → R+ be squared loss function. Let Φ : X → Z be an invertible representation and Ψ its
inverse. Let pΦ be the distribution induced by Φ over Z . Let u = p(T = 0). Let G be a family of functions g : Z → R and
IPMG(·, ·) the integral probability metric induced by G. Let ht : Z → Y for t = 0, 1 be a hypothesis. Assume there exists
a constant BΦ > 0, such that, for t = 0, 1, the function gΦ,h(z) :=

1
BΦ

lh,Φ(Ψ(z), t) ∈ G. Then, we have

ϵR=1
CF (h,Φ)

≤u ϵR=1,T=1
F (h,Φ) + (1− u) ϵR=1,T=0

F (h,Φ)

+BΦ IPMG

(
pR=1,T=0
Φ (z), pR=1,T=1

Φ (z)
)
.

Proof.

ϵR=1
CF (h,Φ)−

(
uϵR=1,T=1

F (h,Φ) + (1− u)ϵR=1,T=0
F (h,Φ)

)
=
(
uϵR=1,T=1

CF (h,Φ) + (1− u)ϵR=1,T=0
CF (h,Φ)

)
(25)

−
(
uϵR=1,T=1

F (h,Φ) + (1− u)ϵR=1,T=0
F (h,Φ)

)
=u

(
ϵR=1,T=1
CF (h,Φ)− ϵR=1,T=1

F (h,Φ)
)

+ (1− u)
(
ϵR=1,T=0
CF (h,Φ)− ϵR=1,T=0

F (h,Φ)
)

=u

∫
X
lh,Φ(x, 1) (p

R=1,T=0(x)− pR=1,T=1(x)) dx (26)

+ (1− u)

∫
X
lh,Φ(x, 0) (p

R=1,T=1(x)− pR=1,T=0(x)) dx

=u

∫
Z
lh,Φ(Ψ(z), 1) (pR=1,T=0

Φ (z)− pR=1,T=1
Φ (z)) dz

+ (1− u)

∫
Z
lh,Φ(Ψ(z), 0) (pR=1,T=1

Φ (z)− pR=1,T=0
Φ (z)) dz

=BΦ u

∫
Z

1

BΦ
lh,Φ(Ψ(z), 1) (pR=1,T=0

Φ (z)− pR=1,T=1
Φ (z)) dz

+BΦ (1− u)

∫
Z

1

BΦ
lh,Φ(Ψ(z), 0) · · ·

(pR=1,T=1
Φ (z)− pR=1,T=0

Φ (z)) dz

≤BΦ u sup
g∈G

∣∣∣∣ ∫
Z
g(z) (pR=1,T=0

Φ (z)− pR=1,T=1
Φ (z)) dz

∣∣∣∣
+BΦ (1− u) sup

g∈G

∣∣∣∣ ∫
Z
g(z) (pR=1,T=1

Φ (z)− pR=1,T=0
Φ (z)) dz

∣∣∣∣
=BΦ IPMG(p

R=1,T=0
Φ (z), pR=1,T=1

Φ (z)).

Eq. (25) follows from Lemma 5, Eq. (26) is given by Definition 11, and the rest of the proof relies on assumptions in
Lemma 6 and Definition 10. Next, we provide the main result of this paper in Theorem 1.
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Theorem 1 Let Φ : X → Z be an invertible representation and Ψ its inverse. Let pΦ be the distribution induced by Φ over
Z . Let v = p(R = 0). Let G be a family of functions g : Z → R and IPMG(·, ·) the integral probability metric induced
by G. Let ht : Z → Y for t = 0, 1 be a hypothesis. Assume there exists a constant BΦ > 0, such that, for t = 0, 1, the
function gΦ,h(z) :=

1
BΦ

lh,Φ(Ψ(z), t) ∈ G. Then, we have

ϵPEHE(h,Φ)

≤ 2 (ϵF(h,Φ) + ϵCF(h,Φ)− 4σ2
Y ) (27)

≤ 2
(
ϵR=1
F (h,Φ) + ϵR=1

CF (h,Φ) (28)

+ 2 v BΦ IPMG(p
R=0
Φ (z), pR=1

Φ (z))− 4σ2
Y

)
≤ 2

[
ϵR=1,T=1
F (h,Φ) + ϵR=1,T=0

F (h,Φ) (29)

+BΦ IPMG(p
R=1,T=0
Φ (z), pR=1,T=1

Φ (z))

+ 2 v BΦ IPMG(p
R=0
Φ (z), pR=1

Φ (z))− 4σ2
Y

]
.

where ϵF(h,Φ) and ϵCF(h,Φ) are with respect to the squared loss.

The proof follows directly from Lemma 2, Lemma 4, and Lemma 6. Eq. (27) follows from Lemma 2, Eq. (28) follows
from Lemma 4, and Eq. (29) follows from Lemma 6 and by observing that

ϵR=1
F (h,Φ) + u ϵR=1,T=1

F (h,Φ) + (1− u) ϵR=1,T=0
F (h,Φ)

= (1− u) ϵR=1,T=1
F (h,Φ) + u ϵR=1,T=0

F (h,Φ)

+ u ϵR=1,T=1
F (h,Φ) + (1− u) ϵR=1,T=0

F (h,Φ)

= ϵR=1,T=1
F (h,Φ) + ϵR=1,T=0

F (h,Φ).



Estimating Conditional Average Treatment Effects with Missing Treatment Information

B IMPLEMENTATION DETAILS

Hyperparameters. The hyperparameters for our MTRNet and the two other deep learning baselines, i. e., TARNet and
CFRMMD, include: representation layer size, hypothesis layer size, number of iterations, batch size, learning rate, dropout
rate, λ, α (only for MTRNet and CFRMMD), and β (only for MTRNet). We used large similar tuning ranges for datasets
(an exception is the batch size, which we varied to reflect the different sizes of the datasets).

• IHDP. Here, we have: representation layer size ∈ {50, 100, 200}, hypothesis layer size ∈ {50, 100, 200}, number
of iterations ∈ {100, 200, 300}, batch size ∈ {50, 70, 100}, learning rate ∈ {0.01, 0.005, 0.001, 0.0005, 0.0001},
dropout rate ∈ {0.1, 0.2, 0.3}, λ ∈ {0.0005, 0.0001, 0.00005}, α ∈ {10k/2}2k=−4, and β ∈ {10k/2}2k=−4.

• Twins. Here, we have: batch size ∈ {500, 1000, 1500}. The rest of the hyperparameter ranges are the same as for
IHDP.

• Jobs. Here, we have: batch size ∈ {200, 300, 500}. The rest of the hyperparameter ranges are the same as for IHDP.

Cross-validation. For real-world data, the standard cross-validation cannot be used with the PEHE loss because we observe
only the factual outcome, which means that we do not have access to CATE. However, we can compute a substitute for
CATE by using the nearest neighbor in the opposite treatment group as a surrogate for the counterfactual outcome. Hence,
to compute a substitute for CATE for a data point i, we use the factual outcome yi and a surrogate for the counterfactual
outcome yj(i), where j(i) is the nearest neighbor of i in the opposite treatment group, i. e., tj(i) = 1 − ti. Then, we have

the nearest neighbor approximation of the PEHE loss given by ϵ̂PEHEnn
= 1

n

∑n
i=1

(
τ̂(x)− (1− 2ti) (yj(i) − y1)

)2
. We

use ϵ̂PEHEnn
for hyperparameter selection via cross-validation for IHDP and Twins. For Jobs, we directly use the policy

risk for cross-validation.

Data pre-processing. In our experiments, we modify the datasets such that treatment information is partially missing.
The missingness mechanism is designed such that treatment missingness R depends on covariates X . We do this in the
following way. For each data point i, we have the probability of missingness pm(i), and the probability that the treatment is
observed po(i). Initially, we set them both to 1. Then, for a data point i and covariate Xj , if xji is larger than the empirical
mean of Xj , we multiply pm(i) with parameter q ∈ (0, 1), and po(i) with 1 − q. If xji is smaller than the empirical mean
of Xj , we multiply pm(i) with 1 − q and po(i) with q. We iterate the procedure over all data points i = 1, . . . , n, for each
covariate j = 1, . . . , d. Following this, we normalize pm(i) and po(i) by dividing each with their sum which gives us the
probability of treatment missingness for every data point i. Then, we randomly sample ri from the set {0, 1} such that zero
is sampled with probability pm(i), and one is sampled with probability po(i) = 1−pm(i). In the end, we control the overall
proportion of missing treatments using parameter m ∈ (0, 1) by randomly changing some ri such that the final proportion
of missing treatments equals m. Hence, m controls the overall probability of treatment missingness, and q controls the
magnitude of the covariate shift between the observed and missing treatment population. Here: the further away q is from
0.5, the larger is the covariate shift.
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C ADDITIONAL EXPERIMENTS

Here, we show the results of IHDP experiments when varying the parameter m, i. e., the proportion of missing treatment
data. The results are shown for MTRNet and the four CATE estimation methods with different methods for handling
missing treatments, namely, with deletion method in Fig. 4, and with re-weighting method in Fig. 5. We confirm the
finding from our main paper that the performance gap between our MTRNet and the baseline methods becomes larger as
we increase the proportion of missing treatment data, i. e., the parameter m.
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Figure 4: IHDP results for increasing proportion, m, of missing treatment data (here: deletion method “del” for handling
missing treatments).
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Figure 5: IHDP results for increasing proportion, m, of missing treatment data (here: re-weighting method “rew” for
handling missing treatments).
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