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Abstract

This work studies how the introduction of
the entropic regularization term in unbal-
anced Optimal Transport (OT) models may
alter their homogeneity with respect to the
input measures. We observe that in com-
mon settings (including balanced OT and
unbalanced OT with Kullback-Leibler diver-
gence to the marginals), although the op-
timal transport cost itself is not homoge-
neous, optimal transport plans and the so-
called Sinkhorn divergences are indeed ho-
mogeneous. However, homogeneity does not
hold in more general Unbalanced Regularized
Optimal Transport (UROT) models, for in-
stance those using the Total Variation as di-
vergence to the marginals. We propose to
modify the entropic regularization term to re-
trieve an UROT model that is homogeneous
while preserving most properties of the stan-
dard UROT model. We showcase the im-
portance of using our Homogeneous UROT
(HUROT) model when it comes to regularize
Optimal Transport with Boundary, a trans-
portation model involving a spatially vary-
ing divergence to the marginals for which
the standard (inhomogeneous) UROT model
would yield inappropriate behavior.

1 INTRODUCTION

Optimal Transport (OT) literature can be traced back
to the seminal work of Monge (1784), where Monge
proposes a way to interpolate between two distribu-
tions of mass, represented by two probabilities mea-
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sures α, β supported on some space Ω, while minimiz-
ing a cost representing the total effort spent to move
each element of mass in α to a corresponding one
in β. In its modern formulation due to Kantorovich
(1942), the OT problem is introduced as a linear pro-
gram OT(α, β) := minπ

∫∫
c(x, y)dπ(x, y) over trans-

port plans π ∈ Π(α, β) that correspond to measures
supported on Ω × Ω whose marginals are exactly α
and β. Here, c(x, y) denotes the cost of transporting
some mass located at x to y. When Ω ⊂ Rd is con-
vex and c(x, y) = ∥x − y∥p, the infimum value reached
(to the power 1/p) defines a metric between probabil-
ity measures supported on Ω called the Wasserstein
distance. In addition, any optimal π ∈ Π(α, β) in-
duces an interpolation between α and β by setting
µt := At#π : X 7→ π(A−1

t (X)) for measurable X ⊂ Ω,
where At(x, y) := (1 − t)x + ty. This curve turns out
to be a geodesic between α and β for the Wasserstein
distance and can also be understood as a minimal so-
lution of the so-called continuity equation (see for in-
stance (Villani, 2008, Thm. 7.21) and (Santambrogio,
2015, §5.4)). More generally, gradient flows induced
by transportation problems are closely related to evo-
lutionary equations (Ambrosio et al., 2005).

Naturally, this physical interpretation suggests that
optimal transport models should be homogeneous with
respect to the input measures α and β: loosely speak-
ing, encoding the mass of α and β in grams or in
kilograms should not change the structure of the solu-
tions we obtain to describe the behavior of a physical
system. Formally, it means that if π is an optimal
transport plan between α and β, we expect λπ (or,
at least, some scaled version of π) to be an optimal
transport plan between λα and λβ, for any scaling
factor λ > 0. Fortunately, this clearly holds in the
standard formulation of OT (the objective function
and the constraints are linear). While this formulation
is restricted to measures with the same total masses
(and, by homogeneity, boils down to probability mea-
sures), models of Unbalanced OT (UOT) have been
proposed to handle measures with possibly different
total masses by relaxing the marginal constraints (see
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(Chizat et al., 2015; Liero et al., 2015) and Section 2).
Of interest in this work and developed in Section 5
is the framework of Optimal Transport with Boundary
(OTB) proposed by Figalli and Gigli (2010) to model
heat diffusion process with Dirichlet boundary condi-
tions. Their model enables the comparison of measures
with different total masses by allowing the transporta-
tion of any amount of mass to, and from, the boundary
∂Ω of the domain Ω provided we pay the correspond-
ing cost c(·, ∂Ω). Here as well, all these models of UOT
are homogeneous.

A parallel line of development—mainly popularized
by the work of Cuturi (2013)—proposes to regu-
larize the standard OT model between probability
measures by adding an entropic regularization term
+εKL(π|α ⊗ β) where ε > 0 is a regularization pa-
rameter, and KL(µ|ν) =

∫
log
(

dµ
dν

)
dµ denotes the

Kullback-Leibler divergence (here, between probabil-
ity measures). This approach was initially motivated
by computational aspects: the resulting problem be-
comes strictly convex and can be solved efficiently us-
ing the Sinkhorn algorithm, a fixed-point algorithm
that only involves matrix manipulations (hence usable
efficiently on modern hardware as GPUs). Nonethe-
less, this model appears to be supported by strong
theoretical properties, in particular through the intro-
duction of an “unbiased” version called the Sinkhorn
divergences (Ramdas et al., 2017; Genevay et al., 2018;
Feydy et al., 2019), presented in Section 2. Unbalanced
and Regularized OT have been mixed together in the
works (Chizat et al., 2018; Séjourné et al., 2021) in
a setting that covers most UOT models (though not
directly the OTB one). However, the resulting Un-
balanced Regularized OT model (UROT) may fail to
be homogeneous, mostly because of the introduction
of the (non-linear) term α ⊗ β. In particular, naive
adaptations of (Séjourné et al., 2021) to introduce an
entropic regularization in the OTB model will suffer
with heavy inhomogeneity, hindering its use in prac-
tice and calling for the development of an entropic reg-
ularization term that would preserve homogeneity.

Outline and Contributions. This paper is orga-
nized in the following way:

• Section 2 presents the background on OT theory
on which this work relies, including its regularized
and unbalanced variants.

• Section 3 studies the (in)homogeneity properties
of Unbalanced Regularized OT in its standard for-
mulation. We prove in particular that in the nat-
ural settings of balanced OT and KL-penalized
marginals, although the transport cost itself is not
homogeneous, the corresponding Sinkhorn diver-
gence appears to be homogeneous thanks to the

addition of a “mass bias” proposed by Séjourné et
al. It gives a new perspective in favor of the use
of this “unbiased” formulation of entropic OT in
these contexts. We show that, however, in a more
general setting homogeneity does not hold in the
standard UROT model.

• Section 4 introduces a model of Homogeneous Un-
balanced Regularized OT (HUROT). This model
enjoys most of the properties of the standard one
(UROT): it is solved by applying the Sinkhorn al-
gorithm to renormalized measures—hence can be
implemented faithfully based on existing code, is
continuous with respect to the weak convergence
of measures, and the corresponding Sinkhorn di-
vergence is positive without the need to introduce
a mass bias term.

• Eventually, Section 5 introduces a model of Regu-
larized OT with Boundary (ROTB). We showcase
the importance of enforcing homogeneity in this
model using the approach developed in Section 4.
We prove that the resulting ROTB model, in ad-
dition to the properties it shares with the HUROT
model (continuity, positivity of the Sinkhorn di-
vergence, etc.), implies the same notion of con-
vergence as its unregularized counterpart, which
legitimates our approach as a consistent way to
regularize this spatially varying UOT model.

Our implementation is available at https://github.
com/tlacombe/homogeneousUROT. All proofs and
some complementary remarks have been deferred to
the appendix.

2 BACKGROUND

Preliminary Definitions and Notation. In this
work, Ω denotes a compact subset of Rd, c : Ω ×
Ω → R+ is a cost function that is assumed to satisfy
c(x, x) = 0, to be symmetric, and Lipschitz continu-
ous on Ω, typically c(x, y) = ∥x − y∥2. The set M(Ω)
denotes the space of (non-negative) Radon measures
supported on Ω, and P(Ω) = {α ∈ M(Ω), m(α) = 1}
denotes the subset of probability measures, that is
measures of total mass m(α) := α(Ω) = 1. With the
exception of Section 5, we also assume that the total
masses of the measures are finite.

Given a measure α ∈ M(Ω) and a function f ∈ C(Ω),
we use the notation ⟨·, ·⟩ to denote the duality prod-
uct, that is ⟨f, α⟩ :=

∫
Ω f(x)dα(x). We say that a se-

quence of measures (αn)n ∈ M(Ω)N converges weakly
toward some α∞ ∈ M(Ω), denoted by αn

w−→ α∞, if
for any continuous (bounded) map f one has ⟨f, αn⟩ →
⟨f, α∞⟩. Note that this implies m(αn) → m(α∞).

https://github.com/tlacombe/homogeneousUROT
https://github.com/tlacombe/homogeneousUROT
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A function φ : [0, +∞) → [0, +∞] is said to be an
entropy function if it is convex, lower-semi-continuous
and satisfies φ(1) = 0. We also set the convention
φ(p) = +∞ whenever p < 0 and, in this work, we will
only consider entropy functions that satisfy φ(0) < ∞.
Of interest is its Legendre transform, defined by φ∗ :
q 7→ supp≥0 pq − φ(p). An entropy function φ induces
a φ-divergence:

Dφ(α|β) := ⟨φ ◦ dα

dβ
, β⟩ =

∫
Ω

φ

(
dα

dβ
(x)
)

dβ(x). (1)

Among the notorious choices to define a φ-divergence,
one has φ(p) = p log(p) − p + 1, whose Legendre trans-
form is φ∗(q) = eq − 1, and which defines the so-called
Kullback-Leibler divergence Dφ = KL. As another ex-
ample that will play an important role in this work,
the Total Variation between measures can also be re-
trieved as a φ-divergence by taking φ(p) = |1 − p|,
yielding Dφ(α|β) =

∫
Ω |dα(x) − dβ(x)| =: TV(α − β).

Finally, the convex indicator function is defined by
ıc(p) = 0 if p = 1, and +∞ otherwise, so that
Dıc

(α|β) = 0 if α = β, and +∞ otherwise. Note
that ı∗

c = id, the identity map.

Finally, a function F : X → Y (for some Banach spaces
X , Y) is said to be h-homogeneous if there exists a
constant h > 0 such that for any (λ, x) ∈ R × X we
have F (λx) = λhF (x). When h = 1, we will simply
say that F is homogeneous.

Balanced Regularized Optimal Transport. Let
α, β ∈ P(Ω) denote two probability measures. We
denote by Π(α, β) := {π ∈ M(Ω × Ω), π(·, Ω) =
α, π(Ω, ·) = β} the corresponding set of transport plans
between α and β, that is the measures π supported on
Ω×Ω whose marginals π1, π2 are equal to α, β, respec-
tively. The optimal transport cost between α and β is
defined as

OT(α, β) := inf
π∈Π(α,β)

⟨π, c⟩ , (2)

and any minimizer of this problem is said to be an
optimal transport plan between the two measures.

In 2013, Cuturi significantly contributed to popularize
the practical use of OT (in particular in the machine
learning community) by observing that its entropic
regularized version can be solved efficiently on mod-
ern hardware (Cuturi, 2013), see (Peyré et al., 2019)
for an extensive overview of the computational aspects
of OT. In its modern form, this regularized problem
reads, for a parameter ε > 0,

OTε(α, β) := inf
π∈Π(α,β)

⟨π, c⟩ + εKL(π|α ⊗ β), (3)

= sup
f,g∈C(Ω)

⟨f, α⟩ + ⟨g, β⟩ − ε ⟨e
f⊕g−c

ε − 1, α ⊗ β⟩ ,

(4)

where (3) is referred to as the primal problem and (4)
as its dual. It is worth noting that despite its appeal-
ing computational properties, OTε does not define a
proper divergence between probability measures. In
particular, OTε(α, α) ̸= 0 in general, and probably
worse, the map α 7→ OTε(α, β) is not minimized for
α = β. This entropic bias (Janati et al., 2020), can be
corrected by introducing the associated Sinkhorn di-
vergence (Ramdas et al., 2017; Genevay et al., 2018),
defined by

Skε(α, β) := OTε(α, β) − 1
2OTε(α, α) − 1

2OTε(β, β).
(5)

Deeply studied in (Feydy et al., 2019), it can be proved
that Skε(α, β) ≥ 0, with equality if, and only if, α = β.

Unbalanced Sinkhorn Divergences. The above
formulations are restricted to measures α, β with the
same total masses m(α) = m(β). This setting is re-
ferred to as balanced OT. One celebrated way to extend
(2) to measures of different total masses is to relax the
marginal constraints using a φ-divergence. The unbal-
anced OT (UOT) problem reads, for a given entropy
function φ:

OTφ(α, β) = inf
π∈M(Ω×Ω)

⟨c, π⟩ + Dφ(π1|α) + Dφ(π2|β).

(6)

Following (Chizat et al., 2018), unbalanced and regu-
larized OT can be mixed together yielding the follow-
ing problems, dual of each other:

OTε,φ(α, β) := inf
π∈M(Ω×Ω)

⟨π, c⟩ + Dφ(π1|α) + Dφ(π2|β)

+ εKL(π|α ⊗ β) (7)
= sup

f,g∈C(Ω)
⟨−φ∗(−f), α⟩ + ⟨−φ∗(−g), β⟩

− ε ⟨e
f⊕g−c

ε − 1, α ⊗ β⟩ (8)

In the following, we will refer to this formulation as the
standard Unbalanced Regularized OT (UROT) model.
Note that setting φ = ıc retrieves (3) (balanced regu-
larized OT) and setting ε = 0 retrieves (6) (unbalanced
OT). This model has been deeply studied in (Séjourné
et al., 2021). In particular, authors prove that the dual
problem (8) can be solved by iterating an adapted ver-
sion of the Sinkhorn algorithm that reads (Séjourné
et al., 2021, Def. 3) which consists of building a se-
quence (ft, gt)t defined by

ft+1(x) = −aproxε,φ∗

(
ε log ⟨e

gt−c(x,·)
ε , β⟩

)
,

gt+1(y) = −aproxε,φ∗

(
ε log ⟨e

ft+1−c(·,y)
ε , α⟩

)
,

(9)

where aproxε,φ∗ is the anisotropic proximity opera-
tor (Séjourné et al., 2021, Def. 2) associated to (the
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Legendre transform of) the divergence φ defined by
aproxε,φ∗(p) := arg minq∈R εe

p−q
ε + φ∗(q). Crucially, a

couple (f, g) ∈ C(Ω) is optimal for (8) if, and only if,
it is a fixed point of the map (ft, gt) 7→ (ft+1, gt+1)
(Séjourné et al., 2021, Prop. 8). Furthermore, any se-
quence (ft, gt)t built following (9) is guaranteed to con-
verge towards such a fixed point (that is, an optimal
pair of potentials) under mild assumptions (Séjourné
et al., 2021, Thm. 1) that are satisfied in this work
(namely, c must be Lipschitz continuous on Ω, and
one must be able to restrict (8) to a compact subset
of C(Ω), which is possible in our settings of interest:
Dφ = Dıc , TV or KL, see (Séjourné et al., 2021, Lem-
mas 8, 9)). Eventually, if (f, g) is optimal for the dual
problem (8), then

π := exp
(

f ⊕ g − c

ε

)
α ⊗ β (10)

is optimal for the primal problem (7). Finally, the
authors introduce the unbalanced Sinkhorn divergence
between α and β:

Skε,φ(α, β) :=OTε,φ(α, β) + ε

2(m(α) − m(β))2

− 1
2OTε,φ(α, α) − 1

2OTε,φ(β, β).
(11)

They prove that this formulation enjoys most of the
properties of its balanced counterpart (5): it is con-
tinuous with respect to the weak convergence, non-
negative, satisfies Skε,φ(α, β) = 0 ⇔ α = β, is con-
vex with respect to each of its entries, and induces
the same topology as weak convergence on the set
M≤m(Ω) of Radon measures with total mass uni-
formly bounded by m > 0, that is Skε,φ(αn, α) →
0 ⇔ αn

w−→ α. Note the presence of the term
+ ε

2 (m(α) − m(β))2, called the mass bias, that is re-
quired to make the above assertions on Skε,φ correct.

3 (IN)HOMOGENEITY IN THE
STANDARD MODEL

In this section, we study the homogeneity properties
of the standard model (7) with respect to the couple
of input measures (α, β). First, let us stress that non-
regularized OT, should it be balanced (2) or not (6),
is homogeneous in (α, β), that is OTε=0,φ(λα, λβ) =
λ · OTε=0,φ(α, β) for any λ ≥ 0. Furthermore, if π is
an optimal transport plan between α and β, then λπ
is an optimal transport plan between λα and λβ. As
mentioned in the introduction, this behavior is desir-
able as an optimal transport plan may be used as a
way to interpolate between α and β, and it would be
surprising that a change of scale in the masses of the
measures induces a structural change in the interpola-
tion between the two measures. However, the addition

of the entropic regularization term which, in the dual
(8), reads −ε ⟨e

f⊕g−c
ε − 1, α ⊗ β⟩ induces a seemingly

peculiar behavior in terms of homogeneity. Namely, if
we let

J(α,β)(f, g) := ⟨−φ∗(−f), α⟩ + ⟨−φ∗(−g), β⟩

− ε ⟨e
f⊕g−c

ε − 1, α ⊗ β⟩ ,
(12)

one has

J(λα,λβ)(f, g) =λ ⟨−φ∗(−f), α⟩ + λ ⟨−φ∗(−g), β⟩

− λ2ε ⟨e
f⊕g−c

ε − 1, α ⊗ β⟩ ,

inducing a quadratic term in λ that may hinder homo-
geneity.

The Balanced Case. We first consider the case
of regularized balanced optimal transport (3); where
φ = ıc. The following lemma describes the effect of a
scaling of the measures on the sequence of potentials
produced by the Sinkhorn algorithm (9).
Lemma 3.1. Let α, β ∈ M(Ω) be two measures of
total mass m(α) = m(β) = m. Fix (f0, g0) ∈ C(Ω)
and let (ft, gt)t≥1 denote the sequence of dual poten-
tials produced iterating (9) starting from (f0, g0) for
the couple (α, β). Let (f (λ)

t , g
(λ)
t )t denote the sequence

produced starting from (f0, g0) for the couple (λα, λβ).
Then, for all t ≥ 1, (f (λ)

t , g
(λ)
t ) = (ft − ε log(λ), gt).

Hence, scaling the measures by a factor λ reflects as a
shift of −ε log(λ) in the first potential of the sequence
produced by the Sinkhorn algorithm, yielding a series
of results summarized in the following corollary.
Corollary 3.2. Let α, β ∈ M(Ω) be two measures of
total mass m(α) = m(β) = m.

1. If (f, g) is a couple of optimal potentials for the
dual problem for the couple (α, β), then (f −
ε log(λ), g) is optimal for (λα, λβ).

2. If π is an optimal transport plan for (α, β), then
λπ is optimal for (λα, λβ).

3. We have OTε(λα, λβ) = λ · OTε(α, β) + ελ(λ −
1)m2 − ε log(λ)λm, that is, the optimal transport
cost is not homogeneous.

4. We have Skε(λα, λβ) = λ · Skε(α, β).

Overall, the quantities of interest behave in a reason-
able way, in particular the solutions of the primal prob-
lem are homogeneous. Interestingly, the Sinkhorn di-
vergence cancels the inhomogeneous behavior appear-
ing in OTε, giving an additional argument in favor of
using this debiased (and homogenized!) quantity to
compare probability measures using regularized OT.
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Remark 3.3. We warn the reader interested in com-
putational OT that the inhomogeneity appearing in
OTε may lead to ill-behavior in numerical applica-
tions. Indeed, in practice, the Sinkhorn algorithm (9)
does not exactly reach a fixed point and is instead run
until some stopping criterion is reached. For instance,
one may stop the iterations when the relative change
in the objective value vt := J(α,β)(ft, gt) is lesser than
some τ > 0, that is when

∣∣∣ vt+1−vt

vt

∣∣∣ < τ . However, the
inhomogeneous behavior in vt implies that for a given
τ , the number of iterations needed to reach the crite-
rion when comparing α and β may differ from the one
needed when comparing λα and λβ. Thus, even though
in theory the (optimal) transportation plans of both
couples should be the same (up to the scaling factor λ),
the numerical outputs (transport plan, Sinkhorn diver-
gence, etc.) provided by the Sinkhorn algorithm may
not satisfy this property. An illustration of this phe-
nomenon using PythonOptimalTransport is provided
in the appendix.

The KL Case. We now propose to derive the same
study using φ(p) = p log(p) − p + 1, that is Dφ =
KL, a common choice in unbalanced optimal trans-
port to penalize the marginal errors. In this context,
φ∗(q) = eq − 1, and aproxε,φ∗(p) = 1

1+ε p. The follow-
ing proposition summarizes the important properties
of this model as far as homogeneity is concerned.
Proposition 3.4. Let α, β ∈ M(Ω). Then,

1. If (f, g) is a pair of optimal potentials for the cou-
ple (α, β), then(

f − ε2

(1+ε)2−1 log(λ), g − ε2

(1+ε)2−1 log(λ)
)

is opti-
mal for the couple (λα, λβ).

2. If π is optimal for (α, β), then λhπ is optimal for
(λα, λβ), where h = 2 − 2

2+ε .

3. The Sinkhorn divergence Skε,φ is h-homogeneous
(while OTε,φ is not h-homogeneous).

As in the balanced case, the conclusions here are
mostly positive: though the optimization problem (8)
itself is not (h-)homogeneous, the optimal transport
plans are h-homogeneous, and so is the Sinkhorn diver-
gence (thanks to the addition of the mass bias term!).
Remark 3.5. Proposition 3.4 can be slightly gener-
alized: whenever the anisotropic proximal operator is
linear—aproxε,φ∗(p) = κp for some κ ∈ (0, 1]—, the
optimal transport plans and the Sinkhorn divergence
are h = 2

1+κ -homogeneous. Note that this leads to
φ∗(q) = ε

( 1
κ −1)

(
e

q
ε ( 1

κ −1) − 1
)

, that is equivalent to
use ρKL as the marginal penalty with ρ = ε

( 1
κ −1) .

We believe that this condition may be necessary as

well: a non-linearity in the aprox operator prevents
h-homogeneity to occur and the family of divergences
(ρKL)ρ∈[0,+∞] is the only one that makes the UROT
problem homogeneous. Elements of proof in the case
h = 1 are provided in the appendix (i.e. we conclude
that aproxε,φ∗ = id). It means that balanced regu-
larized OT is the only instance that provides a (1-
)homogeneous formulation when using εKL(π|α ⊗ β)
as the entropic regularization term. In Section 4, we
show how to correct the entropic regularization term in
unbalanced cases to retrieve a 1-homogeneous formu-
lation, without sacrificing the good properties of Skε,φ.

Inhomogeneity in General: the TV Case. The
two previous case studies, which fall in the setting
“aprox is linear”, may suggest that the apparent in-
homogeneity in the formulation of the unbalanced
regularized OT problem does not have much after-
maths: the structure of optimal transport plans is pre-
served and the Sinkhorn divergence is h-homogeneous.
As this encompasses both balanced regularized OT
(3) and UOT with KL-relaxation of the marginal
constraints—arguably covering most applications of
UROT in practice—this may explain why behaviors
related to (in)homogeneity did not receive much at-
tention in the OT community so far.

We now give an example for which inhomogeneity
(in particular, of the optimal transport plan) oc-
curs: the case of Total Variation (TV). This choice
of marginal divergence encodes the Optimal Par-
tial Transport model proposed by Figalli (2010) and,
roughly, induces a distance threshold above which one
prefers to destroy/create mass rather than transport-
ing it and has found different applications in ma-
chine learning (Chapel et al., 2020; Mukherjee et al.,
2021; Fatras et al., 2021). Formally, this setting corre-
sponds to taking φ(p) = |1 − p|, yielding Dφ(π1|α) =
TV(π1 − α), φ∗(q) = max(−1, q) and aproxε,φ∗(p) =
max(−1, min(p, 1)).
The Sinkhorn updates used to produce a sequence
(f (λ)

t , g
(λ)
t )t for the couple (λα, λβ) read

f
(λ)
t+1 = min

(
max

(
−1, −ε log ⟨e

g
(λ)
t

−c

ε , β⟩ − ε log(λ)

)
, 1

)
,

g
(λ)
t+1 = min

(
max

(
−1, −ε log ⟨e

f
(λ)
t+1−c

ε , α⟩ − ε log(λ)

)
, 1

)
.

(13)
Here, aproxε,φ∗ exhibits sharp changes of behavior
when its argument get higher than 1 (or lower than
−1). This is the source of an inhomogeneous behavior:
when the scaling factor λ → ∞ (or → 0), this affects
the Sinkhorn updates hence the returned (optimal) po-
tentials, transport plan, and Sinkhorn divergence.

Numerical Illustration. To empirically illustrate
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Figure 1: Inhomogeneity when Dφ = TV. (a) The Sinkhorn divergence between λα and λβ for λ ∈ [1, 100] for the
standard UROT model. Dashed line correspond to the homogeneous behavior λ · Skε,TV(α, β). (b) The same curve in
log-log scale. (c,d) The optimal transport plans for λ = 1 and λ = 100, respectively. Width of the lines linking x in α
to y in β are proportional to dπ(x, y). The transport plans are not proportional to each other, showcasing the structural
change in the interpolation when rescaling the measures.

the possible inhomogeneous behavior of Skε,TV, we
propose the following experiment. We randomly
sample two measures α, β with n = 5 and m =
7 points, respectively and random (non-negative)
weights on their support distributed uniformly be-
tween 0 and 1. We then compute the Sinkhorn di-
vergence Skε,TV(λα, λβ) for λ ∈ [1, 100] from the op-
timal dual potentials obtained by iterating (13) and
the corresponding transport plans through the rela-
tion (10). Figure 1 showcases the dependence of the
result on λ. The plot (a) shows that Skε,TV cannot
be 1-homogeneous. If Skε,TV was h-homogeneous for
some h, one would expect that log(Skε,TV(λα, λβ)) =
h log(λ) + log(Skε,TV(α, β)), that would yield a line of
slope h in log-log scale. Plot (b) in Figure 1 shows that
this does not hold overall: a slope break occurs around
log(λ) ∼ 2.5, as a consequence of the non-linearity in
aproxε,TV. This reflects in structural changes in the
resulting transport plans as illustrated in the subplots
(c,d). Computations are run with ε = 1.

4 HOMOGENEOUS UNBALANCED
REGULARIZED OPTIMAL
TRANSPORT (HUROT)

In this section, by slightly changing the entropic regu-
larization term appearing in (7), we introduce a model
of unbalanced regularized OT that presents the advan-
tage of being homogeneous in a broad setting. Let fix
α, β ∈ M(Ω) and assume for now that they have pos-
itive total masses: m(α) > 0, m(β) > 0, that is be-
long to M(Ω)\{0}. Let also ma(α, β) := 1

2 (m(α) +
m(β)), mg(α, β) :=

√
m(α)m(β) and mh(α, β) :=

2
(

1
m(α) + 1

m(β)

)−1
denote the arithmetic, geometric

and harmonic mean of m(α) and m(β), respectively.
When it is clear from the context, we will simply write
ma, mg and mh instead.

Definition 4.1. For π ∈ M(Ω × Ω) and α, β ∈

M(Ω)\{0}, introduce

R(π|α, β) := 1
2

(
KL
(

π| α

m(α) ⊗ β

)
+ KL

(
π|α ⊗ β

m(β)

))
.

(14)
The homogeneous unbalanced regularized optimal
transport (HUROT) problem is defined as

OT[H]
ε,φ(α, β) := inf

π
⟨c, π⟩+Dφ(π1|α)+Dφ(π2|β)+εR(π|α, β).

(15)

The regularization term (14) can be seen as the aver-
age of two entropic regularization terms whose refer-
ence measure have β as second marginal and α as first
marginal, respectively.
Proposition 4.2 (Dual formulation). One has:

OT[H]
ε,φ(α, β) = sup

f,g∈C(Ω)
⟨−φ∗(−f), α⟩ + ⟨−φ∗(−g), β⟩

− ε ⟨e
f⊕g−c

ε

mg
− 1

mh
, α ⊗ β⟩ .

(16)
Furthermore, if f, g is optimal for (16), then

π := exp
(

f ⊕ g − c

ε

)
α ⊗ β

mg(α, β) (17)

is an optimal transport plan for the problem (15).

Using first order conditions on the dual, we can derive
the Homogeneous Sinkhorn algorithm:

ft+1 = −aproxε,φ∗

(
ε log ⟨e

gt−c
ε ,

α

mg
⟩
)

,

gt+1 = −aproxε,φ∗

(
ε log ⟨e

ft+1−c

ε ,
β

mg
⟩
)

.

(18)

This iterative algorithm can be seen as the standard
Sinkhorn algorithm (9) applied to the renormalized
measures

(
α

mg(α,β) , β
mg(α,β) ,

)
and benefits from all the

properties proved in (Séjourné et al., 2021). In partic-
ular, it converges toward a fixed point (f, g) that is an
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optimal couple of potentials for the HUROT model.
Numerically, optimal potentials can thus be directly
obtained using dedicated software such as POT (Fla-
mary et al., 2021) without requiring further develop-
ment, and can be re-injected in the objective function
J

[H]
(α,β) to get the corresponding homogeneous trans-

port cost OT[H]
ε,φ(α, β). Thus, computing HUROT is

not harder than solving the usual UROT problem.

We now state the homogeneity of the HUROT model.
Proposition 4.3. OT[H]

ε,φ is 1-homogeneous. Further-
more, if (f, g) is a pair of optimal dual potentials for
the couple (α, β), then it is also optimal for the couple
(λα, λβ).
Corollary 4.4. If π is an optimal transport plan for
the HUROT model (15) for the couple of measures
(α, β), then λπ is optimal for the couple (λα, λβ).
Proposition 4.5. Let (f0, g0) ∈ C(Ω), α, β be two
non-zero measures, and λ > 0. The sequence
(f (λ)

t , g
(λ)
t )t produced by (18) for (λα, λβ) initialized

at (f0, g0) is independent of λ.

As the standard UROT model, HUROT is also con-
tinuous with respect to the weak convergence.
Proposition 4.6 (Continuity of the HUROT model).
Let α, β ∈ M(Ω)\{0}. Consider two sequences
(αn)n, (βn)n in M(Ω)\{0} that weakly converge to-
ward α and β, respectively. Then OT[H]

ε,φ(αn, βn) →
OT[H]

ε,φ(α, β).

We can now introduce the corresponding notion of (ho-
mogeneous) Sinkhorn divergence.
Definition 4.7. Let α, β ∈ M(Ω) with m(α), m(β) >
0. The homogeneous Sinkhorn divergence between α
and β is defined as

Sk[H]
ε,φ(α, β) :=OT[H]

ε,φ∗(α, β)

− 1
2OT[H]

ε,φ∗(α, α) − 1
2OT[H]

ε,φ∗(β, β).
(19)

By construction, Sk[H]
ε,φ∗ is homogeneous. Interestingly,

it is also non-negative under standard assumptions,
without needing a “mass bias” term.
Proposition 4.8. Let Kε(x, y) = e− c(x,y)

ε , and as-
sume that Kε is a positive definite kernel. Then,
Sk[H]

ε,φ∗(α, β) ≥ 0, with equality if, and only if, α = β.

Continuity around the Null Measure. Previously
in this section, we only considered the HUROT model
whenever α, β ̸= 0. As in the standard case (Séjourné
et al., 2021, §4.6), assessing continuity of our model
around the null measure requires specific care. Recall
that we assume φ(0) < ∞.

Proposition 4.9. Let β ∈ M(Ω)\{0}. De-
fine OT[H]

ε,φ(0, β) :=
(
φ(0) + ε

2
)

m(β). Let (αn)n be
a sequence of non-null measures that weakly con-
verges toward the null measure: αn

w−→ 0. Then
OT[H]

ε,φ(αn, β) → OT[H]
ε,φ(0, β). Furthermore, if we set

OT[H]
ε,φ(0, 0) := 0, then for any sequences (αn)n, (βn)n

that both weakly converge toward the null measure, one
has OT[H]

ε,φ(αn, βn) → 0.

5 APPLICATION TO OPTIMAL
TRANSPORT WITH BOUNDARY

Definition and Motivation. Optimal Transport
with Boundary (OTB) was introduced by Figalli and
Gigli (2010) as a way to model heat diffusion equa-
tions with specific boundary conditions. We first give
a brief introduction to this model as introduced by the
authors in their seminal paper.

We consider an open bounded domain Ω ⊂ Rd. Let
Ω be its closure and ∂Ω denote its boundary. For the
sake of simplicity, we assume that the cost function
c : Ω × Ω → R+ is given by c(x, y) = ∥x − y∥2, though
most of the approach developed in the following would
adapt to more general symmetric Lipschitz continu-
ous cost functions. To alleviate notations, we intro-
duce c∂Ω(x) := c(x, ∂Ω) = c(∂Ω, x) = infy∈∂Ω c(x, y).
We also assume that ∂Ω is regular enough so that
there exist a measurable map P : Ω → ∂Ω such that
c(x, P (x)) = c∂Ω(x). Now, let α, β be two locally fi-
nite Radon measures supported on Ω. Formally, we
introduce the set of admissible plans

Adm(α, β) :=
{

π ∈ M(Ω × Ω),
∀A, B ⊂ Ω, π(A × Ω) = α(A),
π(Ω × B) = β(B)

}
.

(20)

Now, consider the following optimization problem:

FG(α, β) = inf
π∈Adm(α,β)

∫∫
Ω×Ω

c(x, y)dπ(x, y). (21)

To guarantee that FG(α, β) < +∞, we restrict to mea-
sures α, β that have finite total persistence, where the
total persistence of a measure µ ∈ M(Ω) is defined as
Pers(µ) := FG(µ, 0) =

∫
Ω c∂Ω(x)dµ(x). We will note

by Mc(Ω) the set of such measures.

The first step to propose a relevant entropic reg-
ularization is to rephrase it in a formalism much
closer to the standard UROT model. For µ ∈
Mc(Ω), define the renormalized measure µ̂ by ∀A ⊂
Ω Borel, µ̂(A) :=

∫
A

c∂Ω(x)dµ(x). Note in particular
the relation m(µ̂) = Pers(µ) < ∞.
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Proposition 5.1. Let α, β ∈ Mc(Ω). Then,

FG(α, β) = inf
π∈M(Ω×Ω)

⟨c, π⟩ +
∫

Ω
φ

(
x,

dπ1

dα̂

)
dα̂

+
∫

Ω
φ

(
x,

dπ2

dβ̂

)
dβ̂,

(22)
where

φ(x, z) =
{

|1 − c∂Ω(x) · z| if z ∈
[
0, 1

c∂Ω(x)

]
+∞ otherwise.

(23)

This proposition allows us to express FG(α, β) in a
formalism much closer to standard (non-regularized)
unbalanced OT (6): it only involves measures with fi-
nite total masses and turns the cost of transporting
mass to the boundary ∂Ω into a penalty between the
marginals of π and (α̂, β̂). This enables the develop-
ment of a regularized model for OTB (ROTB).

Definition 5.2. Let α, β ∈ Mc(Ω)\{0} and ε > 0 be
a regularization parameter. The corresponding Homo-
geneous Regularized Optimal Transport with Boundary
(ROTB) problem is given by

FGε(α, β) := inf
π∈M(Ω×Ω)

⟨c, π⟩ + εR(π|α̂, β̂)

+
∫

Ω
φ

(
x,

dπ1

dα̂

)
dα̂ +

∫
Ω

φ

(
x,

dπ2

dβ̂

)
dβ̂,

(24)

where φ is the divergence defined in (23) and R is
defined in (14).

Despite this primal problem involves a spatially vary-
ing divergence, its dual essentially boils down to a
standard problem applied to the renormalized mea-
sures α̂ and β̂ in this particular setting, allowing us to
adapt the results of Section 4 seamlessly.

Proposition 5.3. Let α, β ∈ Mc(Ω)\{0}. One has,
with mg = mg(α̂, β̂) and mh = mh(α̂, β̂),

FGε(α, β) = sup
f,g∈C(Ω)

⟨min(1, f/c∂Ω), α̂⟩

+ ⟨min(1, g/c∂Ω), β̂⟩

−ε ⟨e
f⊕g−c

ε

mg
− 1

mh
, α̂ ⊗ β̂⟩ .

(25)

Furthermore, if (f, g) is optimal for (25), then π :=
exp

(
f⊕g−c

ε

)
α̂⊗β̂

mg(α̂,β̂) is optimal for (24).

From this dual formulation, we can derive the corre-

sponding Sinkhorn algorithm with mg = mg(α̂, β̂):

ft+1(x) := min
(

c∂Ω(x), −ε log
(

c∂Ω(x) ⟨e
g−c(x,·)

ε ,
β̂

mg
⟩
))

,

gt+1(y) := min
(

c∂Ω(y), −ε log
(

c∂Ω(y) ⟨e
f−c(·,y)

ε ,
β̂

mg
⟩
))

.

(26)

Finally, we introduce the corresponding notion of
Sinkhorn divergence:

SkFGε(α, β) := FGε(α, β)− 1
2FGε(α, α)− 1

2FGε(β, β).
(27)

This problem enjoys the same properties as the
HUROT model introduced in Section 4, as summa-
rized in the following proposition.
Proposition 5.4 (Properties of ROTB).

1. FGε and SkFGε are 1-homogeneous. The se-
quence of potentials produced by (26) for the cou-
ple of measures (λα, λβ) is independent of λ, so
are the optimal potentials. If π is an optimal plan
for (α, β), λπ is optimal for the couple (λα, λβ).

2. FGε is continuous with respect to the weak conver-
gence of the renormalized measures: α̂n

w−→ α̂ ⇒
FGε(αn, β) → FGε(α, β). This holds in particular
around the null measure by setting FGε(0, β) :=(
1 + ε

2
)

Pers(β) and FGε(0, 0) = 0.

3. Under the same assumptions as in Proposi-
tion 4.8, SkFGε(α, β) ≥ 0, with equality if and
only if α = β.

Finally, we state that FGε induces the same topology
as FG, supporting the use of this model as a proper
entropic regularization of the OTB model.
Proposition 5.5. FGε induces the same notion of
convergence as FG, that is, for any sequence (αn)n ∈
Mc(Ω)N and any α ∈ Mc(Ω), SkFGε(αn, α) → 0 ⇔
α̂n

w−→ α̂ ⇔ SkFG(αn, α) → 0.

Numerical illustration. To showcase the impor-
tance of using an homogeneous model in the con-
text of OTB, we propose the following experiment.
Inspired by the context of Topological Data Anal-
ysis (see the supplementary materials), we consider
the half-plane Ω = {(t1, t2), t1 < t2} ⊂ R2 hence
∂Ω = {(t, t), t ∈ R}.We sample two measures α, β
with n = 5 and m = 10 points respectively, and with
weight 1 on each point. We then compute the OTB
Sinkhorn divergence SkFGε(λα, λβ) for λ ∈ [0.01, 100]
using our homogeneous model and the Sinkhorn di-
vergence obtained using the standard UROT model
(9). Figure 3 showcases the dependence of the result
on λ. As expected, our model exhibits 1-homogeneity.
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Figure 2: Impact of inhomogeneity on the transport plan for the OTB model. (Top) The transport plans
obtained for the couple (λα, λβ) for varying λ using the standard UROT model. Inhomogeneity reflects in structural
changes in the resulting transport plan: increasing λ tends to weight transportation near the boundary ∂Ω. (Bottom)
The transportation plans using the HUROT model. As expected, varying λ only rescales the transport plan.
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Figure 3: Importance of homogeneity for the OTB
model. (a) The evolution of FGε(λα, λβ) for λ ∈
[0.01, 100] using either our homogeneous regularization
term (14) (HUROT) or the standard one +εKL(π|α̂ ⊗ β̂)
(UROT). As expected, the HUROT model yields a straight
line of slope 1. (b) Same curve in log-log scale. The various
slope breaks illustrate a highly non-homogeneous behavior.

In contrast, the standard model yields a highly inho-
mogeneous behavior which reflects in many structural
changes in the resulting transport plans as showcased
in Figure 2. Computations are run with ε = 1.

6 DISCUSSION

We believe that the homogeneous UROT model we
propose can provide a good alternative to the standard
model of Unbalanced Regularized Optimal Transport
proposed by Séjourné et al., especially when (i) the
marginal divergence induces a “cut-off” as do the Total
Variation or spatially varying divergences involved in
OT with boundary and when (ii) the masses of the
measures considered may be ill-defined (e.g. depend
on the choice of a unit of measurement) or may largely
vary on the considered sample.

Note that enforcing homogeneity in the regularization
term comes with some price. In particular, in con-
trast with the standard UROT model, at fixed β, the
map α 7→ OT[H]

ε,φ(α, β) is a priori not convex with re-
spect to linear interpolation of measures (1− t)α+ tα′.

Since the resulting homogeneous Sinkhorn divergence
still shares key properties with the standard one, won-
dering whether there exist a convex reparametrization
of OT[H]

ε,φ is an important question. Other type of con-
vexity properties, for instance along the interpolation
curves described by the optimal transport plans, may
also be investigated.
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A Delayed proofs

Complementary Notations: The following notions are used in the some proofs. Given a function K : Ω×Ω →
R+ and µ, ν ∈ M(Ω), we introduce

⟨µ, ν⟩K :=
∫∫

K(x, y)dµ(x)dν(y),

∥µ − ν∥2
K := ⟨µ − ν, µ − ν⟩K .

We say that K defines a positive definite kernel when ∥µ − ν∥K ≥ 0, with equality if and only if µ = ν. In the
following, we assume that Kε : (x, y) 7→ e− c(x,y)

ε defines a positive definite kernel for any ε > 0 (which holds if,
for instance, c(x, y) = ∥x − y∥ or ∥x − y∥2).

A.1 Delayed proofs from Section 3

Proof of Lemma 3.1. In this context, φ∗ = id and subsequently, aproxε,φ∗ = id, hence the Sinkhorn iterations
(9) simply read

ft+1 = −ε log ⟨e
gt−c

ε , β⟩ ,

gt+1 = −ε log ⟨e
ft+1−c

ε , α⟩ .

We observe that f
(λ)
1 = −ε log ⟨e

g0−c
ε , λβ⟩ = f1 − ε log(λ). Therefore, g

(λ)
1 = −ε log ⟨e

f1−ε log(λ)−c
ε , λα⟩ = g1,

and thus f
(λ)
2 = −ε log ⟨e

g1−c
ε , λα⟩ = −ε log ⟨e

g1−c
ε , α⟩ − ε log(λ) = f2 − ε log(λ). A simple induction gives the

conclusion.

Proof of Corollary 3.2.

1. Since the sequence of potentials (ft, gt)t converges to (f, g) which are optimal for (α, β), it follows from
Lemma 3.1 that (f (λ)

t , g
(λ)
t ) → (f − ε log(λ), g) which must also be a fixed point of the Sinkhorn loop, hence

a pair of optimal potentials for the couple (λα, λβ).

2. Using the primal-dual relation (10), we know that π = e
f⊕g−c

ε dα ⊗ β is optimal for the couple (α, β).
Therefore, from the previous point,

exp
(

f ⊕ g − ε log(λ) − c

ε

)
d(λα ⊗ λβ) = λ exp

(
f ⊕ g − c

ε

)
dα ⊗ β = λπ

is optimal for the couple (λα, λβ).

3. Using (f − ε log(λ), g) in the dual relation (8), we have

OTε(λα, λβ) =λ ⟨f, α⟩ − ε log(λ)λm(α) + λ ⟨g, β⟩ − λε ⟨e
f⊕g−c

ε − λ, α ⊗ β⟩ ,

=λ
(

⟨f, α⟩ + ⟨g, β⟩ − ε ⟨e
f⊕g−c

ε − 1 + (1 − λ), α ⊗ β⟩
)

− ε log(λ)λm(α)
=λOTε(α, β) + ελ(λ − 1)m(α)m(β) − ε log(λ)λm(α)
=λOTε(α, β) + ελ(λ − 1)m2 − ε log(λ)λm.

4. The homogeneity of Skε follows from the fact that the “inhomogeneous terms” +ελ(λ − 1)m2 − ε log(λ)λm
cancel in the definition of the balanced Sinkhorn divergence.

Proof of Proposition 3.4. As in the balanced case, we first investigate the behavior of the Sinkhorn algorithm
under rescaling of the measures. Let (f0, g0) ∈ C(Ω), let (ft, gt)t denote the sequence obtained when iterating
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the Sinkhorn loop for the couple (α, β) initialized at (f0, g0), and let (f (λ)
t , g

(λ)
t )t be the one obtained for the

couple (λα, λβ) with the same initialization. We prove the following by induction:

f
(λ)
t = ft − εut log(λ)

g
(λ)
t = gt − εvt log(λ),

where (ut, vt) ∈ R × R are real sequences following the relations ut+1 = T (vt) and vt+1 = T (ut+1) with T (x) =
1−x
1+ε , with u0, v0 = 0. Indeed,

f
(λ)
t+1 = − ε

1 + ε
log
∫

e
g

(λ)
t

−c

ε dλβ

= − ε

1 + ε
log
∫

e
gt−c

ε λ1−vtdβ

= ft − ε
1 − vt

1 + ε
log(λ).

A similar computation holds for the second potentials (gt)t.

The sequences (ut)t and (vt)t converge to the fixed point of T ◦ T , given by

x = T ◦ T (x) ⇔ x = x + ε

(1 + ε)2

⇔ x = ε

(1 + ε)2 − 1 = 1
2 + ε

,

proving the result linking (f (λ)
t , g

(λ)
t ) and (ft, gt).

From this, simple computations prove the claims:

1. Follows from the fact that (ft, gt)t converges to a couple of optimal dual potentials for (α, β).

2. Follows from the fact that

exp
(

f ⊕ g − 2 ε
2+ε log(λ) − c

ε

)
λ2dα ⊗ β

= exp
(

f ⊕ g − c

ε

)
λ− 2

2+ε λ2dα ⊗ β = λhπ

is an optimal transport plan for the couple (λα, λβ).

3. The shift in the potentials induces a change in the objective value J(λα,λβ) reading

⟨1 − e−f+ ε
2+ε log(λ), λα⟩ + ⟨1 − e−g+ ε

2+ε log(λ), λβ⟩ − ε ⟨e
f⊕g−c−2 ε

2+ε
log(λ)

ε − 1, λ2α ⊗ β⟩
=λh ⟨1 − e−f , α⟩ + (λ − λh)m(α) + λh ⟨1 − e−g, β⟩ + (λ − λh)m(β)

− ελh ⟨e
f⊕g−c

ε − 1, α ⊗ β⟩ − ε(λh − λ2)m(α)m(β)
=λhOTε(α, β) + (λ − λh)(m(α) + m(β)) − ε(λh − λ2)m(α)m(β).

Here as well, the non-homogeneous part cancels when considering the Sinkhorn divergence. Note that the
linear term involving (m(α) + m(β)) disappears when adding − 1

2 OTε,φ(α, α) − 1
2 OTε,φ(β, β), but adding

the mass bias term ε
2 λ2(m(α) − m(β))2 is required to cancel the product term that involves m(α)m(β).

Element of proof for Remark 3.5. We provide elements of proof of the following statement: fix f0, g0 (initial
points of the Sinkhorn algorithm for UROT) and suppose that for any α, β, λ > 0, π(λ) = λπ, where π is the
optimal transport plan obtained when running the algorithm for the couple (α, β) and π(λ) the one when running
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the algorithm with (λα, λβ), both starting from f0, g0 (to avoid ill-definition of the potentials up to constant
terms, see (Séjourné et al., 2021, Lemma 4,5)). Let A denote the aproxε

φ operator for the sake of concision. We
make in addition the following assumptions to simplify the proof: (i) A is differentiable, (ii) for any α, β, there
exist x0 in spt(α) such that the map λ 7→ f (λ)(x0) is differentiable at λ = 1, (iii) the quantity G := log

∫
e

g−c
ε dβ

covers R as β varies (i.e. we can make G arbitrary), (iv) A(0) = 0. Then, necessarily A(p) = p for all p ∈ R

We believe that these assumptions hold quite generally but do not investigate this in detail in this work. Assuming
that the transport plan is 1-homogeneous means that, for any λ > 0 and any α, β, we have

λ2e
f(λ)⊕g(λ)−c

ε dα ⊗ β = λe
f⊕g−c

ε dα ⊗ β,

that is, α ⊗ β-a.e.,
f (λ) ⊕ g(λ) = f ⊕ g − ε log(λ).

In particular, f (λ) − f = ε log(τ) where τ is a constant (of x) that depends on ε and λ. Note in particular
the relation ∂λ log(τ) = ∂λf (λ). Re-injecting this in the fixed-point equations satisfied by f, g, f (λ) and g(λ), we
obtain the relation

A (εG − ε log(τ)) = A(εG) − ε log(τ).

Deriving this quantity in λ and then evaluating at λ = 1 (hence τ = 1), yields

A′(εG) = 1,

with arbitrary G. Since A(0) = 0, this implies that A(p) = p for all p ∈ R.

A.2 Delayed proofs from Sections 4 and 5

Proof of Proposition 4.3. The proof simply follows from introducing

J
[H]
(α,β)(f, g) := ⟨−φ∗(−f), α⟩ + ⟨−φ∗(−g), β⟩ − ε ⟨ e

f⊕g−c
ε

mg(α, β) − 1
mh(α, β) , α ⊗ β⟩

and observing that for any λ > 0, since mg(λα, λβ) = λmg(α, β) and mh(λα, λβ) = λmh(α, β), we have

J
[H]
(λα,λβ)(f, g) = λ · J

[H]
(α,β)(f, g),

yielding the conclusion.

Proof of Proposition 4.2. The only computations that differ from the proof of duality appearing in (Séjourné
et al., 2021) are those corresponding to our slightly modified entropic regularization term.

Introduce ξ := dπ
dα⊗β to alleviate notation.

ε

2

(
KL(π| α

m(α) ⊗ β) + KL(π|α ⊗ β

m(β) )
)

=ε

2(⟨ξ log(ξ) − ξ + log(m(α))ξ + 1
m(α) , α ⊗ β⟩ + ⟨ξ log(ξ) − ξ + log(m(β))ξ + 1

m(β) , α ⊗ β⟩)

=ε⟨ξ log(ξ) − ξ + log(
√

m(α)m(β))ξ + 1
2

(
1

m(α) + 1
m(β)

)
, α ⊗ β⟩

=ε ⟨ξ log(ξ) − ξ + log(mg)ξ + 1
mh

, α ⊗ β⟩ .
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In order to obtain the primal-dual relationship, we write

− sup
π

⟨f ⊕ g, π⟩ − ⟨c, π⟩ − ε

2(KL(π| α

m(α) ⊗ β) + KL(π|α ⊗ β

m(β) ))

= inf
ξ

⟨−(f ⊕ g − c)ξ, α ⊗ β⟩ + ε ⟨ξ log(ξ) − ξ + log(mg)ξ + 1
mh

, α ⊗ β⟩

= inf
ξ

⟨−(f ⊕ g − c)ξ + ε(ξ log(ξ) − ξ + log(mg)ξ + 1
mh

), α ⊗ β⟩.

This optimization problem in ξ yields the primal-dual relation (17).

ξ = 1
mg

e
f⊕g−c

ε , (28)

so that the term
ε

2

(
KL
(

π| α

m(α) ⊗ β

)
+ KL

(
π|α ⊗ β

m(β)

))
is equal to

− (f ⊕ g − c)e
f⊕g−c

ε

mg
+ e

f⊕g−c
ε

mg
(f ⊕ g − c) − ε log(mg)e

f⊕g−c
ε

mg
− ε

e
f⊕g−c

ε

mg
+ ε log(mg)e

f⊕g−c
ε

mg
+ ε

1
mh

= − ε

(
e

f⊕g−c
ε

mg
− 1

mh

)
.

Eventually

OTε(α, β) = sup
f,g

⟨−φ∗(−f), α⟩ + ⟨−φ∗(−g), β⟩ − ε ⟨e
f⊕g−c

ε

mg
− 1

mh
, α ⊗ β⟩ . (29)

Proof of Proposition 4.6. We know that (fn, gn) is optimal for the HUROT model for the couple (αn, βn) if
and only if it is optimal for the standard model for the couple

(
αn

mg(αn,βn) , βn

mg(αn,βn)

)
which converges (as

αn, βn, α, β ̸= 0) to
(

α
mg(α,β) , β

mg(α,β)

)
.

Using (Séjourné et al., 2021, Prop. 10 and Thm. 2), it implies in the settings considered in this work (φ = ıc,
KL or TV) that (fn, gn)n converges (uniformly) toward a pair (f, g) that is optimal (in the HUROT model) for
the couple (α, β) and, by continuity of the objective functional in (α, β, f, g) it follows that OT[H]

ε,φ(αn, βn) →
OT[H]

ε,φ(α, β).

Proof of Proposition 4.8. The proof of this proposition rely on the following result, adapted from (Séjourné et al.,
2021, Prop. 14) (its proof can be found below).

Lemma A.1. One has

OT[H]
ε,φ(α, α) = sup

f∈C(Ω)
2 ⟨−φ∗(−f), α⟩ − ε ⟨e

f⊕f−c
ε − 1,

α ⊗ α

m(α) ⟩ (30)

Let fα and gβ be the minimizers of OT[H]
ε,φ(α, α) and OT[H]

ε,φ(β, β), respectively. Note the relation

OT[H]
ε,φ(α, α) = 2 ⟨−φ∗(−fα), α⟩ − ε

∥∥∥∥∥e
fα
ε

α√
m(α)

∥∥∥∥∥
2

Kε

+ εm(α)

and symmetrically in β.
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As fα and gβ are sub-optimal for the dual problem corresponding to OT[H]
ε,φ(α, β), we have:

OT[H]
ε,φ(α, β) ≥ ⟨−φ∗(−fα), α⟩ + ⟨−φ∗(−gβ), β⟩ − ε ⟨e

fα⊕gβ −c

ε ,
α ⊗ β√

m(α)m(β)
⟩ ε

2(m(α) + m(β))

≥ ⟨−φ∗(−fα), α⟩ + ⟨−φ∗(−gβ), β⟩ v − ε ⟨e
fα
ε

α√
m(α)

, e
gβ
ε

β√
m(β)

⟩
Kε

+ ε

2(m(α) + m(β))

≥1
2OT[H]

ε,φ(α, α) + 1
2OT[H]

ε,φ(β, β) + ε

2

∥∥∥∥∥e
fα
ε

α√
m(α)

∥∥∥∥∥
2

Kε

+ ε

2

∥∥∥∥∥e
gβ
ε

β√
m(β)

∥∥∥∥∥
2

Kε

− ε ⟨e
fα
ε

α√
m(α)

, e
gβ
ε

β√
m(β)

⟩
Kε

so that

OT[H]
ε,φ(α, β) − 1

2OT[H]
ε,φ(α, α) − 1

2OT[H]
ε,φ(β, β) ≥

∥∥∥∥∥e
fα
ε

α√
m(α)

− e
gβ
ε

β√
m(β)

∥∥∥∥∥
Kε

≥ 0 (31)

which proves the non-negativity.

Furthermore, the equality case reads e
fα
ε

α√
m(α)

= e
gβ
ε

β√
m(β)

. By the characterization of fα and gβ as fixed
point of their respective Sinkhorn algorithms, we have

fα = −aproxε,φ∗

(
ε log ⟨e

fα−c
ε ,

α

m(α) ⟩
)

,

gβ = −aproxε,φ∗

(
ε log ⟨e

gβ −c

ε ,
β

m(β) ⟩
)

.

Using the equality case aforementioned, we have

fα = −aproxε,φ∗

(
ε log ⟨e

gβ −c

ε ,
β

mg(α, β) ⟩
)

,

gβ = −aproxε,φ∗

(
ε log ⟨e

fα−c
ε ,

α

mg(α, β) ⟩
)

.

Therefore, (fα, gβ) is actually an optimal couple for the HUROT problem between α and β, as a fixed point of
the corresponding Sinkhorn map.

From this, we can write the optimal transport plans παβ , παα, πββ between the corresponding couple of measures
as

παβ = e
fα⊕gβ −c

ε
dα ⊗ β

mg(α, β) ,

παα = e
fα⊕fα−c

ε
dα ⊗ α

m(α) ,

πββ = e
gβ ⊕gβ −c

ε
dβ ⊗ β

m(β) ,

which actually reads
παβ = παα = πββ .

Let π denote this common transportation plan. Since Sk[H]
ε,φ(α, β) = 0, and observing that the terms

⟨c, π⟩ , Dφ(π1|α) and Dφ(π2|β) in the primal problems cancel each other, and using the relations

2KL(π|α ⊗ β) − KL(π|α ⊗ α) − KL(π|β ⊗ β) = 0,

1
2

(
KL
(

π|α ⊗ β

m(α)

)
+ KL

(
π|α ⊗ β

m(β)

))
= KL(π|α ⊗ β) + m(π) log(mg(α, β)) + ma(α, β) − m(α)m(β),
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we can write

0 =1
2

(
KL
(

π|α ⊗ β

m(α)

)
+ KL

(
π|α ⊗ β

m(β)

))
− 1

2KL
(

π|α ⊗ α

m(α)

)
− 1

2KL
(

π|β ⊗ β

m(β)

)
,

=m(π) log(mg) + ma − m(α)m(β) − 1
2m(π) log(m(α)) − 1

2m(α) + 1
2m(α)2

− 1
2m(π) log(m(β)) − 1

2m(β) + 1
2m(β)2

=1
2(m(α) − m(β))2

which implies that m(α) = m(β) =: m. From this, it follows that

fα = −aproxε,φ∗

(
ε log ⟨e

fα−c
ε ,

α

m
⟩
)

= −aproxε,φ∗

(
ε log ⟨e

gβ −c

ε ,
β

m
⟩
)

= gβ ,

hence α = β.

Proof of Lemma A.1. Let f ∈ C(Ω) be optimal in (30). Using the couple (f, f) in (16), we get

OT[H]
ε,φ(α, α) ≥ sup

f∈C(Ω)
2 ⟨−φ∗(−f), α⟩ − ε ⟨e

f⊕f−c
ε − 1,

α ⊗ α

m(α) ⟩ .

Now, let π = exp
(

f⊕f−c
ε

)
dα⊗α
m(α) . By the symmetry of c, its marginals are given by π1 = π2 = ⟨e

f−c
ε , α

m(α) ⟩ ef/εα.
As π is suboptimal in (15), we get

OT[H]
ε,φ(α, α) ≤ ⟨π, c⟩ + 2Dφ(π1|α) + εKL

(
π|α ⊗ α

m(α)

)
.

Now, observe that for i ∈ {1, 2},
dπi

dα
= ⟨e

f−c
ε ,

α

m(α) ⟩ ef/ε ∈ ∂φ∗(−f),

and since φ∗(q) = supp pq − φ(p), we have that ∀x ∈ Ω, φ∗(−f(x)) = −f(x) dπ1
dα − φ

(dπ1
dα

)
. Therefore,

Dφ(π1|α) = ⟨φ
(

dπ1

dα

)
, α⟩

= ⟨−f
dπ1

dα
− φ∗(−f), α⟩

= − ⟨f, π1⟩ + ⟨−φ∗(−f), π1⟩ .

On the other hand, denoting ζ = exp
(

f⊕f−c
ε

)
, we have

εKL
(

π|α ⊗ α

m(α)

)
=ε ⟨log(ζ)ζ − ζ + 1,

α ⊗ α

m(α) ⟩

= ⟨f ⊕ f − c, π⟩ − ε ⟨e
f⊕f−c

ε − 1,
α ⊗ α

m(α) ⟩

=2 ⟨f, π1⟩ − ⟨c, π⟩ − ε ⟨e
f⊕f−c

ε − 1,
α ⊗ α

m(α) ⟩ .

Summing the terms together yields the result.
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Proof of Proposition 4.9. The proof where only αn → 0 follows the spirit of the one of (Séjourné et al., 2021,
Prop. 18), though requiring specific adaptation related to our regularization term. When both measures go to
0, we can leverage the homogeneity of our model to prove the claim easily.

• Using that αn ⊗ β is a suboptimal transport plan for (15), we have

OT[H]
ε,φ(αn, β)

≤ ⟨c, αn ⊗ β⟩ + Dφ(m(β)αn|αn) + Dφ(m(αn)β|β) + εR(αn ⊗ β|αn, β)
≤ ⟨c, αn ⊗ β⟩ + m(αn)φ(m(β)) + m(β)φ(m(αn)) + ε(m(αn)m(β) log(mg(αn, β))

+ 1
2(m(αn) + m(β)) − m(αn)m(β))

→φ(0)m(β) + ε

2m(β).

On the other hand, Jensen inequality applied to Dφ allows us to write

OT[H]
ε,φ(αn, β) ≥ inf

π
⟨c, π⟩ + m(αn)φ(m(π)) + m(β)φ(m(π)) + εR(π|αn, β) =: Fn(π).

We observe that

lim
n→∞

Fn(π)
{

≥ ⟨c, π⟩ + m(β)φ(m(π)) + ε
2 KL(π|0) = +∞ if π ̸= 0,

= m(β)φ(0) + ε
2 m(β) if π = 0,

where the second equality follows from the relation

R(π|αn, β) =KL(π|αn ⊗ β) − m(π) log(mg(αn, β)) + ma(αn, β) − m(αn)m(β)

which evaluates to 1
2 m(β) for π = 0 and αn → 0.

As Fn is lower-semi-continuous, it follows that limn OT[H]
ε,φ(αn, β) ≥ φ(0)m(β) + ε

2 m(β), and finally

lim
n→∞

OT[H]
ε,φ(αn, β) =

(
φ(0) + ε

2

)
m(β),

proving the continuity of OT[H]
ε,φ around couple of the form (0, β) when β ̸= 0.

• We now consider two sequences αn, βn
w−→ 0. Define Mn = max(m(αn), m(βn)). Using the homogeneity of our

model, we can write

OT[H]
ε,φ(αn, βn) = Mn · OT[H]

ε,φ

(
αn

Mn
,

βn

Mn

)
.

Using αn

Mn
⊗ βn

Mn
as a suboptimal transport plan, we have (note that the two measures have total masses ≤ 1)

OT[H]
ε,φ

(
αn

Mn
,

βn

Mn

)
≤ ∥c∥∞ + φ

(
αn

Mn

)
+ φ

(
βn

Mn

)
+ 1.

As φ is bounded over [0, 1], it follows that
(

OT[H]
ε,φ

(
αn

Mn
, βn

Mn

))
n

is bounded as well, hence since Mn → 0,

lim
n→∞

OT[H]
ε,φ(αn, βn) = 0,

proving the continuity in this case as well.

Proof of Proposition 5.1. Let α, β ∈ Mc(Ω) and π ∈ Adm(α, β). Without loss of generality, we can assume that
π(∂Ω × ∂Ω) = 0 (Figalli and Gigli, 2010, Eq. (4)) and that ∀A ⊂ Ω, π(A × ∂Ω) = π(A × P (A)). Let also
π1 = π(· × Ω) and π2 = π(Ω × ·), that are the marginals of the restricted plan π|Ω×Ω. Note the constraints
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π1 ≤ α, π2 ≤ β. It allows us to write∫∫
Ω×Ω

c(x, y)dπ(x, y)

=
∫∫

Ω×Ω
c(x, y)dπ +

∫
Ω×∂Ω

c∂Ω(x)dπ +
∫

∂Ω×Ω
c∂Ω(y)dπ

=
∫∫

Ω×Ω
c(x, y)dπ +

∫
Ω×∂Ω

c∂Ω(x)d(α − π1) +
∫

∂Ω×Ω
c∂Ω(y)d(β − π2)

=
∫∫

Ω×Ω
c(x, y)dπ +

∫
Ω×∂Ω

d(α̂ − c∂Ω(x)π1) +
∫

∂Ω×Ω
d(β̂ − c∂Ω(y)π2)

=
∫∫

Ω×Ω
c(x, y)dπ +

∫
Ω×∂Ω

(
1 − c∂Ω(x)dπ1

dα̂

)
dα̂ +

∫
Ω×∂Ω

(
1 − c∂Ω(y)dπ2

dβ̂

)
dβ̂

=
∫∫

Ω×Ω
c(x, y)dπ +

∫
Ω

φ

(
x,

dπ1

dα̂

)
dα̂ +

∫
Ω

φ

(
x,

dπ2

dβ̂

)
dβ̂.

From this, we observe that π ∈ Adm(α, β) induces a plan π′ = π|Ω×Ω ∈ M(Ω × Ω) which implies that

FG(α, β) ≥ inf
π′∈M(Ω×Ω)

⟨c, π′⟩ +
∫

Ω
φ

(
x,

dπ1

dα̂

)
dα̂ +

∫
Ω

φ

(
x,

dπ2

dβ̂

)
dβ̂ =: F (π′).

Conversely, consider π′ ∈ M(Ω × Ω). Let π′
1, π′

2 denote its marginals. Observe that if π′
1 ̸≤ α or π′

2 ̸≤ β,
the choice of φ implies that F (π′) = +∞, so we can restrict to such plans. They naturally induce an element
π ∈ Adm(α, β) defined by π = π′ on Ω × Ω, and ∀A ⊂ Ω, B ⊂ ∂Ω, π(A × B) = (α − π′

1)(P −1(B) ∩ A) (and
symmetrically in β, π′

2), and
∫∫

Ω×Ω cdπ = F (π′), proving the claim by taking the infimum.

Proof of Proposition 5.5. The fact that α̂n
w−→ α̂ ⇔ FG(αn, α) → 0 is already known (Divol and Lacombe, 2021,

Cor. 3.2). Therefore, it remains to show that SkFGε(αn, α) → 0 ⇔ α̂n
w−→ α̂.

The converse implication is given by the continuity of SkFGε with respect to the weak convergence of the
normalized measures (Proposition 5.4). Now, assume that SkFGε(αn, α) → 0. If the sequence (α̂n)n has
uniformly bounded mass (i.e. (αn)n has uniformly bounded total persistence), we know that it must be compact
with respect to the weak convergence (as Ω is bounded). If so, extracting a converging subsequence converging to
some limit α̂∞ yields by continuity SkFGε(α∞, α) = 0 and thus α∞ = α. This makes (α̂n)n a compact sequence
with α̂ as unique limit, implying α̂n

w−→ α̂.

Therefore, it remains to show that SkFGε(αn, α) → 0 ⇒ supn Pers(αn) = supn m(α̂n) < +∞. Let fn denotes the
optimal symmetric potential for the dual problem (25) corresponding to the couple (αn, αn), and fα̂ be the one
corresponding to the couple (α, α). The optimality condition on fn gives fn ≥ −c∂Ω ≥ −L, where L = diam(Ω).
Assume first that αn, α ̸= 0. One has

SkFGε(αn, α) ≥ ε

2∥e
fn
ε

α̂n√
m(α̂n)

− e
fα̂
ε

α̂√
m(α̂)

∥Kε
.

Since SkFGε(αn, α) → 0, one has supn

∥∥∥∥e
fn
ε

α̂n√
m(α̂n)

∥∥∥∥
Kε

< ∞, and since (fn)n is (uniformly) lower bounded,

necessarily, (m(α̂n))n is bounded, proving the claim. If α = 0, the same reasoning yields e
fn
ε

α̂n√
m(α̂n)

w−→ 0, thus

supn m(α̂n) < ∞ and αn
w−→ 0.

B Complementary remarks

Remark B.1. The presence of the term + ε
2 (m(α) − m(β))2 in (11), called the mass bias, is required to make

the unbalanced Sinkhorn divergence non-negative (and convex). Intuitively, this term arises from the constant
term −ε ⟨−1, α ⊗ β⟩ = εm(α)m(β) in (8): while in the balanced case (m(α) = m(β)), these terms cancel
each other when computing the Sinkhorn divergence (5), in the unbalanced case, they yield a constant term
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ε(m(α)m(β) − 1
2 m(α)2 − 1

2 m(β)2) = − ε
2 (m(α) − m(β))2 that must be compensated by the mass bias term to

ensure the good behavior of the model, in particular its non-negativity.

Remark B.2. It may be appealing to replace the entropic regularization term (14) by εKL
(

π| α⊗β
mg(α,β)

)
. This

indeed leads to an homogeneous problem that shares most of the properties of the proposed OT[H]
ε,φ. Actually, the

dual formulation would read

sup
f,g∈C(Ω)

⟨−φ∗(−f), α⟩ + ⟨−φ∗(−g), β⟩ − ε ⟨e
f⊕g−c

ε

mg
− 1

mg
, α ⊗ β⟩ ,

so that the two quantities only differ from a constant term and are substantially equivalent. Note also that
π 7→ ε

2

(
KL
(

π| α
m(α) ⊗ β

)
+ KL

(
π|α ⊗ β

m(β)

))
is minimized for π = α⊗β

mg(α,β) , so both entropic terms play morally
the same role.

The one we propose presents the advantage of leading to a Sinkhorn divergence that does not need the introduction
of a mass bias term: using εKL

(
π| α⊗β

mg(α,β)

)
would require to add +ε(

√
m(α) −

√
m(β))2 to the corresponding

Sinkhorn divergence to make it positive. Interestingly, this mass bias correspond to a sort of Hellinger distance
between the masses of the two measures.
Remark B.3. The key (and essentially sole) difference between (22) and (6) is the dependence of the divergence
φ on the location x, a situation referred to as “spatially varying divergence” in (Séjourné et al., 2021, Remark
3). This formalism is substantially equivalent to the standard one and most computations adapt seamlessly with
the choice of φ used in this section. The HUROT model could have been presented directly in the more general
context of spatially varying divergences in Section 4, but this would have required several additional assumptions
on φ and would have hinder the use of many results of (Séjourné et al., 2021) directly. For the sake of simplicity,
we prefer to deal with spatially varying divergences only in this section and for the particular choice (23) of φ
that allows us to retrieve (when ε = 0) the model of Figalli and Gigli (21).
Remark B.4. The formulation (22) shows that OT with boundary can be recast as a (spatially varying) UOT
problem involving the couple of renormalized measures (α̂, β̂), justifying to use this couple as reference measure
in the entropic reference measure in (24). Intuitively, it makes the entropic regularization term sensitive to the
geometry of the problem, down weighting the points close to the boundary ∂Ω. Formally, the choice of (α̂, β̂)
as reference is theoretically supported by the fact that the Sinkhorn divergence corresponding to FGε induces the
same convergence as the non-regularized problem (21), as detailed in Proposition 5.5.
Remark B.5 (Links between OTB and Topological Data Analysis.). The OTB transportation model has not
been widely used in OT literature to the best of our knowledge1. However, it has been recently shown in (Divol and
Lacombe, 2021) that the metric FG does exactly coincide with the metrics used by the Topological Data Analysis
(TDA) community to compare Persistence diagrams (PDs), a type of descriptor routinely used to compare objects
with respect to their topological properties, see (Edelsbrunner and Harer, 2010; Chazal and Michel, 2021) for an
overview. This connection appeared to be fruitful and enabled the adaptation of various tools—both theoretical
and computational ones—existing in the OT literature to the context of TDA. In a related work (Lacombe et al.,
2018), still in the context of TDA, authors proposed a regularized version of (21) by (substantially) adding a
term +εKL(π|L), where L denotes the Lebesgue measure on Ω × Ω. However, using the Lebesgue measure (or
even α⊗β) as reference measure (aside from non-homogeneity) has several drawbacks. It is only properly defined
for measures with finite total masses, indicating possible problems when the masses of the measures get large
in practice—even though the exact distances could be mostly unchanged if the additional mass is close to the
boundary ∂Ω. In the same vein, it does not follow the spirit of OT with boundary, which tells that points near
∂Ω have a lesser importance.
Remark B.6. Contrary to the standard UROT model, OT[H]

ε,φ(0, β) depends on ε (the result is simply φ(0)m(β)
in the standard model). This can be seen as an artifact of the fact that our model directly encompasses the “mass
bias” in the functional OT[H]

ε,φ.
Remark B.7. The development of different numerical tools in the context of OT with boundary, in particular
regularized Fréchet means, is a natural follow-up of this work. Note that in the context of topological data analysis
(which is related to OT with boundary, see Remark B.5), regularized barycenters for persistence diagrams have

1In comparison, for instance, to the UROT model.
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Figure 4: Optimal transport plans returned by pot.bregman.empirical_sinkhorn for (λα, λβ) with λ = 1 (left) and
λ = 10−6 (right) for two measures α, β randomly sampled with n = 5 points; m(α) = m(β) = 1 (mass 1/n on each point).
Entropic regularization parameter ε = 1 (reg=1. in pot).

been developed (Lacombe et al., 2018). However, the proposed approach uses the Lebesgue measure as reference
measure in their entropic regularization term. This yields points near the boundary of the space, which tend to
outnumber farther points in applications, to outweigh them as well. Using instead the reweighted measures α̂, β̂
and our homogeneous formulation is likely to improve the quality of the numerical results that can be obtained.

We eventually provide a numerical illustration of the warning described in Remark 3.3. Even if the entropic OT
plan is theoretically 1-homogeneous in the balanced case, the stopping criterion for Sinkhorn may suffer from
the inhomogeneity of the dual potentials. This happens for the method pot.bregman.empirical_sinkhorn for
instance, where current implementation (as of version 0.8.2) implies a different numerical behavior for measures
when they have a (same) low mass (which may simply reflect a change of units), as illustrated in Figure 4: the
returned OT plans for rescaled measures exhibit different structure as they do not reach the stopping criterion
at the same time. We stress nonetheless that the stopping criterion used in POT 0.8.2, namely checking the
marginal error, appears to be much more robust to mass rescaling than a more naive approach such as checking
the variation of the objective function (which may be a natural idea though). This issue cannot occur with
HUROT because the sequence of dual potentials produced by the (adapted) Sinkhorn algorithm are insensitive
to scaling.


	INTRODUCTION
	BACKGROUND
	(IN)HOMOGENEITY IN THE STANDARD MODEL
	HOMOGENEOUS UNBALANCED REGULARIZED OPTIMAL TRANSPORT (HUROT)
	APPLICATION TO OPTIMAL TRANSPORT WITH BOUNDARY
	DISCUSSION
	Delayed proofs
	Delayed proofs from sec:inhomogeneitystd
	Delayed proofs from Sections 4 and 5

	Complementary remarks

