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Abstract

One of the key challenges in decentralized and
federated learning is to design algorithms that
efficiently deal with highly heterogeneous data
distributions across agents. In this paper, we re-
visit the analysis of the popular Decentralized
Stochastic Gradient Descent algorithm (D-SGD)
under data heterogeneity. We exhibit the key role
played by a new quantity, called neighborhood
heterogeneity, on the convergence rate of D-SGD.
By coupling the communication topology and
the heterogeneity, our analysis sheds light on the
poorly understood interplay between these two
concepts. We then argue that neighborhood het-
erogeneity provides a natural criterion to learn
data-dependent topologies that reduce (and can
even eliminate) the otherwise detrimental effect
of data heterogeneity on the convergence time
of D-SGD. For the important case of classifica-
tion with label skew, we formulate the problem
of learning such a good topology as a tractable
optimization problem that we solve with a Frank-
Wolfe algorithm. As illustrated over a set of sim-
ulated and real-world experiments, our approach
provides a principled way to design a sparse topol-
ogy that balances the convergence speed and the
per-iteration communication costs of D-SGD un-
der data heterogeneity.

1 INTRODUCTION

Decentralized and federated learning methods allow training
from data stored locally by several agents (nodes) without
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exchanging raw data, in line with the increasing demand for
more privacy-preserving algorithms (Kairouz et al., 2021).
One of the key challenges in decentralized learning is to
deal with data heterogeneity: as each agent collects its own
data, local datasets typically exhibit different distributions.
In this work, we study this challenge in the context of fully
decentralized learning algorithms, which provide a scalable
and robust alternative to server-based approaches (Colin
et al., 2016; Lian et al., 2017; Koloskova et al., 2019, 2020).
Fully decentralized optimization algorithms, such as the
celebrated Decentralized SGD (D-SGD) (Lian et al., 2017,
2018; Koloskova et al., 2020), operate on a graph represent-
ing the communication topology, i.e. which pairs of nodes
exchange information with each other. The connectivity of
the topology then rules a trade-off between the convergence
rate and the per-iteration communication complexity of fully
decentralized algorithms (Wang et al., 2019). Choosing a
good topology for fully decentralized machine learning is
therefore an important question, and remains a largely open
problem in the presence of data heterogeneity.

Until recently, the impact of the communication topology
on the convergence was believed to be mainly characterized
by its spectral gap: a large spectral gap indicating good
connectivity and thus faster convergence. Focusing solely
on the connectivity of the topology has however shown to
be insufficient, even when we have identically distributed
data (Neglia et al., 2020; Vogels et al., 2022). In the hetero-
geneous setting, Bellet et al. (2022) notably observe that the
choice of topology has a large influence, beyond its spectral
gap, on the convergence speed of D-SGD. However, these
empirical observations are not supported by any theory.

In this work, we fill the theoretical gap that currently exists
on these questions. We focus on D-SGD (Lian et al., 2017,
2018; Koloskova et al., 2020), which is arguably the most
popular decentralized optimization algorithm in the context
of machine learning due to its good properties inherited from
centralized SGD. In particular, D-SGD has been praised for
its computational scalability (Lin et al., 2021), its applica-
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bility to training deep neural networks at scale (Ying et al.,
2021; Kong et al., 2021), and the good generalization guar-
antees that it provides (Sun et al., 2021; Zhu et al., 2022).

Our first contribution is a refined convergence analysis of
D-SGD which introduces a new quantity, called neighbor-
hood heterogeneity, that couples the topology and the local
data distributions. Neighborhood heterogeneity essentially
measures the expected distance between the global gradient
and the aggregated gradients in the neighborhood of nodes.
Our results demonstrate that the impact of the topology on
the convergence rate of D-SGD, for both convex and non-
convex objectives, does not only depend on its connectivity
(i.e., spectral gap): it also depends on its capacity to com-
pensate the heterogeneity of local data distributions at the
neighborhood level. This new perspective allows to avoid
the restrictive assumption of bounded heterogeneity used in
previous work (Lian et al., 2017, 2018; Tang et al., 2018; As-
sran et al., 2019; Koloskova et al., 2020; Ying et al., 2021).

Our second contribution deals with the problem of learn-
ing a good data-dependent topology, going beyond prior
work which focused mainly on optimizing the spectral gap
(Boyd et al., 2004, 2006; Wang et al., 2019). We argue that
neighborhood heterogeneity provides a natural objective and
show that it can be effectively optimized in practice in the
important case of classification with label distribution het-
erogeneity across nodes (label skew) (Kairouz et al., 2021;
Hsieh et al., 2020; Bellet et al., 2022). We solve the resulting
problem using a Frank-Wolfe algorithm (Frank and Wolfe,
1956; Jaggi, 2013), allowing us to track the quality of the
learned topology as new edges are added in a greedy man-
ner. Our results imply that we can approximately minimize
neighborhood heterogeneity up to a fixed additive error with
a topology whose maximum degree is constant in the num-
ber of nodes. To the best of our knowledge, our work is the
first to learn the graph topology for decentralized learning in
a way that (i) is data-dependent, (ii) controls communication
costs, and (iii) optimizes the convergence rate of D-SGD.
We illustrate the usefulness of our approach in simulated
and real data experiments with linear and deep models.

2 RELATED WORK

Consensus vs personalized objectives. In this work, we
study the consensus problem which aims to learn a single
model that minimizes the average of the local objectives
(see Eq. 1). Another line of research tackles the problem
of heterogeneity in decentralized learning through personal-
ization (Koppel et al., 2017; Vanhaesebrouck et al., 2017;
Zantedeschi et al., 2020; Marfoq et al., 2021; Even et al.,
2022). In that setting, each agent aims to learn a personal-
ized model that minimizes its own (expected) local objective.
It is thus natural and desirable to connect nodes that have
similar data distributions. In contrast, our results show that
for the consensus problem, the topology should connect

nodes that are different so that local neighborhoods are rep-
resentative of the global distribution. We emphasize that
personalization and consensus are relevant to different use
cases and can be considered as orthogonal to each other.

Algorithmic improvements to decentralized SGD. Sig-
nificant work has been devoted to extensions of D-SGD. We
can mention those based on momentum (Assran et al., 2019;
Gao and Huang, 2020; Lin et al., 2021; Yuan et al., 2021),
cross-gradient aggregations (Esfandiari et al., 2021), gra-
dient tracking (Koloskova et al., 2021) and bias correction
(or variance reduction) (Tang et al., 2018; Yuan et al., 2020;
Yuan and Alghunaim, 2021; Huang and Pu, 2021). Many of
these schemes are able to reduce the order of the term that de-
pends on data heterogeneity but remain impacted by strong
heterogeneous scenarios (see Appendix E for a more de-
tailed discussion). We stress that the above line of research
is complementary to ours as it is based on modifications of
the D-SGD algorithm (which often requires additional com-
putation and/or communication). In contrast, our work does
not modify the algorithm: we provide a refined analysis and
a method to learn the topology. We believe that our results
can be combined with the above algorithmic improvements,
but leave such extensions for future work.

Good topologies for decentralized learning. There is a
long line of research on choosing a good topology (e.g.,
expanders or exponential graphs) (Chow et al., 2016; Nedić
et al., 2018; Ying et al., 2021), or learning it to maximize
the spectral gap (Boyd et al., 2004, 2006; Wang et al., 2019)
or network throughput (Marfoq et al., 2020). Unlike our
approach, these methods simply seek to optimize the con-
nectivity of the topology while respecting some communi-
cation constraints, but they do not take into account the data
distributions across nodes.

Until recently, Bellet et al. (2022) was the only approach
that leverages the distribution of data in the design of the
topology. Focusing on classification under label skew, they
propose a heuristic approach that consists of inter-connected
cliques, where class proportions in each clique should be as
close as possible to the global proportions. Our approach is
more flexible: it can learn more general topologies, and pro-
vides full control over their sparsity. Furthermore, our topol-
ogy learning criteria is theoretically justified, while the one
in Bellet et al. (2022) is only supported by empirical experi-
ments. We think however that the ideas of the present paper
could pave the way for a theoretical analysis of their work.

Concurrent to and independently from our work, Dandi et al.
(2022) provide a similar analysis of the convergence rate
of D-SGD using a quantity called “relative heterogeneity”.
However, our approaches differ greatly in how they learn
the topology. In fact, Dandi et al. (2022) do not learn the
topology itself (i.e., which nodes are connected) but only
the weights of a predefined topology. In other words, the
set of edges is fixed in advance. This severely limits the
ability to mitigate the effect of data heterogeneity unless
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the predefined topology is dense. In contrast, our approach
learns a sparse topology (both the edges and their associated
mixing weights) in order to balance the convergence rate
and the communication complexity of D-SGD.

3 PRELIMINARIES

Problem setting. In decentralized federated learning,
n ∈ N? agents (nodes) with their own data distribution seek
to collaborate in order to solve a global consensus problem.
Formally, the agents aim to learn a single parameter θ ∈ Rd
so as to optimize the global objective (Lian et al., 2017):

f∗ , minθ∈Rd

[
f(θ) , 1

n

∑n
i=1 fi(θ)

]
, (1)

where fi(θ) , EZi∼Di [Fi(θ;Zi)] is the local objective
function associated to node i. The random vector Zi is
drawn from the data distribution Di of agent i, having sup-
port over a space Ωi, and Fi : Rd×Ωi → R is its pointwise
loss function (differentiable in its first argument). Note that
the distributions Di can be very different, which is common
in real applications (Kairouz et al., 2021). From an optimiza-
tion point of view, this means that a local optimum θ?i ∈
arg minθ fi(θ) can be far from a global optimum θ? of (1).

To collaboratively solve (1) in a fully decentralized manner,
the agents communicate with each other over a directed
graph. The graph topology is represented by a matrix
W ∈ [0, 1]n×n, where Wij > 0 gives the weight that agent
i gives to messages received from agent j, while Wij = 0
(no edge) means that i does not receive messages from j.
The choice of topology W affects the trade-off between the
convergence rate of decentralized optimization algorithms
and the communication costs. Indeed, more edges imply
higher communication costs but often faster convergence.
Communication costs, or per-iteration complexity, are
often regarded as proportional to the maximum (in or out)-
degrees of nodes in the topology, representing the maximum
(incoming or outcoming) load of a node (Lian et al., 2017):

din
max(W ) = maxi

∑n
j=1 I[Wij > 0],

dout
max(W ) = maxi

∑n
j=1 I[Wji > 0].

(2)

From this perspective, the complete graph, and the star
topology induced by server-based federated learning, yield
high communication costs, as the maximum degree is n− 1.

Decentralized SGD. Decentralized Stochastic Gradient De-
scent (D-SGD) (Lian et al., 2017; Koloskova et al., 2020)
is a popular fully decentralized algorithm for solving prob-
lems of the form (1). As mentioned above, such algorithms
operate on a graph topology represented by the matrix W ∈
[0, 1]n×n. In particular, D-SGD requires that W is a mixing
matrix, i.e. doubly stochastic: W1 = 1 and 1TW = 1T.

In the rest of the paper, we will use the terms topology and
mixing matrix interchangeably. For sake of generality, we
consider a setting where the mixing matrix may change

Algorithm 1 Decentralized SGD (Lian et al., 2017)

Require: Initialize ∀i, θ(0)
i = θ(0) ∈ Rd, iterations T ,

stepsizes {ηt}T−1
t=0 , mixing {W (t)}T−1

t=0 .
for t = 0, . . . , T − 1 do

for each node i = 1, . . . , n (in parallel) do
Sample Z(t)

i ∼ Di
θ

(t+ 1
2 )

i ← θ
(t)
i − ηt∇Fi(θ

(t)
i , Z

(t)
i )

θ
(t+1)
i ←

∑n
j=1W

(t)
ij θ

(t+ 1
2 )

j

end for
end for

at each iteration (Koloskova et al., 2020). On the other
hand, we assume for simplicity that the mixing matrices are
deterministic. All our results can however be extended to
random mixing matrices, see Appendix C.1 for details.

D-SGD is summarized in Algorithm 1. At iteration t,
each node i first updates its local estimate θ(t)

i based on
∇Fi(θ(t)

i , Z
(t)
i ), the stochastic gradient of Fi evaluated at

θ
(t)
i withZ(t)

i sampled fromDi. Then, each node aggregates
its current parameter value with its neighbors according to
the mixing matrix W (t).

General assumptions. We recall some standard assump-
tions extensively considered in decentralized learning
(Bubeck, 2014; Nguyen et al., 2019; Lian et al., 2017; Tang
et al., 2018; Assran et al., 2019; Li et al., 2019; Kong et al.,
2021; Ying et al., 2021).

Assumption 1. (L-smoothness) There exists a constant
L > 0 such that for any Z ∈ Ωi, θ, θ̃ ∈ Rd we have
‖∇Fi(θ, Z)−∇Fi(θ̃, Z)‖ ≤ L‖θ − θ̃‖ .

Assumption 2. (Bounded variance) For any node i ∈
J1, . . . , nK, there exists a constant σ2

i > 0 such that for any
θ ∈ Rd, we have EZ∼Di

[
‖∇Fi(θ, Z)−∇fi(θ)‖22

]
≤ σ2

i .

Assumption 3. (Mixing parameter) There exists a mixing
parameter p ∈ [0, 1] such that for any matrix M ∈ Rd×n,
we have ‖MWT −M‖2F ≤ (1 − p)‖M −M‖2F , where
‖ · ‖F denotes the Frobenius norm and M = M( 1

n11
T).

Assumption 3 measures how well an averaging step using a
mixing matrix W brings an arbitrary matrix M closer to M .
It is always verified for p = 1−λ2(WTW ) with λ2(WTW )
the second largest eigenvalue of WTW (Boyd et al., 2006) .

4 JOINT EFFECT OF TOPOLOGY AND
DATA HETEROGENEITY

In this section, we introduce a new quantity, called neigh-
borhood heterogeneity, and derive new convergence rates
for D-SGD that depend on this quantity. These rates have
several nice properties: (i) they hold under weaker assump-
tions than previous work (unbounded local heterogeneity),
(ii) they highlight the interplay between the topology and
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the heterogeneous data distribution across nodes, and (iii)
they provide a criterion for choosing topologies not only
based on their mixing properties but also based on data.

4.1 Neighborhood Heterogeneity

Given a mixing matrix W , our notion of neighborhood
heterogeneity measures the expected distance between the
aggregated gradients in the neighborhood of a node (as
weighted by W ) and the global average of gradients. In our
analysis, we will assume this distance to be bounded.

Assumption 4 (Bounded neighborhood heterogeneity).
There exists a constant τ̄2 > 0 such that ∀θ ∈ Rd:

1

n

n∑
i=1

E
∥∥∥ n∑
j=1

Wij∇Fj(θ, Zj)−
1

n

n∑
j=1

∇Fj(θ, Zj)
∥∥∥2

2
≤ τ̄2.

(3)

To better understand Assumption 4, we can upper-bound
the left-hand term of the previous equation, denoted H(θ),
using a bias-variance decomposition. This leads to the fol-
lowing bound:

H(θ) ≤ 1

n

n∑
i=1

∥∥∥ n∑
j=1

Wij∇fj(θ)−∇f(θ)
∥∥∥2

2

+
σ2

max

n
‖W − 1

n
11T‖2F ,

(4)

with σ2
max = maxi σ

2
i . This upper bound contains two

terms. The first one is a bias term, related to the hetero-
geneity of the problem. It essentially measures how the
gradients of local objectives differ from the gradient of the
global objective when they are aggregated at the neighbor-
hood level of the topology through W . The second one is
a variance term closely related to the mixing parameter p
of Assumption 3: we can show that it is upper bounded by
σ2

max(1 − p) and lower bounded by σ2
max(1 − p)/n, see

Proposition 3 in Appendix C.

Comparison to classic bounded heterogeneity assump-
tion. In our analysis, we use Assumption 4 in replacement
of the bounded local heterogeneity condition used in previ-
ous literature (Lian et al., 2017, 2018; Assran et al., 2019;
Koloskova et al., 2020; Ying et al., 2021). We recall it below.

Assumption 5 (Bounded local heterogeneity). There exists
a constant ζ̄2 > 0 such that 1

n

∑n
i=1 ‖∇fi(θ)−∇f(θ)‖22 ≤

ζ̄2, ∀θ ∈ Rd.

Assumption 5 has the same form as the bias term of in Equa-
tion (4) but considers W = I (i.e., it does not depend on
the topology). It requires that the local gradients should not
be too far from the global gradient: the more heterogeneous
the nodes’ distribution (and objectives), the bigger ζ̄2. In
contrast, neighborhood heterogeneity takes into account the
mixture of gradients in the neighborhoods defined by W .
Crucially, Assumption 4 is more flexible than Assumption 5.

More precisely, our set of assumptions (Assumptions 2-4) is
less restrictive than those in previous work (Assumptions 2,
3, 5). To see this, we first show that our set of assumptions
is implied by the latter (proof in Appendix C).

Proposition 1. Let Assumptions 2-3 and 5 to be verified.
Then Assumption 4 is satisfied with τ̄2 = (1−p)

(
ζ̄2 + σ̄2

)
,

where σ̄2 , 1
n

∑
i σ

2
i .

We now show that our set of assumptions (2-4) is strictly
more general than Assumptions 2, 3, 5 by identifying situ-
ations where Assumption 4 is verified while Assumption 5
is not. A trivial example is the complete graph W = 1

n11
T,

for which we have τ̄2 = 0, regardless of heterogeneity.
More interestingly, some combinations of sparse topologies
and data distributions can ensure that τ̄2 remains small
while ζ̄2 can be arbitrary large. We give a simple example
below (detailed derivations in Appendix A).

Example 1 (Two clusters and a ring topology). Let n be
an even number and assume Zi ∼ Di , N (m, σ̃2) if
i is odd and Zi ∼ Di , N (−m, σ̃2) if i is even. Let
σ̃2 < +∞ (necessary to have Assumption 2) and m > 0
potentially asymptotically large. We fix Fi(θ, Zi) = (θ −
Zi)

2 (mean estimation). Consider a ring topology that
alternates between one odd node and one even node, with
the diagonal and off-diagonal entries ofW equal to 1/2 and
1/4 respectively. Then we have τ̄2 = σ2

i = 4σ̃2 < +∞,
while ζ̄2 = 4m2 can be arbitrarily large as m grows.

This illustrates that an appropriate topology, even as sparse
as a ring, can control τ̄2 and mitigate the underlying hetero-
geneity of the problem. In Section 5, we will show that we
can learn a sparse topology W that (approximately) min-
imizes the neighborhood heterogeneity bound τ̄2. Before
that, we validate the relevance of our new Assumption 4 by
deriving a novel convergence result for D-SGD.

4.2 Convergence Analysis

We now present the main theoretical result of this section:
two new non-asymptotic convergence results for D-SGD
under Assumption 4. The proof of this theorem is given in
Appendix B.

Theorem 1. Consider Algorithm 1 with mixing matrices
W (0), . . . ,W (T−1) satisfying Assumptions 3 and 4. As-
sume further that Assumptions 1-2 are respected, and denote
θ̄(t) , 1

n

∑n
i=1 θ

(t)
i . For any target accuracy ε > 0, there

exists a constant stepsize η ≤ ηmax = p
8L such that:

Convex case:
1

T+1

∑T
t=0 E(f(θ̄(t))− f?) ≤ ε as soon as

T ≥ O
( σ̄2

nε2
+

√
Lτ̄

pε
3
2

+
L

pε

)
r0 , (5)
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Non-convex case:
1

T+1

∑T
t=0 E‖∇f(θ̄(t)‖22 ≤ ε as soon as

T ≥ O
(Lσ̄2

nε2
+

Lτ̄

pε
3
2

+
L

pε

)
f0 , (6)

where T is the number of iterations, r0 = ‖θ(0) − θ?‖22,
f0 = f(θ(0))− f? and O(·) hides the numerical constants
explicitly provided in the proof.

Analysis and comparison to prior results. To put the
above theorem into perspective, recall that Centralized (Par-
allel) Stochastic Gradient Descent (C-PSGD) is equivalent
to D-SGD with the mixing matrix W = 1

n11
T (complete

graph). For this specific case, it has been shown that
in the convex scenario, an accuracy ε is achieved after
T ≥ O( σ̄

2

nε2 + L
ε ) iterations (Dekel et al., 2012; Bottou et al.,

2018; Stich and Karimireddy, 2020). On the other hand,
existing results for D-SGD (under Assumption 5 instead of

Assumption 4) require T ≥ O( σ̄
2

nε2 +

√
L(1−p)(ζ̄+σ̄√p)

pε3/2
+ L
pε )

iterations (Koloskova et al., 2020).

The first thing to note is that rate (5) is consistent with the
above rates. When the complete graph topologyW = 1

n11
T

is used at each iteration we have τ̄ = 0 and p = 1, which al-
lows us to recover the rate of the communication-inefficient
C-PSGD. Furthermore, considering the classical Assump-
tion 5 and using Proposition 1 gives the looser bound

O( σ̄
2

nε2 +

√
L(1−p)(ζ̄+σ̄)

pε3/2
+ L

pε ) which is equivalent to the
rate of D-SGD in Koloskova et al. (2020). Similarly, the
rate (6) obtained for non-convex objectives is also consistent
with Koloskova et al. (2020).

Crucially, recall that in the heterogeneous setting τ̄ can be
much smaller than

√
1− p(ζ̄ + σ̄) (see Section 4.1), which

makes our bounds sharper. This is because the topology now
influences the convergence rate in Theorem 1 via both the
mixing parameter p and τ̄ . This is of particular significance
in situations where communication constraints are strong
so that the topology connectivity has to be low (i.e., p close
to 0). In that case, prior rates are heavily impacted by data
heterogeneity as p can no longer compensate for it. In
contrast, we can expect that a well-chosen sparse topology
can achieve small τ̄ and thus mitigate the impact of data
heterogeneity. To highlight this, we can go back to Exam-
ple 1. For the chosen ring topology, we have p = Θ( 1

n2 ),
but the specific arrangement of nodes and the weights in W
still allow a small bound τ̄2 on neighborhood heterogeneity.

5 LEARNING THE TOPOLOGY

In the previous rates (5) and (6), the smaller the bound τ̄2 on
neighborhood heterogeneity, the fewer iterations needed to
reach an error ε. This motivates the idea of learning a sparse
topology W that approximately minimizes neighborhood
heterogeneity (Equation (3)), in order to control the

trade-off between the convergence rate and the per-iteration
communication complexity given in Equation (2). However,
minimizing neighborhood heterogeneity in the general
setting appears to be challenging without further statistical
assumptions, as Equation (3) should hold for all θ ∈ Rd.
Below, we focus on classification with label skew, and show
that Equation (3) simplifies to a more tractable quantity.

5.1 Statistical Learning with Label Skew

Label skew is an important type of data heterogeneity in fed-
erated classification problems (Kairouz et al., 2021; Hsieh
et al., 2020; Bellet et al., 2022). In this setting, each agent
i is associated with a random variable Zi = (Xi, Yi) ∼ Di
where Xi ∈ Rq represents the feature vector and Yi ∈
J1, . . . ,KK the associated class label. The agents aim to
learn a classifier hθ : Rq → J1, . . . ,KK parameterized by
θ ∈ Rp such that hθ(Xi) is a good predictor of Yi for all
i. The heterogeneity of the distributions {Di}ni=1 comes
only from a difference in the label distribution Pi(Y ) i.e.
Di = Pi(X,Y ) = P (X|Y )Pi(Y ). For simplicity, we as-
sume that all agents use the same pointwise loss function
(Fi = F for all i), which is typically the cross-entropy.

Under the above framework, we can derive a neighborhood
heterogeneity bound τ̄2 that can effectively be minimized
with respect to W .

Proposition 2 (Bounded neighborhood heterogeneity un-
der label skew). Consider the statistical framework de-
fined above and assume there exists B > 0 such that
∀k = 1, . . . ,K and ∀θ ∈ Rd, ‖EX [∇F (θ;X,Y )|Y =

k] − 1
K

∑K
k′=1 EX [∇F (θ;X,Y )|Y = k′]‖22 ≤ B. Then,

denoting πjk , Pj(Y = k), Assumption 4 is satisfied with:

τ̄2 =
KB

n

K∑
k=1

n∑
i=1

( n∑
j=1

Wijπjk −
1

n

n∑
j=1

πjk

)2

+
σ2

max

n
‖W − 1

n
11T‖2F .

(7)

The proof is provided in Appendix C.Note that the condi-
tion involving B corresponds to a bounded heterogeneity
assumption at the class level (rather than at the agent level
as in Assumption 5).

The neighborhood heterogeneity bound τ̄2 in (7) is quadratic
inW and composed of two terms. The first one is a bias term
due to the label skew: it will be minimal if neighborhood-
level class proportions (weighted by W ) match the global
class proportions. This is trivially achieved for any choice
of W if the class proportions are the same across nodes.
The second term is a variance term which is minimal when
W = 11T

n , the complete topology with uniform weights. As
a matter of fact, this topology is also the unique global min-
imizer of (7), which is equal to 0 in this case. However, as
already discussed, such a dense mixing matrix is impractical
as it yields huge communication costs. We will show how
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Algorithm 2 Sparse Topology Learning with Frank-Wolfe
(STL-FW)

Require: Initialization Ŵ (0) = In, class proportions Π ∈
[0, 1]n×K and hyperparameter λ > 0.
for l = 0, . . . , L do

P (l+1) = arg minP∈A 〈P,∇g(Ŵ (l))〉
γ(l+1) = arg minγ∈[0,1] g

(
(1− γ)Ŵ (l) + γP (l+1)

)
Ŵ (l+1) = (1− γ(l+1))Ŵ (l) + γ(l+1)P (l+1)

end for

the per-iteration communication complexity of D-SGD can
be controlled while approximately minimizing τ̄2 in (7).

5.2 Optimization with the Frank-Wolfe Algorithm

In this section, we design an algorithm that finds a sparse
approximate minimizer of τ̄2 in (7). We focus on learning
a single mixing matrix W as a “pre-processing” step (i.e.,
before running D-SGD), and do so in a centralized manner.
Specifically, we assume that a single party (which may be
one of the agents, or a third-party) has access to the class
proportions πik = Pi(Y = k) for each agent i and each
class k. In practice, since each agent has access to its local
dataset, it can compute these local proportions locally and
share them without sharing the local data itself.

Optimization problem. Our objective is to
learn a sparse mixing matrix W which ap-
proximately minimizes τ̄2 in (7). Denoting by
S ,

{
W ∈ [0, 1]n×n : W1 = 1, 1TW = 1T

}
the

set of doubly stochastic matrices, the optimization problem
can be written as follows:

min
W∈S

{
g(W ) , 1

n

∥∥∥WΠ− 11T

n Π
∥∥∥2

F
+ λ

n

∥∥∥W − 11T

n

∥∥∥2

F

}
,

(8)
where Π ∈ [0, 1]n×K contains the class proportions {πik}
and λ > 0 is a hyperparameter. To exactly match (7), λ
should be equal to σ2

max

KB , but σ2
max and B are unknown in

practice. Instead, we use λ to control the bias-variance
trade-off. As discussed in Section 4.1, the variance term is
an upper bound of 1− p with p the mixing parameter of W .
Therefore, λ allows to tune a trade-off between the mini-
mization of the bias due to label skew and the maximization
of the mixing parameter of W .

Algorithm. We propose to find sparse approximations of (8)
using a Frank-Wolfe (FW) algorithm, which is well-suited
to learn a sparse parameter over convex hulls of finite set
of atoms (Jaggi, 2013). In our case, S corresponds to the
convex hull of the setA of all permutation matrices (Lovász
and Plummer, 2009; Tewari et al., 2011; Valls et al., 2020).

The algorithm is summarized in Algorithm 2. Starting from
the identity matrix Ŵ (0) = In ∈ S, each iteration l ≥ 0
consists of moving towards a feasible point P (l+1) that

minimizes a linearization of g at the current iterate Ŵ (l).
As finding P (l+1) is a linear problem, solving it over S is
equivalent to solving it over A. Although A contains n!
elements, the linear program corresponds to the well-known
assignment problem (Burkard et al., 2012; Crouse, 2016)
and can be solved tractably with the Hungarian algorithm,
which has a worst-case complexity of O(n3) (Lovász and
Plummer, 2009).1 Note that the gradient ∇g(W ) needed
to solve the assignment problem is given by

2
n

∑K
k=1(WΠ:,k −Π:,k1) ·ΠT

:,k + 2
nλ
(
W − 11T

n

)
,

where Π:,k is the k-th column of Π. The next iterate Ŵ (l+1)

is then obtained as a convex combination of P (l+1) and
Ŵ (l), and is thus guaranteed to be in S . The optimal combin-
ing weight is computed by line-search, which has a closed-
form solution since g is quadratic (see Appendix C.2).

Crucially, Algorithm 2 allows to control the sparsity of the
final solution: since a permutation matrix contains exactly
one non-zero entry in each row and each column, at most
one new incoming and one new outgoing edge per node
are added. As we start from the identity matrix (i.e., only
self-edges), this guarantees that at the end of the l-th itera-
tion, each node will have at most l in-neighbors and l out-
neighbors. The per-iteration communication complexity of
D-SGD induced by the learned topology can thus be directly
controlled by the number of iterations of our algorithm. The
trade-off with the quality of the solution is quantified by the
following theorem, which is derived from standard results
for FW (Jaggi, 2013) combined with a tight bound on the
smoothness of g in appropriate norm (see Appendix C).

Theorem 2. Consider the statistical setup presented in Sec-
tion 5.1 and let {Ŵ (l)}Ll=1 be the sequence of mixing ma-
trices generated by Algorithm 2. Then, at any iteration
l = 1, . . . , L, we have:

g(Ŵ (l)) ≤ 16

l + 2

(
λ+

1

n

∥∥ K∑
k=1

(Π:,k−Π:,k1)·ΠT
:,k

∥∥?
2

)
, (9)

where ‖·‖?2 stands for the nuclear norm, i.e., the sum of
singular values. Furthermore, we have din

max(Ŵ
(l)) ≤ l

and dout
max(Ŵ

(l)) ≤ l, resulting in a per-iteration complexity
bounded by l.

The above theorem shows that the objective g decreases at a
rate of O(1/l) as new connections between nodes are made.
In general, we can bound (9) less tightly by g(Ŵ (l)) ≤
16
l+2 (λ+ 1), which is independent of the number of nodes n.
Recall that with λ = σ2

max/KB, the value τ̄2 of Proposition
2 is exactly equal toKB ·g(W ). Therefore, the bound given
in Theorem 2 directly bounds neighborhood heterogeneity
and can thus be plugged in the rates of Theorem 1.

1The algorithm is quite fast in practice: for instance, the scipy
implementation runs in 0.3s on a regular laptop for n = 1000.
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Mixing Parameter

(a) Topology learning (b) D-SGD with dmax = 3 (c) D-SGD with dmax = 9

Figure 1: (a) Evolution of key quantities across the iterations of topology learning: in red the objective function g(W (l)), in green the bias
term supθ

1
n

∑n
i=1 ‖

∑n
j=1W

(l)
ij ∇fj(θ)−∇f(θ)‖

2
2 and in yellow the mixing parameter 1− p = λ2(W

(l)TW (l)). Here, λ = 0.5 and
m = 5. (b, c) Error n−1‖θ(t)−θ?‖22 (solid line) of D-SGD after 50 iterations, averaged over 10 runs, for increasing levels of heterogeneity
(measured by parameter m). The dashed lines show maxi(θ

(t)
i − θ

?)2 and mini(θ
(t)
i − θ

?)2, illustrating the variability across nodes.

To summarize, our approach provides a principled way to
learn the topology so as to reduce neighborhood hetero-
geneity while controlling the per-iteration communication
complexity of D-SGD. Remarkably, the fact that g(Ŵ (l)) is
independent of n implies that we can find topologies that ap-
proximately optimize the convergence rate of D-SGD while
keeping the communication load per node constant, thereby
guaranteeing scalability to a large number of nodes even in
highly heterogeneous scenarios.

6 EXPERIMENTS

This section shows the practical usefulness of our topology
learning method, referred to as Sparse Topology Learning
with Frank-Wolfe (STL-FW). We call communication
budget dmax = max{din

max, d
out
max} the maximal number of

neighbors a node can have in the used topologies, which
controls the per-iteration communication complexity
incurred by any node.

6.1 Simulations on Synthetic Data

Statistical setup. We generalize the mean estimation objec-
tive of Example 1 with K = 10 clusters and n = 100 nodes,
with exactly 10 nodes associated to each cluster. Each
cluster is associated with a specific Gaussian distribution,
which corresponds to a class in the statistical framework de-
scribed in Section 5.1. The variance of the K distributions
is the same (σ̃2 = 1) but their means are evenly spread
over [−m,m]. Thus, m ≥ 0 controls the heterogeneity of
the problem (the bigger m, the more heterogeneous the
setup). We can analytically compute all numerical constants
introduced throughout the paper. Unless otherwise noted,
λ is set to σ2/KB where σ2 = 4σ̃2 and B = 4m2.

Competitor. For a fixed budget dmax, we compare the topol-
ogy learned by STL-FW to a random dmax-regular graph
with uniform weights 1

dmax+1 . This graph is independent of
the data but has good mixing parameter p (every node will

have exactly b neighbors, with uniform weights). We use
a fixed step-size for D-SGD, which is tuned separately for
each topology in the interval [0.001, 1].

Results. We first study the behavior of our topology learn-
ing algorithm. As seen in Figure 1(a), the objective function
g(W (l)) decreases quickly in the first iterations with a clear
elbow at l = 9 iterations. This is because we have K = 10
“classes”, hence 9 neighbors are sufficient to compensate
for label skew. We also see that decreasing g successfully
decreases the two key quantities that affect the convergence
of D-SGD and are upper bounded by g: the bias term in
Equation (4) (which does not depend on θ in this setup
and can therefore be computed exactly) and the mixing
parameter 1−p (which continues to decrease beyond l = 9).

Figure 1(b, c) shows that the topology learned by STL-FW
indeed translates into faster convergence for D-SGD than
with the random (but well-connected) topology in data het-
erogeneous settings. This is especially striking when look-
ing at best and worst-case errors across nodes (dashed lines).
For a low budget (dmax = 3), D-SGD with our topology
remains slightly impacted by heterogeneity. But remarkably,
for dmax = 9, our topology makes D-SGD completely in-
sensitive to increasing data heterogeneity. This observation
is consistent with the elbow observed at l = dmax = 9 in
Figure 1(a). In Appendix D.2, we provide basic statistics
on the topologies obtained for the two budgets dmax = 3
and dmax = 9. We can see in particular that the topologies
obtained with STL-FW are dmax-regular (like the random
graph) but have much lower bias (i.e., the distribution of la-
bels in the neighborhood of nodes is closer to the global dis-
tribution). As expected, this bias is equal to 0 for dmax = 9.

6.2 Experiments on Real Datasets

Setup. We follow the experimental setup in Bellet et al.
(2022) and consider two classification tasks: a linear
model on MNIST (Deng, 2012) and a Group Normalized
LeNet (Hsieh et al., 2020) on CIFAR10 (Krizhevsky et al.,
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MNIST dmax = 2 MNIST dmax = 5 MNIST dmax = 10

CIFAR10 dmax = 2 CIFAR10 dmax = 5 CIFAR10 dmax = 10

Figure 2: Convergence of D-SGD with STL-FW (our approach) and alternative topologies on real datasets under different communication
budgets. The fully connected graph induces intractable communication costs but gives a performance upper bound, while the exponential
graph is shown for dmax = 10 but exceeds this budget.

2009). In both cases, we partition the dataset on 100 nodes
using the scheme introduced in McMahan et al. (2017),
i.e. on average, nodes will have examples of two classes,
but may have only 1 and up to 4. We re-use the hyper-
parameters from Bellet et al. (2022): a learning rate of 0.1
and batch size of 128 for MNIST, and a learning rate of
0.002 and batch size of 20 for CIFAR10. Using D-SGD,
we compare the topology learned with our approach STL-
FW to other fixed topologies: (1) a fully-connected graph
(dmax = 99), which exhibits the fastest convergence speed
but is impractical, (2) a random graph with the same com-
munication budget as STL-FW, (3) D-Cliques (Bellet et al.,
2022), also with the same budget, and (4) a deterministic ex-
ponential graph promoted in recent work (Ying et al., 2021)
(dmax = 14). Note that all competing topologies are data-
independent, except D-Cliques. To have a fair comparison,
we use standard D-SGD without algorithmic modifications
like “clique-averaging” introduced by Bellet et al. (2022).
For all experiments with STL-FW, we use λ = 0.1 since, re-
markably, its value does not significantly change the results
(see Figure 3 in Appendix D).

Results. Figure 2 shows our results for varying communi-
cation budget dmax: small (2), medium (5) and large (10).
On MNIST, STL-FW makes convergence faster than all
competitors and quickly matches the speed of the fully-
connected topology as the budget dmax increases. Remark-
ably, STL-FW is already showing good performance at
dmax = 2, which is a very small budget that the other topolo-
gies (except the random one) cannot handle. As expected,

the two data-dependent topologies (D-Cliques and STL-FW)
outperform the random topologies, including the exponen-
tial graph which has better connectivity (dmax = 14) but
does not compensate for the heterogeneity. The fact that
STL-FW improves over D-Cliques can be explained by the
fact that D-Cliques only compensate the heterogeneity (the
bias term in Equation (4)) without consideration for the over-
all connectivity (the variance term in Equation (4)). This is
illustrated in the tables of Appendix D.2.

On CIFAR10, we see that dmax = 2 is not sufficient to reach
good performance. This can be explained by the increased
complexity of the problem (non-convex objective with a
deep model), requiring larger communication budgets. This
is in line with empirical results in prior work (Kong et al.,
2021). However, with slightly larger budgets i.e. dmax = 5
and 10 (dmax = 3 in Fig. 5, App. D), performance improves
and the results are consistent with those on MNIST: STL-
FW outperforms other sparse topologies and comes close to
the performance of the fully connected topology for dmax =
10. Overall, STL-FW provides better convergence speed
than all tractable alternatives, with the additional ability to
operate in low communication regimes (unlike D-Cliques
and the exponential graph).

7 CONCLUSION

This paper addressed two important open problems in decen-
tralized learning. First, thanks to our new notion of neigh-
borhood heterogeneity, we characterized the joint effect of
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the topology and the data heterogeneity in the convergence
rate of D-SGD. Our results show that, if chosen appropri-
ately, the topology can compensate for the heterogeneity
and speed up convergence. Second, we tackled the problem
of learning a good topology under data heterogeneity. To the
best of our knowledge, our work is the first to provide a prin-
cipled and data-dependent approach, with explicit control on
the trade-off between the communication costs and the con-
vergence speed of D-SGD. We believe that our work paves
the way for the design of other data-dependent topology
learning techniques. One may for instance investigate dif-
ferent types of heterogeneity (beyond label skew), different
knowledge assumptions (e.g., not knowing the proportions),
and dynamic learning of the topology. We can also envision
fully decentralized and privacy-preserving versions.
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Nedić, A., Olshevsky, A., and Rabbat, M. G. (2018). Net-
work topology and communication-computation tradeoffs
in decentralized optimization. Proceedings of the IEEE,
106(5):953–976.

Neglia, G., Xu, C., Towsley, D., and Calbi, G. (2020). De-
centralized gradient methods: does topology matter? In
AISTATS.

Nguyen, L. M., Nguyen, P. H., Richtárik, P., Scheinberg, K.,
Takác, M., and van Dijk, M. (2019). New convergence
aspects of stochastic gradient algorithms. Journal of
Machine Learning Research, 20:176–1.

Stich, S. U. and Karimireddy, S. P. (2020). The error-
feedback framework: Better rates for sgd with delayed
gradients and compressed updates. Journal of Machine
Learning Research, 21:1–36.

Sun, T., Li, D., and Wang, B. (2021). Stability and gener-
alization of decentralized stochastic gradient descent. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, pages 9756–9764.

Tang, H., Lian, X., Yan, M., Zhang, C., and Liu, J. (2018).
D²: Decentralized training over decentralized data. In
ICML.

Tewari, A., Ravikumar, P., and Dhillon, I. (2011). Greedy
algorithms for structurally constrained high dimensional
problems. NIPS.

Valls, V., Iosifidis, G., and Tassiulas, L. (2020). Birkhoff’s
decomposition revisited: Sparse scheduling for high-
speed circuit switches. arXiv:2011.02752.

Vanhaesebrouck, P., Bellet, A., and Tommasi, M. (2017).
Decentralized collaborative learning of personalized mod-
els over networks. In AISTATS.

Vogels, T., Hendrikx, H., and Jaggi, M. (2022). Beyond
spectral gap: The role of the topology in decentralized
learning. arXiv preprint arXiv:2206.03093.

Wang, J., Sahu, A. K., Yang, Z., Joshi, G., and Kar, S.
(2019). Matcha: Speeding up decentralized sgd via match-
ing decomposition sampling. In ICC.

Ying, B., Yuan, K., Chen, Y., Hu, H., Pan, P., and Yin,
W. (2021). Exponential graph is provably efficient for
decentralized deep training. NeurIPS, 34.

Yuan, K. and Alghunaim, S. A. (2021). Removing data
heterogeneity influence enhances network topology de-
pendence of decentralized sgd. arXiv:2105.08023.

Yuan, K., Alghunaim, S. A., Ying, B., and Sayed, A. H.
(2020). On the influence of bias-correction on distributed
stochastic optimization. IEEE Transactions on Signal
Processing, 68:4352–4367.

Yuan, K., Chen, Y., Huang, X., Zhang, Y., Pan, P., Xu, Y.,
and Yin, W. (2021). Decentlam: Decentralized momen-
tum sgd for large-batch deep training. In ICCV.

Zantedeschi, V., Bellet, A., and Tommasi, M. (2020). Fully
decentralized joint learning of personalized models and
collaboration graphs. In AISTATS.

Zhu, T., He, F., Zhang, L., Niu, Z., Song, M., and Tao, D.
(2022). Topology-aware generalization of decentralized
sgd. In International Conference on Machine Learning,
pages 27479–27503. PMLR.



Batiste Le Bars, Aurélien Bellet, Marc Tommasi, Erick Lavoie, Anne-Marie Kermarrec

A DETAILS ON EXAMPLE 1

In this section, we provide more details on Example 1 (Section 4.1) by giving the exact parametrization. Recall that we want
to find an example where Assumption 5 is not verified while Assumption 4 is.

Let us consider n nodes with n an even number. For all i = 1, . . . , n, assume Zi ∼ N (m, σ̃2) if i is odd and Zi ∼
N (−m, σ̃2) if i is even. Assume further that σ̃2 < +∞ but m > 0 can be asymptotically large. For all i = 1, . . . , n we fix
Fi(θ, Zi) = (θ − Zi)2, which corresponds to a simple mean estimation objective.

Consider a fixed mixing matrix W associated with a ring topology that alternates between the two distributions. Specifically,
for i = 2, . . . , n− 1 and j = 1, . . . , n, we fix the weights as follows:

Wij =


1
2 if j = i ,
1
4 if j = i+ 1 or j = i− 1 ,
0 otherwise .

Moreover, we fix W11 = Wnn = 1
2 and W1n = Wn1 = 1

4 .

With such parametrization we have ∇Fi(θ, Zi) = 2(θ − Zi) and therefore ∇fi(θ) = 2(θ −m) if i is odd and ∇fi(θ) =
2(θ +m) if i is even. Moreover, the gradient of the global objective is ∇f(θ) = 1

n

∑
i∇fi(θ) = 2θ and the neighborhood

averaging
∑
jWij∇fj(θ) = 2θ for all i.

We first verify that Assumptions 2 is satisfied:

E
[
(∇Fi(θ, Zi)−∇fi(θ))2

]
= E

[
4 (Zi − EZi)2

]
= 4σ̃2 <∞ .

Let us now find a bound τ̄2 on the neighborhood heterogeneity. Using a bias-variance decomposition, we have:

H(θ) =
1

n

n∑
i=1

E

(
n∑
j=1

Wij∇Fj(θ)−
1

n

n∑
j=1

∇Fj(θ)

)2

=
1

n

n∑
i=1

( n∑
j=1

Wij∇fj(θ)−
1

n

n∑
j=1

∇fj(θ)
)2

+
1

n

n∑
i=1

E
( n∑
j=1

(Wij −
1

n
)(∇fj(θ)−∇Fj(θ))

)2

=
1

n

n∑
i=1

(2θ − 2θ)
2

+
1

n

n∑
i=1

n∑
j=1

(Wij −
1

n
)2E(∇fj(θ)−∇Fj(θ))2

= 0 + 4σ̃2 1

n

n∑
i=1

n∑
j=1

(Wij −
1

n
)2 ≤ 4σ̃2 .

The third equality was obtained thanks to the fact that E[∇fj(θ)−∇Fj(θ)] = 0. This result shows that Assumption 4 is
verified with τ̄2 = 4σ̃2 <∞.

On the contrary, since m can be arbitrary large, Assumption 5 is not verified. Indeed:

1

n

n∑
i=1

∇fi(θ)− 1

n

n∑
j=1

∇fj(θ)

2

=
1

n

n∑
i=1

(2m)2

=
4m2

n
, ζ̄2 −→

m→∞
+∞ .

Remark. At first sight, one may wonder why the local variance term σ̃2 appears in τ̄2 but not in ζ̄2. This is because we
chose to define neighborhood heterogeneity in expectation with respect to the pointwise loss functions F1, . . . , Fn, resulting
in a bias-variance decomposition (see Eq. 4) which is the relevant quantity to optimize when learning the topology in
Section 5. In contrast, following the convention used in previous work, local heterogeneity is defined with respect to the local
objectives f1, . . . , fn and thus only measures a bias term, while the variance term is accounted separately by Assumption 2.
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Since the variance terms are the same in both settings, the difference is in how the bias term is measured (at the node level
or at the neighborhood level): in the example above, it is equal to 4m2

n for local heterogeneity while it is equal to 0 for
neighborhood heterogeneity (see the above calculation of H(θ)).

B PROOF OF THEOREM 1

B.1 Notations and Overview

We start by re-writing the updates of D-SGD (Algorithm 1) in matrix form.

Let Θ(t) ,
(
θ

(t)
1 , . . . , θ

(t)
n

)
∈ Rd×n be the matrix that contains the parameter vectors of all nodes at time t. Denote by

∇F (Θ(t), Z(t)) ,
(
∇F1(θ

(t)
1 , Z

(t)
1 ), . . . ,∇Fn(θ

(t)
n , Z

(t)
n )
)
∈ Rd×n the matrix containing all stochastic gradients at time t.

The D-SGD update at time t can then be written as:

Θ(t+1) =
(

Θ(t) − ηt∇F (Θ(t), Z(t))
)
W (t)T .

In the following, we denote Θ
(t)

,
(
θ̄(t), . . . , θ̄(t)

)
= Θ(t) · 1

n11
T.

The proof follows the classical steps found in the literature (see e.g. Koloskova et al. (2020); Neglia et al. (2020)). The
main difference resides in how the consensus term ‖Θ(t) −Θ

(t)‖2F is controlled across iterations (Lemma 3). The proof is
organized as follows.

Convex case.

1. Lemma 1 provides a descent recursion that allows to control the decreasing of the term
∥∥θ̄(t) − θ?

∥∥2
. The proof closely

follows the one of Koloskova et al. (2020); Neglia et al. (2020).

2. In Lemma 3, the consensus term ‖Θ(t) − Θ
(t)‖2F , which appears in the result of Lemma 1, is upper-bounded. The

resulting upper-bound exhibits our new quantity τ̄2 (an upper bound on neighborhood heterogeneity).

3. Corollary 1 uses the previous lemma to bound 1
T+1

∑T
t=0 ‖Θ(t) −Θ

(t)‖2F .

4. Lemma 4 provides an upper-bound on the error term with the following form:

1

T + 1

T∑
t=0

E(f(θ̄(t))− f?) ≤ 2

(
br0

T + 1

) 1
2

+ 2e
1
3

(
r0

T + 1

) 2
3

+
dr0

T + 1
,

where b = σ̄2

n , e = 36Lτ̄2

p2 , d = 8L
p and r0 = ‖θ(0) − θ?‖22.

5. To get the final rate of Theorem 1, it suffices to find T such that each term in the right-hand side of the previous
equation in bounded by ε

3 .

• 2
(
br0
T+1

) 1
2 ≤ ε

3 ⇐⇒
36br0
ε2 ≤ T + 1⇐⇒ 36σ̄2r0

nε2 ≤ T + 1,

• 2e
1
3

(
r0
T+1

) 2
3 ≤ ε

3 ⇐⇒
e
1
2 6

3
2 r0

ε
3
2
≤ T + 1⇐⇒ 6

5
2
√
Lτ̄r0

pε
3
2
≤ T + 1,

• dr0
T+1 ≤

ε
3 ⇐⇒

3dr0
ε ≤ T + 1⇐⇒ 24Lr0

pε ≤ T + 1.

In particular, it suffices to take

T ≥ 36σ̄2r0

nε2
+

89
√
Lτ̄r0

pε
3
2

+
24Lr0

pε
= O

(
σ̄2

nε2
+

√
Lτ̄

pε
3
2

+
L

pε

)
r0 ,

in order to have all three terms bounded by ε
3 , and obtain the final result.

Non-convex case. The proof is similar to the convex one: it only differs in the descent lemmas that are used.
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1. Lemma 2 provides the descent lemma for the non-convex scenario.

2. The consensus term is bounded using the same results as in the convex case, i.e., with Lemma 3 and Corollary 1.

3. Lemma 5 provides an upper-bound on the error term with the following form:

1

T + 1

T∑
t=0

E
∥∥∥∇f(θ̄(t))

∥∥∥2

2
≤ 2

(
4bf0

T + 1

) 1
2

+ 2e
1
3

(
4f0

T + 1

) 2
3

+
4df0

T + 1
,

where b = 2Lσ̄2

n , e = 96L2τ̄2

p2 , d = 8L
p and f0 = f(θ(0))− f?.

4. We bound in each term of the previous equation by ε
3 and get the sufficient condition:

T ≥ 288Lσ̄2f0

nε2
+

576Lτ̄f0

pε
3
2

+
96Lf0

pε
= O

(
Lσ̄2

nε2
+

Lτ̄

pε
3
2

+
L

pε

)
f0 .

B.2 Preliminaries and Useful Results

Property 1 (Averaging preservation). Let W ∈ Rn×n be a mixing matrix and Θ be any matrix in Rd×n. Then, W preserves
averaging:

(ΘW )
11T

n
= Θ

11T

n
= Θ (10)

Property 2 (Implications of L-smoothness and convexity).

• If we assume convexity, we have for all i ∈ J1, . . . , nK:

〈∇fi(θ̃), θ̃ − θ〉 ≥ fi(θ̃)− fi(θ). (11)

• Under Assumption 1 (L-smoothness), it holds for all i ∈ J1, . . . , nK:

Fi(θ, Z) ≤ Fi(θ̃, Z) + 〈∇Fi(θ̃, Z), θ − θ̃〉+
L

2
‖θ − θ̃‖22, ∀θ, θ̃ ∈ Rd, Z ∈ θi. (12)

Taking the expectation of the previous equation, we also have:

fi(θ) ≤ fi(θ̃) + 〈∇F (θ̃), θ − θ̃〉+
L

2
‖θ − θ̃‖22, ∀θ, θ̃ ∈ Rd. (13)

• If we further assume that the Fi’s are convex, Assumption 1 also implies ∀θ, θ̃ ∈ Rd,Z ∈ θi:

‖∇fi(θ)−∇fi(θ̃)‖2 ≤ L‖θ − θ̃‖2, (14)

‖∇fi(θ)−∇fi(θ̃)‖22 ≤ 2L
(
fi(θ)− fi(θ̃)−

〈
∇fi(θ̃), θ − θ̃

〉)
, (15)

‖∇Fi(θ, Z)−∇Fi(θ̃, Z)‖22 ≤ 2L
(
Fi(θ, Z)− Fi(θ̃, Z)−

〈
∇Fi(θ̃, Z), θ − θ̃

〉)
. (16)

These results can be found in many convex optimization books and papers, e.g. in Bubeck (2014).

Property 3 (Norm inequalities).

• For a set of vectors {ai}ni=1 such that ai ∈ Rd,

∥∥∥ n∑
i=1

ai

∥∥∥2

2
≤ n

n∑
i=1

‖ai‖22 . (17)

• For two vectors a, b ∈ Rd,

‖a+ b‖22 ≤ (1 + α)‖a‖22 + (1 + α−1)‖b‖22, ∀α > 0. (18)

• For two vectors a, b ∈ Rd,
2〈a, b〉 ≤ α‖a‖22 + α−1‖b‖22, ∀α > 0. (19)
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B.3 Needed Lemmas

In the following we denote by Ft = σ(Z(k)|k ≤ t) the natural filtration with respect to Z(t) = (Z
(t)
1 , . . . , Z

(t)
n ). Remark

that ∀i = 1, . . . , n the iterates θ(t+1)
i and θ̄(t+1) are in particular Ft-measurable.

Lemma 1 (Descent Lemma - Convex case). Consider the setting of Theorem 1 and let ηt ≤ 1
4L , then we almost surely have:

EZ(t)|Ft−1

∥∥∥θ̄(t+1) − θ?
∥∥∥2

≤
∥∥∥θ̄(t) − θ?

∥∥∥2

+
η2
t σ̄

2

n
− ηt

(
f(θ̄(t))− f?

)
+

3L

2n
ηt

∥∥∥Θ(t) −Θ
(t)
∥∥∥2

F
, (20)

where EZ(t)|Ft−1
stands for the conditional expectation EZ(t) [·|Ft−1].

Proof. The proof closely follows the one in Koloskova et al. (2020). Using the recursion of D-SGD and since all mixing
matrices are doubly stochastic and preserve the average (Proposition 1) we have:

‖θ̄(t+1) − θ?‖2 =

∥∥∥∥∥θ̄(t) − ηt
n

n∑
i=1

∇Fi(θ(t)
i , Z

(t)
i )− θ?

∥∥∥∥∥
2

=

∥∥∥∥∥θ̄(t) − θ? − ηt
n

n∑
i=1

∇fi(θ(t)
i ) +

ηt
n

n∑
i=1

∇fi(θ(t)
i )− ηt

n

n∑
i=1

∇Fi(θ(t)
i , Z

(t)
i )

∥∥∥∥∥
2

=

∥∥∥∥∥θ̄(t) − θ? − ηt
n

n∑
i=1

∇fi(θ(t)
i )

∥∥∥∥∥
2

+ η2
t

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(θ(t)
i )− 1

n

n∑
i=1

∇Fi(θ(t)
i , Z

(t)
i )

∥∥∥∥∥
2

+ 2

〈
θ̄(t) − θ? − ηt

n

n∑
i=1

∇fi(θ(t)
i ),

ηt
n

n∑
i=1

∇fi(θ(t)
i )− ηt

n

n∑
i=1

∇Fi(θ(t)
i , Z

(t)
i )

〉
.

Passing to the conditional expectation, the last term (the inner product) is equal to 0. This comes from the fact that
E
Z

(t)
i |Ft−1

[∇Fi(θ(t)
i , Z

(t)
i )] = ∇fi(θ(t)

i ). We therefore need to bound the first two terms in the conditional expectation.

The second one can easily be bounded using Assumption 2:

η2
tEZ(t)|Ft−1

∥∥∥ 1

n

n∑
i=1

∇fi(θ(t)
i )− 1

n

n∑
i=1

∇Fi(θ(t)
i , Z

(t)
i )
∥∥∥2

=
η2
t

n2
EZ(t)|Ft−1

∥∥∥ n∑
i=1

(∇fi(θ(t)
i )−∇Fi(θ(t)

i , Z
(t)
i ))

∥∥∥2

=
η2
t

n2

n∑
i=1

E
Z

(t)
i |Ft−1

∥∥∥∇fi(θ(t)
i )−∇Fi(θ(t)

i , Z
(t)
i )
∥∥∥2

(A.2)

≤ η2
t σ̄

2

n
,

where the second equality was obtained using the identity E ‖
∑
i Yi‖

2
2

=
∑
i E‖Yi‖22 when Yi are independent and EYi = 0.

Now that the second term is bounded, we can move to the first one. Because θ(t)
i and θ̄(t) are Ft−1-measurable, we have

EZ(t)|Ft−1

∥∥∥∥∥θ̄(t) − θ? − ηt
n

n∑
i=1

∇fi(θ(t)
i )

∥∥∥∥∥
2

=

∥∥∥∥∥θ̄(t) − θ? − ηt
n

n∑
i=1

∇fi(θ(t)
i )

∥∥∥∥∥
2

=
∥∥∥θ̄(t) − θ?

∥∥∥2

+ η2
t

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(θ(t)
i )

∥∥∥∥∥
2

︸ ︷︷ ︸
T1

− 2ηt

〈
θ̄(t) − θ?, 1

n

n∑
i=1

∇fi(θ(t)
i )

〉
︸ ︷︷ ︸

T2

.

In order to bound T1, recall that by definition 1
n

∑
i∇fi(θ?) = 0, therefore:
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T1 =

∥∥∥∥∥ 1

n

n∑
i=1

(∇fi(θ(t)
i )−∇fi(θ̄(t)) +∇fi(θ̄(t))−∇fi(θ?))

∥∥∥∥∥
2

(17)

≤ 2

∥∥∥∥∥ 1

n

n∑
i=1

(∇fi(θ(t)
i )−∇fi(θ̄(t)))

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ 1

n

n∑
i=1

(∇fi(θ̄(t))−∇fi(θ?))

∥∥∥∥∥
2

(17)

≤ 2

n

n∑
i=1

∥∥∥∇fi(θ(t)
i )−∇fi(θ̄(t))

∥∥∥2

+
2

n

n∑
i=1

∥∥∥∇fi(θ̄(t))−∇fi(θ?)
∥∥∥2

(14)(15)

≤ 2L2

n

n∑
i=1

∥∥∥θ(t)
i − θ̄

(t)
∥∥∥2

+
4L

n

n∑
i=1

(
fi(θ̄

(t))− fi(θ?)−
〈
∇fi(θ?), θ̄(t) − θ?

〉)
=

2L2

n

n∑
i=1

∥∥∥θ(t)
i − θ̄

(t)
∥∥∥2

+
4L

n

n∑
i=1

(
fi(θ̄

(t))− fi(θ?)
)
− 4L

〈
1

n

n∑
i=1

∇fi(θ?)︸ ︷︷ ︸
=0

, θ̄(t) − θ?
〉

=
2L2

n

n∑
i=1

∥∥∥θ(t)
i − θ̄

(t)
∥∥∥2

+ 4L
(
f(θ̄(t))− f?

)
.

Finally, we have to bound T2:

−T2 = −2ηt
n

n∑
i=1

〈
θ̄(t) − θ?,∇fi(θ(t)

i )
〉

= −2ηt
n

n∑
i=1

[〈
θ̄(t) − θ(t)

i ,∇fi(θ(t)
i )
〉

+
〈
θ

(t)
i − θ

?,∇fi(θ(t)
i )
〉]

(13)(11)

≤ −2ηt
n

n∑
i=1

[
fi(θ̄

(t))− fi(θ(t)
i )− L

2
‖θ̄(t) − θ(t)

i ‖
2
2 + fi(θ

(t)
i )− fi(θ?)

]

= −2ηt

(
f(θ̄(t))− f(θ?)

)
+
Lηt
n

n∑
i=1

‖θ̄(t) − θ(t)
i ‖

2
2

= −2ηt

(
f(θ̄(t))− f?

)
+
Lηt
n
‖Θ(t) −Θ(t)‖2F .

Combining all previous results, we get:

EZ(t)|Ft−1

∥∥∥θ̄(t+1) − θ?
∥∥∥2

≤
∥∥∥θ̄(t) − θ?

∥∥∥2

+
η2
t σ̄

2

n
+
Lηt
n

(2Lηt + 1) ‖Θ(t) −Θ(t)‖2F

+ 2ηt (2Lηt − 1)
(
f(θ̄(t))− f?

)
.

Since, by hypothesis, ηt ≤ 1
4L , we have 2Lηt + 1 ≤ 3

2 and 2Lηt − 1 ≤ − 1
2 , which concludes the proof.

Lemma 2 (Descent Lemma - Non-convex case). Consider the setting of Theorem 1 and let ηt ≤ 1
4L , then we almost surely

have:

EZ(t)|Ft−1
f(θ̄(t+1))− f? ≤ f(θ̄(t))− f? − ηt

4
‖∇f(θ̄(t))‖22 +

L2

n
ηt

∥∥∥Θ(t) −Θ
(t)
∥∥∥2

F
+
Lσ̄2

2n
η2
t . (21)

Proof. The proof adapts the one of Lemma 10 in Koloskova et al. (2020) to our setting.
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EZ(t)|Ft−1
f(θ̄(t+1)) = EZ(t)|Ft−1

f
(
θ̄(t) − ηt

n

n∑
i=1

∇Fi(θ(t)
i , Z

(t)
i )
)

(13)
≤ f(θ̄(t))− EZ(t)|Ft−1

〈
∇f(θ̄(t)),

ηt
n

n∑
i=1

∇Fi(θ(t)
i , Z

(t)
i )
〉

+
L

2
EZ(t)|Ft−1

∥∥∥ηt
n

n∑
i=1

∇Fi(θ(t)
i , Z

(t)
i )
∥∥∥2

2

= f(θ̄(t))−
〈
∇f(θ̄(t)),

ηt
n

n∑
i=1

∇fi(θ(t)
i )
〉

︸ ︷︷ ︸
,T4

+
Lη2

t

2
EZ(t)|Ft−1

∥∥∥ 1

n

n∑
i=1

∇Fi(θ(t)
i , Z

(t)
i )
∥∥∥2

2︸ ︷︷ ︸
,T5

Adding and subtracting ηt∇f(θ̄(t)) in T4, we have

T4 = −ηt
∥∥∥∇f(θ̄(t))

∥∥∥2

2
+
ηt
n

n∑
i=1

〈
∇f(θ̄(t)),∇fi(θ̄(t))−∇fi(θ(t)

i )
〉

(19),α=1

≤ −ηt
∥∥∥∇f(θ̄(t))

∥∥∥2

2
+
ηt
2

∥∥∥∇f(θ̄(t))
∥∥∥2

2
+
ηt
2n

n∑
i=1

∥∥∥∇fi(θ̄(t))−∇fi(θ(t)
i )
∥∥∥2

2

(14)
≤ −ηt

2

∥∥∥∇f(θ̄(t))
∥∥∥2

2
+
L2ηt
2n

n∑
i=1

∥∥∥θ̄(t) − θ(t)
i

∥∥∥2

2
.

Let us now bound the term T5:

T5 = EZ(t)|Ft−1

∥∥∥ 1

n

n∑
i=1

∇Fi(θ(t)
i , Z

(t)
i )− 1

n

n∑
i=1

∇fi(θ(t)
i ) +

1

n

n∑
i=1

∇fi(θ(t)
i )
∥∥∥2

2

=
1

n2
EZ(t)|Ft−1

∥∥∥ n∑
i=1

∇Fi(θ(t)
i , Z

(t)
i )−

n∑
i=1

∇fi(θ(t)
i )
∥∥∥2

2
+
∥∥∥ 1

n

n∑
i=1

∇fi(θ(t)
i )
∥∥∥2

2

(A.2)
=

σ̄2

n
+
∥∥∥ 1

n

n∑
i=1

∇fi(θ(t)
i )−∇f(θ̄(t)) +∇f(θ̄(t))

∥∥∥2

2

(17)
≤ σ̄2

n
+ 2
∥∥∥ 1

n

n∑
i=1

∇fi(θ(t)
i )−∇f(θ̄(t))

∥∥∥2

2
+ 2
∥∥∥∇f(θ̄(t))

∥∥∥2

2

(17)
≤ σ̄2

n
+

2

n

n∑
i=1

∥∥∥∇fi(θ(t)
i )−∇fi(θ̄(t))

∥∥∥2

2
+ 2
∥∥∥∇f(θ̄(t))

∥∥∥2

2

(14)
≤ σ̄2

n
+

2L2

n

n∑
i=1

∥∥∥θ(t)
i − θ̄

(t)
∥∥∥2

2
+ 2
∥∥∥∇f(θ̄(t))

∥∥∥2

2
.

Next, plugging T4 and T5 into the first inequality, we have:

EZ(t)|Ft−1
f(θ̄(t+1))

≤ f(θ̄(t))− ηt
(1

2
− Lηt

)∥∥∥∇f(θ̄(t))
∥∥∥2

2
+
(L2ηt

2n
+
L3η2

t

n

)∥∥∥Θ(t) −Θ
(t)
∥∥∥2

F
+
Lσ̄2

2n
η2
t .

Since by hypothesis ηt ≤ 1
4L , we have 1

2 − Lηt ≥
1
4 and L2ηt

2n +
L3η2t
n ≤ L2ηt

n , we therefore get
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EZ(t)|Ft−1
f(θ̄(t+1)) ≤ f(θ̄(t))− ηt

4

∥∥∥∇f(θ̄(t))
∥∥∥2

2
+
L2ηt
n

∥∥∥Θ(t) −Θ
(t)
∥∥∥2

F
+
Lσ̄2

2n
η2
t .

Subtracting each side of the equation by f?, we obtain the final result.

Lemma 3 (Consensus Control). Consider the setting of Theorem 1 and let ηt ≤ p
8L , then:

E
∥∥∥Θ(t) −Θ

(t)
∥∥∥2

F
≤ (1− p

4
)E
∥∥∥Θ(t−1) −Θ

(t−1)
∥∥∥2

F
+

6nτ̄2

p
η2
t−1. (22)

Proof. For any α > 0, we have:

E
∥∥∥Θ(t) −Θ

(t)
∥∥∥2

F
= E

∥∥∥∥Θ(t)

(
I − 11T

n

)∥∥∥∥2

F

= E
∥∥∥∥(Θ(t−1) − ηt−1∇F (Θ(t−1), Z(t−1))

)
W (t−1)T

(
I − 11T

n

)∥∥∥∥2

F

(10)
= E

∥∥∥∥(Θ(t−1) − ηt−1∇F (Θ(t−1), Z(t−1))
)(

W (t−1)T − 11T

n

)∥∥∥∥2

F

(18)

≤ (1 + α)E
∥∥∥∥Θ(t−1)

(
W (t−1)T − 11T

n

)∥∥∥∥2

F

+(1 + α−1)η2
t−1 E

∥∥∥∥∇F (Θ(t−1), Z(t−1))

(
W (t−1)T − 11T

n

)∥∥∥∥2

F︸ ︷︷ ︸
T3

(A.3)

≤ (1 + α)(1− p)E
∥∥∥Θ(t−1) −Θ

(t−1)
∥∥∥2

F
+ (1 + α−1)η2

t−1T3.

We now bound T3 by relying on Assumption 4:

T3 = E

∥∥∥∥∥(∇F (Θ(t−1), Z(t−1))−∇F (Θ
(t−1)

, Z(t−1)) +∇F (Θ
(t−1)

, Z(t−1))
)
·

·
(
W (t−1)T − 11T

n

)∥∥∥∥∥
2

F

(17)

≤ 2E
∥∥∥∥(∇F (Θ(t−1), Z(t−1))−∇F (Θ

(t−1)
, Z(t−1))

)(
W (t−1)T − 11T

n

)∥∥∥∥2

F

+2E
∥∥∥∥∇F (Θ

(t−1)
, Z(t−1))

(
W (t−1)T − 11T

n

)∥∥∥∥2

F

= 2E
∥∥∥∥(∇F (Θ(t−1), Z(t−1))−∇F (Θ

(t−1)
, Z(t−1))

)(
W (t−1)T − 11T

n

)∥∥∥∥2

F

+2

n∑
i=1

E

∥∥∥∥∥∥
n∑
j=1

W
(t−1)
ij ∇Fj(θ̄(t−1), Z

(t−1)
j )− 1

n

n∑
j=1

∇Fj(θ̄(t−1), Z
(t−1)
j )

∥∥∥∥∥∥
2

2

(3)

≤ 2E
∥∥∥∥(∇F (Θ(t−1), Z(t−1))−∇F (Θ

(t−1)
, Z(t−1))

)(
W (t−1)T − 11T

n

)∥∥∥∥2

F

+ 2nτ̄2.

For conciseness, we will denote Fi(θ
(t−1)
i , Z

(t−1)
j ) by Fi(θ

(t−1)
i ) and ∇F (Θ, Z(t−1)) by ∇F (Θ). Using Assumption 3,
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we can bound the first term of the previous equation by:

2(1− p)E
∥∥∥∥(∇F (Θ(t−1))−∇F (Θ

(t−1)
)
)
−
(
∇F (Θ(t−1))−∇F (Θ

(t−1)
)

)∥∥∥∥2

F

(17)

≤ 4(1− p)

[
E
∥∥∥∇F (Θ(t−1))−∇F (Θ

(t−1)
)
∥∥∥2

F
+ E

∥∥∥∥∇F (Θ(t−1))−∇F (Θ
(t−1)

)

∥∥∥∥2

F

]
= 4(1− p)×

×

 n∑
i=1

(
E
∥∥∥∇Fi(θ(t−1)

i )−∇Fi(θ̄(t−1))
∥∥∥2

2
+ E

∥∥∥ 1

n

n∑
j=1

(
∇Fj(θ(t−1)

j )−∇Fj(θ̄(t−1))
)∥∥∥2

2

)
(A.1)

≤ 4(1− p)

L2
n∑
i=1

E
∥∥∥θ(t−1)
i − θ̄(t−1)

∥∥∥2

2
+

n

n2
E
∥∥∥ n∑
j=1

(
∇Fj(θ(t−1)

j )−∇Fj(θ̄(t−1))
)∥∥∥2

2


(17)

≤ 4(1− p)

L2
n∑
i=1

E
∥∥∥θ(t−1)
i − θ̄(t−1)

∥∥∥2

2
+

n∑
j=1

E
∥∥∥∇Fj(θ(t−1)

j )−∇Fj(θ̄(t−1))
∥∥∥2

2


(A.1)

≤ 4(1− p)

L2
n∑
i=1

E
∥∥∥θ(t−1)
i − θ̄(t−1)

∥∥∥2

2
+ L2

n∑
j=1

E
∥∥∥θ(t−1)
j − θ̄(t−1)

∥∥∥2

2


= 8(1− p)L2E

∥∥∥Θ(t−1) −Θ
(t−1)

∥∥∥2

F
.

Combining all previous results and setting α = p
2 , we get:

E
∥∥∥Θ(t) −Θ

(t)
∥∥∥2

F
≤ (1 + α)(1− p)E

∥∥∥Θ(t−1) −Θ
(t−1)

∥∥∥2

F

+ 8(1 + α−1)(1− p)L2η2
t−1E

∥∥∥Θ(t−1) −Θ
(t−1)

∥∥∥2

F
+ 2(1 + α−1)η2

t−1nτ̄
2

≤ (1 +
p

2
)(1− p)︸ ︷︷ ︸

≤1− p
2

E
∥∥∥Θ(t−1) −Θ

(t−1)
∥∥∥2

F

+ 8(1 +
2

p
)(1− p)︸ ︷︷ ︸
≤ 16

p

L2η2
t−1E

∥∥∥Θ(t−1) −Θ
(t−1)

∥∥∥2

F
+ 2(1 +

2

p
)︸ ︷︷ ︸

≤ 6
p

η2
t−1nτ̄

2.

Since by hypothesis we have ηt−1 ≤ p
8L , we can bound the second term and get:

E
∥∥∥Θ(t) −Θ

(t)
∥∥∥2

F
≤
(

1− p

2
+
p

4

)
E
∥∥∥Θ(t−1) −Θ

(t−1)
∥∥∥2

F
+

6nτ̄2

p
η2
t−1

=
(

1− p

4

)
E
∥∥∥Θ(t−1) −Θ

(t−1)
∥∥∥2

F
+

6nτ̄2

p
η2
t−1.

Corollary 1 (Consensus recursion). Consider the setting of Theorem 1 and fix ηt = η ≤ p
8L , we have:

1

T + 1

T∑
t=0

E
∥∥∥Θ(t) −Θ

(t)
∥∥∥2

F
≤ 24η2nτ̄2

p2
. (23)
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Proof. Unrolling the expression (22) in Lemma 3 up to t = 0, we have for all t > 0:

E
∥∥∥Θ(t) −Θ

(t)
∥∥∥2

F
≤
(

1− p

4

)t ∥∥∥Θ(0) −Θ
(0)
∥∥∥2

F︸ ︷︷ ︸
=0

+
6nτ̄2

p
η2

t−1∑
j=0

(
1− p

4

)j

=
6nτ̄2

p
η2 ×

1−
(
1− p

4

)t
1−

(
1− p

4

)
≤ 6η2nτ̄2

p
× 4

p

=
24η2nτ̄2

p2

Summing and dividing by T + 1, we get the final result.

Lemma 4 (Convergence rate with T - Convex case). Consider the setting of Theorem 1 in the convex case. There exists a
constant stepsize η ≤ ηmax = p

8L such that

1

T + 1

T∑
t=0

E(f(θ̄(t))− f?) ≤ 2

(
br0

T + 1

) 1
2

+ 2e
1
3

(
r0

T + 1

) 2
3

+
dr0

T + 1
, (24)

where b = σ̄2

n , e = 36Lτ̄2

p2 , d = 8L
p and r0 = ‖θ(0) − θ?‖22.

Proof. Thanks to the descent lemma (Lemma 1), we almost surely have:

f(θ̄(t))− f? ≤ 1

η

(∥∥∥θ̄(t) − θ?
∥∥∥2

− EZ(t)|Ft−1

∥∥∥θ̄(t+1) − θ?
∥∥∥2

+
η2σ̄2

n
+

3L

2n
η
∥∥∥Θ(t) −Θ

(t)
∥∥∥2

F

)
,

where all terms are Ft−1-measurable. Therefore,

E(f(θ̄(t))− f?) ≤ 1

η

(
E
∥∥∥θ̄(t) − θ?

∥∥∥2

− E
∥∥∥θ̄(t+1) − θ?

∥∥∥2

+
η2σ̄2

n
+

3L

2n
ηE
∥∥∥Θ(t) −Θ

(t)
∥∥∥2

F

)
,

and summing up we get:

1

T + 1

T∑
t=0

E(f(θ̄(t))− f?)

≤ 1

η(T + 1)

T∑
t=0

(
E
∥∥∥θ̄(t) − θ?

∥∥∥2

− E
∥∥∥θ̄(t+1) − θ?

∥∥∥2

+
η2σ̄2

n
+

3L

2n
ηE
∥∥∥Θ(t) −Θ

(t)
∥∥∥2

F

)

≤ 1

η(T + 1)

∥∥∥θ(0) − θ?
∥∥∥2

+
ησ̄2

n
+

3L

2n

1

T + 1

T∑
t=0

E
∥∥∥Θ(t) −Θ

(t)
∥∥∥2

F

(23)

≤ 1

η(T + 1)

∥∥∥θ(0) − θ?
∥∥∥2

+
σ̄2

n
η +

36Lτ̄2

p2
η2.

Fixing η = min

{(
r0

b(T+1)

) 1
2

,
(

r0
e(T+1)

) 1
3

, 1
d

}
with b = σ̄2

n , e = 36Lτ̄2

p2 , d = 8L
p and r0 = ‖θ(0) − θ?‖22, then applying

Lemma 6 that is recalled after, we obtain the final result.

Lemma 5 (Convergence rate with T - Non convex case). Consider the setting of Theorem 1 in the non-convex case. There
exists a constant stepsize η ≤ ηmax = p

8L such that

1

T + 1

T∑
t=0

E
∥∥∥∇f(θ̄(t))

∥∥∥2

2
≤ 2

(
4bf0

T + 1

) 1
2

+ 2e
1
3

(
4f0

T + 1

) 2
3

+
4df0

T + 1
, (25)
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where b = 2Lσ̄2

n , e = 96L2τ̄2

p2 , d = 8L
p and f0 = f(θ(0))− f?.

Proof. Similarly to Lemma 4 for the convex case, we can use the descent Lemma 2 and obtain

E
∥∥∥∇f(θ̄(t))

∥∥∥2

2
≤ 4

η

(
Eft − Eft+1 +

L2η

n
E
∥∥∥Θ(t) −Θ

(t)
∥∥∥2

F
+
Lσ̄2

2n
η2
)
,

where for all t ≥ 0, ft , f(θ̄(t))− f?. Then summing up and dividing by T + 1 we get:

1

T + 1

T∑
t=0

E
∥∥∥∇f(θ̄(t))

∥∥∥2

2
≤ 4f0

η(T + 1)
+

4L2

n

1

T + 1

T∑
t=0

E
∥∥∥Θ(t) −Θ

(t)
∥∥∥2

F
+

2Lσ̄2

n
η

(23)
≤ 4f0

η(T + 1)
+

4L2

n

24η2nτ̄2

p2
+

2Lσ̄2

n
η

=
4f0

η(T + 1)
+

96L2τ̄2

p2
η2 +

2Lσ̄2

n
η .

Fixing η = min

{(
4f0

b(T+1)

) 1
2

,
(

4f0
e(T+1)

) 1
3

, 1
d

}
with b = 2Lσ̄2

n , e = 96L2τ̄2

p2 , d = 8L
p and f0 = f(θ(0))− f?, we can apply

Lemma 6 and obtain the final result.

Lemma 6 (Tuning stepsize (Koloskova et al., 2020)). For any parameter r0, b, e, d ≥ 0, T ∈ N, we can fix

η = min

{(
r0

b(T + 1)

) 1
2

,

(
r0

e(T + 1)

) 1
3

,
1

d

}
≤ 1

d
,

and get
r0

η(T + 1)
+ bη + eη2 ≤ 2

(
br0

T + 1

) 1
2

+ 2e
1
3

(
r0

T + 1

) 2
3

+
dr0

T + 1
.

Proof. The proof of this lemma can be found in the supplementary materials of Koloskova et al. (2020) (Lemma 15).

C ADDITIONAL RESULTS AND PROOFS

Proposition 1. Let Assumptions 2-3 and 5 to be verified. Then Assumption 4 is satisfied with τ̄2 = (1 − p)
(
ζ̄2 + σ̄2

)
,

where σ̄2 , 1
n

∑
i σ

2
i .

Proof. Denoting ∇F (θ) = (∇F1(θ, Z1), . . . ,∇Fn(θ, Zn)) ∈ Rd×n, and using the relation

E‖Y ‖22 = ‖EY ‖22 + E‖Y − EY ‖22, (26)

we have:

H(t) =
1

n
E‖∇F (θ)W (t) −∇F (θ)‖2F

(A.3)

≤ 1− p
n

E‖∇F (θ)−∇F (θ)‖2F

=
1− p
n

n∑
i=1

E
∥∥∥∇Fi(θ, Zi)− 1

n

n∑
j=1

∇Fj(θ, Zj)
∥∥∥2

2

(26)
=

1− p
n

n∑
i=1

(∥∥∥∇fi(θ)− 1

n

n∑
j=1

∇fj(θ)
∥∥∥2

2
+ E

∥∥∥ n∑
j=1

(
1{j=i} −

1

n
)
(
∇Fj(θ, Zj)−∇fj(θ))

∥∥∥2

2

)
(A.5)

≤ (1− p)

(
ζ̄2 +

1

n

n∑
i=1

E
∥∥∥ n∑
j=1

(
1{j=i} −

1

n

)
(∇Fj(θ, Zj)−∇fj(θ))

∥∥∥2

2

)
.
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Since all terms j in the norm are independent and with expectation 0, the expectation of the sum is equal to the sum of
expectations and

H(t) ≤ (1− p)

ζ̄2 +
1

n

n∑
i=1

n∑
j=1

(
1{j=i} −

1

n

)2E ‖∇Fj(θ, Zj)−∇fj(θ)‖22


= (1− p)

(
ζ̄2 +

1

n

n∑
j=1

E ‖∇Fj(θ, Zj)−∇fj(θ)‖22
n∑
i=1

(
1{j=i} −

1

n

)2
︸ ︷︷ ︸

= n−1
n

)

(A.2)

≤ (1− p)
(
ζ̄2 +

n− 1

n
σ̄2

)
≤ (1− p)

(
ζ̄2 + σ̄2

)
,

which concludes the proof.

Proposition 2. (Bounded neighborhood heterogeneity under label skew) Consider the statistical framework de-
fined above and assume there exists B > 0 such that ∀k = 1, . . . ,K and ∀θ ∈ Rd, ‖EX [∇F (θ;X,Y )|Y =

k]− 1
K

∑K
k′=1 EX [∇F (θ;X,Y )|Y = k′]‖22 ≤ B. Then, denoting πjk , Pj(Y = k), Assumption 4 is satisfied with:

τ̄2 =
KB

n

K∑
k=1

n∑
i=1

( n∑
j=1

Wijπjk −
1

n

n∑
j=1

πjk

)2

+
σ2

max

n
‖W − 1

n
11T‖2F .

Proof. First, observe that the local objective functions can be re-written

fj(θ) = E(X,Y )∼Dj
[F (θ;X,Y )]

=

K∑
k=1

Pj(Y = k)EX [F (θ;X,Y )|Y = k]

=

K∑
k=1

πjkEX [F (θ;X,Y )|Y = k] .

From (4), we have the bias-variance decomposition

H(θ) ≤ 1

n

n∑
i=1

∥∥∥∥∥∥
n∑
j=1

Wij∇fj(θ)−∇f(θ)

∥∥∥∥∥∥
2

2

+
σ2

max

n
‖W − 1

n
11T‖2F

=
1

n

n∑
i=1

∥∥∥∥∥∥
n∑
j=1

(Wij −
1

n
)∇fj(θ)

∥∥∥∥∥∥
2

2

+
σ2

max

n
‖W − 1

n
11T‖2F

=
1

n

n∑
i=1

∥∥∥∥∥∥
n∑
j=1

(Wij −
1

n
)

K∑
k=1

πjkEX [∇F (θ;X,Y )|Y = k]

∥∥∥∥∥∥
2

2︸ ︷︷ ︸
T4

+
σ2

max

n
‖W − 1

n
11T‖2F .

Then, observing that
∑n
j=1(Wij − 1

n ) = 0 and
∑K
k=1 πjk = 1 imply
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n∑
j=1

(Wij −
1

n
)

K∑
k=1

πjk
1

K

n∑
k′=1

EX [∇F (θ;X,Y )|Y = k′] = 0 ,

we can add this in the norm of the term T4 defined above and get

T4 =

∥∥∥∥∥
n∑
j=1

(Wij −
1

n
)

K∑
k=1

πjk

(
EX [∇F (θ;X,Y )|Y = k]− 1

K

K∑
k′=1

EX [∇F (θ;X,Y )|Y = k′]
)∥∥∥∥∥

2

2

=

∥∥∥∥∥
K∑
k=1

(
EX [∇F (θ;X,Y )|Y = k]− 1

K

K∑
k′=1

EX [∇F (θ;X,Y )|Y = k′]
) n∑
j=1

(Wij −
1

n
)πjk

∥∥∥∥∥
2

2

(17)
≤ K

K∑
k=1

∥∥∥∥∥(EX [∇F (θ;X,Y )|Y = k]− 1

K

K∑
k′=1

EX [∇F (θ;X,Y )|Y = k′]
) n∑
j=1

(Wij −
1

n
)πjk

∥∥∥∥∥
2

2

= K
K∑
k=1

∥∥∥∥∥EX [∇F (θ;X,Y )|Y = k]− 1

K

K∑
k′=1

EX [∇F (θ;X,Y )|Y = k′]

∥∥∥∥∥
2

2︸ ︷︷ ︸
≤B

×
( n∑
j=1

(Wij −
1

n
)πjk

)2

≤ KB
K∑
k=1

(
n∑
j=1

Wijπjk −
1

n

n∑
j=1

πjk

)2

.

Finally, plugging this into the upper-bound on H(θ) found above, we get the final result.

Theorem 2 Consider the statistical setup presented in Section 5.1 and let {Ŵ (l)}Ll=1 be the sequence of mixing matrices
generated by Algorithm 2. Then, at any iteration l = 1, . . . , L, we have:

g(Ŵ (l)) ≤ 16
l+2

(
λ+ 1

n

∥∥∑K
k=1(Π:,k −Π:,k1) ·ΠT

:,k

∥∥?
2

)
,

where ‖·‖?2 stands for the nuclear norm, i.e., the sum of singular values. Bounding the second term in the parenthesis, we
can obtain the looser bound

g(Ŵ (l)) ≤ 16
l+2 (λ+ 1) .

Furthermore, we have din
max(Ŵ

(l)) ≤ l and dout
max(Ŵ

(l)) ≤ l, resulting in a per-iteration complexity bounded by l.

Proof. The proof of this theorem is directly derived from Theorem 3 given below, applied with the parameters of our
problem. To prove the first inequality, we first need to find a bound on the diameter of the set of doubly stochastic matrices,
denoted diam‖·‖(S), for a certain (matrix) norm ‖ · ‖. We fix this norm to be the operator norm induced by the `2-norm,
denoted ‖·‖2, which is simply the maximum singular value of the matrix.

For all W,P ∈ S, we have

‖W − P‖2 ≤ ‖W‖2 + ‖P‖2
= 1 + 1 = 2 ,

which comes from the fact that W and P are doubly stochastic, i.e., their largest eigenvalue is 1. This shows that
diam‖·‖2(S) ≤ 2.
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Let us now find the Lipschitz constant associated to the gradient of the objective:

∇g(W ) =
2

n

K∑
k=1

(WΠ:,k −Π:,k1) ·ΠT
:,k +

2

n
λ

(
W − 11T

n

)
.

Recall that the dual norm ‖·‖?1 of ‖·‖1 is the nuclear norm, i.e., the sum of the singular values.

For any W,P ∈ S, we have

‖∇g(W )−∇g(P )‖?2 =
2

n

∥∥∥∥∥(W − P )

(
λI +

K∑
k=1

Π:,kΠT
:,k

)∥∥∥∥∥
?

2

≤ 2

n
‖λ(W − P )I‖?2 +

2

n

∥∥∥∥∥(W − P )

K∑
k=1

Π:,kΠT
:,k

∥∥∥∥∥
?

2

≤ 2λ

n
‖W − P‖2 ‖I‖

?
2 +

2

n

∥∥∥∥∥(W − P )

K∑
k=1

Π:,kΠT
:,k

∥∥∥∥∥
?

2

,

where the last inequality is obtained using the fact that for any real matrices A and B, ‖AB‖? ≤ ‖AT‖‖B‖?.

Before bounding the second term, we must observe that because W and P are doubly stochastic, (W − P )1 = 0 and
therefore, for any matrix A ∈ Rn×n, (W − P )A = (W − P )(A− 11T

n A).

Now, the second term can be re-written and bounded as follows:

2

n

∥∥∥∥∥(W − P )

K∑
k=1

Π:,kΠT
:,k

∥∥∥∥∥
?

2

=
2

n

∥∥∥∥∥(W − P )

(
K∑
k=1

Π:,kΠT
:,k −

11T

n

K∑
k=1

Π:,kΠT
:,k

)∥∥∥∥∥
?

2

≤ 2

n
‖W − P‖2

∥∥∥∥∥
K∑
k=1

Π:,kΠT
:,k −

11T

n

K∑
k=1

Π:,kΠT
:,k

∥∥∥∥∥
?

2

=
2

n
‖W − P‖2

∥∥∥∥∥
K∑
k=1

(Π:,k −Π:,k1) ·ΠT
:,k

∥∥∥∥∥
?

2

.

Plugging the previous result into the bound obtained above, and since ‖I‖?2 = n, we get

‖∇g(W )−∇g(P )‖?2 ≤ 2

(
λ+

1

n

∥∥∥∥∥
K∑
k=1

(Π:,k −Π:,k1) ·ΠT
:,k

∥∥∥∥∥
?

2

)
‖W − P‖2 .

We can now apply Theorem 3 with the found Lipschitz constant and diameter, which gives:

g(Ŵ (l))− g(W ?) ≤ 16

l + 2

(
λ+

1

n

∥∥∥∥∥
K∑
k=1

(Π:,k −Π:,k1) ·ΠT
:,k

∥∥∥∥∥
?

2

)
,

where W ? is the optimal solution of the problem. Since we known that W ? = 11T

n with g(W ?) = 0, we obtain the first
inequality in Theorem 2.
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To prove the second inequality, it suffices to show that
∥∥∥∑K

k=1(Π:,k −Π:,k1) ·ΠT
:,k

∥∥∥?
2
≤ n. We have:∥∥∥∥∥

K∑
k=1

(Π:,k −Π:,k1) ·ΠT
:,k

∥∥∥∥∥
?

2

=

∥∥∥∥∥
(
I − 11T

n

) K∑
k=1

Π:,kΠT
:,k

∥∥∥∥∥
?

2

≤
∥∥∥∥I − 11T

n

∥∥∥∥
2

∥∥∥∥∥
K∑
k=1

Π:,kΠT
:,k

∥∥∥∥∥
?

2

=

∥∥∥∥∥
K∑
k=1

Π:,kΠT
:,k

∥∥∥∥∥
?

2

≤
K∑
k=1

∥∥Π:,kΠT
:,k

∥∥?
2
.

Because for any k = 1, . . . ,K, Π:,kΠT
:,k is a rank-1 matrix, its unique eigenvalue is ΠT

:,kΠ:,k and therefore

∥∥∥∥∥
K∑
k=1

(Π:,k −Π:,k1) ·ΠT
:,k

∥∥∥∥∥
?

2

≤
K∑
k=1

∥∥Π:,kΠT
:,k

∥∥?
2

=

K∑
k=1

ΠT
:,kΠ:,k

=

K∑
k=1

n∑
i=1

π2
ik

Holder
≤

n∑
i=1

max
k
{πik}

K∑
k=1

πik︸ ︷︷ ︸
=1

≤
n∑
i=1

1 = n ,

which concludes the proof of the second inequality in Theorem 2.

The last statement of the theorem follows directly from the structure of permutation matrices and the greedy nature of the
algorithm.

Theorem 3. (Frank-Wolfe Convergence (Jaggi, 2013; Bubeck, 2014)) Let the gradient of the objective function g : x→ g(x)
be L-smooth with respect to a norm ‖ · ‖ and its dual norm ‖ · ‖?:

‖∇g(x)−∇g(y)‖? ≤ L‖x− y‖ .

If g is minimized over S using Frank-Wolfe algorithm, then for each l ≥ 1, the iterates x(l) satisfy

g(x(l))− g(x?) ≤
2Ldiam‖·‖(S)2

l + 2
,

where x? ∈ S is an optimal solution of the problem and diam‖·‖(S) stands for the diameter of S with respect to the norm
‖ · ‖.

Proof. The proof of this theorem is a direct combination of Theorem 1 and Lemma 7 in Jaggi (2013), both proved in the
paper.
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Proposition 3. (Relation between p and ‖W − 11T

n ‖
2
F ) Let W be a mixing matrix satisfying Assumption 3. Then,

(1− p) ≤
∥∥∥∥W − 11T

n

∥∥∥∥2

F

≤ (n− 1)(1− p) .

Proof. The upper-bound is a direct application of Assumption 3 with M = I , the identity matrix of size n:∥∥∥∥WT − 11T

n

∥∥∥∥2

F

=

∥∥∥∥IWT − I 11
T

n

∥∥∥∥2

F

(A.3)

≤ (1− p)
∥∥∥∥I − 11T

n

∥∥∥∥2

F

= (1− p)(n− 1) .

To show the lower-bound, denote by s1(M), . . . , sn(M) the (decreasing) singular values of any square matrix M ∈ Rn×n.
Denote similarly λ1(M), . . . , λn(M) the eigenvalues of any symmetric square matrix M ∈ Rn×n.

∥∥∥∥W − 11T

n

∥∥∥∥2

F

=

n∑
i=1

s2
i

(
W − 11T

n

)
≥ s2

1

(
W − 11T

n

)
= λ1

(
(W − 11T

n
)T(W − 11T

n
)

)
= λ1

(
WTW − 11T

n

)
= λ2(WTW ) ≥ 1− p .

The last equality is obtained by noticing that WTW is a symmetric doubly stochastic matrix. It therefore admits an
eigenvalue decomposition where the largest eigenvalue 1 is associated with the eigenvector 1√

n
1. This makes WTW − 11T

n

having the eigenvalue 0 associated to the vector 1√
n
1 and the largest eigenvalue of WTW − 11T

n becomes the second-largest
eigenvalue of WTW . The final inequality comes from the fact that Assumption 3 is always true with p = 1− λ2(WTW )
which implies that the best p satisfying Assumption 3 in necessarily greater or equal to 1− λ2(WTW ).

C.1 Extension to Random Mixing Matrices

As mentioned in Section 3, all our theoretical results can easily be extended to random mixing matrices. In that framework,
at each iteration t of the D-SGD algorithm, the matrix W (t) is sampled from a doubly stochastic matrix distribution denoted
W(t), independent of the iterates of parameters θ(t), and possibly time-varying.

To obtain the convergence result, we slightly modify Assumption 3 and Assumption 4 by adding an expectation with respect
to W in front of the equations. For instance, Assumption 3 becomes EW∼W‖MWT −M‖2F ≤ (1− p)‖M −M‖2F . Then,
the statement of Theorem 1 is also slightly modified by assuming that it is the distributionsW(0), . . . ,W(T−1) that must
now respect Assumptions 3 and 4.

By appropriately conditioning with respect to the random mixing matrices or with respect to the iterates, the proof of the
theorem remains the same.

C.2 Closed-Form for the Line-Search

In this section, we give the closed-form solution of the line-search problem found in the Frank-Wolfe algorithm 2. Recall
that we seek to solve:

γ? = arg min
γ∈[0,1]

{
g̃(γ) , g ((1− γ)W + γP )

}
,

with

g(W ) =
1

n

∥∥∥WΠ− 11T

n
Π
∥∥∥2

F
+
λ

n

∥∥∥W − 11T

n

∥∥∥2

F
.
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The function g being quadratic, the objective g̃(γ) is also quadratic with respect to γ. Hence, it suffices to put the derivative
g̃′ of g̃ equal to 0, and we get the closed-form solution:

γ? =

∑K
k=1(Π:,k1−WΠ:,k)T(P −W ) ·Π:,k − λ · tr

((
W − 11T

n

)T
(P −W )

)
‖(P −W )Π‖2F + λ‖P −W‖2F

.

D ADDITIONAL EXPERIMENTS

In this section, we provide additional details on our experimental setup, as well as additional results to complement the main
results in the paper.

D.1 Detailed Experimental Setup

Our main goal is to provide a fair comparison of the convergence speed across different topologies in order to show the
benefits of the principled approach to topology learning provided by STL-FW. We essentially follow the experimental setup
in Bellet et al. (2022), which we recall below.

In our study, we focus our investigation on the convergence speed, rather than the final accuracy after a fixed number of
iterations. Indeed, depending on when training is stopped, the relative difference in final accuracy across different algorithms
may vary significantly and lead to different conclusions. Instead of relying on somewhat arbitrary stopping points, we
show the convergence curves of generalization performance (i.e., the accuracy on the test set throughout training), up to a
point where it is clear that the different approaches have converged, will not make significantly more progress, or behave
essentially the same.

Datasets. We experiment with two datasets: MNIST (Deng, 2012) and CIFAR10 (Krizhevsky et al., 2009), which both
have K = 10 classes. For MNIST, we use 50k and 10k examples from the original set for training and testing respectively.
For CIFAR10, we used 50k images of the original training set for training and 10k examples of the test set for measuring
prediction accuracy.

For both MNIST and CIFAR10, we use the heterogeneous data partitioning scheme proposed by McMahan et al. (2017) in
their seminal FL work: we sort all training examples by class, then split the list into shards of equal size, and randomly
assign two shards to each node. When the number of examples of one class does not divide evenly in shards, as is the case
for MNIST, some shards may have examples of more than one class and therefore nodes may have examples of up to 4
classes. However, most nodes will have examples of 2 classes.

Models. We use a logistic regression classifier for MNIST, which provides up to 92.5% accuracy in the centralized setting.
For CIFAR10, we use a Group-Normalized variant of LeNet (Hsieh et al., 2020), a deep convolutional network which
achieves an accuracy of 74.15% in the centralized setting. These models are thus reasonably accurate (which is sufficient to
study the effect of the topology) while being sufficiently fast to train in a fully decentralized setting and simple enough
to configure and analyze. Regarding hyper-parameters, we use the learning rate and mini-batch size found in Bellet et al.
(2022) after cross-validation for n = 100 nodes, respectively 0.1 and 128 for MNIST and 0.002 and 20 for CIFAR10.

Metrics. We evaluate a network of n = 100 nodes, creating multiple models in memory and simulating the exchange of
messages between nodes. To ignore the impact of distributed execution strategies and system optimization techniques, we
report the test accuracy of all nodes (min, max, average) as a function of the number of times each example of the dataset has
been sampled by a node, i.e. an epoch. This is equivalent to the classic case of a single node sampling the full distribution.
All our results were obtained on a custom version of the non-iid topology simulator made available online by the authors
of Bellet et al. (2022),2 which provides deterministic and fully replicable experiments on top of Pytorch and ensures all
topologies were used in the same algorithm implementation and used exactly the same inputs.

Baselines We compare our results against an ideal baseline: a fully-connected network topology with the same number of
nodes. All other things being equal, any other topology using less edges will converge at the same speed or slower: this
is therefore the most difficult and general baseline to compare against. This baseline is also essentially equivalent to a
centralized (single) IID node using a batch size n times bigger, where n is the number of nodes. Both a fully-connected

2https://gitlab.epfl.ch/sacs/distributed-ml/non-iid-topology-simulator

https://gitlab.epfl.ch/sacs/distributed-ml/non-iid-topology-simulator
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Topology In-degree Out-degree Classes in neighborhood Bias 1− p

dmax = 3
STL-FW (ours) 3.0± 0.0 3.0± 0.0 4.0± 0.0 0.15± 0.0 0.85

Random d-regular 3.0± 0.0 3.0± 0.0 3.88± 0.38 0.28± 0.1 0.89

dmax = 9
STL-FW (ours) 9.0± 0.0 9.0± 0.0 10.0± 0.0 0.0± 0.0 0.41

Random d-regular 9.0± 0.0 9.0± 0.0 9.65± 0.65 0.09± 0.04 0.39

Table 1: Statistics of the topologies used in the synthetic data experiments of Section 6.1.

network and a single IID node effectively optimize a single model and sample uniformly from the global distribution: both
thus remove entirely the effect of label distribution skew and of the network topology on the optimization. In practice, we
prefer a fully-connected network because it converges slightly faster and obtains slightly better final accuracy than a single
node sampling randomly from the global distribution.

We also provide comparisons against popular sparse topologies, such as random graphs and exponential graphs (Ying et al.,
2021). For the random graph, we use a similar number of edges (dmax) per node to determine whether a simple sparse
topology could work equally well. For the exponential graph, we follow the deterministic construction of Ying et al. (2021)
and consider edges to be undirected, resulting in dmax = 14 for n = 100.

We finally compare against D-Cliques (Bellet et al., 2022), the only competitor which takes into account the data heterogeneity
in the choice of topology. D-Cliques constructs a topology around sparsely inter-connected cliques such that the union of
local datasets within a clique is representative of the global distribution, i.e. it minimizes the first term in our objective
function (Eq. 8) within each clique.

D.2 Statistics of the Used Topologies

In this section, we provide tables containing important statistics about the topologies used in the experiments. In each table,
a row corresponds to a specific topology having at most dmax in and out-neighbors per node. The columns are as follows:

• In-degree (respectively Out-degree): average and standard deviation of the number of incoming (respectively outgoing)
edges per node.

• Classes in neighborhood: average and standard deviation of the number of different classes in the direct neighborhood
of a node. Recall that each node individually observes examples only from a subset of the 10 different classes (1 for the
synthetic dataset, 2 for MNIST, 2-4 for CIFAR10).

• Bias: average and standard deviation of (
∑n
j=1Wijπjk− 1

n

∑n
j=1 πjk)2 across each node i. In other words, it measures

the neighborhood heterogeneity in terms of class proportions, which (up to a constant factor) corresponds to the bias
term in (7). According to our theory, the smaller the bias term, the better the topology.

• 1− p: the mixing parameter of the topology (see Assumption 3). Recall that for a topology W , 1− p = λ2(WTW ).
According to our theory (and prior work, see e.g., Koloskova et al., 2020), the smaller 1− p, the better the topology.

Interestingly, all tables show that our algorithm STL-FW outputs topologies that are dmax-regular. Therefore, the com-
munication burden is the same for all nodes. This is a desirable property for scalability, that the star topology induced by
server-based federated learning does not satisfy.

Table 1 provides the statistics of the topologies used in the synthetic data experiment. We observe that the mixing parameter
p are similar for both our topologies (STL-FW) and the random d-regular graph. However, STL-FW achieves much smaller
bias, resulting in more classes being represented in the neighborhood of each node. This explains the faster convergence of
D-SGD with our topology, in line with our theoretical results.

Table 2 (MNIST) and Table 3 (CIFAR10) provide the statistics of the topologies used in the real data experiments. The same
conclusions made regarding the synthetic experiments hold here regarding the comparison of STL-FW with the random
d-regular graphs. D-Cliques (Bellet et al., 2022), the only topology that is also constructed in a data-dependent fashion,
achieves rather low bias (albeit slightly larger than our STL-FW topology) but has rather bad mixing properties (large
1 − p). This confirms our claim that D-Cliques reduces the bias without ensuring good mixing (due to the constrained
arrangements of nodes in sparsely interconnected cliques). This explains the superior performance of our topology. Last
but not least, looking at dmax = 5, we notice that D-Cliques is unable to satisfy the constraints that the maximum degree
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Topology In-degree Out-degree Classes in neighborhood Bias 1− p

dmax = 2
STL-FW (ours) 2.0± 0.0 2.0± 0.0 6.03± 0.62 0.08± 0.02 0.88

Random d-regular 2.0± 0.0 2.0± 0.0 4.94± 0.89 0.14± 0.06 0.99

dmax = 5
STL-FW (ours) 5.0± 0.0 5.0± 0.0 9.99± 0.1 0.007± 0.004 0.55

Random d-regular 5.0± 0.0 5.0± 0.0 7.53± 1.07 0.07± 0.03 0.68
D-cliques 5.82± 0.38 5.82± 0.38 9.81± 0.39 0.02± 0.01 0.99

dmax = 10

STL-FW (ours) 10.0± 0.0 10.0± 0.0 10.0± 0.0 0.001± 0.001 0.35
Random d-regular 10.0± 0.0 10.0± 0.0 9.31± 0.76 0.03± 0.02 0.39

D-cliques 9.9± 0.3 9.9± 0.3 10.0± 0.0 0.005± 0.002 0.84
Exponential 14.0± 0.0 14.0± 0.0 9.72± 0.51 0.02± 0.01 0.54

Table 2: Statistics of the topologies used on the MNIST experiments of Section 6.2.

Topology In-degree Out-degree Classes in neighborhood Bias 1− p

dmax = 2
STL-FW (ours) 2.0± 0.0 2.0± 0.0 5.79± 0.45 0.08± 0.02 0.99

Random d-regular 2.0± 0.0 2.0± 0.0 4.86± 0.81 0.14± 0.06 0.99

dmax = 5
STL-FW (ours) 5.0± 0.0 5.0± 0.0 9.98± 0.14 0.008± 0.005 0.64

Random d-regular 5.0± 0.0 5.0± 0.0 7.4± 0.97 0.07± 0.03 0.68
D-cliques 5.82± 0.38 5.82± 0.38 9.71± 0.55 0.022± 0.012 0.99

dmax = 10

STL-FW (ours) 10.0± 0.0 10.0± 0.0 10.0± 0.0 0.001± 0.001 0.45
Random d-regular 10.0± 0.0 10.0± 0.0 9.26± 0.82 0.033± 0.016 0.39

D-cliques 9.9± 0.3 9.9± 0.3 10.0± 0.0 0.004± 0.002 0.84
Exponential 14.0± 0.0 14.0± 0.0 9.68± 0.58 0.024± 0.012 0.54

Table 3: Statistics of the topologies used in the CIFAR10 experiments of Section 6.2.

should not exceed 5. This also illustrates the greater flexibility of STL-FW when it comes to controlling the per-iteration
communication complexity.

D.3 Impact of λ in STL-FW

Figure 3 shows the impact of λ, which rules the bias-variance trade-off in our objective function for learning the topology.
We present results for two extreme values, respectively 0.0001 and 1000 as well as middle ground of 0.1. For both datasets,
λ has little effect on convergence speed. From a practical perspective, this is an advantage as it removes the need for tuning
λ (one can simply set it to a default positive value). This behavior may be explained by the fact that reducing the bias term
alone also leads to a reduction of variance. Hence, the variance term becomes useful only when the bias term has been
“erased” (or made very small), which can happen only after a certain number of STL-FW iterations, i.e., for a potentially
large dmax. For all other experiments, we used λ = 0.1.

D.4 Impact of dmax on STL-FW

Figure 4 shows on a single plot the impact of the communication budget dmax of STL-FW on the convergence speed of
D-SGD. The communication budget has a strong impact in both cases, with STL-FW providing the same convergence speed
as fully-connected when dmax = 99, but with some residual variance because some nodes end up wth less than 99 edges.
Most of the benefits of STL-FW are obtained with the first 10 edges, with additional edges providing only marginal benefits
compared to fully-connected. We thus chose to show all experiments of the main text with three budgets, a small dmax = 2,
a medium dmax = 5, and a large budget dmax = 10.

Finally, for a small budget dmax = 2, we had seen in Figure 2 in the main text that STL-FW did not provide significant
benefits compared to a random graph on CIFAR10. Figure 5 shows that as soon as dmax = 3, STL-FW starts providing
benefits compared to a random topology on CIFAR10.
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MNIST CIFAR10

Figure 3: Effect of the hyperparameter λ of STL-FW on the convergence speed of D-SGD with 100 nodes, dmax = 10.

(a) MNIST (b) CIFAR10

Figure 4: Effect of communication budget (dmax) of STL-FW on the convergence speed of D-SGD with 100 nodes, λ = 0.1.

E DISCUSSION ON VARIANTS OF D-SGD

Gradient tracking (Koloskova et al., 2021) and variance/bias correction techniques (Tang et al., 2018; Yuan et al., 2020; Yuan
and Alghunaim, 2021; Huang and Pu, 2021) propose algorithmic modifications of D-SGD to mitigate the impact of data
heterogeneity. Our work shows that another way to mitigate this impact is by choosing an appropriate topology. One might
therefore ask whether our approach is relevant in view of the existence of these techniques. In fact, these methods come with
limitations or restrictions compared to vanilla D-SGD: some of them exhibit worse dependence to the topology, some are
not adapted to non-convex objectives or time-varying topologies, and they all require more calculations and local memory
than D-SGD. More importantly, a close look at their convergence results reveals that they still have some dependency to the
heterogeneity ζ hidden in constants or in the learning rate. This is notably the case in Theorem 2 and Corollary 3 of D2

(Tang et al., 2018) where the bounds still depends on the quantity ζ0 (local heterogeneity at initialization). We can also refer
to the more recent work of Huang and Pu (2021) or Yuan and Alghunaim (2021) where respectively the constants q4 (Eq.
3.33) and r3 (Eq. 119) hide the quantity

∑
i ||∇fi(x?)||2 (local heterogeneity at the optimum). This makes us conclude

that our notion of neighborhood heterogeneity could also be useful for these approaches to further improve the rates and/or
their empirical performance. Our preliminary experiments with the D2 algorithm on the synthetic data of Section 6.1 seem
to indicate that our topology also improves the convergence speed of this algorithm compared to the random topology.
These results also suggest that using D2 with our topology improves the overall robustness to data heterogeneity. Further
investigations of the use of D-SGD extensions with our topology thus appears promising and are kept for future work.
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(a) MNIST (b) CIFAR10

Figure 5: Convergence speed of D-SGD with our STL-FW topology and a random topology under small communication budget
dmax = 3.

MNIST dmax = 2 MNIST dmax = 5 MNIST dmax = 10

CIFAR10 dmax = 2 CIFAR10 dmax = 5 CIFAR10 dmax = 10

Figure 6: Training loss on the full train dataset, evaluated on every node, of D-SGD with STL-FW (our approach) and alternative
topologies on real datasets under different communication budgets. The fully connected graph induces intractable communication costs
but gives a performance upper bound, while the exponential graph is shown for dmax = 10 but exceeds this budget.
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MNIST dmax = 2 MNIST dmax = 5 MNIST dmax = 10

CIFAR10 dmax = 2 CIFAR10 dmax = 5 CIFAR10 dmax = 10

Figure 7: Training accuracy on the full train dataset, evaluated on every node, of D-SGD with STL-FW (our approach) and alternative
topologies on real datasets under different communication budgets. The fully connected graph induces intractable communication costs
but gives a performance upper bound, while the exponential graph is shown for dmax = 10 but exceeds this budget.
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