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Abstract

Spiking neural networks (SNN) have recently
emerged as alternatives to traditional neural net-
works, owing to energy efficiency benefits and
capacity to capture biological neuronal mecha-
nisms. However, the classic backpropagation
algorithm for training traditional networks has
been notoriously difficult to apply to SNN due
to the hard-thresholding and discontinuities at
spike times. Therefore, a large majority of prior
work believes exact gradients for SNN w.r.t. their
weights do not exist and has focused on approx-
imation methods to produce surrogate gradients.
In this paper, (1) by applying the implicit func-
tion theorem to SNN at the discrete spike times,
we prove that, albeit being non-differentiable in
time, SNNs have well-defined gradients w.r.t.
their weights, and (2) we propose a novel train-
ing algorithm, called forward propagation (FP),
that computes exact gradients for SNN. FP ex-
ploits the causality structure between the spikes
and allows us to parallelize computation forward
in time. It can be used with other algorithms that
simulate the forward pass, and it also provides
insights on why other related algorithms such as
Hebbian learning and also recently-proposed sur-
rogate gradient methods may perform well.

1 Introduction

Spiking neural networks (SNNs), inspired by biological
neuronal mechanisms and sometimes referred to as the
third generation of neural networks such as by (Maass,
1997), have garnered considerable attention recently (e.g.,
see Roy et al. (2019); Panda et al. (2020); Cao et al. (2015);
Comsa et al. (2020); Diehl and eCook (2015)) as low-
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power alternatives. For instance, SNNs have been shown
to yield orders of magnitude energy saving over ANNs on
emerging neuromorphic hardware (Akopyan et al., 2015;
Davies et al., 2018). SNNs have other unique properties,
owing to their ability to model biological mechanisms such
as dendritic computations with temporally evolving poten-
tials (e.g., Gidon et al. (2020)) or short-term plasticity,
which allow them to even outperform ANNs in accuracy
in some tasks (e.g., Moraitis et al. (2020)). The power of
neuromorphic computing can even be seen in ANNs, e.g.,
(Jeffares et al., 2022) use rank-coding in ANN inspired by
the temporal encoding of information in SNNs. However,
due to the discontinuous resetting of the membrane po-
tential in spiking neurons, e.g., in Integrate-and-Fire (IF)
or Leaky-Integrate-and-Fire (LIF) type neurons (refer to
Burkitt (2006); Kornijcuk et al. (2016)), it is notoriously
difficult to calculate gradients and train SNNs by conven-
tional methods. For instance, (Jeffares et al., 2022) use the
fact that “spike coding poses difficulties and training that
require ad hoc mitigation” and “SNNs are particularly dif-
ficult to analyse mathematically” to motivate rank-coding
for ANN. As such, many existing works on training SNN
do so without exact gradients, which range from heuristic
rules like Hebbian learning, (e.g., Kempter et al. (1999);
Ruf and Schmitt (2006)) and STDP, (e.g., Lee et al. (2018);
Lobov et al. (2020)), to methods like SNN-ANN conver-
sion, (e.g., Rueckauer et al. (2017); Ding et al. (2021); Ho
and Chang (2021)), and surrogate gradient approximations,
e.g., (Neftci et al., 2019).

In this work, by applying the implicit function theorem
(IFT) at the firing times of the neurons in SNN, we first
show that under fairly general conditions, gradients of loss
w.r.t. network weights are well-defined. We then provide
what we call a forward-propagation (FP) algorithm which
uses the causality structure in network firing times and our
IFT-based gradient calculations in order to calculate exact
gradients of the loss w.r.t. network weights. We call it for-
ward propagation because intermediate calculations needed
to calculate the final gradient are actually done forward
in time (or forward in layers for feed-forward networks).
Our method was developed independently and in parallel to
the recent Forward-Forward algorithm by (Hinton, 2022),
which shares the idea that the algorithm computes the nec-
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essary quantities for gradients in the forward pass, rather
than the usual backpropagation. We highlight the follow-
ing:

• Our method can be applied in networks with arbitrary
recurrent connections (up to self loops) and is agnos-
tic to how the forward pass is implemented. We pro-
vide an implementation for computing the firing times
in the forward pass, but as long as we can obtain ac-
curate firing times and causality information (for in-
stance, using existing libraries), we can calculate gra-
dients.

• Our method can be seen as an extension of Heb-
bian learning as it illustrates that the gradient w.r.t.
a weight Wji connecting neuron j to neuron i is al-
most an average of the feeding kernel yji between
these neurons at the firing times. In the context of
Hebbian learning (especially from a biological per-
spective), this is interpreted as the well-known fact
that stronger feeding/activation amplifies the associa-
tion between the neurons. (See (Choe, 2013; Gerstner
et al., 2014).)

• In our method, the smoothing kernels yji arise natu-
rally as a result of application of IFT at firing times,
resembling the smoothing kernels applied in surrogate
gradient methods. As a result, (1) our method sheds
some light on why the surrogate gradient methods
may work well, and (2) in our method, the smoothing
kernels yji vary according to the firing times between
two neurons; thus, they can be seen as an adaptive ver-
sion of the fixed smoothing kernels used in surrogate
methods. See remark 2.

1.1 Related Work

A review of learning in deep spiking networks can be found
at (Tavanaei et al., 2018; Pfeiffer and Pfeil, 2018; Roy et al.,
2019; Wang et al., 2020), with (Roy et al., 2019) discussing
also developments in neuromorphic computing in both
software (algorithms) and hardware. (Neftci et al., 2019)
focuses on surrogate gradient methods, which use smooth
activation functions in place of the hard-thresholding for
compatibility with usual backpropagation and have been
used to train SNNs in a variety of settings, e.g., (Esser et al.,
2016; Bellec et al., 2018; Huh and Sejnowski, 2018; Zenke
and Ganguli, 2018; Shrestha and Orchard, 2018; Safa et al.,
2021).

A number of works explore backpropagation in SNNs
(Bohté et al., 2000; Jin et al., 2018; Zhang and Li, 2019).
The SpikeProp framework by (Bohté et al., 2000) assumes
a linear relationship between the post-synaptic input and
the resultant spiking time, which our framework does not
rely on. The method in (Jin et al., 2018) and its RSNN ver-
sion by (Zhang and Li, 2019) are limited to a rate-coded

loss that depends on spike counts. The continuous “spike
time” representation of spikes in our framework is related
to temporal coding, but (Mostafa, 2016) restrict neurons to
1 spike time; our method imposes no such restrictions.

As mentioned in (Wunderlich and Pehle, 2021), applying
methods from optimal control theory to compute exact gra-
dients in hard-threshold spiking neural networks has been
recognized (Selvaratnam et al., 2000; Kuroe and Ueyama,
2010; Kuroe and Iima, 2006). However, unlike in our set-
ting these works consider a neuron with a two-sided thresh-
old and provide specialized algorithms for specific loss
functions. Most related to our work is the recent EventProp
(Wunderlich and Pehle, 2021) which derives an algorithm
for a continuous-time spiking neural network by applying
the adjoint method (which can be seen as generalized back-
propagation) together with proper partial derivative jumps.
EventProp calculates the gradients by accumulating ad-
joint variables while computing adjoint state trajectories
via simulating another continuous-time dynamical system
with transition jumps in a backward pass, but our algorithm
computes gradients with just firing time and causality in-
formation. In particular, the only time we need to simulate
continuous-time dynamics is in the forward pass.

2 Spiking Neural Networks

We first describe the precise models we use throughout the
paper for the pre-synaptic and post-synaptic behaviors of
spiking neurons. We then explain the dynamics of a SNN
and the effects of spike generations.

2.1 Pre-Synaptic Model

For the ease of presentation, a generic structure of a SNN
is illustrated in Fig. 1 on the left. There are many differ-
ent models to simulate the nonlinear dynamics of a spik-
ing neuron (e.g., see Gerstner et al. (2014)). In this paper,
we adopt the Leaky-Integrate-and-Fire (LIF) model which
consists of three main steps.

(i) Synaptic Dynamics. A generic neuron i is stimulated
through a collection of input neurons, its neighborhoodNi.
Each neuron j ∈ Ni has a synaptic connection to i whose
dynamics is modelled by a 1st-order low-pass RC circuit
that smooths out the Dirac Delta currents it receives from
neuron j. Since this system is linear and time-invariant
(LTI), it can be described by its impulse response

hsj(t) = e−αjtu(t),

where αj = 1
τs
j

and τsj = Rs
jC

s
j denotes the synaptic time

constant of neuron j, and u(t) denotes the Heaviside step
function. Therefore, the output synaptic current Ij(t) can
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be written as

Ij(t) = hsj(t) ⋆
∑
f∈Fj

δ(t− f) =
∑
f∈Fj

hsj(t− f), (1)

where Fj is the set of output firing times from neuron j.
Note that in Eq. (1) we used the fact that convolution with
a Dirac Delta function hsj(t) ⋆ δ(t − f) = hsj(t − f), is
equivalent to shifts in time.

(ii) Neuron Dynamics. The synaptic current of all stimu-
lating neurons is weighted by Wji, j ∈ Ni, and builds the
weighted current that feeds the neuron. The dynamic of the
neuron can be described by yet another 1st-order low-pass
RC circuit with a time constant τni = Rn

i C
n
i and with an

impulse response

hni (t) = e−βitu(t)

where βi = 1
τn
i

. The output of this system is the potential
Vi(t).

(iii) Hard-thresholding and spike generation. The mem-
brane potential Vi(t) is compared with the firing threshold
θi of neuron i and a spike (a Delta current) is produced by
neuron when Vi(t) goes above θi. Also, after spike genera-
tion, the membrane potential is reset/dropped immediately
by θi.

2.2 Post-Synaptic Kernel Model

We call the model illustrated in the left of Fig. 1 the pre-
synaptic model, as the spiking dynamics of the stimulating
neuronsNi of a generic neuron i appear before the synapse.
In this paper, we will work with a modified but equiva-
lent model in which we combine the synaptic and neuron
dynamics, and consider the effect of spiking dynamics di-
rectly on the membrane potential after it is smoothed out
by the synapse and neuron low-pass filters. We call this the
post-synaptic/kernel model of SNN.

To derive this model, we simply use the fact that the only
source of non-linearity in SNN is hard-thresholding during
the spike generation. In particular, SNN dynamics from the
stimulating neuron j ∈ Ni until the membrane potential
Vi(t) is completely linear and can be described by the joint
impulse response

hji(t) = hsj(t) ⋆ h
n
i (t) =

∫ ∞

−∞
hsj(τ)h

n
i (t− τ)dτ

=

∫ t

0

e−αjτe−βi(t−τ)dτ =
e−αjt − e−βit

βi − αj
u(t).

(2)

Therefore the whole effect of spikes Fj of neurons j ∈ Ni

on the membrane potential can be written in terms of the
kernel

yji(t) =
∑
f∈Fj

hji(t− f). (3)

We call this model post-synaptic since the effect of dy-
namic of neuron j ∈ Ni on Vi(t) is considered after being
processed by the synapse and even the neuron i. Using the
linearity and applying super-position for linear systems, we
can see that the effect of all spikes coming for all stimulat-
ing neurons Ni, can be written as

V ◦
i (t) =

∑
j∈Ni

Wjiyji(t), (4)

where Wji is the weight from neuron j to i. We used
V ◦
i (t) to denote the contribution to the membrane poten-

tial Vi(t) after neglecting the potential reset due to hard-
thresholding and spike generation. Fig. 1 (right) illustrates
the post-synaptic model for the SNN.

Remark 1. Our motivation for using this equivalent model
comes from the fact that even though the spikes are not dif-
ferentiable functions, the effect of each stimulating neuron
j ∈ Ni on neuron i is written as a well-defined and (almost
everywhere) differentiable kernel. ♢

Remark 2 (Connection with the surrogate gradients). In-
tuitively speaking, and as we will show rigorously in the
following sections, the kernel model derived here immedi-
ately shows that SNNs have an intrinsic smoothing mech-
anism for their abrupt spiking inputs, through the low-pass
impulse response hji(t) between their neurons. As a re-
sult, one does not need to introduce any additional artificial
smoothing to derive surrogate gradients by modifying the
neuron model in the backward gradient computation path.
We will use this inherent smoothing to prove that SNNs in-
deed have well-defined gradients. Interestingly, our deriva-
tion of the exact gradient based on this inherent smooth-
ing property intuitively explains that even though surrogate
gradients are not exact, they may be close to and yield a
similar training performance as the exact gradients. ♢

2.3 SNN Full Dynamics

In the post-synaptic kernel model, we specified the effect
of spikes from stimulating neurons in (4). To have a full
picture of the SNN dynamics, we need to specify also the
effect of spike generation. The following completes this.

Theorem 1. Let i be a generic neuron in SNN and let Ni

be the set of its stimulating neurons. Let hni (t) and hsj(t) be
the impulse response of the neuron i and synapse j ∈ Ni,
respectively, and let hji(t) = hni (t) ⋆ h

s
j(t) as in (2). Then

the membrane potential of the neuron i for all times t is
given by

Vi(t) = V ◦
i (t)−

∑
f∈Fi

θih
n
i (t− f), (5)

where yji(t) =
∑

g∈Fj
hji(t − g) denotes the smoothed

kernel between the neuron i and j ∈ Ni, and θi denotes the
spike generation threshold of the neuron i.
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Figure 1: (Left) Generic structure of SNN: (i) spikes Fj coming from input neuron j pass through the synaptic RC circuit
with time constant τsj = Rs

jC
s
j and build synaptic current Ij(t), (ii) synaptic current Ij(t) are weighted by Wji and build

the input current
∑

j WjiIj(t), (iii) this current is filtered through neuron i as an RC circuit with time constant τni = Rn
i C

n
i

and produces membrane potential Vi(t), (iv) potential Vi(t) is compared with the threshold θi, producing a spike when it
passes above θi, then (v) Vi(t) is dropped by θi immediately after spike generation. (Right) Post-synaptic kernel model of
SNN. In this model neuron j ∈ Ni stimulates neuron i through the smooth kernel yji(t) =

∑
g∈Fi

hji(t − g) rather than
the abrupt spiking signal

∑
g∈Fj

δ(t− g). Thm. 1 shows equivalence of both models in computing membrane potentials.

It is also worth noting here that through Sec. 2.1 and equa-
tions (2), (3), (4), and the above (5), we can describe the
membrane potential as a weighted sum (and difference) of
exponentials, for which it is easy to compute partial deriva-
tives (which show up in (10)). We provide an intuitive
proof here, but offer a more rigorous proof in A.1.

Proof. We use the following simple result/computation-
trick from circuit theory that in an RC circuit, abrupt drop-
ping of the potential of the capacitor by θi at a specific
firing time f ∈ Fi can be mimicked by adding a volt-
age source −θiu(t − f) series with the capacitor. If we
do this for all the firing times of the neuron, we obtain
a linear RC circuit with two inputs: (i) weighted synaptic
current coming from the neurons Ni, (ii) voltage sources
{−θiu(t− f) : f ∈ Fi}. (See Fig. 2.)

The key observation is that although this new circuit is ob-
tained after running the dynamics of the neuron and ob-
serving its firing times Fi, as far as the membrane potential
Vi(t) is concerned, the two circuits are equivalent. Inter-
estingly, after this modification, the new circuit is a com-
pletely linear circuit and we can apply the super-position
principle for linear circuits to write the response of the neu-
ron as the summation of: (i) the response V (1)

i (t) due to the
weighted synaptic current Isi (t) in the input (as in the previ-
ous circuit), and (ii) the response V (2)

i (t) due to Heaviside
voltage sources {−θiu(t−f) : f ∈ Fi}. From (4), V (1)

i (t)

is simply given by V (1)
i (t) =

∑
j∈Ni

Wjiyji(t).

The response of an RC circuit to a Heaviside voltage func-
tion −θiu(t − f) is given by −θihni (t − f) where hni (t)
is the impulse response of the neuron i as before. We
also used the time invariance property (for shift by f ) and
a well-known result from circuit theory (Thevenin-Norton

Figure 2: (Left) Equivalence of response for: (i) a nonlin-
ear neuron with weighted synaptic currents I(t) and spike
generation, and (ii) a linear neuron with input I(t) and
Heaviside voltages {−θiu(t − f) : f ∈ Fi}. (Right) Ex-
ample membrane potential over time using Eq. (5)

theorem) that for an RC circuit the impulse response due
to a Delta current source is the same as the impulse re-
sponse due to a Heaviside voltage source. The response to
all Heaviside voltage functions, from super-position prin-
ciple, is simply given by V (2)

i (t) = −θi
∑

f∈Fi
hni (t− f).

Therefore, we obtain that

Vi(t) = V
(1)
i (t) + V

(2)
i (t)

=
∑
j∈Ni

Wjiyji(t)−
∑
f∈Fi

θih
n
i (t− f). (6)

This completes the proof. ⊓⊔
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3 Exact Gradient Computation via Implicit
Function Theorem

The Implicit Function Theorem (IFT) will be our main tool
for proving the existence of gradients for SNNs. Full state-
ment of the theorem and examples are given in A.2. The
reason we need to use IFT lies in the fact that the output
of a neuron i, which is a spike generated at time t, is de-
scribed by the implicit function Vi(t) = θi, whereas in
usual ANN the input-output relationship is explicit, e.g.,
f(input) = output.

3.1 Loss Formulation in SNNs

In most settings, we feed the network with an input signal
consisting of a collection of spikes within a given time in-
terval and record the firing timesF = ⊔iFi (disjoint union)
of all the spikes produced by neurons i and also the poten-
tial of the output layer Vo(t). Here, we consider a quite
generic loss function of the form

L = ℓF (F ;W ) +

∫ T

0

ℓV (Vo(t),F ;W )dt, (7)

where ℓF and ℓV are assumed to be differentiable functions
of all their arguments, with ℓF the part of the loss that de-
pends on firing times F , and ℓV the part that depends on
membrane potential at the output layer, respectively. Note
the second term ℓV (Vo(t),F ;W ) is typically relevant in
regression tasks, where in those cases we always assume
that the output layer is linear without any firing and poten-
tial reset. The first term, in contrast, typically happens in
classification tasks.

Theorem 2. Let L be the generic loss function as defined
before in (7). Then,

(i) loss L depends only on the spike firing times F and
the weights W , i.e., L = L(F ,W ),

(ii) L(F ,W ) is a differentiable function of F and W
if ℓV (Vo(t),F ;W ) and ℓF (F ;W ) are differentiable
functions of all their arguments (Vo(t),F ;W ),

(iii) loss L has well-defined gradients w.r.t. the weightsW
if the spike firing times F are differentiable w.r.t. the
weights W .

Proof. (i) Note that in our post-synaptic kernel model de-
rived in Section 2.2, the membrane potential of the output
layer Vo(t) can be written (in a more expanded form) as

Vo(t) =
∑
j∈No

Wjo

∑
g∈Fj

hjo(t− g). (8)

Note that we dropped the term −θo
∑

f∈Fo
hno (t − f) due

to potential reset because we always assume that the output

neuron is linear in regression tasks where Vo(t) appears di-
rectly in the loss. It is also seen that Vo(t) at each time t is
a function of all the firing times F and also weights W .

(ii) Since ℓF is assumed to be a differentiable function ofF
and W , we need to verify only the differentiability of the
integral expression in (7). First note that hjo(t) is a differ-
entiable function except at t = 0 where, albeit being non-
differentiable, it has finite left and right derivatives. This
implies that Vo(t) in (8) is differentiable at all t except at
the firing times of its stimulating neuronNo, where at those
points it has finite left and right derivatives. Therefore, we
may write

∂

∂F

∫ T

0

ℓV (Vo(t),F ;W )dt

=

∫ T

0

∂ℓV
∂Vo

(Vo(t),F ;W )
∂Vo(t)

∂F

+

∫ T

0

∂ℓV
∂F

(Vo(t),F ;W )dt.

Since ℓV is assumed to be a differentiable function of F ,
the second integral is well-defined. Also, ℓV is differen-
tiable w.r.t. Vo. And Vo(t), being a weighted combination
of terms hji(t − g) with g ∈ ⊔j∈No

Fj , is a differentiable
function of firing times F except perhaps at finitely many
points t ∈ ⊔j∈NoFj where at those points it may be dis-
continuous but has finite left and right derivatives. This
implies that the first integral is also well-defined.

(iii) Since from (ii), the loss L = L(F ;W ) is a differen-
tiable function of both F and W , we have that

∂L
∂W

= L1
∂F
∂W

+ L2

where L1 and L2 denote the partial derivative of L w.r.t. its
1st and 2nd argument, and where we used the fact that from
(ii) both L1 and L2 are well-defined. It is seen that the gra-
dients of loss w.r.t. W exist provided that the firing times
F are differentiable w.r.t. the weights. This completes the
proof. ⊓⊔

Theorem 2 implies that to prove the existence of the gradi-
ents w.r.t. to the weights, which is needed for training the
SNN, it is sufficient to prove that the firing times F are dif-
ferentiable w.r.t. the weights W . We will prove this in the
next section by applying the IFT.

3.2 Differentiability of Firing Times w.r.t. Weights

Let us consider a generic neuron i and let us write the set
of equations for firing times of i by using (5) as:

Vi(f) =
∑
j∈Ni

Wjiyji(f)− θi
∑
m<f

hni (f −m)− θi = 0,

(9)
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where with some abuse of notation we use f both for the fir-
ing time and its label (i, f) ∈ F = ⊔lFl. We can write the
equations for all the firing times as V(F ,W ) = 0 where
V : RF × RW → RF is the nonlinear mapping connecting
the F firing times and W weight parameters.

Theorem 3. Let P be a permutation matrix sorting the fir-
ing times in F in an ascending order. Then, ∂V

∂F = PTLP
where L is an F × F lower triangular matrix. Moreover,
L has strictly positive diagonal elements Lkk > 0 for all
k = 1, 2, . . . ,F.

Proof provided in A.3. Informally, this is since the corre-
sponding equation for firing time f can only have contri-
butions from firing times g < f . By sorting the firing time
equations in ascending time order, this results in a lower tri-
angular structure for partial derivatives w.r.t. firing times.
The potential Vi(t) when it fires at t = f should have a
positive derivative, since the potential needs to increase to
surpass the firing threshold.

Using Theorem 3, we can now prove that the conditions of
IFT (Theorem 4) are always fulfilled for firing time equa-
tions. This give us explicit formulas for the gradients of the
network firing times w.r.t. network weights (Theorem 5).
This is summarized in the following.

Theorem 4. Let V(F ,W ) = 0 be the set of equations
corresponding to the firing times. Then the F× F Jacobian
matrix ∂V

∂F is non-singular. Moreover, the firing times F
can be written as a differentiable function of the weights
W .

Proof. The first part result follows from Theorem 3:

det
(
∂V
∂F

)
= det(PTLP) = det(P)det(L)det(PT )

= det(L) =
∏
k

Lkk > 0,

where we used the fact that det(P) = 1 for any permutation
matrix P. The second part follows from Implicit Function
Theorem: V(F ,W ) is a differentiable function of the firing
times and weights and ∂V

∂F is non-singular, thus, firing times
F can be written as a differentiable function of the weights.

⊓⊔

Remark 3. Using Theorem 3 and 4 and applying the IFT,
we have that ∂V

∂F ×
∂F
∂W = − ∂V

∂W . After suitable sorting of
the firing times F (thus, setting the required permutation
matrix P to the identity matrix), this can be written as

L
∂F
∂W

= − ∂V
∂W

, (10)

where L is a lower diagonal matrix. As a result, one can
solve for the derivatives ∂F

∂W recursively, so no matrix in-
version is needed. ♢

Remark 4. Our results hold for both feed-forward and re-
current networks since it is derived using only the causality
relation between the firing times. ♢

Remark 5. The matrix ∂V
∂W depends only on the values

of kernels at the firing times. More specifically, let f be a
firing times of neuron i and let j ∈ Ni be one of the feeding
neurons of neuron i. Then, ∂V(f)

∂Wji
= yji(f). Moreover,

∂V(f)
∂Wkl

= 0 if l ̸= i or k ̸∈ Ni. ♢

Theorem 5. (Existence of gradients w.r.t. weights) Let L
be a generic loss function for training a SNN as in (7) with
ℓV and ℓF being differentiable w.r.t. their arguments. Then,
L has well-defined gradients w.r.t. weights.

Proof. From Theorem 2, L has well-defined gradients
w.r.t. weights if the firing times F are differentiable w.r.t.
weights, which follows from Theorem 4 by applying the
IFT. This completes the proof. ⊓⊔

Generalization. We presented our results in the context
of exponential kernels (to be able to compare with (Wun-
derlich and Pehle, 2021)) where we showed that the re-
sponse of the neuron membrane potential to the input and
output spikes can be represented with the exponential feed-
ing and refractory kernels hji(t) = e−αjt−e−βit

βi−αj
u(t) and

−θihi(t) = −θie−αjtu(t). The more generic model for
the neuron is the Spike Response Model (SRM) by (Gerst-
ner, 1995) where the membrane potential and output spikes
can be written as

Vi(t) = Kin
i (t) ⋆

∑
j∈Ni

Wjis
in
j (t) +Kref

i (t) ⋆ souti (t),

souti (t) = u(Vi(t)− θi)

where sinj (t) and souti (t) denote the input and output spikes
and where θi is the firing threshold. Our method based on
IFT is still applicable as far as Kin

i (t) and Kref
i (t) are dif-

ferentiable functions. Also, we need the additional condi-
tion that Kin

i (0+) = 0 to avoid sudden jumps due to the
input spikes so that we can still write the membrane poten-
tial at any firing time f as the equality condition

Vi(f) =
∑
j∈N

Wji

∑
g∈Fj

Kin
i (f − g)

−
∑

e∈Fi:e<f

Kref
i (f − e) = θi.

(11)

These conditions are definitely satisfied for Kin
j (t) =

hji(t) and Kout
i (t) = −θihi(t). By applying the IFT to

the differentiable equations (11) corresponding to all the
spike firing times, we can find the gradient of the firing
times w.r.t. to the weight parameters.

4 Implementation

Results from Section 3 also prescribe a natural algorithm.
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4.1 Causality Graph

By Eq. (5), calculating the membrane potential at any given
time just relies on keeping track of causal inputs from the
previous (feeding) neuron(s). To efficiently calculate par-
tial derivatives, we will keep track of this information while
calculating network outputs. A detailed explanation on a
small example is given in A.4.

Algorithm 1 Firing Time Computation
Input: Firing times F = ⊔jFj from neighbors j ∈ Ni

and weights Wji. Hyperparameters α, β, θi.
Initialize A,B = 0, tref = 0.
Initialize empty queue.
for f (sorted) in F (where f from neighbor j) do

• Append f to queue.
• Update A← A ·e−α(f−tref )+Wji/(β−α) and

B ← B · e−β(f−tref ) +Wji/(α− β).
• Update tref ← f .
• Solve for t: Ae−αt + Be−βt = θi. Add t to

output firing times.
• Update A ← A · e−α(t−tref ) and B ←

e−β(t−tref ) − θi.
• Update tref ← t.
Add entire queue as causal edges to t.

end for
Return Causal graph and firing times.

4.2 Forward spike time computation

Simulating an SNN in the forward pass and computing the
firing times of its neurons requires solving the Euler in-
tegration corresponding to the differential equation of the
synapse and membrane potentials. This is usually done ap-
proximately by quantizing time into small steps and itera-
tively updating potentials. There are several libraries such
as snnTorch by (Eshraghian et al., 2021a) that implement
this. Our gradient computation can also use these methods
where the firing times are computed.

Here, we propose another method that uses the impulse re-
sponse (kernel) representation of the corresponding differ-
ential equations derived in (2) and (5) to compute the firing
times exactly without any need for time quantization. The
main idea behind this method is that for exponential synap-
tic and membrane impulse responses, one can always write
the membrane potential of a neuron over a time interval
[t0, t1] at which the neuron receives no spikes at its input
as Ae−αt +Be−βt where A and B are some suitable coef-
ficients and where α, β are the inverse synaptic and mem-
brane time constants (common to all neurons), respectively.
Thus the next firing time can be found by computing the
time t, if there is any, at which this curve intersects the hor-
izontal line θ. Once this firing time is computed, we update
A, B and the search interval [t0, t1] depending on whether

the neuron receives any spikes before this firing time, and
so on. This is summarzied in Algorithm 1.

Remark 6. Note that one can calculate partial derivatives
immediately after solving for the firing time and computing
the causality graph. In feed-forward networks, these calcu-
lations for neurons in the same layer can be done in parallel
since the firing times of neurons in the same layer will not
affect each other.

4.3 Forward propagation for gradient computation

The forward propagation algorithm (Algorithm 2) emerges
from Theorems 3 and 4. We can calculate partial deriva-
tives of the loss after calculating the partial derivatives of
the network firing times w.r.t. network weights, which are
in turn calculated by applying the implicit function theo-
rem with appropriate partial derivatives of the firing time
equations.

Algorithm 2 Forward Propagation
Input: Network output firing times F = ⊔iFi for all i
and causal graph (e.g., by Alg. 1). Hyperparameters for
network and loss.
Initialize matrices L, ∂F

∂W , and ∂V
∂W .

for f (sorted) in F do
Calculate partial derivatives of the firing time equation
for f output by neuron i: Vi(f)− θi = 0.
• Use causal information and Equation (5) to fully

describe Vi(f).
• Update L. Calculate ∂

∂fj→i
(Vi(f)− θi) for each

fj→i in the causal graph for f .
• Update L. Calculate ∂

∂f (Vi(f)− θi).
• Update ∂V

∂W . Calculate ∂
∂Wji

(Vi(f)− θi) for all
weights Wji attached to neuron i.

• IFT Step. Solve Equation (10) via back substi-
tution to update ∂F

∂W .
end for
Calculate ∂L

∂W using final ∂F
∂W via Eq. (10).

Again, due to the lower triangular structure of matrix L
(Theorem 3), we can iteratively solve the linear system (10)
of IFT equations without a full matrix inversion. This costs
O(|F|2|W|) in time, using (1 + 2 + 3 + ... + |F|) × ( up
to |W|) operations to solve for the |F| × |W| Jaccobian
matrix. The memory cost is O(|F||W|) to store the solu-
tions and one of the Jacobians, whereO(|F||W|) is always
needed for storing the gradients.

5 Simulation

5.1 XOR Task

To investigate whether the network can robustly learn to
solve the XOR task as in (Mostafa, 2016), we reproduced
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Figure 3: (Left) Model for XOR task. (Right) Given the
input (0, 0), output neurons have different voltage traces.
Note that each output neuron has the same input firing
times, from each of the 4 hidden layer neurons, but the net-
work is able to learn weights that push the output neuron
corresponding to label ’1’ to spike later, and the one corre-
sponding to label ’0’ (true label) to spike earlier.

most experiment settings by coding each of the input spikes
as 0.0 (early spike) or 2.0 (late spike), which feed into 4
hidden neurons, which in turn feed into 2 output neurons.
We use a cross-entropy loss based on first spike times of the
output neurons (so the label neuron should fire sooner than
the other). For each of 1000 different random weight ini-
tializations, we trained until convergence with learning rate
0.1. Unlike in (Mostafa, 2016), we consider one iteration
of training to be just 1 full batch, rather than 100. Across
all 1000 trials, the maximum steps to converge was 98, with
the average being 17.52 steps. Compare this to maximum
61 training iterations (each iteration seeing 100 full batches
of the four input patterns), with average 3.48 iterations in
(Mostafa, 2016). Fig. 3 illustrates the model implement-
ing the XOR task, as well as a post-training simulation of
membrane potentials for input (0, 0).

5.2 Iris Dataset

We also trained SNN using FP on the Iris dataset to demon-
strate learning from data with real-valued features. Note
one class is linearly separable from the other 2; the lat-
ter are not linearly separable from each other (Anderson,
1936; Fisher, 1936). We encoded the input features with a
scheme similar to (Liu et al., 2017), but modified to where
each real-valued feature ni is transformed into a firing time
via the transformation T · (1− ni−min(ni)

max(ni)−min(ni)
), where T

is the maximum time horizon and the min/max of a feature
is taken over the whole dataset. After training a small 4-
10-3 network, we achieve 100% test accuracy (compare to

Figure 4: A histogram of the first output firing times of
each label neuron, given unseen test data. (Top) At ran-
dom initialization, firing times look the same across all la-
bel neurons. (Bottom) After training, the firing times are
clearly separated into the 3 classes, and all test examples
belonging to the same class as the corresponding label neu-
ron fires earlier than in the other label neurons.

93.3% for MT-1 (4-25-1) and 96.7% for an MLP ANN (4-
25-3) in (Liu et al., 2017)). Again, the network is able to
learn weights to push the true label output neurons to fire
earlier than the others, since our loss function is minimized
when all the correct label neurons fire before other output
neurons. An illustration of this effect is shown in Fig. 4.

5.3 Yin-Yang Dataset

We also implemented FP to train SNN on the Yin-Yang
dataset which is a two-dimensional and non-linearly sep-
arable dataset (Kriener et al., 2022). The Yin-Yang
dataset requires a multi-layer model, as a shallow classi-
fier achieves around 64% accuracy, thus it requires a hid-
den layer and backpropagation (or forward-propagation in
our case) for gradient-based learning to achieve higher ac-
curacy, as noted also in (Wunderlich and Pehle, 2021).

We used a loss based on the earliest spike times of the 3
output neurons, as in (Wunderlich and Pehle, 2021; Göltz
et al., 2021) defined as

L = − 1

Nbatch

[Nbatch∑
i=1

log

(
e−fi,l(i)/τ0∑3
j=1 e

−fi,j/τ0

)
+ γ

(
efi,l(i)/τ1 − 1

)]
,

where fi,j is the first spike time of neuron j for the ith ex-
ample and l(i) is the index of the correct label for the ith

example. The second term is a regularization term which
encourages earlier spike times for the true label neuron, its
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Figure 5: (Left) Comparison to surrogate gradients. The
plot shows the change in training loss over time for train-
ing SNN with exact and surrogate gradients, the fast sig-
moid function and straight-through estimator each with a
count-based and spike-rate cross entropy loss. (Right) A
comparison of model predictions at random initialization,
versus after training.

influence on the total loss controlled by γ. Note that γ = 0
corresponds to usual cross entropy.

Comparing to surrogate methods. First, to compare
training with surrogate gradient methods, we used the
snnTorch library by (Eshraghian et al., 2021a) to train
equivalent models1, using the same hyperparameters and
initializations, but with surrogate gradients. Fig. 5 (left)
compares training with exact gradient (our method) with
using the fast sigmoid (Zenke and Ganguli, 2018) surrogate
function and the straight-through estimator (Bengio et al.,
2013), with both count-based cross entropy loss and a spike
rate cross entropy loss. (See footnote.) All models at ini-
tialization have around 30-36% accuracy and cross entropy
loss around 1.09-1.1, but at the end of 300 epochs of train-
ing, using exact gradients results in faster loss reduction (as
one might expect).

Evaluation. After repeating the experiment with 10 ran-
dom initializations, a 2-layer SNN model trained with FP
obtains a test accuracy with mean 95.0(0.83)%, compara-
ble to (Göltz et al., 2021) reporting 95.9(0.7)%. It is worth
noting that training only involved using the exact gradi-
ents for SGD, without employing other heuristics in (Göltz
et al., 2021), which include a flat weight bump (increase
weights a fixed amount) whenever the proportion of non-
spiking neurons is above a certain threshold, among others.

1Many surrogate methods are usually not compatible with
training using temporal losses, as noted also by (Eshraghian et al.,
2021a) that often the first spike time is non-differentiable with re-
spect to the spikes themselves. To fairly compare to surrogate
methods, instead we used both a spike count-based cross entropy
loss and a spike rate cross entropy loss. The former calculates
cross entropy from the number of spikes emitted by output neu-
rons, and the latter accumulates cross entropy loss at each time
step.

These experiments offer a proof of concept that the network
is able to learn by using exact gradients. We hope our work
will provide a rigorous foundation for improving training
libraries for SNNs. Additional details on experiments pre-
sented in this section can be found in A.5.

6 Discussion

Our framework offers an alternative view of the differen-
tiability of SNN w.r.t. network weights and provides a new
algorithm, forward-propagation (FP) to calculate gradients
of SNN by accumulating information in the forward pass of
the network. Our results apply generally to networks with
arbitrary recurrent connections, and the ideas can be gener-
alized to other Spike Response Models (SRM). Our gradi-
ent method can be used with other algorithms that can sim-
ulate the forward pass dynamics, and the FP algorithm de-
pendence on just the causal graph of firing times allows for
self-contained formulas which can be often be computed
in parallel, e.g., in feed-forward networks. The operations
used to compute gradients via FP are also simple and re-
quire solving a lower triangular linear system, which can
be done quickly.

An interesting by-product of our framework is the fact
that our formulas resemble surrogate gradient methods and
Hebbian learning. For instance, (Zenke and Ganguli, 2018)
uses the negative half of the sigmoid function to smooth
out the discrete spiking behavior. Our framework captures
a natural smoothing exponential kernel already present in
the exact version. (See Remark 2.) Further, the way the
smooth kernels yij(t) between two neurons i and j that ap-
pear in the gradient computation resembles Hebbian learn-
ing where if there are more spikes from i to j the kernel
yij(t) becomes larger, thus, causing the gradient w.r.t. the
connecting weight Wij to become larger. This has a Heb-
bian flavor where more firing/activation causes the connect-
ing weight Wij to be rewarded (for negative gradient) or
punished (for positive gradients) more strongly. These re-
lationships can be of their own interest.
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Göltz, J., Kriener, L., Baumbach, A., Billaudelle, S., Bre-
itwieser, O., Cramer, B., Dold, D., Kungl, A. F., Senn,
W., Schemmel, J., Meier, K., and Petrovici, M. A.
(2021). Fast and energy-efficient neuromorphic deep
learning with first-spike times.

Hinton, G. (2022). The forward-forward algorithm: Some
preliminary investigations.

Ho, N.-D. and Chang, I.-J. (2021). Tcl: an ann-to-
snn conversion with trainable clipping layers. In 2021
58th ACM/IEEE Design Automation Conference (DAC),
pages 793–798.

Huh, D. and Sejnowski, T. J. (2018). Gradient descent for
spiking neural networks. In Bengio, S., Wallach, H.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Gar-
nett, R., editors, Advances in Neural Information Pro-
cessing Systems, volume 31. Curran Associates, Inc.

Jeffares, A., Guo, Q., Stenetorp, P., and Moraitis, T. (2022).
Spike-inspired rank coding for fast and accurate recur-
rent neural networks. In International Conference on
Learning Representations.

Jin, Y., Zhang, W., and Li, P. (2018). Hybrid macro/micro
level backpropagation for training deep spiking neural
networks. In Bengio, S., Wallach, H., Larochelle, H.,



Jane H. Lee, Saeid Haghighatshoar, Amin Karbasi

Grauman, K., Cesa-Bianchi, N., and Garnett, R., ed-
itors, Advances in Neural Information Processing Sys-
tems, volume 31. Curran Associates, Inc.

Kempter, R., Gerstner, W., and van Hemmen, L. (1999).
Hebbian learning and spiking neurons. Phys. Rev. E, 59.

Kornijcuk, V., Lim, H., Seok, J. Y., Kim, G., Kim, S. K.,
Kim, I., Choi, B. J., and Jeong, D. S. (2016). Leaky
integrate-and-fire neuron circuit based on floating-gate
integrator. Frontiers in Neuroscience, 10.
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A Appendix

A.1 Alternative Proof of Theorem 1

Proof (ii): Here we provide a more rigorous proof based on induction on the number of firing times Fi := |Fi| of the
neuron i.

We first check the base of the induction. If there are no firing times, i.e., Fi = ∅ and Fi = 0, then there is no source
of non-linearity and the neuron is a fully linear system. Thus, the response of the neuron to the input weighted synaptic
current Isi (t) is given, as in (4), by

Vi(t) =
∑
j∈Ni

Wjiyji(t),

which yields the desired result since, for Fi = ∅, the second term −
∑

f∈Fi
θih

n
i (t− f) is zero. This confirms the base of

induction for Fi = 0.

Now let us assume that Fi ̸= ∅ and the neuron i has fired at least once (Fi ≥ 1). Here, we can still check that result holds
for all time t ∈ [0, f1) before the first firing time f1 because before the first firing time the circuit is completely linear (thus,
the first term) and the second term is equal to zero as hni (t− f1) = eβi(t−f1)u(t− f1) is equal to zero for all t < f1 (due
to causality and the fact that u(t− f1) = 0 for t < f1).

Now we prove that if the result is true for t ∈ [0, fk) it remains true for t ∈ [fk, fk+1) where we denote the k-th and
(k + 1)-th firing times by fk and fk+1 and apply the convention that fk =∞ for k > Fi.

To prove this, we first note that the weighted synaptic current (see, e.g., Fig. 2) coming from the neurons Ni is given by

Isi (t) =
∑
j∈Ni

Wji

∑
g∈Fi

hsj(t− g)

for all times t ≥ 0. Also, note that since synapses are always linear, this is true independent of whether there is any firing
and potential drop at the neuron i. At the firing time fk the value of potential drops to V (k)

i = Vi(fk)− θi. Thus, to prove
the result, we need to find and verify the response of the neuron to the synaptic current Isi (t) for t ∈ [fk, fk+1) starting
from the initial value V (k)

i . Here again we note that starting from fk the system is again linear until the next firing time
fk+1. Thus, we can again apply the super position principle for linear systems to decompose the response into two parts:
(a) response to the initial condition V (k)

i and (b) response to the input synaptic current Isi (t).

From the linearity and time-invariance of RC circuits, (a) is simply given by

V
(a)
i (t) = V

(k)
i hni (t− fk)

= V
(k)
i e−βi(t−fk)u(t− fk)

= Vi(fk)e
−βi(t−fk)u(t− fk)− θihni (t− fk),

where hni (t) = e−βitu(t) is the impulse response of the neuron i.
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The response to the synaptic current in the time interval t ∈ [fk, fk+1) is also given by

V
(b)
i (t)

(i)
= Isi (t)u(t− fk) ⋆ hni (t)

=

∫ ∞

0

Isi (λ)u(λ− fk)hni (t− λ)dλ

(ii)
=

∫ t

fk

Isi (λ)h
n
i (t− λ)dλ

=

∫ t

0

Isi (λ)h
n
i (t− λ)dλ−

∫ fk

0

Isi (λ)h
n
i (t− λ)dλ

= Isi (t) ⋆ h
n
i (t)−

∫ fk

0

Isi (λ)e
−βi(t−λ)dλ

= Isi (t) ⋆ h
n
i (t)− e−βi(t−fk)

∫ fk

0

Isi (λ)e
−βi(fk−λ)dλ

= Isi (t) ⋆ h
n
i (t)− Isi (t) ⋆ hni (t)

∣∣∣
t=fk

× e−βi(t−fk),

where in (i) we multiplied Isi (t) with u(t − fk) to remove the effect of the synaptic current before fk (since, due to
causality, it cannot affect the neuron potential in the time interval t ∈ [fk, fk+1)), where in (ii) we used the fact that, due
to causality, hni(t− λ) = 0 for λ > t, and that u(λ− fk) is zero for λ < fk.

From the induction hypothesis applied to fk ∈ [0, fk], we have that

Vi(fk) = Isi (t) ⋆ h
n
i (t)

∣∣∣
t=fk

− θi
k−1∑
l=1

hni (fk − fl)

= Isi (t) ⋆ h
n
i (t)

∣∣∣
t=fk

− θi
k−1∑
l=1

hni (fk − fl)

= Isi (t) ⋆ h
n
i (t)

∣∣∣
t=fk

− θi
k−1∑
l=1

e−βi(fk−fl)

= Isi (t) ⋆ h
n
i (t)

∣∣∣
t=fk

− θieβi(t−fk)
k−1∑
l=1

e−βi(t−fl)

= Isi (t) ⋆ h
n
i (t)

∣∣∣
t=fk

− θieβi(t−fk)
k−1∑
l=1

hni (t− fl).

Therefore, after simplification, we obtain that

Isi (t) ⋆ h
n
i (t)

∣∣∣
t=fk

× e−βi(t−fk) (12)

= Vi(fk)e
−βi(t−fk) + θi

k−1∑
l=1

hni (t− fl). (13)

Replacing in (12), therefore, we obtain

V
(b)
i (t) = Isi (t) ⋆ h

n
i (t) (14)

− Vi(fk)e−βi(t−fk) − θi
k−1∑
l=1

hni (t− fl). (15)
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Applying the super position principle, we have

Vi(t) = V
(a)
i (t) + V

(b)
i (t)

= Isi (t) ⋆ h
n
i (t)− θi

k−1∑
l=1

hni (t− fl)− θihni (t− fk)

= Isi (t) ⋆ h
n
i (t)− θi

k∑
l=1

hni (t− fl)

=
( ∑

j∈Ni

Wji

∑
g∈Fi

hsj(t− g)
)
⋆ hni (t)− θi

k∑
l=1

hni (t− fl)

=
∑
j∈Ni

Wji

∑
g∈Fi

hji(t− g)− θi
k∑

l=1

hni (t− fl)

=
∑
j∈Ni

Wjiyji(t)− θi
∑
f∈Fi

hni (t− f),

where in the last equation we used the fact that hni (t − f) = 0 for t ∈ [fk, fk+1) and for f > fk+1. This validates the
result for t ∈ [fk, fk+1), and verifies the induction. This completes the proof.

A.2 Implicit Function Theorem

In many problem in machine learning, statistics, control theory, mathematics, etc. we use a collection of variables to
track/specify the state of an algorithm, a dynamical system, etc. However, in practice, these variables are not completely
free and are connected to each other via specific constraints. In such cases, we are always interested to know the functional
relation between these variables, namely, how changing some variables affect the others (sensitivity analysis). IFT theorem
provides a rigorous method for these types of analyses when the variables are connected through differentiable equality
constraints, as illustrated in the following theorem.

Theorem 6 (Implicit Function Theorem). Let ϕ : Rn × Rm → Rm be a differentiable function and let Z = {(x, y) ∈
Rn × Rm : ϕ(x, y) = 0} be the zero-set of ϕ. Suppose that Z ̸= ∅ and let (x0, y0) ∈ Z be an arbitrary point. Also, let
∂ϕ
∂yϕ(x0, y0) be them×mmatrix of partial derivatives w.r.t. y and assume that it is non-singular, i.e., det

(
∂ϕ
∂y (x0, y0)

)
̸= 0.

Then,

• There is an open neighborhood Nx around x0 and an open neighborhood Ny around y0 such that ∂ϕ
∂yϕ(x, y) is non-

singular for all (x, y) ∈ N := Nx ×Ny (including of course the original (x0, y0).

• There is a function ψ : Nx → Ny such that (x, ψ(x)) belongs to the zero set Z , namely, ϕ(x, ψ(x)) = 0, for all
x ∈ Nx; therefore, the variables y in Ny can be written as a function y = ψ(x) of the variables x in Nx.

• ψ is a differentiable function of x for x ∈ Nx and

∂ϕ

∂y
× ∂ψ

∂x
+
∂ϕ

∂x
= 0, (16)

which from the non-singularity of ∂ϕ
∂y yields

∂ψ

∂x
= −

(∂ϕ
∂y

)−1

× ∂ϕ

∂x
. (17)

Example 1. Fig. 6 illustrates the zero-set Z = {(x, y) : ϕ(x, y) = 0} of a function ϕ : R2 → R. To investigate the
conditions of the implicit function theorem, we first note that the gradient of ϕ denoted by ∇ϕ = (∂ϕ∂x ,

∂ϕ
∂y ) is always

orthogonal to the level-set (here the zero-set) of ϕ. Thus, by observing the orthogonal vector to curve, we can verify if ∂ϕ
∂x

or ∂ϕ
∂y are non-singular (non-zero in the scalar case we consider here). We investigate several cases:

• Point C: gradient vector does not exist, so the assumptions of the IFT are not fulfilled. One can also see that at C one
cannot write neither x as a function of y nor y as a function of x.
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Figure 6: Illustration of the implicit function theorem.

• Point A: gradient vector has zero horizontal and non-zero vertical component , i.e., ∂ϕ
∂x = 0 and ∂ϕ

∂y ̸= 0. Thus, from
IFT, in a local neighborhood of A, one should be able to write only y as a differentiable function of x.

• Point B: gradient has zero horizontal component. And, only x can be written as differentiable function of y.

• Point D: gradient has non-zero horizontal and vertical components. So, in a local neighborhood of D, one may write
both x and y as a differentiable function of the another.

A.3 Proof of Theorem 3

Proof. We note that due to causality (future firing times cannot affect past ones), the equation corresponding to a specific
firing time f ∈ F can only have contribution from firing times less than f . In other words, ∂Vf

∂g = 0 for all g < f . Letting
P be the permutation matrix sorting the firing times, therefore, the Jaccobian matrix of the sorted firing times given by
P ∂V

∂FPT should be a lower triangular matrix L. This yields the first part ∂V
∂F = PTLP. To check the second part, let k

be the index of a specific firing time f in the sorted version. Let us denote the neuron corresponding to the firing f by i.
Then, we have that

Lkk =
∂Vf

∂f
=

d

df
Vi(f)

∣∣∣
all other firing times fixed

= V ′
i (t)

∣∣∣
t=f−

> 0

which is equal to the left time derivative the potential Vi(t) when it passes through the threshold θi at time t = f . It is
worthwhile to mention that that since Vi(f) is a differentiable function of f , it has both left and right derivatives and they
are equal. However, this derivative is equal to only the left derivative of the potential. Note that this derivative should
be strictly positive otherwise the potential will not surpass the firing threshold θi and no firing time will happen. This
completes the proof. ⊓⊔

A.4 Example: Causality and Differentiability

In order to track the effects of previous layers’ firing times on a current neuron i, we can map which firing times of a
previous neuron cause the firing of a neuron that it feeds into, and so on through the network. Consider the following
simple example of a simple 3 neuron feed-forward network with 1 input dimension:
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1 2 3
w1 w2 w3

y1(t) = x(t) y2(·) y3(·)

f11 f12 f13

f21 f22

f31

1 2 3

1.5 3.5

4

For simplicity, we will assume all neurons have the same parameters α, β, θ. Let w1, w2, w3 be the weights corresponding
to the inputs to neurons 1, 2, and 3, respectively. Suppose that neuron 1 had firing times at f11 = 1, f12 = 2, and f13 = 3.
Neuron 2 fired at f21 = 1.5 and f22 = 3.5. Finally neuron 3 fired at f31 = 4. The input x(t) causes neuron 1 to fire. Then
note that the only firing times that could cause neuron 2 to fire at f21 = 1.5 had to occur before t = 1.5. This is only
f11 = 1. After neuron 2 fires at f21 , its next firing time f22 = 3.5 is affected by f11 , f12 and f13 . And similarly, f21 and f22
affects f31 . This corresponds to the following causality diagram:

f11 = 1 f12 = 2 f13 = 3

f21 = 1.5 f22 = 3.5

f31 = 4

The arrows only point up to one level, which allows us to compute the necessary partial derivatives while computing the
forward pass for the current layer (i.e., layer by layer). Note that while this simple example is for the reset to zero regime,
where the membrane potential resets completely to 0 and all inputs in-between firing times accumulate until the next time
the neuron fires, this kind of diagram can similarly be constructed for other regimes. For instance, if there is a time delay
before inputs can start increasing the membrane potentials again, to decide the causal edges for a current firing time for a
neuron we would have to look for input firing times that occurred at least “time delay” seconds after the current neuron’s
previous firing time.

We will use equations (2), (5), and (6) to define the following system. Since all neurons share the same parameters α, β,
we can simplify some notation and refer to the joint impulse response coming into a neuron as hs+n which corresponds to
equation (2) and the impulse response for just the membrane potential dynamics as hn which corresponds to the hni term
in equation (5). Explicitly,

hs+n(t) =
e−αt − e−βt

β − α
u(t)

hn(t) = e−βtu(t)
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The firing time equations are explicitly given by the following:

w1 ·
∑

t:x(t)=1∧t<f1
1

hs+n(f
1
1 − t) = θ Eq. for f11

w1 ·
∑

t:x(t)=1∧t<f1
2

hs+n(f
1
2 − t)− θ · hn(f12 − f11 ) = θ Eq. for f12

w1 ·
∑

t:x(t)=1∧t<f1
3

hs+n(f
1
3 − t)− θ ·

(
hn(f

1
3 − f11 ) + hn(f

1
3 − f12 )

)
= θ Eq. for f13

w2 · hs+n(f
2
1 − f11 ) = θ Eq. for f21

w2 ·
(
hs+n(f

2
2 − f11 ) + hs+n(f

2
2 − f12 ) + hs+n(f

2
2 − f13 )

)
− θ · hn(f22 − f21 ) = θ Eq. for f22

w3 ·
(
hs+n(f

3
1 − f21 ) + hs+n(f

3
1 − f22 )

)
= θ Eq. for f31

Now, all 6 equations are equations of the network weights (w1, w2, w3) and the 6 firing times (f11 , f
1
2 , f

1
3 , f

2
1 , f

2
2 , f

3
1 ). Here,

we invoke the implicit function theorem which will allow us to express firing times as a function of the weights.

We just need to check that the Jacobian of the above 6 equations (treated as a vector valued function) differentiated w.r.t.
the 6 firing times is invertible. It turns out the causality structure will ensure that the Jacobian is always lower triangular
once you sort by firing times. For feed-forward networks, this is also true if you sort by firing times by layer (since firing
times within the same layer do not affect each other, and the firing times of deeper layers do not affect earlier ones). This
Jacobian looks like

f11 f12 f13 f21 f22 f31


V1(f

1
1 )− θ = 0 x

V1(f
1
2 )− θ = 0 x x

V1(f
1
3 )− θ = 0 x x x

V2(f
2
1 )− θ = 0 x x

V2(f
2
2 )− θ = 0 x x x x x

V3(f
3
1 )− θ = 0 x x x

where x is marked for each equation there is a nontrivial derivative w.r.t. the corresponding variable. The lower triangular
structure occurs because of the way later firing times cannot occur in the equations for earlier ones.

Invertibility holds as long as the diagonal elements are non-zero. Since each equation is equal to the membrane potential
at the firing threshold, the derivative of the membrane potential w.r.t. its firing time is the equal to the derivative of the
membrane potential w.r.t. t evaluated at the firing time, which is strictly positive because the potential is increasing at firing
time.

The Jacobian with respect to the network weights requires no special structure, but we can similarly calculate the partial
derivatives of the above 6 equations now with respect to weights (to get a 6 by 3 matrix). Using (10), if we multiply the
negative inverse of the Jacobian with respect to firing times (a 6 by 6 matrix) and the Jacobian with respect to weights (a 6
by 3 matrix), we get all partial derivatives of the 6 firing times with respect to all the weights (a 6 by 3 matrix).

A.5 Experiment details

To save space in the main paper, we include more details about our experiments here.

XOR Task The following hyperparameters of the 2-4-2 network were used for the XOR task. No special tuning of
hyperparameters was used, and the network reliably converged to 100% accuracy using parameters in Table 1.

Iris Dataset We did a grid search over hyperparameters to find a network suitable for Iris classification. There were
several networks which achieved 100% test accuracy. One such set of hyperparameters is given in Table 2.
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Yin-Yang Dataset The following Table 3 describes the hyperparameters used for training the SNN on the Yin-Yang
dataset. The hyperparameters were chosen by a manual search through several combinations of the architecture and the
parameters shown in the table. The final experiments were done on machines part of an internal cluster with 48 CPU and
5 GB memory, which results in training over 300 full epochs through the entire training dataset of 5000 examples and
evaluation on the entire test dataset of 1000 examples completing in approximately 3 hours.

Code for all experiments can be found at https://github.com/janehjlee/exact_snn_forward_prop.
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Table 1: Hyperparameters for XOR Task

SYMBOL DESCRIPTION VALUE

α = 1
τs

Inverse synaptic time constant 1.0
β = 1

τn
Inverse membrane time constant 0.99

θ Threshold 1.0
T Maximum time 2.0
tearly Minimum time 0.0

Hidden sizes [4]
Hidden weights mean [3.0]
Hidden weights stdev [1.0]
Output weights mean 2.0
Ouput weights stdev 0.1
Optimizer Adam

β1 Adam parameter 0.9
β2 Adam parameter 0.999
ϵ Adam parameter 1e− 8
η Learning rate 0.1
γ Regularization factor 0.2
τ0 First loss time constant 0.1
τ1 Second loss time constant 1.0

Table 2: Hyperparameters for Iris Classification

SYMBOL DESCRIPTION VALUE

α = 1
τs

Inverse synaptic time constant 1.0
β = 1

τn
Inverse membrane time constant 0.9

θ Threshold 1.0
T Maximum time 16.0
tearly Minimum time 0.0

Hidden sizes [10]
Hidden weights mean [3.0]
Hidden weights stdev [1.0]
Output weights mean 2.0
Ouput weights stdev 0.1
Optimizer Adam

β1 Adam parameter 0.9
β2 Adam parameter 0.999
ϵ Adam parameter 1e− 8
η Learning rate 0.05
γ Regularization factor 0.1
τ0 First loss time constant 1.0
τ1 Second loss time constant 1.0
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Table 3: Hyperparameters for Yin-Yang Simulations

SYMBOL DESCRIPTION VALUE

α = 1
τs

Inverse synaptic time constant 0.999
β = 1

τn
Inverse membrane time constant 1.0

θ Threshold 1.0
T Maximum time 2.0
tearly Minimum time 0.15
tbias Bias time 0.9

Hidden sizes [150]
Hidden weights mean [1.5]
Hidden weights stdev [0.8]
Output weights mean 2.0
Ouput weights stdev 0.1
Minibatch size 150
Epochs 300
Optimizer Adam

β1 Adam parameter 0.9
β2 Adam parameter 0.999
ϵ Adam parameter 1e− 8
η Learning rate 0.0005
γ Regularization factor 0.005
τ0 First loss time constant 0.2
τ1 Second loss time constant 1.0


