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Abstract

In this paper, we propose an iterative source
error correction (ISEC) decoding scheme for
deep-learning-based joint source-channel cod-
ing (Deep JSCC). Given a noisy codeword re-
ceived through the channel, we use a Deep JSCC
encoder and decoder pair to update the code-
word iteratively to find a (modified) maximum
a-posteriori (MAP) solution. For efficient MAP
decoding, we utilize a neural network-based de-
noiser to approximate the gradient of the log-
prior density of the codeword space. Albeit
the non-convexity of the optimization problem,
our proposed scheme improves various distor-
tion and perceptual quality metrics from the con-
ventional one-shot (non-iterative) Deep JSCC
decoding baseline. Furthermore, the proposed
scheme produces more reliable source recon-
struction results compared to the baseline when
the channel noise characteristics do not match the
ones used during training.

1 INTRODUCTION

Joint source-channel coding (JSCC) is a problem to find an
encoder-decoder pair to transmit a compressible source re-
liably through a noisy channel. Deep-learning-based meth-
ods have brought advancement for (Deep) JSCC of images
(Bourtsoulatze et al., 2019; Yang et al., 2021; Yang and
Kim, 2022; Grover and Ermon, 2019; Choi et al., 2019)
by learning a pair of encoder and decoder network models
from data. Deep JSCC encoder and decoder pairs are pa-
rameterized by deep neural networks in the form of autoen-
coders (Kramer, 1991; Kingma and Welling, 2013). The
latent variables at the output of the encoder is the trans-
mitted codeword. The receiver uses a paired decoder to
reconstruct the original source by decoding the noisy re-
ceived codeword (i.e., the latent variables corrupted by the
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channel noise). The neural network encoder directly maps
the source input to a codeword whose dimension is usu-
ally smaller than the input (i.e., signal compression), and
the decoder network is trained to approximate the inverse
mapping from the noisy codeword to the source.

In this paper, we consider an asymmetric communication
case where the transmitter (e.g., an Internet-of-Things de-
vice) is power-constrained while the receiver (e.g., a pow-
erful base station) enjoys abundant resources. The conven-
tional Deep JSCC framework decodes a noisy codeword
using the decoder network only once. This ‘one-shot’ de-
coding is efficient in terms of power and time complexity,
but it does not provide optimal performance in practice. For
example, (one-shot) Deep JSCC decoders often fail to pro-
duce better quality than conventional (not neural network-
based) source and channel coding schemes when the noise
power and compression ratio are low (Bourtsoulatze et al.,
2019). Moreover, this suboptimality inevitably worsens
when the channel noise characteristics shift from those of
the noise model used for training.

To address these limitations of conventional Deep JSCC,
we introduce an iterative source error correction (ISEC)
scheme that iteratively decodes the received noisy code-
word to gradually improve the reconstructed source qual-
ity. ISEC iteratively updates the codeword via gradient as-
cent by combining the likelihood of the current estimate
based on the noise statistics and the prior probability of
the codeword. We optimize/update the estimate from the
noisy codeword to find the (local) minimum of a target loss
using a Deep JSCC decoder. Accordingly, our proposed
method approximately estimates a modified maximum a-
posteriori (MAP) solution within the set of points around
the observed codeword.

One can consider the Deep JSCC decoding as a non-linear
inverse problem since the receiver only observes a non-
linearly compressed, noisy version of the source. Thus ob-
taining an optimal solution requires a proper prior structure
on the source domain for minimizing the negative likeli-
hood of the source estimate based on the observed noisy
codeword. To be specific, we use two types of the prior
structure. We first adopt a Deep JSCC decoder network as
an image prior, and modify the received noisy codeword by
observing the reconstructed (and re-encoded) source at the
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receiver to correct errors. Secondly, we impose an implicit
prior to the codeword space because feeding an arbitrary
input to a Deep JSCC decoder may produce meaningless
image pixels due to the absence of a prior regularization
during the training of Deep JSCC models (Grover and Er-
mon, 2019). Instead of explicitly modeling a prior density
function which is difficult to obtain, we formulate ISEC to
use the gradient of the log density approximated by a neural
network denoiser inspired by (Kadkhodaie and Simoncelli,
2020).

We demonstrate that the proposed ISEC improves vari-
ous distortion and perceptual quality metrics outperforming
one-shot Deep JSCC decoding of low and high-resolution
images in CIFAR-10 and Kodak datasets. The gain be-
comes more significant when the characteristics of the
channel noise for the evaluation are different from those of
the training environment. The contributions of this paper
are as follows:

• We propose a new iterative source error correction
(ISEC) decoding algorithm for modified MAP JSCC
decoding of low- and high-resolution images.

• We formulate the ISEC MAP scheme to utilize the
gradient of the prior distribution over the codeword
space modeled by a bias-free denoiser network.

• We experimentally show that ISEC decoding outper-
forms the one-shot counterpart in various metrics, es-
pecially when the noise statistics mismatch those used
during the training of the Deep JSCC encoder and de-
coder. We also analyze and quantify the impact of
different terms in ISEC under various situations.1

2 BACKGROUND AND RELATED
WORKS

2.1 Separate and Joint Source-Channel Coding

For a source with redundant information, a conventional
separate source-channel coding (SSCC) approach transmits
the source over a noisy channel using a separate source-
dependent coding scheme (e.g., JPEG (Wallace, 1991) or
better portable graphics (BPG) (Bellad, 2014)) followed by
a source-independent channel coding scheme (e.g., low-
density parity-check (LDPC) code (Gallager, 1962)). On
the other hand, joint source-channel coding (JSCC) uses a
single joint code for source encoding and channel coding.

2.2 Deep Joint Source-Channel Coding

Deep joint source-channel coding of images (Deep JSCC of
images or shortly Deep JSCC) (Bourtsoulatze et al., 2019;

1ISEC code is available at https://github.com/
changwoolee/isec-deep-jscc

Grover and Ermon, 2019) is a deep-learning-based ap-
proach of JSCC to transmit an image x ∈ X (⊂ Rm) over
a noisy channel and reconstruct the source at the receiver
to minimize the error. Unlike SSCC schemes, there is no
explicit boundary between source and channel (de)coding
in Deep JSCC encoders (decoders).

Deep-JSCC training finds the parameters ϕ and θ of an en-
coder Eϕ : Rm → Rk and a decoder Dθ : Rk → Rm

modeled by deep neural networks. The received codeword
y and the reconstructed source at the decoder output x̂ can
be expressed by

x̂ = Dθ(y), y = Eϕ(x) + n,

where n is the additive channel noise that follows the dis-
tribution Pσ(N) parameterized by σ. We assume k < m
(i.e., the encoder compresses the source to a smaller dimen-
sion), and without loss of generality, we further assume that
the squared norm of codewords is bounded such that for all
x ∈ X , ∥Eϕ(x)∥22 ≤ k. The signal-to-noise ratio (SNR) in
dB is defined by

SNR = 10 log10
∥Eϕ(x)∥22
∥n∥22

.

We use the notation SNRtrain and SNRtest to denote the
SNR during the training and the test, respectively. Channel
Per Pixel (CPP) indicates the inverted compression ratio

CPP = 0.5k/m,

where the factor of 0.5 is because of the complex-valued
transmission of the codeword that allows transmitting two
real-valued elements per channel-use as explained in the
Deep JSCC literature (Bourtsoulatze et al., 2019; Yang
et al., 2021; Yang and Kim, 2022; Kurka and Gündüz,
2020).

The pair (Eϕ, Dθ) can be optimized/trained jointly with
independent and identically distributed (i.i.d.) data
points x1, . . . ,xdtrain ∈ X and i.i.d. channel noise
n1, . . . ,ndtrain ∼ Pσtrain(N):

(ϕ, θ) := argmin
ϕ,θ

1

dtrain

dtrain∑
i=1

∥xi −Dθ(Eϕ(xi) + ni)∥22.

(1)

Due to the generalization ability of neural networks, Deep
JSCC decoders can often provide a more reliable recon-
struction of the image from the noisy codeword than sepa-
rate source-channel coding (SSCC) schemes when the de-
coder faces unexpected/mismatched noise characteristics.
It is also shown that under the additive white Gaussian
noise with known noise variance, Deep JSCC outperforms
SSCC schemes when SNR is low and the source compres-
sion ratio is high, whereas the gain diminishes in the op-
posite scenario (SNR is high and the compression ratio

https://github.com/changwoolee/isec-deep-jscc
https://github.com/changwoolee/isec-deep-jscc
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is low). Deep JSCC framework has been extended to bi-
nary symmetric and erasure channels (Choi et al., 2019), an
SNR-adaptive framework (Ding et al., 2021), rate-adaptive
framework (Yang and Kim, 2022), OFDM-guided frame-
work (Yang et al., 2021), and feedback channels (Kurka
and Gündüz, 2020). Also, Grover and Ermon (2019) dis-
cussed the Deep JSCC framework in the compressed sens-
ing literature, focusing on reducing the number of mea-
surements corrupted by mild noise. All prior Deep JSCC
frameworks (except the schemes designed with feedback
channels (Kurka and Gündüz, 2020)) employ a one-shot
decoding method without iteration. Those one-shot Deep
JSCC schemes can benefit from our proposed ISEC frame-
work introduced in Section 3 to improve the quality of
the reconstructed source by iterations at the receiver with-
out modifying the transmitter or requesting retransmission.
Since we assume that abundant power and computational
resources (e.g., GPUs) are available at the receiver, improv-
ing performance is our primary objective, whereas the in-
creased decoding complexity is a secondary concern in our
framework.

2.3 Compressed Sensing using Generative Models

For compressed-sensing-based source compression and re-
construction (Donoho, 2006; Candes and Tao, 2006), deep
generative models (DGMs) have emerged as a new type
of prior for natural images. Compressed sensing using
generative models (CSGM) employs generative adversar-
ial networks (GANs) (Goodfellow et al., 2014) or varia-
tional autoencoders (VAEs) (Kingma and Welling, 2013),
as first proposed by Bora et al. (2017). The intuition be-
hind the approach is to recover the source x from a linear
measurement y = Ax + n,A ∈ Rk×m, by searching
over the range of a (possibly non-linear) generative model
G : Rr → Rm which maps a simple distribution PZ (e.g.,
isotropic Gaussian distribution) to the distribution of the
sources PX . CSGM reconstructs x̂CSGM as follows:

ẑCSGM := argmin
z∈Z

∥y −AG(z)∥2,

x̂CSGM := G(ẑCSGM),

where z is initialized randomly or to zero, then updated
by a standard gradient descent method such as Adam
(Kingma and Ba, 2014). Although the non-convexity of the
optimization problem, CSGMs outperform conventional
sparsity-based compressed sensing solvers on relatively
simple source distributions such as human face images (Liu
et al., 2015). Theoretical analysis and improvement have
been reported by Joshi et al. (2021) whereas the techniques
of inverting the generative models have been investigated in
(Creswell and Bharath, 2018; Lei et al., 2019; Asim et al.,
2020; Jalal et al., 2021).

Training DGMs on high-resolution natural images is a chal-
lenging task. Therefore, the direct application of CSGM to

the Deep JSCC problem for natural images has been lim-
ited. Also, because the optimization process starts from
random or zero-valued vectors as the GAN/DGM input, it
requires thousands of iterations to converge to one of local
optima(Bora et al., 2017). Although CSGM shares some
similarities with our proposed ISEC method, there are a
few main differences. 1) ISEC recovers the source from
non-linear measurements y = Eϕ(x) + n to operate in
lower SNR scenarios. 2) ISEC uses a Deep JSCC encoder
and decoder as the DGM, trained with a highly complex
latent distribution. 3) ISEC initializes the variable to y,
which is already close to the local minima, rather than a
random or zero vector as in CSGM. 4) For a modified MAP
solution, ISEC utilizes the approximate gradient of the log
prior density of the codeword obtained by a denoiser neural
network.

2.4 Gradient Estimation of Log Prior using Bias-free
Denoiser

Our proposed decoding algorithm is built on the seminal
work by Miyasawa (1961). Consider an observed point
r of the original signal s corrupted by Gaussian noise
with variance σ2. Then, the gradient of the log density
function ∇ log p(r) can be expressed with the minimum
mean squared error (MMSE) estimator ŝ(r) = E[s|r] =∫
sp(s|r)ds, satisfying

∇ log p(r) =
ŝ(r)− r

σ2
. (2)

Kadkhodaie and Simoncelli (2020) and Kawar et al.
(2021) used a deep-neural-network-based MMSE estima-
tor, where a DNN is trained to predict the noise instance
n from the corrupted observation r = s + n. A com-
mon choice for the DNN is a bias-free convolutional neu-
ral network due to its robustness to the unseen noise vari-
ance (Mohan et al., 2020). Our ISEC algorithm adopts a
similar approach to formulate and solve a modified MAP
optimization problem using a denoiser network. However,
unlike prior works, we obtain the gradient of the log prior
density in the codeword space.

3 PROPOSED METHOD

We introduce an iterative decoding algorithm, namely iter-
ative source error correction (ISEC), to refine the initial /
one-shot output of the Deep JSCC decoder Dθ(y). Given a
Deep JSCC (Bourtsoulatze et al., 2019; Grover and Ermon,
2019) encoder Eϕ and decoder Dθ pair, ISEC finds a mod-
ified MAP solution in the codeword space via an iterative
process.

3.1 Assumptions

We suppose both the transmitter and receiver share the
same (Eϕ, Dθ) pair, and the receiver observes the k-
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dimensional noisy codeword y = Eϕ(x) + n of the
m-dimensional source (image) x transmitted through the
noisy channel. Also, the trained decoder network Dθ is
assumed to be deterministic and injective. We assume
the channel noise follows isotropic Gaussian distribution
n ∼ pσ(N) = N (0, σ2I). We further assume that the
receiver can estimate the true noise variance σ2 after ob-
serving the noisy codeword so that the noise variance is
available for our decoding algorithm (Algorithm 1). The
transmitter may or may not have the true noise variance
information prior to transmission. Moreover, we consider
an asymmetric communication case where the transmitter
is power- and resource-constrained while the receiver has
abundant computational resources with an unlimited power
constraint for iterative decoding.

3.2 Maximum A-Posteriori Inference for Deep JSCC

Given y, our goal is to find a maximum a-posteriori (MAP)
solution ẑMAP in the codeword (latent) space Z ⊆ Rk:

ẑMAP := argmax
z∈Z

log p(z|y), (3)

where a reconstructed source x̂MAP given ẑMAP is obtained
by x̂MAP := Dθ(ẑMAP). That is, we find the reconstruction
in the range of the decoder network, which is our first prior
structure in the source domain. Iterating the time index
t = 0, . . . , T − 1, we update zt by gradient ascent defined
as

zt+1 := zt + ηt · ∇zt log p(zt|y),

where ηt > 0 is a step size and z0 := y. Unfortunately, the
direct estimation of the gradient of the log posterior density
is not available in general. Thus we consider the following
form instead:

∇z log p(z|y) = ∇z log p(y|z) +∇z log p(z). (4)

LetR(Dθ) ⊂ X be the range of Dθ. Since Dθ is determin-
istic and injective, one could write p(x̂|z) = δ(x̂−Dθ(z))
where δ(·) is a Dirac delta function. Consider a marginal-
ized conditional distribution p(y|z) over x̂ ∈ R(Dθ):

p(y|z) =
∫
R(Dθ)

p(y, x̂|z)dx̂

=

∫
R(Dθ)

p(y|x̂, z)p(x̂|z)dx̂

=

∫
R(Dθ)

p(y|x̂, z)δ(x̂−Dθ(z))dx̂

= p(y|Dθ(z))

= pσ(y − Eϕ(Dθ(z))). (5)

The first term on the right-hand side of (4) is a likelihood
of noise distribution. Using (5), it can be written in the
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Figure 1: Illustration of ISEC at step t in (8). JEϕ◦Dθ(zt)

refers to the Jacobian matrix of Eϕ ◦ Dθ(·) = Eϕ(Dθ(·))
at zt.

following form:

∇z log p(y|z) = −∇z
1

2σ2
∥y − Eϕ(Dθ(z))∥22. (6)

As we seek a MAP solution in the domain of the decoder
Dθ, optimizing z using the likelihood term is equivalent to
finding an optimal x in the range of Dθ. This approach
shares a similarity with the CSGM framework (Bora et al.,
2017).

Since y is corrupted by noise, the direction in (6) does not
always lead to reducing the source error ∥x − Dθ(z)∥22.
Moreover, no distributional or structural prior is given for
the codeword (latent) space between the Deep JSCC en-
coder and the decoder. Unlike the latent space of DGMs in
the CSGM scheme which can be described by a compact
set such as a closed ball (Bora et al., 2017), the latent space
for Deep JSCC networks has a complex structure. There-
fore, instead of finding a solution starting from a random
or zero-valued vector, we start from z0 := y, using the de-
coder Dθ trained to reconstruct x which is one of the local
optima. Then, through the iterative inference (test) stage,
we further refine the codeword. In the proposed scheme,
a proper choice of the regularizer is critical to keep zt in
the local region around the noiseless codeword Eϕ(x), es-
pecially when the codeword y is corrupted by noise with
lower SNR than trained.

3.3 Denoiser-based Regularizer for Modified MAP
Inference

While a proper regularizer plays a critical role, the absence
of a prior structure on the codeword space makes it diffi-
cult to find. This motivates us to consider an implicit prior
over the codeword space. That is, instead of modeling the
marginal distribution of the codeword space p(z), we fo-
cus on estimating the gradient of the log density function
∇ log p(z). Given zt at the t-th gradient ascent step, we
know from (2) that the MMSE estimation ẑ(zt) = E[z|zt]
can be used to approximate the gradient of the log prior
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density of zt by

∇ log p(zt) =
ẑ(zt)− zt

σ2
t

≈ F (zt)

σ2
t

, (7)

where F : Z → Z is a denoiser network operates in
the codeword space, and σ2

t is the variance of the current
estimation ẑ(zt) − zt. We train the denoiser network to
predict the noise instance n from the corrupted codeword
y = Eϕ(x) + n. See A.2.2 for details on training.

To stabilize the optimization process, we propose a modi-
fied version of the MAP estimator based on the following
expression with a parameter set {αt}T−1

t=0 :

∇zt
log p̃αt

(zt|y) := ∇zt
log p(y|zt) + αt∇zt

log p(zt)

so that

zt+1 := zt + ηt · (∇zt
log p(y|zt) + αt∇zt

log p(zt)).

By letting ηt = η′ and αt = α′ · σ2
t , we arrive at the ex-

pression for the t-th gradient ascent step:

zt+1 := zt + η′ ·
(
−∇ 1

2σ2
∥y − Eϕ(Dθ(zt))∥22 + α′F (zt)

)
(8)

as illustrated in Figure 1.

Choice of hyperparameters Our preliminary experiments
show that making hyperparameters adaptive to the SNR
mismatch between the testing and the trained environ-
ment significantly improves the quality of reconstructions.
Based on the trained noise variance σ2

train, we adaptively
scale the step size η′ and the regularization parameter α′

for the current noise variance σ2. Given α > 0, η > 0, and
δ ≥ 0 which are the same for each model (ϕ, θ) trained for
the same codeword dimension and SNR, we adjust the step
size η and the contribution of the prior α′ by

α′ := α · h(σ, σtrain, 2), η′ := η/h(σ, σtrain, δ), (9)

where

h(σ, σtrain, δ) := max

(
0.1,

(
σ2

σ2
train

)δ′
)
, (10)

δ′ :=

{
δ if σ2 < σ2

train

1 otherwise
. (11)

For an extreme case where σ2 → ∞ and δ > 0,
h(σ, σtrain, δ) → ∞ thus α′ → ∞ and η′ → 0. That is,
the contribution of the likelihood to the gradient ascent be-
comes less significant and the step size decreases when the
current noise variance (σ2) is higher than the trained noise
variance (σ2

train). Algorithm 1 summarizes the overall pro-
cedure of the proposed ISEC MAP algorithm.

Algorithm 1 Iterative Source Error Correction
Input: y, σ > 0, σtrain > 0 η > 0, T > 0, α > 0, δ ≥ 0,
Eϕ, Dθ, F .
Output: x̂

1: α′ ← α · h(σ, σtrain, 2)
2: η′ ← η/h(σ, σtrain, δ)
3: z0 ← y
4: for t = 0, . . . , T − 1 do
5: ℓt ← − 1

2σ2 ∥y − Eϕ(Dθ(zt))∥22
6: dt ← F (zt)
7: zt+1 ← zt + η′ · (∇ℓt + α′dt)
8: end for
9: x̂← Dθ(zT )

10: return x̂, zT

4 EXPERIMENTS

Dataset and Evaluation Metrics We conduct experiments
to compare ISEC with one-shot decoding on a high resolu-
tion Kodak2 dataset, which is composed of 24 768 × 512
pixel color images, as well as CIFAR-10 (Krizhevsky et al.,
2009) low resolution image dataset, which contains 60, 000
32 × 32 pixel color images. To quantify the distortion
between x and x̂, we choose peak signal-to-noise ratio
(PSNR), PSNR = 10 · log10 2552

MSE , MSE =
∥x−x̂∥2

2

m , as
well as structural similarity (SSIM, for CIFAR-10) (Wang
et al., 2004), and multi-scale version of SSIM (MS-SSIM,
for Kodak) (Wang et al., 2003). For the perceptual quality
we use LPIPS (Zhang et al., 2018) distance and Fréchet in-
ception distance (FID) (Heusel et al., 2017), which is based
on the distance between features of images processed by
a convolutional neural network (CNN). LPIPS compares
the instance-wise difference of the deep features from VG-
GNet (Simonyan and Zisserman, 2014), and FID captures
the distributional difference of deep features from Incep-
tionV3 (Szegedy et al., 2016) network between the set of
original source images and the set of reconstructed images.

Deep JSCC Encoder, Decoder, and Denoiser Structures
We parameterize the Deep JSCC encoders and decoders
using fully-convolutional neural networks (CNNs) by fol-
lowing the approach in (Bourtsoulatze et al., 2019) which
allows us to encode and decode an image regardless of
the image size. Also, to ensure the injectivity of the de-
coder network, we use a parameterized rectified linear unit
(PReLU) (He et al., 2015) as the activation function. Fi-
nally, the output of the encoder is normalized to have a
maximum norm of

√
k to satisfy the boundedness of the

codeword. Specific configurations of the networks are pre-
sented in Appendix A.1.

We use a bias-free version of convolutional neural network
(CNN) denoiser (Mohan et al., 2020) adopting the struc-

2http://r0k.us/graphics/kodak/

http://r0k.us/graphics/kodak/


Deep Joint Source-Channel Coding with Iterative Source Error Correction

0.0 2.5 5.0 7.5 10.0
Test SNR

24

26

28

30

32

PS
NR

 (d
B)

0.0 2.5 5.0 7.5 10.0
Test SNR

0.80

0.85

0.90

0.95

SS
IM

0.0 2.5 5.0 7.5 10.0
Test SNR

0.05

0.10

0.15

0.20

0.25

LP
IP

S

0.0 2.5 5.0 7.5 10.0
Test SNR

20

40

60

FI
D

LDPC1/2_4QAM
LDPC1/2_16QAM
LDPC2/3_4QAM
LDPC2/3_16QAM
LDPC3/4_4QAM
LDPC3/4_16QAM
One Shot Deep JSCC
ISEC Deep JSCC

(a) CIFAR-10

5 10
Test SNR

30

31

32

33

34

35

PS
NR

 (d
B)

5 10
Test SNR

0.94

0.96

0.98

1.00
M

S-
SS

IM

5 10
Test SNR

0.05

0.10

0.15

0.20

0.25

0.30

LP
IP

S

5 10
Test SNR

5

10

15

20

25

30

FI
D

LDPC1/2_BPSK
LDPC1/2_4QAM
LDPC1/2_16QAM
LDPC3/4_BPSK
LDPC3/4_4QAM
LDPC3/4_16QAM
One Shot Deep JSCC
ISEC Deep JSCC

(b) Kodak dataset

Figure 2: Performance of BPG-LDPC-QAM, One-shot and ISEC Deep JSCC on CPP=1/6 when SNRtrain = SNRtest.
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Figure 3: Histograms of ISEC gains for randomly cropped
256× 256 Kodak images using 7dB model, CPP=1/16.

ture in (Kadkhodaie and Simoncelli, 2020) as specified in
Appendix A.2.

Training and Testing We used Open Images V6 (Krasin
et al., 2017) and the CIFAR-10 training dataset to train
Deep JSCC encoders and decoders for evaluating Kodak
and CIFAR-10 test datasets, respectively. We evaluate
the low compression ratio models with CPP=1/6 for both
CIFAR-10 and Kodak datasets, and high compression ratio
models with CPP=1/12 and 1/16 for CIFAR-10 and Ko-
dak datasets, respectively. We use the term an n-dB model
to denote the Deep JSCC encoder and decoder pair trained
with n-dB additive white Gaussian noise channel SNR. See
A.1 and A.2.2 for details.

Parameters: We run ISEC for T = 50 iterations for all our
experiments. For the Kodak dataset, we report the quality
and distortion metrics by averaging metric values from 10
independent noise realizations for each image to reduce the
variance caused by the random channel noise. Values of
α, δ, and η used in the experiments are presented in Ap-
pendix A.4.
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Figure 4: Reconstruction performance of ISEC on Kodak
dataset when SNRtest ̸= SNRtrain, CPP=1/6. The x-axis
indicates the SNR difference between the tested and trained
environment.

4.1 Performance Under Trained Environment

We first examine our algorithm when the distribution of
the channel noise is not different from that used during
the training of the Deep JSCC model. The PSNR, SSIM,
LPIPS, and FID metrics before and after ISEC for CIFAR-
10 and Kodak images with CPP=1/6 are presented in Fig-
ure 2. Note that higher PSNR and SSIM indicate better
quality while lower LPIPS and FID are desired. For the
classical non-learning-based baseline, we include Better
Portable Graphics (BPG) (Bellad, 2014) and low-density
parity-check (LDPC) code (Gallager, 1962) with BPSK,
4-, or 16-QAM modulation. No encoding and decoding
failure was observed when CPP=1/6 for the evaluation in
Figure 2. BPG encoding or decoding failures can happen
in CPP=1/12 or 1/16 settings. We fill the reconstruction
with the mean of the input image when BPG encoding fails.
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(a) Target (b) Before ISEC, SNRtest = 1dB (c) After ISEC, SNRtest = 1dB

(d) Target (e) Before ISEC, SNRtest = 13dB (f) After ISEC, SNRtest = 13dB

Figure 5: Before and after ISEC on Kodak dataset using SNRtrain=7dB model on CPP=1/16. All images are cropped.

Similarly, we use a zero-valued image for reconstruction if
BPG decoding fails.

For CIFAR-10 images, ISEC shows moderate gain in all
0, 5, and 10dB SNR cases compared to one-shot JSCC.
We suppose the gain is moderate because the dimension
of the images in the dataset is small so the JSCC encoder
and decoder pair learns near-optimal coding and decoding
for the trained SNR. On the contrary, the gains are more
significant as shown in Figure 2b when ISEC is applied to
the high-resolution Kodak image dataset.

As reported in (Bourtsoulatze et al., 2019), the conven-
tional (separate) source-channel coding scheme (BPG-
LDPC-QAM) outperforms Deep JSCC (and ISEC)
schemes on PSNR (for high-resolution images such as Ko-
dak). However, the perceptual metrics (MS-SSIM, LPIPS,
and FID) are better with Deep JSCC and ISEC especially
when SNR is low or moderate. The same trend was ob-
served when CPP=1/16 as presented in Appendix.

Figure 3 shows the distribution of the gains from ISEC
on the Kodak images evaluated with the 7dB model at
CPP=1/16. Here we randomly sample 30 patches of 256×
256 pixels from each Kodak image. We do not include FID
for the histogram because it is measured on the entire set of
images. Histograms show most patches exhibit a positive
gain in all three metrics. The same tendency is observed
from 1dB and 13dB models as well in Appendix.

4.2 Performance Under Mismatched SNRs

We evaluate ISEC when the test SNR is different from
the trained SNR. It represents a practical scenario where
the transmitter does not have the knowledge of the chan-
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Figure 6: Average performance of Kodak images under ad-
ditive white Laplacian noise with CPP=1/6 using the mod-
els trained with AWGN. ISEC generalizes well for the out-
of-distribution noise.

nel SNR which is estimated at the receiver after receiv-
ing/observing the noisy codeword. As shown in Fig-
ure 4, ISEC successfully handles mismatched test SNRs
when they are higher or lower than the trained SNR when
CPP=1/6. The results for CPP=1/16 are provided in Ap-
pendix. Note that, unlike Deep JSCC and ISEC, the
conventional BPG-LDPC-QAM scheme experiences catas-
trophic decoding failures (image is not decodable) when
the test/actual SNR is lower than targeted, whereas the re-
ceiver cannot improve the reconstruction quality when the
test SNR is higher than targeted.

We show visual comparisons in Figure 5 using example
Kodak images (more examples in Appendix) when the test
SNR is 6dB lower than the trained SNR. It is observed
that a one-shot Deep JSCC decoder adds many artifacts
whereas ISEC can correct some of them to improve the
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Figure 7: Quality metric gains observed from different α ∈ {8, 4, 1, 0}.

quality. Implicit prior captured by the denoiser network
plays a substantial role when the test SNR deteriorates from
the training SNR, which is further analyzed in Section 4.4.
Intuitively speaking, when SNRtest < SNRtrain, the gradi-
ent of the log likelihood in (6) can be in the wrong direction
due to the severe noise. However, this can be compensated
by the denoiser network which estimates the gradient of the
log prior predicting the (rough) direction toward the origi-
nal codeword through the iterative update process.

It is worth noting that Figure 4 and 5 show that the recon-
struction quality of the one-shot JSCC remains almost the
same or even degrades producing blurry images when the
test SNR is higher than training SNR. On the other hand,
ISEC successfully recovers the details from the blurry ini-
tial (one-shot) reconstruction.

Although our framework uses a non-linear encoder (y =
Eϕ(x) + n) unlike linear measurements in CSGM (y =
Ax+n), the gain observed by ISEC in high SNRs is con-
sistent with the claim in the CSGM literature (Bora et al.,
2017, Thm. 1.2.) that the reconstruction error is propor-
tional to the norm of the observation noise and the num-
ber of measurements. However, for general rate-quality
tradeoffs, it is known that Deep JSCC (even without ISEC)
outperforms CSGM which relies on a linear encoder A
(Grover and Ermon, 2019). In summary, ISEC enhances
the robustness of Deep JSCC against unexpected down-
ward SNR whereas the reconstruction quality improves
by ISEC when the actual SNR is higher than expected.
The same benefits are unattainable in conventional separate
source-channel coding schemes.

4.3 Performance in Additive White Laplace Noise

In this section, we evaluate the case where the noise distri-
bution is shifted from the trained. We test the Kodak dataset
in an additive white Laplace noise (AWLN) channel with
CPP=1/6 that has the same variance as the Gaussian noise
(AWGN) channel used during the training of Deep JSCC
models (Eϕ, Dθ) and the denoiser network F . The same
decoding algorithm and parameter selection rules specified
in Algorithm 1 are applied to evaluate the AWLN case.
Figure 6 shows that ISEC achieves performance improve-
ment from one-shot decoding in this noise distribution mis-
match scenario. Despite the same SNR, the conventional
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Figure 8: ISEC objectives over steps using the 7dB Deep
JSCC model with CPP=1/6 on kodim06.

BPG-LDPC-QAM scheme undergoes performance degra-
dation under the AWLN channels compared to the AWGN
case, showing worse perceptual quality metrics (MS-SSIM,
LPIPS, and FID) than the Deep JSCC one-shot decoding
and ISEC. On the other hand, after applying ISEC, all eval-
uation criteria are improved from the one-shot decoding
despite being performed under white Laplace distribution.
Note that neither transmitters nor receivers are aware of
the distributional shift of the channel noise at any stage.
This shows that our proposed decoding algorithm general-
izes well and enhances the robustness of the Deep JSCC
scheme under the unseen channel noise distribution.

4.4 Role of Implicit Prior

We study the role of the implicit prior in ISEC with vary-
ing α in (8) and (9) which scales the output of the denoiser
to approximate the gradient of the log prior density of the
codeword. A larger α makes each step rely more on the
prior information. We tested the 7dB model with CPP=1/6
in 1, 7, and 13dB SNRs with α ∈ {0, 1, 4, 8} for 3 different
test SNRs. Figure 7 summarizes the results. When the test
SNR is 13dB, the α does not affect the performance much.
However, higher gains are achieved by using a proper pa-
rameter α when the test SNR is the same or lower than the
training SNR. It indicates that the approximated gradient of
log prior density plays a key role when the observed SNR
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is lower than that of the training environment.

We also show in Figure 8 how the negative likelihood
(NLL) 1

2σ2 ∥y − Eϕ(Dθ(zt))∥22, the squared norm of the
denoiser output ∥F (zt)∥22, and the PSNR of the reconstruc-
tion change along the ISEC step t = 0, . . . , 49 with dif-
ferent α’s. When the test SNR is 1dB, notice the PSNR
does not improve by ISEC with α = 0 and 1, whereas
when α = 4, all metrics improve from one-shot decoding
through ISEC iterations. We also note that when α = 4
or 8, the NLL increases from the starting point as PSNR
enhances while the squared norm of the denoiser rapidly
decreases (i.e., low ∥∇ log p(zt)∥2). This shows that the
denoiser with the proper choice of α can deal with noise
variance higher than the trained environment because of
the bias-free structure. When α = 8, however, the prior
information dominates the likelihood too much so that the
PSNR drops after a few tens of iterations. As the test SNR
increases to 13dB, the impact of the denoiser becomes neg-
ligible and the likelihood dominates.

5 CONCLUSION

We introduced ISEC for Deep JSCC for the scenario
employing a power-limited transmitter and a resource-
abundant receiver. Our method extends the Deep JSCC de-
coding in an iterative way by correcting the source error
in the codeword space. We introduce a modified MAP de-
coding algorithm with an approximated gradient of the log
density using a bias-free denoiser network. Through itera-
tions, the missed information from the one-shot decoding
can be recovered by ISEC to improve various quality mea-
sures, especially when the observed channel noise charac-
teristics are mismatched from the training environment.

Limitations and Future Work. Although we assume
the receiver has abundant computing resources unlike the
resource-constrained transmitter, the iterative decoding in
ISEC increases the computational cost and power con-
sumption compared to the one-shot decoding. Reducing
the number of iterations to lower the complexity of ISEC
is a possible extension of this work. Applying and evaluat-
ing ISEC to different source types such as audio and sensor
data is left as future work.
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A Network Configurations, Training, and Test Details

This Appendix section presents the configurations and training methods of deep neural networks used in our paper. The
parameters of ISEC used in Section 4 are also specified.

A.1 Deep JSCC Encoder and Decoder

A.1.1 Configuration

Deep JSCC encoders and decoders are convolutional neural networks (Krizhevsky et al., 2012; Simonyan and Zisserman,
2014; He et al., 2016). In both networks, batch normalization (Ioffe and Szegedy, 2015) is used between each convolution
layer and a non-linear activation. Specifically, we use the following parameterized rectified linear unit (PReLU) (He et al.,
2015) as the activation function

PReLU(u) =

{
u u ≥ 0

ρ · u u < 0

where ρ ≥ 0 is a trainable parameter shared within the layer. We use convolution layers with stride 2 for downsampling,
and bilinear upsampling with a factor of 2 for upsampling the width and height of the tensor at the encoder and decoder,
respectively. Hence the encoder network downsamples the input image with size m = H × W × 3 into k = HWC

4×4 ,
and the decoder network maps the compressed (noisy) codeword back into the original pixel domain. Also, the power
normalization layer is added at the end of the encoder to satisfy the power constraint ∥Eϕ(x)∥22 ≤ k:

PowerNorm(v, k) =

{
v if ∥v∥22 ≤ k√
k v
∥v∥2

otherwise
.

Residual blocks (He et al., 2016) depicted in Figure 9a are added to the network for the overall configuration specified in
Table 1 and 2 for CIFAR-10 and Kodak datasets, respectively.

A.1.2 Training Method

The weights and biases of Deep JSCC encoders and decoders are updated by minimizing the mean squared error (i.e., (1))
between the input x and the reconstruction from the noisy codeword Dθ(Eϕ(x) + n), where n is a channel noise.

For low-resolution images, Deep JSCC encoders and decoders are trained with CIFAR-10 (Krizhevsky et al., 2009) training
set, which contains 50, 000 32×32 color images of 10 different classes. We use the batch size of 64 for 234,300 steps with
Adam (Kingma and Ba, 2014) optimizer with parameter β1 = 0.0 and β2 = 0.9. The learning rate was set to 0.0002 and
reduced to 0.00002 at the 117,150th step.

For high-resolution images, we use a subset of 273,230 images from Open Images V6 (Krasin et al., 2017) training dataset3.
The images are randomly cropped to 128× 128 pixel patches. We use the batch size of 128 and train the model for 96,030
steps with Adam (Kingma and Ba, 2014) optimizer with parameter β1 = 0.0 and β2 = 0.9, where the learning rate is set
to 0.001 and reduced to 0.0001 at the 64,020th step.

We set CPP=1/6 or 1/12 for low-resolution images, and CPP=1/6 or 1/16 for high-resolution images. For each CPP
evaluation, we train three encoder-decoder pairs for three channel SNR cases of 0, 5, and 10 dB for low-resolution images.
Similarly, three pairs are trained for 1, 7, and 13 dB SNR for high-resolution images per each CPP. We use the term n-dB
model to denote the Deep JSCC encoder and decoder pair trained with n-dB channel noise. All networks are trained on a
2.9 GHz Intel Xeon Gold 6226R processor and one NVIDIA A40 GPU.

A.2 Bias-Free Denoiser

A.2.1 Configuration

For the codeword (latent) denoiser, we use a bias-free denoiser (Mohan et al., 2020). Specifically, we use 20 Convolution-
Batch Normalization-ReLU blocks without any additive bias terms based on the structure in (Kadkhodaie and Simoncelli,

3We use the first two tarball file (train 0.tar.gz and train 1.tar.gz) of the training set from the following website:
https://github.com/cvdfoundation/open-images-dataset
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2020). As illustrated in Figure 9b, the bias-free convolution layers are composed of 3× 3× 64 kernels except for the last
layer.

A.2.2 Training Method

Bias-free denoisers used in this paper operate in the codeword domain. Thus we trained each denoiser (there are multiple
versions with different latent/codeword sizes) to predict the channel noise instance from a corrupted codeword. That is,
given xi in the training set we first map xi to the codeword Eϕ(xi), where Eϕ : Rm → Rk is a Deep JSCC encoder
network. Then we sample a k-dimensional channel noise following the predefined noise distribution ni ∼ Pσ(N) which
does not change during the training. Then, we update the weights of the denoiser network F ′ : Rk → Rk to minimize
the mean squared error between the noise instance ni and the output of the denoiser network F ′(Eϕ(xi) + ni) given the
corrupted codeword Eϕ(xi) + ni:

F := argmin
F ′

1

dtrain

dtrain∑
i=1

∥ni − F ′(Eϕ(xi) + ni)∥22.

The bias-free denoisers for CIFAR-10 are trained using codewords of the CIFAR-10 training data. The models are trained
for 234,300 steps with batch size of 64 using Adam optimizers with β1 = 0.9 and β2 = 0.999. The learning rate is set to
0.0002 and decayed to 0.00002 at the 117,150th step.

The bias-free denoisers for Kodak experiments are trained with codewords of randomly cropped 128×128 pixel patches in
the subset of the Open Images V6 training dataset used for Deep JSCC model training. We trained each bias-free denoiser
for 53,350 steps with batch size of 128 using Adam optimizer with β1 = 0.9 and β2 = 0.999. We kept the learning rate
policy the same as the CIFAR-10 denoiser training.

Conv/BN/PReLU

Conv/BN/PReLU

(a)

BFConv

BFBatchNorm

ReLU

BFConv

BFBatchNorm

ReLU

BFConv

(b)

Figure 9: (a): Residual Block used in Deep JSCC encoders and decoders. The elements of the tuple (s, s, c, d) denote
the width and height of the kernel, and the numbers of input and output channels of the convolution layer, respectively. If
cin ̸= cout, a 1× 1 convolution layer is applied to the shortcut. (b): Bias-free Denoiser.

A.3 Data pre- and post-processing

All image pixels are normalized from the integer values [0, 255] to floating point values [−1, 1] before being fed into the
network. During testing, we use the output of the decoder in the range of [−1, 1] directly to evaluate LPIPS and FID.
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Type Kernel Size (s) Stride↓, Upscale↑ Output Shape (Ch ×H ×W )
Encoder

Conv/BN/PReLU 7 1 (32, 32, 32)
Conv/BN/PReLU 5 2↓ (64, 16, 16)
Residual 3 1 (64, 16, 16)
Conv/BN/PReLU 5 2↓ (128, 8, 8)
Residual 3 1 (128, 8, 8)
Residual 3 1 (128, 8, 8)
Residual 3 1 (128, 8, 8)
Residual 3 1 (k/64, 8, 8)
Power Normalization - - (k/64, 8, 8)

Decoder
Conv/BN/PReLU 3 1 (128, 8, 8)
Residual 3 1 (128, 8, 8)
Residual 3 1 (128, 8, 8)
Upsample - 2↑ (128, 16, 16)
Conv/BN/PReLU 3 1 (64, 16, 16)
Residual 3 1 (64, 16, 16)
Upsample - 2↑ (64, 32, 32)
Conv/BN/PReLU 3 1 (32, 32, 32)
Residual 3 1 (32, 32, 32)
Conv/BN/Tanh 5 1 (3, 32, 32)

Table 1: Deep JSCC Encoder and Decoder structure for CIFAR-10. Kernel size: the width and height of the kernel of the
convolution layer, Ch: number of hidden channels of the network, k: dimension of the codeword space.

Type Kernel Size (s) Stride↓, Upscale↑ Output Shape (Ch ×H ×W )
Encoder

Conv/BN/PReLU 7 2↓ (128, H/2,W/2)
Conv/BN/PReLU 5 2↓ (128, H/4,W/4)
Residual 5 1 (128, H/4,W/4)
Residual 5 1 (128, H/4,W/4)
Residual 5 1 (128, H/4,W/4)

Conv/BN 5 1 ( 16k
HW , H/4,W/4)

Power Normalization - - ( 16k
HW , H/4,W/4)

Decoder
Conv/BN/PReLU 5 1 (128, H/4,W/4)
Residual 5 1 (128, H/4,W/4)
Residual 5 1 (128, H/4,W/4)
Upsample - 2↑ (128, H/2,W/2)
Conv/BN/PReLU 5 1 (128, H/2,W/2)
Residual 5 1 (128, H/2,W/2)
Upsample - 2↑ (128, H,W )
Conv/BN/Tanh 7 1 (3, H,W )

Table 2: Deep JSCC Encoder and Decoder structure for Kodak dataset. Ch: number of hidden channels of the network, k:
dimension of the codeword space. For Upsample, we used bilinear upsampling.
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Figure 10: Performance of BPG-LDPC-QAM, One-shot and ISEC Deep JSCC when SNRtrain = SNRtest.

The decoder outputs are re-mapped to the original integer range of [0, 255] for the evaluation of PSNR and (MS-)SSIM.
Random horizontal flipped images were created to augment the dataset during training.

A.4 Parameters for ISEC

In this section, we specify the parameters of Algorithm 1 used in our experiments. Note that α and δ are used for calculating
α′ in Algorithm 1, which controls the effect of the gradient of implicit prior (i.e., (7)), whereas η is a step size of ISEC.
Throughout CIFAR-10 evaluations, α and δ are fixed to 1.0. Regardless of CPP, we use η = 0.004, 0.002, and 0.001 for
0, 5, and 10dB models, respectively. For the Kodak dataset, we set α = 2 for 1dB models and α = 4 for 7 and 13dB
models. When CPP=1/6, the parameter pair (δ, η) is set to (0.5, 0.001), (1.0, 0.001), and (2.0, 0.005) for the 1, 7, and
13dB models, respectively. When CPP=1/16, we use (0.0, 0.001), (0.0, 0.0005), and (2.0, 0.005) for the 1, 7, and 13dB
models, respectively. In particular, we use (δ, η) = (2.0, 0.001) when test SNRs are 16dB and 19dB since the step size
grows abnormally large otherwise.

A.5 LDPC codes setting

For all of our LDPC experiments on the separate source-channel coding scheme, we used the IEEE 802.11 WiFi standard
with a block length of 648 and a submatrix size of 27. The LDPC codes are decoded using the belief propagation algorithm
with 10 iterations.

B Additional Quantitative Results

B.1 Performance of Low Channel-per-pixel models Under Trained Environment.

In Figure 10a and 10b, we present the performance of one-shot vs. ISEC Deep JSCC for the CIFAR-10 dataset at CPP=1/12
and the Kodak dataset at CPP=1/16, respectively. Compared to the performance when CPP=1/6 in Figure 2, ISEC and one-
shot Deep JSCC decoding methods outperform BPG-LDPC-QAM with larger gaps in perceptual quality metrics. The one-
shot decoding and ISEC are tested under the same channel characteristics as the training. ISEC increases all performance
metrics in lower CPP cases although the observed gains from ISEC are smaller than those from higher CPP cases.

B.2 Mismatched Noise Characteristics

The performance curves when the training and testing SNR mismatch ranges from -5dB to 10dB are shown in Figure
11. We also present visualization of the first 36 images of the CIFAR-10 test dataset in Figure 14. Since the codeword
dimension of CIFAR-10 images is much smaller than that of Kodak images, the error recovery via ISEC in lower SNR
environments is not significant (note there might be room to improve since we did not optimize the ISEC parameters α, δ,
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Figure 11: Reconstruction Performance of ISEC on CIFAR-10 dataset when SNRtest ̸= SNRtrain. Top row: CPP=1/6,
bottom row: CPP=1/12.
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Figure 12: Reconstruction Performance of ISEC on Kodak dataset when SNRtest ̸= SNRtrain, CPP=1/16. The x-axis
indicates the SNR difference between tested and trained environment.

and η). The suboptimal performance of one-shot decoding when the test SNR is higher than the training SNR is observed
in Figure 11 and 14h. ISEC provides significant gains in such scenarios.

Figure 12 shows the performance gain on Kodak dataset when SNRtest ̸= SNRtrain, CPP=1/16. The same trend is observed
as when CPP=1/6 (see Figure 4).

B.3 Distributions of Gains from ISEC for Kodak images

In this section, we show distributions of the gain from ISEC for three different test SNRs (1, 7, and 13 dB) at CPP=1/6
and 1/12 using the 7dB model. It supplements the analysis shown in Figure 3. Figure 13 shows histograms of PSNR,
MS-SSIM, and LPIPS gains from ISEC for randomly cropped 256 × 256 pixel Kodak image patches. We noticed ISEC
does not provide LPIPS gains when CPP=1/16 and SNR=1dB (-6dB lower than the training SNR). We presume the ISEC
gain diminishes for this challenging scenario (compression rate is high at CPP=1/16 and SNR is much lower than expected)
because the quality of Deep JSCC one-shot decoding degrades considerably so that the starting point of ISEC is far away
from the local optima. Nevertheless, the average gains of all other metrics are above zero without a significant number of
outliers exhibiting negative gains.

C Additional Qualitative/Visual Comparisons

Figure 14 shows additional CIFAR-10 images decoded by one-shot decoding and ISEC based on the 5dB Deep JSCC
model with CPP=1/6. Additional Kodak dataset images for one-shot decoding and ISEC results are shown in the following
figures: Figure 15, 16, and 17 are at CPP=1/6 for 1, 7, and 13dB models, respectively. Figure 18, 19, and 20 are outputs
from 1, 7, and 13dB models, respectively, at CPP=1/16.
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Figure 13: Histograms of ISEC gains for randomly cropped 256× 256 Kodak images using SNRtrain = 7dB model.
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(a) Target (b) One-shot, SNRtest = 0dB (c) ISEC, SNRtest = 0dB

(d) Target (e) One-shot, SNRtest = 5dB (f) ISEC, SNRtest = 5dB

(g) Target (h) One-shot, SNRtest = 15dB (i) ISEC, SNRtest = 15dB

Figure 14: One-shot and ISEC decoding of CIFAR-10 test images using 5dB model on CPP=1/6.
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(a) Target (b) Before ISEC, SNRtest = −5dB (c) After ISEC, SNRtest = −5dB

(d) Target (e) Before ISEC, SNRtest = 1dB (f) After ISEC, SNRtest = 1dB

(g) Target (h) Before ISEC, SNRtest = 7dB (i) After ISEC, SNRtest = 7dB

Figure 15: Before and After ISEC on Kodak images using SNRtrain=1dB model on CPP=1/6.
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(a) Target (b) Before ISEC, SNRtest = 1dB (c) After ISEC, SNRtest = 1dB

(d) Target (e) Before ISEC, SNRtest = 7dB (f) After ISEC, SNRtest = 7dB

(g) Target (h) Before ISEC, SNRtest = 13dB (i) After ISEC, SNRtest = 13dB

Figure 16: Before and After ISEC on Kodak images using SNRtrain=7dB model on CPP=1/6.
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(a) Target (b) Before ISEC, SNRtest = 7dB (c) After ISEC, SNRtest = 7dB

(d) Target (e) Before ISEC, SNRtest = 13dB (f) After ISEC, SNRtest = 13dB

(g) Target (h) Before ISEC, SNRtest = 19dB (i) After ISEC, SNRtest = 1dB

Figure 17: Before and After ISEC on Kodak images using SNRtrain=13dB model on CPP=1/6.
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(a) Target (b) Before ISEC, SNRtest = −5dB (c) After ISEC, SNRtest = −5dB

(d) Target (e) Before ISEC, SNRtest = 1dB (f) After ISEC, SNRtest = 1dB

(g) Target (h) Before ISEC, SNRtest = 7dB (i) After ISEC, SNRtest = 7dB

Figure 18: Before and After ISEC on Kodak images using SNRtrain=1dB model on CPP=1/16.
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(a) Target (b) Before ISEC, SNRtest = 1dB (c) After ISEC, SNRtest = 1dB

(d) Target (e) Before ISEC, SNRtest = 7dB (f) After ISEC, SNRtest = 7dB

(g) Target (h) Before ISEC, SNRtest = 13dB (i) After ISEC, SNRtest = 13dB

Figure 19: Before and After ISEC on Kodak images using SNRtrain=7dB model on CPP=1/16.
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(a) Target (b) Before ISEC, SNRtest = 7dB (c) After ISEC, SNRtest = 7dB

(d) Target (e) Before ISEC, SNRtest = 13dB (f) After ISEC, SNRtest = 13dB

(g) Target (h) Before ISEC, SNRtest = 19dB (i) After ISEC, SNRtest = 1dB

Figure 20: Before and After ISEC on Kodak images using SNRtrain=13dB model on CPP=1/16.
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