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Abstract

Causal discovery algorithms aim at untangling
complex causal relationships from data. Here,
we study causal discovery and inference meth-
ods based on staged tree models, which can rep-
resent complex and asymmetric causal relation-
ships between categorical variables. We provide
a first graphical representation of the equivalence
class of a staged tree, by looking only at a spe-
cific subset of its underlying independences. We
further define a new pre-metric, inspired by the
widely used structural intervention distance, to
quantify the closeness between two staged trees
in terms of their corresponding causal inference
statements. A simulation study highlights the ef-
ficacy of staged trees in uncovering complexes,
asymmetric causal relationships from data, and
real-world data applications illustrate their use in
practical causal analysis.

1 INTRODUCTION

One of the major tasks in all areas of science is to uncover
causal relationships between variables of interest. Since
experimental data is in many cases unavailable, this task
often comes down to discover such relationships using ob-
servational data only. This is usually referred to as causal
discovery. One of the most common approaches in causal
discovery, as well as in causal analysis, is to represent causal
relationships via directed acyclic graphs (DAGs). If there
is an edge pointing from one variable to another in such
graphs, then the former is a direct cause of the latter (Pearl,
2009). The literature on causal discovery using DAGs is
now extensive (see Glymour et al., 2019, for a review). The
most common approaches are the PC-algorithm (Spirtes
et al., 2000), greedy equivalence search (Chickering, 2002)
and functional causal models (Hoyer et al., 2008).
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Although more efficient and scalable causal discovery algo-
rithms are still being developed (e.g., Bhattacharya et al.,
2021; Monti et al., 2020), most of the recent literature has
focused on continuous random variables only. Attention to
causal discovery for observational discrete data has been
limited (see e.g. Cai et al., 2018; Cowell and Smith, 2014;
Huang et al., 2018; Peters et al., 2010, for exceptions). The
aim of this paper is to discuss flexible and powerful causal
discovery algorithms for categorical data embedding com-
plex and asymmetric variable relationships and to highlight
their efficacy.

Whilst most causal discovery is carried out via DAG models,
here we consider staged tree models (Collazo et al., 2018;
Smith and Anderson, 2008) which, differently to DAGs, can
represent a wide array of asymmetric causal effects between
categorical variables. Bayesian MAP structural learning
algorithms for this model class have been introduced (Col-
lazo and Smith, 2016; Cowell and Smith, 2014; Freeman
and Smith, 2011) as well as score-based ones (Leonelli and
Varando, 2022a; Silander and Leong, 2013). A wide selec-
tion of score-based algorithms have been implemented in
the open-source stagedtreees R package (Carli et al.,
2022) and are used henceforth. Other strategies for non-
symmetric relationships in DAG have been proposed in the
literature. Two main approaches are modeling CPTs with
tree structures (Chickering et al., 1997; Boutilier et al., 1996;
Pensar et al., 2016) or using labelled graphs (Pensar et al.,
2015).

Despite the importance of uncovering causality from data,
only one causal discovery algorithm for staged trees has
been proposed (Cowell and Smith, 2014). Here we provide
a suite of discovery algorithms based on the dynamic pro-
gramming approach of Silander and Leong (2013), all freely
available in the stagedtrees R package. Furthermore,
we perform an extensive simulation study to assess their
effectiveness, demonstrating that staged trees are extremely
powerful in discovering complex dependence structures and
in general outperform DAGs for categorical data.

Just as with DAGs, causal discovery with staged trees can
be effectively carried out only if coupled with a method to
compute the statistical equivalence class of a model (Collazo
et al., 2018). However, the construction of this equivalence
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class has been shown to be extremely challenging (Duarte
and Solus, 2021; Görgen and Smith, 2018; Görgen et al.,
2018), and no practical implementations are available. Here
we provide a first graphical criterion to characterize part of
the equivalence class of a staged tree by looking only at its
symmetric independences and showcase its use in practice
in our data applications. Approaches restricting the types of
independences to be considered when studying equivalence
have lately become popular also for DAG models (Markham
et al., 2022; Textor et al., 2015; Wienöbst and Liskiewicz,
2020). Notice that once a causal staged tree model is chosen,
there is a wide array of methods to estimate causal effects
(Genewein et al., 2020; Görgen et al., 2015; Thwaites et al.,
2010; Thwaites, 2013).

The quality of our routines is investigated by computing
a new measure of dissimilarity between causal models tai-
lored to the topology of staged trees and inspired by the
widely-used structural intervention distance (SID) (Peters
and Bühlmann, 2015) which we henceforth call context-
specific intervention discrepancy (CID). Differently from
SID which only accounts for symmetric causal relationships,
our defined CID can more generally consider the difference
between two causal models by accounting for complex,
asymmetric dependencies.

Summarizing, our contributions are the following: (i) a
first graphical criterion of equivalence in staged trees;
(ii) the first causal measure to compare asymmetric
causal relationships in both staged trees and DAGs; (iii)
a comparative simulation study highlighting the effec-
tiveness of asymmetric causal discovery; (iv) multiple
real-world data applications showcasing our methodol-
ogy in practice. The code with the implemented meth-
ods and the simulation experiments is available in the
stagedtrees R package (Carli et al., 2022) and in
the repository available at https://github.com/
gherardovarando/stagedtrees_causal.

2 STAGED TREES

Let [p] = {1, . . . , p} and X = (Xi)i∈[p] be categorical
random variables with joint mass function P and sample
space X = ×i∈[p]Xi. For A ⊂ [p], we let XA = (Xi)i∈A
and xA = (xi)i∈A where xA ∈ XA = ×i∈AXi. We also
letX−A = (Xi)i∈[p]\A.

Let (V,E) be a directed, finite, rooted tree with vertex set
V , root node v0, and edge set E. For each v ∈ V , let
E(v) = {(v, w) ∈ E} be the set of edges emanating from
v and C be a set of labels.

Definition 1. An X-compatible staged tree is a triple
(V,E, η), where (V,E) is a rooted directed tree and:

1. V = v0 ∪
⋃
i∈[p] X[i];

2. For all v, w ∈ V , (v, w) ∈ E if and only if w = x[i] ∈

X[i] and v = x[i−1], or v = v0 and w = x1 for some
x1 ∈ X1;

3. η : E → L = C × ∪i∈[p]Xi is a labelling of the edges
such that η(v,x[i]) = (κ(v), xi) for some function
κ : V → C.

If η(E(v)) = η(E(w)) then v and w are said to be in the
same stage.

Therefore, the equivalence classes induced by η(E(v)) form
a partition of the internal vertices of the tree in stages.

Definition 1 first constructs a rooted tree where each root-
to-leaf path, or equivalently each leaf, is associated with an
element of the sample space X. Then a labeling of the edges
of such a tree is defined where labels are pairs with one ele-
ment from a set C and the other from the sample space Xi of
the corresponding variable Xi in the tree. By construction,
X-compatible staged trees are such that two vertices can be
in the same stage if and only if they correspond to the same
sample space. Although staged trees can be more generally
defined without imposing this condition, henceforth, and
as common in practice, we focus on X-compatible staged
trees only (see Leonelli, 2019, for an example of a non
X-compatible tree).

Figure 1 (left) reports an (X1, X2, X3)-compatible stratified
staged tree over three binary variables. The coloring given
by the function κ is shown in the vertices and each edge
(·, (x1, . . . , xi)) is labeled with Xi = xi. The edge labeling
η can be read from the graph combining the text label and
the color of the emanating vertex. The staging of the staged
tree in Figure 1 is given by the partition {v0}, {v1, v2},
{v3, v4}, {v5} and {v6}.

The parameter space associated to an X-compatible staged
tree T = (V,E, η) with labeling η : E → L is defined as

ΘT =
{
θ ∈ Rη(E) | ∀e ∈ E, θη(e) ∈ (0, 1) and

∀v ∈ V,
∑

e∈E(v)

θη(e) = 1
}

Let lT denote the leaves of a staged tree T . Given a vertex
v ∈ V , there is a unique path in T from the root v0 to v,
denoted as λ(v). For any path λ in T , let E(λ) = {e ∈ E :
e ∈ λ} denote the set of edges in the path λ.
Definition 2. The staged tree modelMT associated to the
X-compatible staged tree (V,E, η) is the image of the map

φT : ΘT → ∆|lT |−1

θ 7→
(∏

e∈E(λ(l)) θη(e)

)
l∈lT

(1)

An element ofMT in Definition 2 identifies a joint proba-
bility Pθ with conditional distributions, for all x ∈ X and
i ∈ [p],

Pθ(Xi = xi|X[i−1] = x[i−1]) = θη(x[i−1],x[i]).
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Figure 1: An example of an (X1, X2, X3)-compatible (left) and an (X1, X3, X2)-compatible (right) staged trees.

Definition 3. Two staged trees T and S are said to be
statistically equivalent if they induce the same models, that
isMT =MS .

2.1 Conditional Independence and graphical
representation

A symmetric or total, conditional independence statement,
or just conditional independence (CI) (XA ⊥⊥ XB |XC)
holds for a probability distribution P , over categorical ran-
dom variable, if

P (XA|XB = xB , XC = xC) = P (XA|XC = xc), (2)

for every xB ∈ XB and xc ∈ XC . Conditional indepen-
dence statements can be efficiently represented by DAGs
model and the d-separation criterion (Pearl and Verma, 1987;
Verma and Pearl, 1990). In particular if a probability dis-
tribution P over X1, . . . , Xp belongs to the model class
associated with a DAG G, then Xi ⊥⊥ Xj |XC with respect
to P if i and j are d-separated by C in G. Thus we can
graphically read in G the conditional independence state-
ments that hold for every distribution Markov with respect
to G.

For categorical random variables, we could envisage those
equality relationships such as Equation 2 hold only for a
subset of values of xB and/or xC . This generalized asymmet-
ric conditional independences can be organized into three
classes: (i) Context-specific CI (Boutilier et al., 1996), when
P (XA|XB = xB , XC = xC) = P (XA|XC = xc) for all
xB ∈ XB and for a subset of possible value xC ∈ C ⊆ XC
(the context). (ii) Partial CI (Pensar et al., 2016), when
P (XA|XB = xB , XC = xC) = P (XA|XC = xC) for
a subset of values xB ∈ B ⊆ XB and a subset of values
xC ∈ C ⊆ XC . (iii) Local CI (Chickering et al., 1997),
when P (XA|XC = x1C) = P (XA|XC = x2C). Such asym-
metric CI statements cannot be encoded graphically in a
classical DAG model, since they refer to equalities valid in
specific conditional probability tables. Previous works have
thus modeled such equality relationships by either modeling

CPTs with tree structures (Chickering et al., 1997; Boutilier
et al., 1996; Pensar et al., 2016) or by considering only
context-specific CIs and using labelled DAGs (Pensar et al.,
2015).

In the staged tree in Figure 1 (left), we can see how the
vertex staging represents conditional independence: the fact
that v1 and v2 are in the same stage (green) implies that
X1 ⊥⊥ X2; in fact, from the definition of staged tree model,
the context-specific conditional distribution of X2 given
X1 = 0, represented by the edges emanating from v1, is
equal to the conditional distribution of X2 given X1 = 1.
The staging given by the light-blue vertices implies instead
the context-specific independence (Boutilier et al., 1996)
X3 ⊥⊥ X2|X1 = 0: the independence between X3 and
X2 holds only for one of the two levels of X1. For such a
staged tree there is no equivalent DAG representation since it
embeds non-symmetric conditional independences (Varando
et al., 2021).

In the staged tree in Figure 1 (right), we can observe that
the stages structure for the last variable implies the follow-
ing equalities: P (X2|X1 = 0, X3 = 0) = P (X2|X1 =
1, X3 = 1) and P (X2|X1 = 0, X3 = 1) = P (X2|X1 =
1, X3 = 0). This is what is defined as a local CI (Chick-
ering et al., 1997), it is a relationship between conditional
probabilities which cannot be expressed as traditional con-
ditional independence nor context-specific or partial. We
refer to Pensar et al. (2016) and Varando et al. (2021) for
additional discussion and examples of asymmetric CIs.

2.2 Staged Trees and DAGs

Consider a DAG G and the associated statistical model
MG of all distributions that are Markov to G. Smith and
Anderson (2008) showed that one can always construct a
staged tree TG such thatMG =MTG . However, given a
staged tree T in general one cannot find a DAG GT such
that MT = MGT since staged trees embed asymmetric
independences that DAGs cannot represent.
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Varando et al. (2021) demonstrated that it is possible to find
a minimal DAG GT = ([p], F ) such that MT ⊆ MGT ,
and this minimal GT represents all symmetric conditional
independences of T . More formally, Xi ⊥⊥ Xi|XC holds
inMT if and only if i and j are d-separated by C in GT .
For instance, the minimal DAG representation of the staged
tree in Figure 1 (left) is the v-structure 1→ 3← 2.

In Varando et al. (2021) DAGsGT are also extended to have
a labeling of their edges according to the type of dependence
existing between any pair of random variables in the under-
lying staged tree T (according to the categorization of asym-
metric independence given in Pensar et al., 2016). They
termed such labeled DAGs as asymmetry-labeled DAGs
(ALDAGs) and introduce algorithms to learn them from
data. For the purposes of this paper, we are interested in a
simplified version of the labeling; we are, in particular, inter-
ested only in identify the subset of edges in GT which cover
some asymmetric conditional independence statements.

Definition 4. Let GT be the minimal DAG of an X-
compatible staged tree T = (V,E, η) and an edge (i, j)
of G is called non-total if

η(E(x[j−1])) = η(E(x′[j−1])),

for x[j−1],x
′
[j−1] ∈ X[j−1],

s.t.xi 6= x′i.

An edge is called total otherwise.

Intuitively an edge (i, j) in a minimal DAG is non-total
when the variable Xi is “involved” is a non-symmetrical
conditional independence for Xj . The edges of a minimal
DAG GT = ([p], F ) can thus be partitioned in total (F tot)
and non-total edges (Fnt).

As an illustration, in the minimal DAG from the tree on the
left of Figure 1 (1 → 3 ← 2), the edge (2, 3) is non-total
because v3 and v4 belong to the same stage.

2.3 Causal Models Based on Staged Trees

We can define a finite-interventional causal model (Rischel
and Weichwald, 2021) induced by a staged tree as a collec-
tion of interventional distributions in an intuitive way: the
joint distribution of x in the intervened model is obtained
by the product of the parameters in the corresponding root-
to-leaf path where we replace parameters corresponding to
intervened variables.

Definition 5. A staged tree causal model induced by an
X-compatible staged tree T = (V,E, η) is the class of in-
terventional distributions defined, for each parameter vector

θ ∈ ΘT , as follows:

Pθ (X = x|do(XI = zI)) =
∏
i 6∈I

θη(x[i],x[i−1])

∏
i∈I

δ(xk, zk)

=

{
Pθ(X=x)∏

i∈I Pθ(Xi=xi|X[i−1]=x[i−1])
if xI = zI

0 otherwise
(3)

In particular, under the empty intervention, we recover the
observational distribution Pθ.

We say that two staged trees T and S are causally equivalent
if they induce the same class of interventional distributions
as in Definition 5. Obviously, two causally equivalent staged
trees are also statistically equivalent but not vice versa.

We have that, as for DAGs, intervening on some variables,
only affects downstream variables, for i 6∈ I and an X-
compatible staged tree:

Pθ (Xi|do(XI = xI)) = Pθ (Xi|do(XI∗ = xI∗)) ,

where I∗ = I ∩ [i− 1]
(4)

And, in particular,

Pθ
(
Xi = xi|do(X[i−1] = x[i−1])

)
=

Pθ
(
Xi = xi|X[i−1] = x[i−1]

)
= θη(x[i−1],x[i]).

3 CAUSAL DISCOVERY ALGORITHMS

As discussed by Collazo et al. (2018) and Cowell and Smith
(2014), causal discovery algorithms for staged trees must
combine two routines: (i) an algorithm learning the stage
structure of the tree with a fixed variable ordering; (ii) an
algorithm exploring the possible variable orderings. Both
are reviewed next.

3.1 Learning the Stage Structure with a Fixed Order

The space of possible X-compatible staged trees is con-
siderably larger than the space of possible DAGs. Even
if we fix the order of the variables, exploring all possible
combinations of stages structure becomes rapidly infeasi-
ble (Collazo et al., 2018). We thus use two of the possi-
ble heuristic searches implemented in the stagedtrees
package (Carli et al., 2022). In both cases, we use the BIC
score as criterion for selecting the best ordering of the vari-
ables (see Görgen et al., 2022, for details). However, our
implementation can be coupled with any algorithm available
in the stagedtrees package.

The backward hill-climbing (BHC) method consists in start-
ing from the saturated model and, for each variable, itera-
tively trying to join stages. At each step of the algorithm, all
possible combinations of two stages are tried and the best
move is chosen. Since the log-likelihood decomposes across
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the depth of the tree, the stages search can be performed
independently for each variable.

The use of the k-means clustering of probabilities to
learn staged event tree was first introduced by Silander
and Leong (2013) as a fast alternative to backward hill-
climbing algorithms. The default version implemented in
the stagedtrees package performs k-means clustering
over the square root of the probabilities of a given variable
given all the possible contexts. Both algorithms operate
over the stage structures of each variable Xi independently
of the other variable stages. Furthermore, the estimated
stage structure of a given variable depends only on which
variables precede Xi, independently of their order.

3.2 Learning an Optimal Variable Ordering

The methods described in the previous section output an
Xπ-compatible staged tree for a possible ordering π of the
variables. For a small number of variables, it is possible to
simply enumerate all possible p! staged trees for all possi-
ble orders, and select the best one(s) according to a chosen
criterion (e.g. BIC). Silander and Leong (2013) proposed a
dynamic programming algorithm that still obtains a global
optimum, but with a substantial reduction in computational
complexity. The method can be coupled with every algo-
rithm which operates independently on every variable and
using as guiding score any function which can be decom-
posed across the variables of the model.

3.3 Related Work

In principle, non-symmetric CI statements are represented
by equalities in conditional probability tables (CPT) in cat-
egorical DAG parametrizations. Still, a classical (or full
tables) DAG is not able to represent graphically such asym-
metric relationships, in the sense that such equalities are not
encoded in any particular structure. A simple extension of
DAGs could consider additional nodes representing values
of variables (e.g. X1 = 0, X1 = 1) in order to represent
context-specific relationships. Unfortunately, this strategy
works only for univariate contexts and, it would entail deter-
ministic relationships between some nodes in the DAG (e.g.
X1 = 0 and X1 = 1).

More complex strategies for non-symmetric relationships
in DAGs have been proposed in the literature. Two main
approaches are modeling CPTs with tree structures (Chicker-
ing et al., 1997; Boutilier et al., 1996; Pensar et al., 2016) or
use labelled graphs (Pensar et al., 2015) for context-sepcific
independences. DAGs with tree-parametrized CPTs and
staged tree methods are very similar approaches that use
trees to represent conditional probabilities. In particular,
the statistical models represented by staged tree and DAGs
with tree-CPTs are, in principle, equivalent. Even the learn-
ing algorithm proposed by Pensar et al. (2016) consist in
a heuristic search using splitting and joining operation on

each CPT-tree, similar in a way to the hill-climbing moves
proposed also for staged trees (Carli et al., 2022). The differ-
ence is that, in the staged tree approach, we do not assume
a sparse DAG between variables and we do not search both
a DAG and sparse CPTs. Of course, restricting to sparse
DAG is beneficial from a computational perspective, and it
has been proposed and shown to be effective also for staged
trees (Barclay et al., 2013; Leonelli and Varando, 2022b).
Unfortunately, we are not aware of any available implemen-
tation of these related methods and we were thus unable to
run any empirical comparisons.

3.4 Exploring the Equivalence Class

Given a learned staged tree from data, any formal causal
analysis also needs exploration of the associated statistical
equivalence class. For staged trees, this has been shown
to be extremely complex. Görgen and Smith (2018) and
Görgen et al. (2018) give polynomial criteria which are
complex to implement in practice, whilst Duarte and Solus
(2021) considers a particular subclass of staged trees. The
following proposition paves the way toward the exploration
of the equivalence class of a staged tree.
Proposition 1. Let T be anX-compatible staged tree and
GT = ([p], F = F tot ∪ Fnt) its minimal DAG, where
we denote with Fnt the non-total edges of GT . Let G′ =
([p], F ′ ∪ Fnt) be a DAG in the same Markov equivalence
class of GT , where π is one of its topological orders. If
additionally ([p], F ′) and ([p], F tot) are Markov equivalent,
then there exists an Xπ-compatible staged tree S (with
minimal DAG G′) such that MT = MS . Vice versa, If
MT =MS their minimal DAGs GT and GS are Markov
equivalent.

However, there may be equivalent staged trees whose min-
imal DAGs have “non-total" edges with a different direc-
tionality (see e.g. Pensar et al., 2015). As an illustration of
Proposition 1, consider the staged tree in Figure 1 (left).
Its minimal DAG is the v-structure X1 → X3 ← X2.
Therefore there exists, at least, an (X2, X1, X3)-compatible
staged tree which is statistically equivalent to the one in
Figure 1 (left), and there cannot be a statistically equivalent
staged tree where X3 is not the last variable.

Although Proposition 1 does not give a complete character-
ization of the equivalence class, it is important because it
informs about relationships existing in the staged tree which
cannot be interpreted as causal if learned from data. We
showcase in Section 6 how the proposition can be used for
applied causal analyses.

4 CONTEXT-SPECIFIC
INTERVENTIONAL DISCREPANCY

Similarly to the structural interventional distance (SID) for
DAGs (Peters and Bühlmann, 2015), which counts the num-
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ber of wrongly estimated interventional distributions, we
can define a context interventional discrepancy, with respect
to a reference staged tree (T ). Such a discrepancy measures
the extent of the errors done in computing context-specific
interventions using a different staged tree (S).

Definition 6. Let T = (V,E, η) be an X-compatible
staged event tree and S = (W,F, ν) an Xπ-compatible
staged event tree, where π is a permutation of [p]. We define
the context interventional discrepancy CID(T, S) as,

CID(T, S) =
∑
i∈[p]

CIDi(T, S),

where CIDi (T, S) is the proportion of contexts
x[i−1] ∈ X[i−1] for which the interventional dis-
tribution P (Xi|do(X[i−1] = x[i−1])) is wrongly
inferred by S with respect to T . Precisely, we say that
P (Xi|do(X[i−1] = x[i−1])) is wrongly inferred by S with
respect to T if there exists P ∈MT such that

P (Xi|X[i−1] = x[i−1]) 6=

P

(
Xi|XI ∈

{
yI ∈ XI : ν(E(yK)) = ν(E(xK))

for some yK\I ,xK\I ∈ XK\I

})
where K = {j : π−1(j) < π−1(t)} are the variables
preceding Xi in S and I = K ∩ [i− 1].

Intuitively, CID measures how much a different staged tree
S can be used to compute interventional distributions of the
type P (Xi|do(X[i−1] = x[i−1])). We choose to consider
only univariate distributions under interventions on the pre-
ceding variables in the true model T , instead of pairwise in-
terventional distributions of the form P (Xi|do(Xj = xj))
as in the definition of SID (Peters and Bühlmann, 2015).
This is because our goal is to quantify the effect of context-
specific interventions. Moreover, differently from SID, we
do not control if the additional variables preceding Xi in S
are a valid adjustment set. This simplification is taken to
avoid the computational complexity of having to check the
stages structure for all the variables in the eventual adjust-
ment set. Nevertheless, the proposed CID is a sensitive mea-
sure of correctness of the causal model, as Proposition 2 and
Figure 2 show. However, other measures of the differences
between staged tree causal models could be alternatively de-
fined, eventually considering different intervention classes
or validity of the adjustment sets.

The algorithm to compute the context-specific interventional
discrepancy is given in the Appendix where its correctness
is also proven.

As an example of the computation of CID(T, S), consider
the two staged trees in Figure 1, where the left tree is T
and the right one is S. We need to determine which inter-
ventional distributions for the left staged tree are wrongly
inferred by the right one. For example, consider the in-
tervention do(X1 = 0, X2 = 1) and the distribution

P (X3|do(X1 = 0, X2 = 1)) for P ∈ MT . We have
that,

P (X3|do(X1 = 0, X2 = 1)) = P (X3|X1 = 0, X2 = 1),

and, I = {1}, thus, because v3 and v4 belong to the same
stage in T :

P (X3|X1 = 0) = P (X3|X1 = 0, X2 = 0)

= P (X3|X1 = 0, X2 = 1),

and P (X3|do(X1 = 0, X2 = 1)) is then correctly inferred
by S. On the other hand, we have that P (X3|do(X1 =
1, X2 = 1)) is wrongly inferred by S because P (X3, |X1 =
1, X2 = 1) 6= P (X3|X1 = 1) in general. To see this, notice
that

P (X3|X1 = 1) =∑
x2=0,1

P (X3|X1 = 1, X2 = x2)P (X2 = x2|X1 = 1).

And P (X3, |X1 = 1, X2 = 1) 6= P (X3|X1 = 1) if, for
example, we choose P (X2 = x2|X1 = 1) = 0.5 and
P (X3|X1 = 1, X2 = 0) 6= P (X3|X1 = 1, X2 = 1).

As another example, consider the interventional distribu-
tion P (X2|do(X1 = 1)). In this case we have I = {1},
and since vertices v1, v2 are in the same stage (and so are
{w5, w4} and {w3, w6}), we have that

P (X2|X1 = 1) = P (X2) = P (X2|X1 ∈ {0, 1}),

that is, S correctly infers the interventional distribution
P (X2|do(X1 = 1)) for every P ∈MT .

Similar to SID, the context-specific intervention discrepancy
is not symmetric. The following proposition collects some
properties of the newly defined measure.
Proposition 2. The following properties hold for CID.

i. CID(T, S) = 0 for every pair of causally equivalent
staged trees S, T .

ii. If M(T ) ⊆ M(S) and π is the identity, then
CID(T, S) = 0.

iii. If MT is the full independence model then
CID(T, S) = 0 for every Xπ-compatible staged tree
S.

Notice that CID can also be used to compare categorical
causal DAGs, since we can always transform a DAG G
to its equivalent staged tree representation TG. In order
to compare CID and SID we perform a simulation study
where we sample uniformly DAGs over 5 binary variables
and compute their CID and SID. The results are reported
in the two-dimensional density and scatter plot in Figure 2.
We can see that there is a high correlation between the two
measures thus highlighting that CID is a sensible measure
that could be used not only for non-symmetric models but
also for symmetric ones based on DAGs.
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Figure 2: CID and SID between randomly generated DAGs
over 5 binary variables. The correlation between CID and
SID is 0.67 (95% confidence interval: (0.633, 0.701))

.

5 SIMULATION EXPERIMENTS

We perform a simulation study to evaluate the feasibility of
the proposed approach and to demonstrate its superiority
with respect to the classical DAG algorithms under the as-
sumption that the true model is a staged tree. We simulate
data from randomly generated staged tree models with dif-
ferent degrees of complexity: number of stages per variable
(k ∈ {2, 3, 4}). We consider models with 3, . . . , 6 binary
variables, and sample sizes ranging from 100 to 10000 ob-
servations. For each parameters’ combination, we perform
100 repetition of the experiment each time randomly shuf-
fling the order of the variables to eliminate any possible bias
of the search heuristics.

We run the staged trees approach described in Section 3
using the backward hill-climbing search (best_bhc) and
the k-means heuristic (best_kmeans) with the number
of clusters fixed to 2. Our two routines are compared
to two classical DAG learning algorithms such as tabu
search (tabu) (Russell and Norvig, 2009) and max-min
hill-climbing (mmhc) (Tsamardinos et al., 2006), both im-
plemented in the bnlearn R package (Scutari, 2010). Re-
sults are displayed in Figure 3, where the average CID and
Kendall tau distance between the variable orderings are plot-
ted as a function of the sample size N for the case of 6
variables. The Kendall tau distance is computed between
the true causal order and the estimated order with the imple-
mentation in the PerMallows R package (Irurozki et al.,
2016).

We can observe that, as expected, methods based on staged
trees are able to better recover the causal structure of the
true model. Since the true models are randomly generated
staged trees we can expect that algorithms which search for
the best DAG are not able to recover the true relationships
between the variables. More specifically, we observe that
the method based on the k-means algorithm works very well
when the number of stages per variable matches the number
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Figure 3: Context interventional discrepancy (CID) and
Kendall tau distance (KD) between the estimated and true
model.

of clusters (k = 2), while, with respect to CID, its perfor-
mance degrades for k = 3, 4. The backward hill-climbing
method, instead, requires a bigger sample size, but it is able
to perform well even when the true model is more complex.
Additionally, it is interesting to notice that both staged tree
approaches are able to recover well the causal order of the
variables in all considered scenarios. This is especially in-
teresting for the k-means algorithm which performs better
than the backward hill-climbing method with respect to the
Kendall distance even when it is misspecified (k > 2). In
the Supplementary Materials, we report the computational
times of the algorithms. As expected, algorithms for DAGs
are faster since the searched model space is much smaller.
The k-means algorithm for staged trees is comparable to
those for DAGs in terms of speed and its complexity does
not seem to exponentially increase as in the case of the
backward hill-climbing.

6 REAL WORLD EXAMPLES

6.1 ISTAT: Aspects on Everyday Life

We illustrate the use of staged trees to uncover causal re-
lationships using data from the 2014 survey “Aspects on
everyday life" collected by ISTAT (the Italian National In-
stitute of Statistics) (ISTAT, 2014). The survey collects
information from the Italian population on a variety of as-
pects of their daily lives. For the purpose of this analysis,
we consider five of the many questions asked in the survey:
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do you practice sports regularly? (S = yes/no); do you have
friends you can count on? (F = yes/no); do you trust peo-
ple? (P = yes/no); are you satisfied with the environment
situation of the area you live in? (E = yes/no, grouped from
the original four levels); do you watch TV? (T = yes/no,
grouped from the original three levels). Instances with miss-
ing answers were dropped, resulting in 35870 answers to
the survey.

We learn the staged structure and the variable ordering with
the BHC algorithm coupled with the dynamical program-
ming approach discussed in Section 3. The resulting tree is
depicted in Figure 4 where we can observe that the stages
structure for the first three variables is equivalent to the
conditional independence statement S ⊥⊥ E|F .

Using Proposition 1 and from the Markov equivalence class
of the minimal DAG, and in particular of the sub-DAG S←
F→E, it is easy to obtain that there are four equivalent orders
of the first three variables (S-F-E;E-F-S;F-S-E;F-E-S) that
give rise to statistically equivalent staged trees.

While the causal order among F,E and S cannot be com-
pletely recovered from data, the asymmetrical relationship
in the stages structure of the last two variables (P and T
in Figure 4) imply that there are no statistically equivalent
staged trees where P or T appear before F,E or S (see Görgen
and Smith, 2018, for a similar observation). Therefore the
data support the hypothesis that F, E, and S affect whether
an individual trusts people. Similarly, all previous variables
appear to have a causal effect on whether an individual
watches TV.

In order to understand in detail how the variables causally
depend on each other, we can refer to the stages in Figure 4.
The staging over the variables P and T (vertices v7 to v30)
shows an highly asymmetric dependence structure which
could not be represented by a DAG model. For instance,
the staging {v10, v11, v13} implies that, in the context S =
yes and F = no, E has no causal effect on P. For the causal
effects on watching TV (T), we can see that there are various
contexts for which the trust on people (P) does not have
an effect. For example among people who practice sports
regularly and are not satisfied with the environment of the
area they live in. In the same context (S=yes, E=no) having
friends they can count (F) on does also not appear to be a
relevant factor for watching TV (T). Moreover, for people
who have friends they can rely on (F=yes), the probabilities
of watching TV are the same if they do not practice sports
(S=no) and they live in an unsatisfactory area (E=no), or
they do practice sports (S=yes) and they are satisfied with
their area (E=yes).

It is apparent that the flexibility of the staging enables the
intuitive representation of complex non-symmetric causal
relationships learned from data. In the Appendix, we further
report the learned DAGs with different methods, interesting
we observe that a variant of the PC algorithm (Colombo
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Figure 4: Staged tree maximizing the BIC for the order
(F,E,S,P,T).

and Maathuis, 2014) recovers a similar causal order while
heuristics optimizing the BIC score are not able to infer any
causal orderings of the variables.

6.2 Outcomes for Hospitalised SARS-CoV-2 Patients

We consider data on the trajectories of hospitalized SARS-
CoV-2 patients in France during the first nine months of the
pandemic. In particular, we rely on the conditional probabil-
ities reported by Lefrancq et al. (2021) on the event that the
hospitalized patient was transferred to ICU conditioned on
gender, age, and on their death conditioned on gender, age,
and if in ICU or not. Such probabilities were estimated by
Lefrancq et al. (2021) from data on patients, recorded in the
SI-VIC database, who started their hospitalization between
13 March and 30 November 2020. Using those probabilities,
we sampled 10000 artificial trajectories using the assumed
true causal order (gender, age)→ICU→death. We use the
sampled trajectories to estimate a staged tree model using
the BHC algorithm and the variable order search. The ob-
tained staged tree model recovers the true causal order and
has a BIC score of 60421.77 while the DAG obtained with a
tabu (Russell and Norvig, 2009) search (optimizing BIC)
obtains a higher BIC of 64227.09 and a complete DAG but
the arc between gender and age. Instead, the PC-stable algo-
rithm (Colombo and Maathuis, 2014) obtains a causal order
similar to the one used in the data-generating mechanism
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Figure 5: Staged tree estimated with the BHC algorithm
for the ENSO-IOD-AU example and estimated conditional
probabilities for high AU in the three recovered stages.

and the one retrieved by the staged tree. We refer to the Ap-
pendix for the details on the learned staged tree, additional
comments on the learned structure and comparisons with
other DAG methods.

6.3 ENSO Effects on Spring Precipitation in
Australia

We replicate here one of the examples described
by Kretschmer et al. (2021). We consider, in particular,
the causal inference question regarding the effect of El Niño
Southern Oscillation (ENSO) on Australian precipitation
(AU) during spring, and the possible mediation of the In-
dian Ocean Dipole (IOD). As observed by Kretschmer et al.
(2021): The influence of ENSO on the IOD, and thereby on
AU, has been suggested to exhibit asymmetries in strength,
implying that the relationship is nonlinear. Instead of fitting
a categorical DAG, we instead rely on staged tree models to
capture and depict the asymmetric causal relationship in the
data. The data are discretized following Kretschmer et al.
(2021): ENSO is reduced to three possible values (Niño,
neutral, Niña), IOD into three levels describing positive (+),
neutral (0) and negative (-) phases; and AU is separated into
above (high) and below (low) average values. We estimate
the staged structure via the BHC algorithm (optimizing the
AIC score) for the variable order (ENSO, IOD, AU), and
we plot in Figure 5 the resulting staged tree (AIC= 368.23)
together with the conditional probabilities of high AU in the
three stages for the last variable. We can observe that indeed
there is an asymmetric relationship between ENSO, IOD
and AU. In particular, AU does not depend on IOD in the
extreme phases of ENSO (la Niña and el Niño) while the

model suggests a negative correlation between IOD+ and
high AU in the neutral ENSO phase. These findings are con-
sistent with the ones obtained by Kretschmer et al. (2021)
by directly analyzing the contingency tables. Additionally,
we can observe that the ENSO-IOD relationship seems to
be asymmetric as well; from the stages of IOD we infer
that P (IOD|Niña) = P (IOD|neutral). We conclude that in
this example staged tree models allow a more intuitive and
explainable analysis.

As a further experiment we consider the alternative causal
order IOD-ENSO-AU (as analyzed also by Kretschmer
et al., 2021) and we estimate a staged tree model with the
BHC algorithm. The obtained staged tree (see the Supple-
mentary Material) has an AIC score of 371.04 and thus the
staged tree models suggest that the appropriate variables
order is ENSO-IOD-AU.

7 CONCLUSIONS

We introduced and implemented causal discovery algo-
rithms based on staged trees which extend classic DAG
models to account for complex, non-symmetric causal rela-
tionships. In order to assess the effectiveness of staged trees
in causal reasoning, we defined a new discrepancy that mea-
sures the agreement between the interventional distributions
of two staged trees. Our simulation experiments demon-
strate that if data is simulated from a staged tree model, and
therefore embeds non-symmetric relationships between vari-
ables, staged trees outperform DAG models. Our real-world
applications further highlight the need for non-symmetric
models since staged trees, despite their complexity, outper-
form DAGs in terms of penalized fit and causal discovery.

We demonstrated that staged tree models can be a valuable
tool for causal discovery in real-world scenarios and various
directions for future work are possible. We are currently
focusing on the derivation of theoretical results about the
identifiability of the causal order when non-symmetric rela-
tionships between two variables are present.

Additional heuristics to learn the stage structures are cur-
rently being developed, and similarly different strategies for
learning variable ordering. While the methods described
in the present work obtain good results, they are lacking in
scalability and new heuristics are needed to tackle a larger
number of variables efficiently.
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A Algorithm to Compute CID

In the pseudo-code for the algorithm, we use the following notation: for a staged event tree S = (W,F, ν) we denote with
∼S the equivalence relation over V defined by u ∼S v if and only if ν(E(v)) = ν(E(v)). Thus the equivalence classes,
with respect to the above-defined relation, are the stages of S.

Algorithm 1 Compute context interventional discrepancy
Require: T = (V,E, η) anX-compatible staged event tree and S = (W,F, ν) anXπ-compatible staged event tree.
Ensure: The CID between T and S.

initialize CID = 0
for i = 1 to p do
k = π−1(i) # the position of variableXi in staged tree S
I = {j : j < i & π−1(j) < k}
A = Xπ−1([k−1])/ ∼S # the stages of S at depth k
wrong = ∅
forA ∈ A do
BA = {x[i−1] ∈ X[i−1] : xI = yI for some y ∈ A}
if |η(E(BA))| > 1 then

wrong = wrong ∪ BA
end if
CID = CID+

|wromg|
|X[i−1]|

end for
end for

We here prove that Algorithm 1 correctly computes the CID as defined in Definition 6. Formally, we demonstrate that for
any pair of X and Xπ compatible staged event trees, T and S, the output of Algorithm 1 is equal to CID(T, S).

Proof. We need only to prove that the procedure in the first loop effectively identifies wrongly inferred interventional
distributions of the type P (Xi|do(X[i−1] = x[i−1])). That is, at the end of i-th iteration of the first for loop, the variable
wrong contains the set of contexts x[i−1] ∈ X[i−1] such that the corresponding interventional distribution for Xi is wrongly
inferred by S with respect to T . If x[i−1] ∈ wrong then, by construction, there exists, a stage of S, A ∈ A such that
x[i−1] ∈ BA, and there exists x′[i−1] ∈ BA with η(E(x[i−1])) 6= η(E(x′[i−1])). Thus, there exists P ∈ MT such that
P (Xi|X[t−1] = x[i−1]) 6= P (Xi|X[t−1] = x′[i−1]) and moreover

P (Xi|X[i−1] = x[i−1]) 6= P (Xi|X[i−1] ∈ BA).

Vice versa, if x[i−1] 6∈ wrong, we have that, since η(E(BA)) is a singleton (all nodes in BA are in the same stage in T )
thus,

P (Xi|X[i−1] = x[i−1]) = P (Xi|X[i−1] ∈ BA),

for every P ∈MT and for every A ∈ A such that x[i−1] ∈ BA. And thus S correctly infers P (Xi|X[i−1] = x[i−1]).

B Identifiability of the Causal Order

As an instructive example, we report here a bivariate staged tree model compatible with (X1, X2) where the causal order
can be identified by choosing the simpler model.

Consider the two staged trees depicted in Fig. 6. Let T be the staged tree on the right and S be the one on the left. It is
easy to see that if the data are generated from a joint probability distribution P ∈MT , S is the only (X1, X2)-compatible
staged tree such that P ∈MS . Indeed, sinceMS is the saturated model we have thatMS is equal to the entire probability
simplex.

On the other hand,MT (MS , since P (X1|X2 = 2) = P (X1|X2 = 3) inMT , and thus the causal order is here identified
by choosing the simplest model which describes the data-generating process. Even if this is a very simple example, it
is instructive to see that non-symmetrical conditional independence statements can be leveraged by staged event trees to
discover causal structure in categorical data.
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Figure 6: An example of an (X1, X2)-compatible (left) and an (X2, X1)-compatible (right) staged trees.

C MISSING PROOFS

C.1 Proof of Proposition 1

Proof. The first of the proposition follows from the observation that, imposing GT and G′ and the restricted sub-graphs
(to total edges) ([p], F tot) and ([p], F ′) in the same Markov equivalence class implies that for each j ∈ [p], all variables
involved in non-asymmetric conditional independence statements with Xj , as well as all the other parents of Xj , must
appear before Xj in every topological order of G′. To prove that, consider i < j ∈ [p] and assume that the edge (i, j) ∈ Fnt,
so by definition there exist contexts x[i−1] and x′[i−1], such that η(E(x[i−1])) = η(E(x′[i−1])). If we additionally assume
(k, j) ∈ GT , for another i 6= k < j, we have that,

• If one of (j, k) or (k, j) appears in GT , then (j, k) or (k, j) must also be in G′ (since they are Markov equivalent).
Similarly one of (i, k) or (k, i) must be in G′. Since (i, j) ∈ Fnt and thus in G′ by construction, then the only
possibility is that (k, j) is the direction that appears in G′, otherwise either the acyclicity constrain or the Markov
equivalence between ([p], F tot) and ([p], F ′) are violated.

• otherwise, the v-structure i→ j ← k is in GT and thus in G′ (since they are Markow equivalent).

Thus, summarizing, we have proved that if there is a non-total edge (i, j) in GT , the conditions on G′ imply that all parents
of j in GT are also parents of j in G′. Let now be π a topological order of G′; it is easy to see that, we can build an
Xπ-compatible staged tree S such thatMT =MS .

For the last statement, we prove the equivalent “if GT and GT ′ are not Markov equivalent thenMT 6=MT ′". If GT and
GT ′ are not Markov equivalent, it means that there is a conditional independence XA ⊥⊥ XB |XC which isMGT but not in
MGT ′ , without loss of generality. However, the definition of minimal DAG implies that ifXA ⊥⊥ XB |XC is inMGT then it
must also be inMT . Similarly, if XA ⊥⊥ XB |XC is not inMGT ′ then it must not be inMT ′ . ThereforeMT 6=MT ′ .

As we have seen in the proof of the proposition the conditions we impose on GT and G′ are very strong, and in fact,
it is known that in some cases, there are statistically equivalent staged trees whose minimal DAGs do not satisfy those
assumptions. A more complete characterization of the equivalence classes ofXπ-compatible staged trees needs probably to
consider the different types of non-symmetric conditional independences such as the ones discussed in Varando et al. (2021).

C.2 Proof of Proposition 2

Proof. If two staged tree T, S are causally equivalent then for every P ∈MT =MS we have

P (Xi|do(X[i−1] = x[i−1])) = P (Xi|do(XI = xI)),
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Figure 7: Results for the simulation experiments with p = 3 binary variables.

thus,
P (Xi = xi|X[i−1] = x[i−1]) = P (Xi = xi|do(XI = xI))

= P (Xi = xi|XI ∈ {yI ∈ XI : ν(yK , w) = ν(xK , u)})
which proves point (i).

To prove point (ii), observe that since π is the identity, both T = (V,E, η) and S = (V,E, ν) are X-compatible staged
event trees and thusMT ⊆MS implies that ν(u, v) = ν(u′, v′)⇒ η(u, v) = η(u′, v′) (the stage structure of T is coarser
than the one of S). Since P ∈MT , we have,

P (Xi = xi|X[i−1] = x[i−1]) = P (Xi = xi|X[i−1] ∈ {y[i−1] ∈ X[i−1] : ν(y[i−1], w) = ν(x[i−1], u)}).

Finally, point (iii) follows from points (i) and (ii) by observing that if T is the completely independent model then T is
causally equivalent to any completely independentXπ-compatible staged tree, for any permutation π.

D ADDITIONAL RESULTS

D.1 Simulation Experiment

We report in Figures 7, 8 and 9 the additional results for p = 3, 4, 5 which could not fit in the main paper. Results show
similar patterns to the case p = 6 reported in the main paper.

Additionally, we plot the computational time for the four considered methods in Figure 10.

D.2 Real World Examples

D.2.1 ISTAT: Aspects on Everyday Life

For the ISTAT data on aspects of everyday life we fit standard DAG categorical models using two standard state-of-the-art
methods: the PC algorithm with order-invariant implementation (Colombo and Maathuis, 2014) and a hill-climbing search
with tabu (Russell and Norvig, 2009) list for optimizing the BIC score, both methods are available through the bnlearn
package (Scutari, 2010). In Figure 11 the CPDAGs obtained with the two methods are reported. The CPDAGs are the
unique representation of the DAG Markov equivalence class. We can thus infer that both algorithms obtain a partial ordering
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Figure 8: Results for the simulation experiments with p = 4 binary variables.
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Figure 10: Results for the simulation experiments, computational time as a function of the number of variables p.
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Figure 11: CPDAGs for the ISTAT dataset, constructed with PC-stable (left) and tabu search (right).

(S,E)→T, where the variable associated with watching television is estimated to be an effect of both practicing sports and the
satisfaction in the environment. Similar to the results obtained with the staged tree, the PC-stable algorithm identify also a
partial ordering of the variables (S,F,E)→ P while the ordering among S,F, and E cannot be inferred from data. This results
agree with the ones obtained through the staged tree models. The staged trees have the additional advantage of depicting
context-specific conditional independences.

D.2.2 Outcomes for Hospitalised SARS-CoV-2 Patients

We report additional figures and detail on the staged tree and DAGs learned for the data on trajectories of hospitalized
SARS-CoV-2 patients in France, during the first nine months of the pandemic.

Data were obtained by simulations from a probability tree where conditional probabilities were obtained from Lefrancq
et al. (2021). In particular, conditional probabilities of ICU admission given age and gender and probabilities of death given
ICU admission, age, and gender were obtained from the tables on the supplementary materials provided by Lefrancq et al.
(2021). Marginal probabilities of gender and probabilities of age given gender were instead obtained from the linked GitHub
repository.1

The above conditional probabilities, define a probability event tree (a saturated staged tree model), with variables ordered
gender, age, ICU, and death. Simulations can be thus performed by iterative sampling of those variables. We simulate 10000
trajectories and we use the artificial data to learn a staged tree model using the backward hill-climbing search coupled with
the dynamic programming approach for variables order.

1https://github.com/noemielefrancq/Evolution-Outcomes-COVID19-France
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Figure 12: Staged tree obtained with the BHC method from the data on trajectories of covid patients.

In Figure 12 we plot the learned staged tree, we can appreciate that all nodes at depth one are in the same stage, thus the first
two variables, age, and gender are inferred to be independent, their causal order is thus not discernible from data (the age
distributions given gender are indeed very similar). For variables ICU and death, non-symmetrical and context-dependent
conditional independences are presents.

In Figure 13 we report the CPDAG obtained with the PC-stable (Colombo and Maathuis, 2014) and tabu algorithms (Russell
and Norvig, 2009). We observe that the score-based method (tabu) maximising BIC, is not able to find any ordering of the
variables, except a conditional independence between gender and age. On the contrary, the PC-stable results obtain a causal
order similar to the one used in the data generating mechanism and the one retrieved by the staged tree.

D.2.3 ENSO Effects on Spring Precipitation in Australia

We continue here the analysis of the relationship between ENSO, IOD and spring precipitation in Australia (AU). In
Figure 14 we show the learned staged tree with the BHC algorithm with the alternative order IOD, ENSO, AU. The model
attains an AIC of 371.04 (compared to 368.23 with the ENSO,IOD,AU order). We can observe that the staging of the AU
variable is the same (obviously with a node permutation in the plots), this fact is a consequence that the optimal staging of
the nodes for a given variable (AU) is not dependent on the order of the previous variables (ENSO, IOD).

Thus the only real difference between the two staged trees is in the first two variables. We can see that for the ENSO→IOD
order, the method recognizes a so-called partial independence between ENSO and IOD (P (IOD|ENSO = Niña) =
P (IOD|ENSO = neutral) 6= P (IOD|ENSO = Niño). For the IOD→ENSO model, instead no independence statement is
found and the full model for the first two variables is obtained. Since the full model for ENSO and IOD could be written
equivalently with either of the two variables as the first one, we can deduce that the ENSO→IOD ordering is thus supported
by data under the assumption that the real model is the simpler one that explains well the data.
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