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Abstract

We study Q-learning with Polyak-Ruppert aver-
aging in a discounted Markov decision process in
synchronous and tabular settings. Under a Lip-
schitz condition, we establish a functional cen-
tral limit theorem for the averaged iteration Q̄T

and show that its standardized partial-sum pro-
cess converges weakly to a rescaled Brownian
motion. The functional central limit theorem
implies a fully online inference method for re-
inforcement learning. Furthermore, we show that
Q̄T is the regular asymptotically linear (RAL)
estimator for the optimal Q-value function Q∗

that has the most efficient influence function. We
present a nonasymptotic analysis for the ℓ∞ er-
ror, E∥Q̄T − Q∗∥∞, showing that it matches
the instance-dependent lower bound for polyno-
mial step sizes. Similar results are provided for
entropy-regularized Q-learning without the Lips-
chitz condition.

1 INTRODUCTION

Q-learning [Watkins, 1989], as a model-free approach seek-
ing the optimal Q-function of a Markov decision process
(MDP), is perhaps the most widely deployed algorithm in re-
inforcement learning (RL) [Sutton and Barto, 2018]. Unlike
policy evaluation where the underlying structure is linear
in nature and the goal is essentially to solve a linear sys-
tem, Q-learning is nonlinear, nonsmooth and nonstationary.
Theoretical analysis for Q-learning ranges from asymptotic
convergence [Jaakkola et al., 1993, Tsitsiklis, 1994, Borkar
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and Meyn, 2000, Szepesvári et al., 1998] to nonasymp-
totic rates [Even-Dar et al., 2003, Beck and Srikant, 2012,
Chen et al., 2020b, Li et al., 2021a, 2020b]. Variants of Q-
learning [Lattimore and Hutter, 2014, Sidford et al., 2018a,b,
Wainwright, 2019c] have been proposed that achieve the
minimax lower bound of sample complexity established
in [Azar et al., 2013].

On the other hand, Q-learning can be viewed through the
lens of stochastic approximation (SA) [Konda and Tsitsiklis,
1999], a general iterative framework for solving root-finding
problems [Robbins and Monro, 1951]. It is a particular
instance of SA that targets the Bellman fixed-point equation,
T Q∗ = Q∗, where T is the population Bellman operator
(see Eq. (5) for the definition).

The last-iterate behavior of Q-learning has been analyzed
thoroughly within the nonlinear SA framework. In par-
ticular, on the asymptotic side, the ODE approach [Kush-
ner and Yin, 2003, Abounadi et al., 2002, Borkar, 2009,
Gadat et al., 2018, Borkar et al., 2021] establishes a func-
tional central limit theorem (functional CLT), showing that
the interpolated process that connects rescaled last iterates
converges weakly to the solution of a specific SDE. From
the nonasymptotic side, specific nonlinear SA convergence
analyses have been tailored for Q-learning, capturing its
nonasymptotic convergence rate [Chen et al., 2020b, 2021,
Qu and Wierman, 2020].

An important gap in this literature is the behavior of Q-
learning under averaging, specifically Polyak-Ruppert aver-
aging [Polyak and Juditsky, 1992]. Polyak-Ruppert averag-
ing provides a general tool for stabilizing and accelerating
SA algorithms. It is known to accelerate policy evalua-
tion [Mou et al., 2020a,b] and exhibits superior empirical
performance in various RL problems [Lillicrap et al., 2016,
Anschel et al., 2017]. However, a theoretical understand-
ing of Q-learning with Polyak-Ruppert averaging is not yet
available.

lx10077@pku.edu.cn
yangwenhaosms@pku.edu.cn
jdliang@pku.edu.cn
zhzhang@math.pku.edu.cn
jordan@cs.berkeley.edu


A Statistical Analysis of Polyak-Ruppert Averaged Q-learning

In this paper, we analyze averaged Q-learning in the set-
ting of a discounted infinite-horizon MDP and in the syn-
chronous setting where a generative model produces in-
dependent samples for all state-action pairs in every itera-
tion [Kearns et al., 2002]. We provide both asymptotic and
nonasymptotic analyses. On the asymptotic side, we estab-
lish an functional CLT for averaged Q-learning, showing
that the partial-sum process, ϕT (r) := 1√

T

∑⌊Tr⌋
t=1 (Qt −

Q∗), converges weakly to a rescaled Brownian motion,
namely Var

1/2
Q BD(r), where r ∈ [0, 1] is the fraction of

data used, ⌊·⌋ is the floor function, VarQ (see Eq. (10))
is the asymptotic variance, and BD(·) is a standard D-
dimensional Brownian motion on [0, 1]. Such a functional
result for partial-sum processes has not been presented pre-
viously in the RL literature. This allows us to construct an
asymptotically pivotal statistic using information from the
whole function ϕT (·) (see Proposition 3.1). This obviates
the need to estimate the asymptotic variance in providing
asymptotically valid confidence intervals forQ∗, which is
required by [Chen et al., 2020a, Zhu et al., 2021, Hao et al.,
2021, Shi et al., 2020, Khamaru et al., 2022]. It opens a
door to online statistical inference for RL.

As a complementary result, we establish a semiparametric
efficiency lower bound for any regular asymptotically lin-
ear (RAL) estimator (see Definition 4.2 for details) of the
optimal Q-value function Q∗. Given the r-th fraction of
data, we further show that ϕT (r) is the most efficient RAL
estimator with the smallest asymptotic variance, confirming
its optimality in the asymptotic regime.

On the nonasymptotic side, we provide the first finite-sample
error analysis of E∥Q̄T−Q∗∥∞ in the ℓ∞-norm for both lin-
early rescaled and polynomial step sizes. The error is domi-

nated by O(
√
∥diag(VarQ)∥∞

√
ln |S×A|

T ) for polynomial
step sizes given a sufficiently large T , which matches the
instance-dependent lower bound established by [Khamaru
et al., 2021b]. This, together with the worst-case bound
∥diag(VarQ)∥∞ = O((1 − γ)−3), implies that averaged
Q-learning already achieves the optimal minimax sample
complexity Õ

(
|S×A|

(1−γ)3ε2

)
established by [Azar et al., 2013].

Those lower bounds have only been shown to hold for a
complicated variance-reduced version of Q-learning in this
setting [Wainwright, 2019c, Khamaru et al., 2021b].

From a technical perspective, we carefully decompose the
partial sum process, ϕT (r), into several processes, each
of which either has a nice structure (e.g., a sum of i.i.d.
variables) or vanishes in the ℓ∞-norm with probability one.
In this way, the nonasymptotic analysis reduces to careful
examination of these diminishing rates. To underpin the
functional CLT, we develop a new lemma that shows that a
certain residual error converges to zero in probability (see
Lemma D.1). Generalizing an existing result from Lee et al.
[2021], Li et al. [2022], this technical lemma may be of
independent interest. Finally, while both our asymptotic and

nonasymptotic analyses rely on a Lipschitz condition, stated
in Assumption 3.2, we find that averaged Q-learning regu-
larized by entropy achieves a similar functional CLT and
instance-dependent bound without the Lipschitz assump-
tion.

Paper organization. The remainder of this paper is orga-
nized as follows. In Section 2, we introduce our notation
and preliminaries on RL. We present the formal functional
CLT in Section 3 and the semiparametric efficiency lower
bound in Section 4. In Section 5, we show the nonasymp-
totic convergence bound and contrast it with previous work.
We summarize our results and discuss future research di-
rections in Section 7. We provide additional discussion of
related work, and all proof details, in the appendix.

2 PRELIMINARIES

Discounted infinite-horizon MDPs. An infinite-horizon
MDP is represented by a tuple M = (S,A, γ, P,R, r).
Here S is the state space, A is the action space, and γ ∈
(0, 1) is the discount factor. For simplicity, we define D =
|S ×A| = SA. We use P : S×A → ∆(S) to represent the
probability transition kernel with P (s′|s, a) the probability
of transiting to s′ from a given state-action pair (s, a) ∈
S × A. Let R : S × A → [0,∞) stand for the random
reward, i.e., R(s, a) is the immediate reward collected in
state s ∈ S when action a ∈ A is taken. Unlike previous
works [Wainwright, 2019b, Li et al., 2021a] which assume
the immediate reward R is deterministic, we consider a
general setting where R itself is a random function with
r = ER the expected reward. A policy π maps each s ∈ S
to a probability over A. In a γ-discounted MDP, a common
objective is to maximize the expected long-term reward.
For a given policy π : S → ∆(A), the expected long-term
reward is measured by the Q-function Qπ defined as follows

Qπ(s, a) = Eπ

[ ∞∑
t=0

γtr(st, at)

∣∣∣∣s0 = s, a0 = a

]
,

and its companion value function is defined via V π(s) =∑
a∈A π(a|s)Qπ(s, a). Here Eπ(·) is taken with re-

spect to the randomness of the trajectory of the MDP
induced by the policy π. The optimal value function
V ∗ and optimal Q-function Q∗ are defined as V ∗(s) =
maxπ V

π(s) and Q∗(s, a) = maxπ Q
π(s, a). For sim-

plicity, we employ the vectors V π,V ∗ ∈ RS and
Qπ,Q∗,Qt, Q̄t ∈ RD to denote evaluations of the func-
tions V π, V ∗, Qπ, Q∗, Qt, Q̄t.

A generative model is assumed [cf. Kearns and Singh, 1999,
Sidford et al., 2018a, Li et al., 2021a]. In iteration t, we
collect independent samples of rewards rt(s, a) and the
next state st(s, a) ∼ P (·|s, a) for every state-action pair
(s, a) ∈ S × A. We summarize the observations into the
reward vector rt = (rt(s, a))(s,a) ∈ RD and the empirical
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transition matrix Pt = (est(s,a))(s,a) ∈ RD×S with each
row a one-hot vector. We introduce the transition matrix
P ∈ RD×S to represent the probability transition kernel P ,
whose (s, a)-th rowPs,a is a probability vector representing
P (·|s, a). The square probability transition matrix P π ∈
RD×D (resp. Pπ ∈ RS×S) induced by the deterministic
policy π over the state-action pairs (resp. states) is

P π := PΠπ and Pπ := ΠπP , (1)

where Ππ ∈ RS×D is a projection matrix associated with a
given policy π:

Ππ = diag{π(·|1)⊤, · · · , π(·|S)⊤}, (2)

where π(·|s) ∈ RA is the policy vector at state s.

Q-learning. The synchronous Q-learning algorithm main-
tains a Q-function vector, Qt ∈ RD, for all t ≥ 0 and
updates its entries via the following update rule:

Qt = (1− ηt)Qt−1 + ηt(rt + T̂tQt−1), (3)

where ηt ∈ (0, 1] is the step size in the t-th iteration and T̂t :
RD → RD is the empirical Bellman operator constructed
by samples collected in the t-th iteration:

(T̂tQ)(s, a) = rt(s, a) + γmax
a′∈A

Q(st, a
′), (4)

with rt(s, a) ∼ R(s, a) and st = st(s, a) ∼ P (·|s, a) for
each state-action pair (s, a) ∈ S × A. In matrix form,
T̂tQt−1 = PtVt−1 where Vt−1(s) = maxaQt−1(s, a) is
the greedy value. Clearly, T̂t is an unbiased estimate of the
Bellman operator T : RD → RD given by

(TQ)(s, a) = r(s, a) + γEs′∼P (·|s,a) max
a′∈A

Q(s′, a′). (5)

The optimal Q∗ is the unique fixed point of the Bellman
operator, TQ∗ = Q∗. Let πt be the greedy policy w.r.t. Qt;
i.e., πt(s) ∈ argmaxa∈A Qt(s, a) for s ∈ S and π∗ the
optimal policy.

Averaged Q-learning. Ruppert [1988] and Polyak and
Juditsky [1992] showed that averaging the iterates generated
by a stochastic approximation (SA) algorithm has favorable
asymptotic statistical properties. There is a line of work
which has adapted Polyak-Ruppert averaging to the problem
of policy evaluation in RL [Bhandari et al., 2018, Khamaru
et al., 2021a, Mou et al., 2020a]. Q-learning is different
than policy evaluation due to the nonstationarity (i.e., πt

changes over time) and the nonlinearity of T . The averaged
Q-learning iterate has the form

Q̄T =
1

T

T∑
t=1

Qt

with {Qt}t≥0 updated as in Eq. (3) and T is the number of
iterates. When we conduct inference, we use the average

estimate Q̄T rather than the last iterative value QT given
an iteration budget T . The application of Polyak-Ruppert
averaging in deep RL has been shown empirically to have
benefits in terms of error reduction and stability [Lillicrap
et al., 2016, Anschel et al., 2017].

Bellman noise. Let Zt ∈ RD be the Bellman noise at the
t-th iteration, whose (s, a)-th entry is

Zt(s, a) = T̂t(Q∗)(s, a)− T (Q∗)(s, a). (6)

In matrix form, the Bellman noise at iteration t can be equiv-
alently presented as Zt = (rt − r) + γ(Pt − P )V ∗. The
Bellman noise Zt reflects the noise present in the empirical
Bellman operator (4) using samples collected at iteration t
as an estimate of the population Bellman operator (5).

In our synchronous setting, rt and Pt are independent of
each other and the past history. Therefore, {Zt} is an i.i.d.
random vector sequence with coordinates that are mean
zero and mutually independent. When it is clear from the
context, we drop the dependence on t and use Z to denote
an independent copy of Zt. We refer to Z as the Bellman
noise (vector). Finally, an important quantity in our analysis
is the covariance matrix of Z:

Var(Z) = Ert,stZZ
⊤ ∈ RD×D, (7)

where the expectation Ert,st(·) is taken over the randomness
of rewards rt and states st. Clearly, Var(Z) is a diagonal
matrix with the (s, a)-th diagonal entry given by EZ2

t (s, a).

3 FUNCTIONAL CENTRAL LIMIT
THEOREM FOR PARTIAL-SUM
AVERAGED Q-LEARNING

Our main result is a functional central limit theorem for the
partial-sum process of averaged Q-learning. To that end, we
make three assumptions. The first is that all random rewards
have uniformly bounded fourth moments (Assumption 3.1).
Though typical in the SA literature [Borkar, 2009], it is
weaker than the uniform boundedness assumption which is
often used for nonasymptotic analysis in RL. It is required
for a technical reason (that we should ensure a residual error
vanishes uniformly in probability, a result which is one of
our technical contributions).

The second is a Lipschitz condition (Assumption 3.2) over
a specific optimal policy π∗ ∈ Π∗, where Π∗ collects all
optimal policies. The condition is true when |Π∗| = 1
(See Lemma B.1 for the reason). Similar assumptions have
been adapted for asymptotic analysis for general nonlinear
SA [Mokkadem and Pelletier, 2006], and nonasymptotic
analysis for both variance reduced Q-learning [Khamaru
et al., 2021b] and policy iteration [Puterman and Brumelle,
1979]. The condition implies that when Qt ≈ Q∗ the
asymptotic behavior of averaged Q-learning is captured by
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a linear system up to a high-order approximation error. As a
result, we can explicitly formulate the asymptotic variance
matrix. The approach of approximating a nonlinear SA by a
specific linear SA and analyzing the approximation errors
is also standard in the SA literature [Polyak and Juditsky,
1992, Mokkadem and Pelletier, 2006, Lee et al., 2021, Li
et al., 2022].

The last assumption (Assumption 3.3) requires that the step
size decays at a sufficiently slow rate; this is necessary in
order to establish asymptotic normality [Polyak and Judit-
sky, 1992, Su and Zhu, 2018, Chen et al., 2020a, Li et al.,
2022]. A typical example satisfying Assumption 3.3 is the
polynomial step size, ηt = t−α with α ∈ (0.5, 1).

Assumption 3.1. We assume E|R(s, a)|4 < ∞ for all
(s, a) ∈ S ×A.

Assumption 3.2. There exists π∗ ∈ Π∗ such that for any Q-
function estimatorQ ∈ RD, ∥(P πQ−P π∗

)(Q−Q∗)∥∞ ≤
L∥Q−Q∗∥2∞ where πQ(s) := argmaxa∈A Q(s, a) is the
greedy policy w.r.t. Q.

Assumption 3.3. Assume (i) 0 ≤ supt ηt ≤ 1, ηt ↓ 0 and
tηt ↑ ∞; (ii) ηt−1−ηt

ηt−1
= o(ηt−1); (iii) 1√

T

∑T
t=0 ηt → 0

for all t ≥ 1; (iv)
∑T

t=0 ηt

TηT
≤ C for all T ≥ 1.

We now present the functional CLT for averaged Q-learning
under the same conditions. Define the standardized partial-
sum processes associated with {Qt}t≥0 as follows:

ϕT (r) :=
1√
T

⌊Tr⌋∑
t=1

(Qt −Q∗), (8)

where r ∈ [0, 1] is the fraction of the data used to compute
the partial-sum process and ⌊·⌋ returns the largest integer
smaller than or equal to the input number.

Theorem 3.1. Under Assumptions 3.1, 3.2 and 3.3, we have

ϕT (·)
w→ Var

1/2
Q BD(·), (9)

where VarQ ∈ RD×D is the asymptotic variance

VarQ = (I − γP π∗
)−1Var(Z)(I − γP π∗

)−⊤ (10)

andBD(·) ∈ RD is a standard Brownian motion on [0, 1].

The conventional CLT asserts that ϕT (1) =
√
T (Q̄T −

Q∗) converges in distribution to a rescaled Gaussian
random variable Var

1/2
Q BD(1) as T → ∞ (see Ap-

pendix B for more details). The functional CLT in The-
orem 3.1 extends this convergence to the whole func-
tion ϕT = {ϕT (r)}r∈[0,1] in the sense that any finite-
dimensional projections of ϕT converge in distribution.
That is, for any given integer n ≥ 1 and any 0 ≤ t1 <

· · · < tn ≤ 1, as T → ∞, (ϕT (t1), · · · ,ϕT (tn))
d→

Var
1/2
Q (BD(t1), · · · ,BD(tn)). The convergence w→ in (9)
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Figure 1: Empirical coverage rates (left) and CI lengths
(right) of Q̄T (s0, a0) against the number of iterations T on
a specific (s0, a0). Both are obtained by averaging over
500 independent Q-learning trajectories. Black dashed line
denotes the nominal coverage rate of 95%.

also corresponds to the weak convergence of measures
in the D-dimensional Skorokhod spaces D([0, 1],RD)
(see Appendix C.1.1 for a short introduction). Here
D([0, 1],RD) = {right continuous with left limits ω(r) ∈
RD, r ∈ [0, 1]}. Eq. (9) is equivalent to the convergence of
finite-dimensional projections.

Theorem 3.1 can be viewed as a generalization of Donsker’s
theorem [Donsker, 1951] to Q-learning iterates. Donsker’s
theorem shows the partial-sum process of a sequence of inde-
pendent and identically distributed (i.i.d.) random variables
weakly converges to a standard Brownian motion, while
subsequent works extend this functional result to weakly
dependent stationary sequences [Dudley, 2014]. Since in
our case πt and Vt might depend on history data arbitrar-
ily, {Qt}t≥0 is neither i.i.d. nor stationary. To prove the
functional CLT, we use a particular error decomposition
and partial-sum decomposition. We give a proof sketch in
Section 3.2.

Comparison with previous (functional) CLTs. Most
CLT results consider linear SA which is non-applicable
here (see Mou et al. [2020a,b] and references therein).
The original result for Polyak-Ruppert averaging [Polyak
and Juditsky, 1992, Moulines and Bach, 2011, Durmus
et al., 2022] also doesn’t apply in our case because it as-
sumes a locally strongly convex Lyapunov function—which
is not known to exist for Q-learning. Konda and Tsit-
siklis [1999] shows QT−Q∗

√
ηT

d→ N (0,Var) with Var =
limT

ηT
E(QT −Q∗)(QT −Q∗)⊤ when we assume the limit

involved exists. Mokkadem and Pelletier [2006] shows
ϕT (1)

d→ N (0,VarQ) under a similar Lipschitz condition
Assumption 3.2.

To date, formal functional CLT results for SA are mainly
based on the ODE approach [Abounadi et al., 2002, Borkar,
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2009, Gadat et al., 2018, Borkar et al., 2021]. These works
focus on the asymptotic behavior of the interpolated pro-
cess connecting properly rescaled last iterates. An exam-
ple interpolated process ϕ̃T (·) satisfies ϕ̃T (0) =

QT−Q∗
√
ηT

and ϕ̃T (t
T
k ) =

QT+k−Q∗
√
ηT+k

for a specific sequence {tTk }k≥0

depending on the step size and satisfying tT0 = 0 and
limk t

T
k = ∞. This functional CLT result implies ϕ̃T (·)

converges weakly to the solution of a specific SDE. Theo-
rem 3.1 is different because it is concerned with the partial-
sum process ϕT (·) and explicitly formulates the asymptotic
variance VarQ. Recent work studying statistical inference
via SGD variants also provides functional CLTs for a similar
partial-sum process [Lee et al., 2021, Li et al., 2022], given
the loss function is smooth and strongly convex. However,
those results don’t apply here since Q-learning doesn’t meet
the underlying assumptions. Our functional CLT for the
partial-sum process of Q-learning is novel.

3.1 Online Statistical Inference

The functional CLT opens a path towards statistical infer-
ence in RL. While traditional approaches estimate asymp-
totic variances in RL by batch-mean estimators [Chen et al.,
2020a, Zhu et al., 2021] or bootstrapping [Hao et al., 2021],
by contrast, the functional CLT allows us to construct an
asymptotically pivotal statistic using the whole function ϕT .
The inference method, known as random scaling, was origi-
nally designed for strongly convex optimization [Lee et al.,
2021, Li et al., 2022].

Proposition 3.1. The continuous mapping theorem together
with Theorem 3.1 yields that with probability approaching
one,

∫ 1

0
ϕT (r)ϕT (r)

⊤dr is invertible and

ϕT (1)
⊤
(∫ 1

0

ϕ̄T (r)ϕ̄T (r)
⊤dr

)−1

ϕT (1)

d→ BD(1)⊤
(∫ 1

0

B̄D(r)B̄D(r)⊤dr

)−1

BD(1),

(11)

where ϕ̄T (r) := ϕT (r)−r·ϕT (1) and B̄D(r) := BD(r)−
r ·BD(1) for simplicity.

The left-hand side of (11) is a pivotal quantity involving
samples and the unobservable parameter of interest Q∗.
The pivotal quantity can be constructed in a fully online
fashion and thus is computationally efficient.1 The right-
hand side of (11) is a known distribution whose quantiles
can be computed via simulation [Kiefer et al., 2000, Abadir
and Paruolo, 2002]. In this way, we don’t need a consistent
estimator for the asymptotic variance in order to provide
asymptotically valid confidence intervals for Q∗, as are
required by previous work [Hao et al., 2021, Shi et al.,
2020, Khamaru et al., 2022]. As an illustration, Figure 1

1See Algorithm 1 in [Lee et al., 2021] or Algorithm 2 in [Li
et al., 2022] for the online procedure.

shows the empirical coverage rates and confidence interval
(CI) lengths on a random MDP with three values of γ. As
T increases, the empirical coverage rates increase rapidly,
approaching 95%, and the CI lengths decay. More details
are placed in Appendix J.

3.2 Proof Sketch

In the part, we provide a proof sketch of Theorem 3.1 to
highlight our technical contributions. A full proof of Theo-
rem 3.1 is provided in Appendix C.

Step 1: Error decomposition. Let ∆t = Qt −Q∗. Re-
call that the Q-learning update rule is (3). It follows that

∆t = (1− ηt)∆t−1 + ηt [(rt − r) + γ(PtVt−1 − PV ∗)]

= (1− ηt)∆t−1 + ηt [Zt + γPt(Vt−1 − V ∗)] ,

where Zt = (rt−r)+ γ(Pt−P )V ∗ is the Bellman noise.
Notice that Pt(Vt−1 − V ∗) = (Pt − P )(Vt−1 − V ∗) +
P (Vt−1−V ∗). UsingPVt−1 = P πt−1Qt−1 andPV ∗ =
P π∗

Q∗, we further have P (Vt−1 − V ∗) = P πt−1Qt−1 −
P π∗

Q∗ = (P πt−1 − P π∗
)Qt−1 + P

π∗
∆t−1. Putting the

pieces together,

∆t = At∆t−1 + ηt [Zt + γZ ′
t + γZ ′′

t ] ,

where At = I − ηtG,G = I − γP π∗
,Z ′

t = (Pt −
P )(Vt−1 − V ∗), and Z ′′

t = (P πt−1 − P π∗
)Qt−1. Re-

cursing the last equality gives

∆t =

t∏
j=1

Aj∆0 +

t∑
j=1

t∏
i=j+1

Aiηj (Zj + γZ ′
t + γZ ′′

t ) .

(12)
In addition, using the general step size in Assumption 3.3,
we can show 1√

T

∑T
t=1 E∥∆t∥2∞ → 0 (in Theorem E.1).

Step 2: Partial-sum decomposition. For simplicity, for
any T ≥ j ≥ 0 we denote

AT
j = ηj

T∑
t=j

t∏
i=j+1

Ai. (13)
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Setting ψ0(r) := 1
η0

√
T
(A

⌊Tr⌋
0 − η0I)∆0 and plug-

ging (12) into ϕT (r) =
1√
T

∑⌊Tr⌋
t=1 ∆t, yields

ϕT (r) = ψ0(r) +
1√
T

⌊Tr⌋∑
j=1

A
⌊Tr⌋
j

(
Zj + γZ ′

j + γZ ′′
j

)
= ψ0(r) +

1√
T

⌊Tr⌋∑
j=1

G−1Zj +
1√
T

⌊Tr⌋∑
j=1

(AT
j −G−1)Zj

+
γ√
T

⌊Tr⌋∑
j=1

AT
j Z

′
j +

1√
T

⌊Tr⌋∑
j=1

(A
⌊Tr⌋
j −AT

j )
[
Zj + γZ ′

j

]
+

γ√
T

⌊Tr⌋∑
j=1

AT
j Z

′′
j :=

5∑
i=0

ψi(r). (14)

Step 3: Establish the functional CLT. To measure the
distance between random functions, we define ∥ψ∥sup =
supr∈[0,1] ∥ψ(r)∥∞. The standard martingale functional
CLT [Hall and Heyde, 2014, Jirak, 2017] implies ψ1(·)

w→
Var

1/2
Q BD(·). To complete the proof, it suffice to show

∥ϕT − ψ1∥sup = oP(1) which is implied by ∥ψi∥sup =
oP(1) for i = 0, 2, 3, 4, 5.

By Lemma 1 in [Polyak and Juditsky, 1992], we know
supT≥j≥0 ∥AT

j ∥∞ ≤ C0 and limT→∞
1
T

∑T
j=1 ∥AT

j −
G−1∥2 = 0. Then it is obvious ∥ψ0∥sup = oP(1). Not-
ing that Zj ,Z

′
j are martingale differences, we can show

E∥ψi∥2sup = o(1) for i = 2, 3 by Doob’s inequality.

By definition of greedy policies π∗ and πt−1, we know
P π∗

Qt−1 ≤ P πt−1Qt−1 and P πt−1Q∗ ≤ P π∗
Q∗, which

implies ∥Z ′′
t ∥∞ = ∥(P πt−1−P π∗

)Qt−1∥∞ ≤ ∥(P πt−1−
P π∗

)∆t−1∥∞ ≤ L∥∆t−1∥2∞ from Assumption 3.2. Then
E∥ψ5∥sup ≤ LC0√

T

∑T
t=1 E∥∆t∥2∞ → 0.

The most challenging step is to show ∥ψ4∥sup = oP(1).
Notice that ψ4 is a weighted sum of martingale differences,
Zj + γZ ′

j , with the coefficients varying in r such that we
can’t apply Doob’s inequality. To deal with this issue, we
relate ψ4 to an autoregressive sequence indexed by k ∈ [T ]
and analyze the maximum over k directly. More specifically,
we can show

∥ψ4∥sup ≾ sup
k∈[T ]

∥∥∥∥∥∥ 1√
Tηk+1

k∑
j=1

k∏
i=j+1

Aiηj(Zj + γZ ′
j)

∥∥∥∥∥∥ .
Previous results Lee et al. [2021], Li et al. [2022] do not
apply here, since they requireG = I−γP π∗

to be positive
semidefinite, which isn’t our case. Noticing that all eigen-
values ofG have nonnegative real parts, we provide a novel
analysis of the right-hand side in Lemma D.1, showing it
is indeed oP(1) under Assumption 3.1. This is one of our
technical contributions.

Remark 3.1. If we consider policy evaluation (so that πt

remains unchanged and ψ5 disappears), ψ4 is still present.
Showing ∥ψ4∥sup = oP(1) is required even for linear SA.

4 INFORMATION-THEORETIC LOWER
BOUND

The standard CLT implies Q̄T is a
√
T -consistent estimate

for Q∗. It is of theoretical interest to investigate whether
or not Q̄T is asymptotically efficient. In parametric statis-
tics [Lehmann and Casella, 2006], the Cramer-Rao lower
bound assesses the hardness of estimating a target parameter
β(θ) in a parametric model Pθ indexed by parameter θ. Any
unbiased estimator whose variance achieves the Cramer-Rao
lower bound is viewed as optimal and efficient. The concept
of Cramer-Rao lower bounds can be extended to possibly
biased but asymptotically unbiased estimators and also to
nonparametric statistical models where the dimension of the
parameter θ is infinity [Van der Vaart, 2000, Tsiatis, 2006].

The semiparametric model. In our case, the transition
kernel {P (·|s, a)}s,a is specified by D parametric distribu-
tions on D, while the random reward {R(s, a)}s,a is fully
nonparametric because the R(s, a) are not assumed to come
from finite-dimensional models. Hence, to derive an ex-
tended Cramer-Rao lower bound for Q∗ estimation, we need
to enter the world of semiparametric statistics. In particu-
lar, our MDP model M = (S,A, γ, P,R, r) has parameter
θ = (P,R). Our parameter of interest is β(θ) = Q∗. At it-
eration t, we observe the random rewards and empirical tran-
sitions for each (s, a) and concatenate them into rt ∈ RD

and Pt ∈ RD×S . The distribution of Pt is determined by
its expectation P = EPt, which belongs to

PP : =
{
P ∈ RD×S : P (s′|s, a) ≥ 0,∀(s, a, s′)

and
∑
s′∈S

P (s′|s, a) = 1,∀(s, a)

}
,

(15)

while R is nonparametric and belongs to

PR = {{R(s, a)}s,a : ER(s, a) = r(s, a),∀(s, a)} .

According to the generative model, the rt and Pt are mutu-
ally independent and also independent of the historical data.
Let D = {(rt,Pt)}t∈[T ] contain the T samples generated
as described above.

Semiparametric efficiency lower bound. Tsiatis [2006]
has argued that regular asymptotically linear (RAL) esti-
mators provide a good tradeoff between expressivity and
tractability. In RL, RAL estimators are widely considered in
off-policy evaluation problems [Kallus and Uehara, 2020].
Definition 4.1 (Regular estimator). Denote the distribution
of rt and Pt by L(r) and L(P ).2 For any given T , let

2Given a probability space (Ω, P,F), L(X) is the law of the
random variable X in this probability space. Since rt are i.i.d.,
they share the same distribution L(r) and similarly for L(P ).
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LT (r) and LT (P ) be the perturbed distributions of L(r)
and L(P ) which are consistent in the sense that they con-
verge3 to L(r) and L(P ) when T goes infinity. Let Q̂T

be any estimator of Q∗ computed from D. Let Q∗
T be the

true optimal Q-value function when rewards and transition
probabilities are generated i.i.d. from LT (r) and LT (P ).
We say Q̂T is a regular estimator ofQ∗ if

√
T (Q̂T −Q∗

T )
weakly converges to a random variable that depends only
on L(r) and L(P ), when samples are distributed according
to the probability measure (LT (r),LT (P )).

Remark 4.1. Informally speaking, an estimator is regular
if its limiting distribution is unaffected by local changes in
the data-generating process. The assumption of regularity
excludes super-efficient estimators, whose asymptotic vari-
ance can be smaller than the Cramer-Rao lower bound for
some parameter values, but which perform poorly in the
neighborhood of points of super-efficiency. We refer inter-
ested readers to Section 3.1 in [Tsiatis, 2006] for a detailed
exposition.

Definition 4.2 (Regular asymptotically linear). Let Q̂T ∈
RD be a measurable random function of D =
{(rt,Pt)}t∈[T ]. We say that Q̂T is regular asymptotically
linear (RAL) forQ∗ if it is regular and asymptotically linear
with a measurable random function ϕ(rt,Pt) ∈ RD such
that

√
T (Q̂T −Q∗) =

1√
T

T∑
t=1

ϕ(rt,Pt) + oP(1).

Here ϕ(·, ·) is referred to as an influence function, and it
satisfies Eϕ(rt,Pt) = 0 and Eϕ(rt,Pt)ϕ(rt,Pt)

⊤.

Theorem 4.1. Given the dataset D = {(rt,Pt)}t∈[T ],
for any RAL estimator Q̂T of Q∗ computed from D =
{(rt,Pt)}t∈[T ], its variance satisfies

lim
T→∞

TE(Q̂T −Q∗)(Q̂T −Q∗)⊤ ⪰ VarQ,

where A ⪰ B means A −B is positive semidefinite and
VarQ is given in (10).

By Definition 4.2, any influence function determines an
asymptotic linear estimator forQ∗. The semiparametric ef-
ficiency bound in Theorem 4.1 gives us a concrete target in
the construction of the influence function. If we can find an
influence function that achieves the bound, we know that it
is the most efficient among all RAL estimators. Fortunately,
Theorem 4.2 implies that Q̄T is the most efficient estima-
tor among all RAL estimators with the efficient influence
function (I−γP π∗

)−1Zt. It also implies that for any fixed
r ∈ [0, 1], ϕT (r) =

√
r ·
√
⌊Tr⌋(Q̄⌊Tr⌋ − Q∗) has the

optimal asymptotic variance (scaled by a factor
√
r). Proofs

are provided in Appendix G.

3LT (r) and LT (P ) are differentiable in quadratic mean at
L(r) and L(P ). See Chapter 25.3 in Van der Vaart [2000].

Theorem 4.2. Under Assumptions 3.1, 3.2 and 3.3, the
averaged Q-learning iterate Q̄T is a RAL estimator forQ∗.
In particular, we have the following decomposition

√
T
(
Q̄T −Q∗) = 1√

T

T∑
t=1

(I − γP π∗
)−1Zt + oP(1),

where Zt = (rt − r)+ γ(Pt −P )V ∗ is the Bellman noise
at iteration t.

5 INSTANCE-DEPENDENT
NONASYMPTOTIC CONVERGENCE

In the section, we explore the nonasymptotic behavior
of averaged Q-learning, i.e., we study the dependence of
E∥Q̄T −Q∗∥∞ on finite T and (1− γ)−1.

Theorem 5.1. Let Assumptions 3.2 hold and 0 ≤ R(s, a) ≤
1 for all (s, a) ∈ S×A.4 When D is larger than a universal
constant,

• If ηt = t−α with α ∈ (0.5, 1) for t ≥ 1 and η0 = 1, it
follows that for all T ≥ 1, E∥Q̄T −Q∗∥∞ =

O

(√
∥diag(VarQ)∥∞

√
lnD

T
+

√
lnD

(1− γ)3
1

T 1−α
2

)

+ Õ

(
1

(1− γ)3+
2

1−α

1

T
+

γL

(1− γ)4+
1

1−α

1

Tα

)
.

• If ηt = 1
1+(1−γ)t , it follows that for all T ≥ 1,

E∥Q̄T −Q∗∥∞ =

O

(√
∥Var(Z)∥∞
(1− γ)2

√
lnD

T

)
+ Õ

(
L

(1− γ)6
1

T

)
.

Here Õ(·) hides polynomial dependence on α,L and loga-
rithmic factors (i.e., lnD and lnT ).

Instance-dependent behavior. For the polynomial step
size, Theorem 5.1 shows that the instance-dependent

term O(
√
∥diag(VarQ)∥∞

√
lnD
T ) dominates the ℓ∞ error,

which matches the instance-dependent lower bound estab-
lished by Khamaru et al. [2021b] given a sufficiently large T .
To the best of our knowledge, this is the first finite-sample
analysis of averaged Q-learning in the ℓ∞-norm showing
instance-dependent optimality. However, for the linearly

4To simplify the parameter dependence, we assume rewards
are uniformly bounded as in previous work [Wainwright, 2019c,
Khamaru et al., 2021b, Li et al., 2021a] . Note that, thanks to the
error decomposition in (14), it is possible to provide a nonasymp-
totic analysis assuming rewards have finite second moments. The
consequence is that the dependence on d and δ would change from
logD, log 1

δ
to D and 1

δ
.
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rescaled step size, we see that O
(√

∥Var(Z)∥∞
(1−γ)2

√
lnD
T

)
is

the dominant factor, which is larger because we have

∥diag(VarQ)∥∞
(a)

≤ ∥(I − γP π∗
)−1∥2∞∥Var(Z)∥∞

(b)

≤ 1

(1− γ)2
∥Var(Z)∥∞,

where (a) uses ∥diag(AV A⊤)∥∞ ≤ ∥V ∥∞∥A∥2∞ for
any diagonal matrix V (see Lemma F.2) and (b) uses
∥(I − γP π∗

)−1∥∞ ≤ (1 − γ)−1. Hence, the linearly
rescaled step size doesn’t match the instance-dependent
lower bound. It might be true because the linearly rescaled
step size doesn’t satisfy Assumption 3.3, implying that (22)
does not necessarily hold for it.

Comparison with variance-reduced Q-learning. Under
the same assumptions, Khamaru et al. [2021b] analyzed a
variance-reduced variant of Q-learning that also achieves
instance-dependent optimality with the following guarantee:

E∥Q̂T −Q∗∥∞ =

O

(√
∥diag(VarQ)∥∞

√
lnD

T

)
+ Õ

(
1

(1− γ)2
1

T

)
,

which has a better nonleading term than averaged Q-
learning. This might somewhat explain the finding
of Khamaru et al. [2021a] that averaging can be sub-optimal
in the nonasymptotic regime with limited samples. How-
ever, the dominant terms are equal, implying that averag-
ing is still powerful and efficient in the asymptotic regime.
Instance-dependent convergence with a variance structure
in the dominant term has also been found for other settings;
please see Appendix A.

Worst-case behavior. The instance-dependent bound pro-
vides more information about the convergence rate. Pre-
vious works [Azar et al., 2013, Li et al., 2020a] imply the
worst-case bound ∥diag(VarQ)∥∞ = O((1− γ)−3). Such
a dependence on (1− γ)−1 is tight, because Khamaru et al.
[2021b] constructs a family of MDPs parameterized by
λ ≥ 0 where ∥diag(VarQ)∥∞ = Θ((1− γ)−3+λ). When
plugging in the worst-case bound, we find that for poly-
nomial step sizes and for sufficiently small ε, averaged
Q-learning already achieves the optimal minimax sample
complexity Õ

(
D

(1−γ)3ε2

)
established by Azar et al. [2013].

Wainwright [2019c] uses a variance-reduced variant of Q-
learning to achieve the optimality, but the algorithm requires
an additional collection of i.i.d. samples at each outer loop
to obtain an Monte Carlo approximation of the population
Bellman operator (5). Our results show that a simple av-
erage is sufficient to guarantee optimality. Moreover, the
computation of Q̄T is fully online with no additional sam-
ples needed.

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5
log ||diag(VarQ)||∞
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gT
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Linear,k=0.85
Poly.,α=0.51,k=0.89
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Figure 2: Log-log plots of the sample complexity T (ε, γ)
versus the asymptotic variance ∥diag(VarQ)∥∞.

Confirming the theoretical predictions. We provide
numerical experiments to illustrate instance-adaptivity as
well as the worst-case behavior delineated in Theorem 5.1.
We focus on the sample complexity T (ε, γ) = inf{T :
E∥Q̄T −Q∗∥∞ ≤ ε} for ε = 10−4. We conduct 103 in-
dependent trials in a random MDP to compute T (ε, γ) for
different values of γ ∈ Γ and two step sizes. We plot the
least-squares fits, {(log ∥diag(VarQ)∥∞, log T (ε, γ))}γ∈Γ,
and provide the slopes k of these lines in the legend. Further
details are provided in Appendix J. At a high level, we see
that averaged Q-learning produces sample complexity that
is well predicted by our theory—all the slopes are no larger
than the theoretical limit k predicted by our theory.

Proof Sketch. The proof idea of Theorem 5.1 is based
on that of Theorem 3.1. Notice that Q̄T − Q∗ =
1
T

∑T
t=1 ∆t =

1√
T
ϕT (1). From (14), we know that5

E∥Q̄T −Q∗∥∞ = E
∥∥∥∥ϕT (1)√

T

∥∥∥∥
∞

≤
∑

i ̸=4 E ∥ψi(1)∥∞√
T

.

Bounding the term of i = 0 is easy since it’s deterministic.
Because ψi(1)(i = 1, 2, 3) is a weighted sum of martingale
differences, we use the variance-aware multi-dimensional
Freedman’s inequality (in Lemma H.1) to analyze its expec-
tation under ℓ∞-norm. The instance-dependent dominant
term comes from the variance term for E∥ψ1(1)∥∞. An-
alyzing the variance of ψ2(1) is quite challenging since it
relies on 1

T

∑T
j=1 ∥AT

j −G−1∥2∞ withAT
j defined in (13).

We then bound that quantity in terms of α, 1− γ and T in
Lemma C.4. Finally, due to ∥ψ5(1)∥∞ ≤ L∥∆t∥2∞, bound-
ing E∥ψ5(1)∥∞ is reduced to bound E∥∆t∥2∞ for all t ≥ 0,
which can be given by a similar argument from Wainwright
[2019b]. Putting all pieces together completes the proof; the
detailed proof is in Appendix F.

5Since r = 1, ψ4 doesn’t appear in the decomposition.
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6 RELAXATION OF THE LIPSCHITZ
CONDITION

Both our asymptotic and nonasymptotic analysis rely on the
Lipschitz condition in Assumption 3.2. That condition is
essentially equivalent to assuming a unique optimal policy.
It turns out that, once regularized by entropy, the (regular-
ized) optimal policy is naturally unique. In the following,
we show that entropy-regularized Q-learning enjoys a simi-
lar functional CLT and instance-dependent bounds without
Assumption 3.2.

Entropy-regularized Q-learning uses the following matrix-
form update rule,

Q̃t = (1− ηt)Q̃t−1 + ηtT̃tQ̃t−1, (16)

where

T̃t(Q)(s, a) = rt(s, a) + γ(PtLλQ)(st) (17)

is a soft version of the empirical Bellman operator T̂ . The
nonlinear operator Lλ(·) : RD → RS is a soft version of a
hard max, with regularization coefficient λ. It is defined by

(LλQ)(s) := max
π∈Π

Ea∼π(·|s) [Q(s, a)− λ log π(a|s)] .

Let Q∗
λ denote the unique fixed point of the regularized

Bellman equation Q∗
λ = r + γPLλQ

∗
λ and let π∗

λ be the
unique optimal policy.

Theorem 6.1. Define {Q̃t}t≥0 in (16). The corresponding
partial-sum process is ϕ̃T (r) := 1√

T

∑⌊Tr⌋
t=1 (Q̃t − Q∗

λ).
Under Assumptions 3.1 and 3.3,

ϕ̃T (·)
w→ Ṽar

1/2

Q BD(·),

where ṼarQ is the asymptotic matrix defined by

ṼarQ := (I − γP π∗
λ)−1Var(Z̃)(I − γP π∗

λ)−⊤.

with Z̃ d.
= Z̃t = (rt−r)+γ(Pt−P )LλQ

∗
λ the regularized

Bellman noise.

Theorem 6.2. Under Assumptions 3.1 and 3.3, when the
two step sizes are considered, E∥ 1

T

∑T
t=1 Q̃t −Q∗

λ∥∞ has
similar bounds as in Theorem 5.1 except that we replace
VarQ, L with ṼarQ and 1

λ .

We note that the two theorems in this section can be
proved via an almost identical argument as Theorem 3.1
and 5.1, since Assumption 3.2 is naturally satisfied with
L = 1

λ for entropy-regularized Q-learning (see Appendix I).
Actually, our proof is applicable to a class of nonlinear
SAs.6 Second, due to the bias introduced by entropy, the

6More specifically, our method can analyze Qt = (1 −
ηt)Qt−1 + ηt(rt + γPtLQt−1) where L is a smooth nonlinear
non-expansive operator.

instance-dependent factor changes from VarQ to ṼarQ and
1
T

∑T
t=1 Q̃t converges toQ∗

λ instead ofQ∗ in expectation.
Finally, note that these results provide a new argument for
the benefits of entropy regularization; it smooths the Bell-
man operator and weakens the assumptions required for
asymptotic analysis. It is supplementary to previous efforts
that shows entropy regularization aids exploration [Fox et al.,
2016], encourages robust optimal policies [Eysenbach and
Levine, 2021], induces a smoother landscape [Ahmed et al.,
2019], and hastens the convergence of RL algorithms [Cen
et al., 2022].

7 DISCUSSION

We have studied the asymptotic and nonasymptotic con-
vergence of averaged Q-learning, establishing its statistical
efficiency. We first established a functional central limit
theorem, showing that the standardized partial-sum process
converges weakly to a rescaled Brownian motion, a result
which can serve as an underpinning for the development of
statistical inference methods for RL. We then established a
semiparametric efficiency lower bound forQ∗ estimation,
showing that the averaged iterate Q̄T is the most efficient
RAL estimator in the sense of having the smallest asymp-
totic variance. Finally, we presented the first finite-sample
error analysis of E∥Q̄T −Q∗∥∞ in the ℓ∞-norm for both
linearly rescaled and polynomial step sizes. We showed that
averaged Q-learning achieves the same instance-dependent
optimality and worst-case optimality as previous variance-
reduced algorithms [Khamaru et al., 2021b, Wainwright,
2019c] under a Lipschitz condition.

Some open problems remain. On the one hand, with the Lip-
schitz condition, it’s unclear whether averaged Q-learning
with linearly rescaled step sizes can match the instance-
dependent lower bound. Additionally, we suspect that the
dependence on (1− γ)−1 of the nonleading terms in Theo-
rem 5.1 is loose and speculate it can be improved by finer
analysis. On the other hand, without the Lipschitz condition,
it is not clear whether averaged Q-learning still achieves
the optimal instance-dependent bound. Finally, previous
analysis [Kozuno et al., 2022] shows the last-iterate entropy-
regularized Q-learning is minimax optimal. It is also un-
known whether the averaged iterates of entropy-regularized
Q-learning achieve the optimal instance-dependent bound.
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A RELATED WORK

Due to the rapidly growing literature on Q-learning, we review only the theoretical results that are most relevant to our work.
Interested readers can check references therein for more information.

Asymptotic normality in RL. Establishing asymptotic normality of an estimator permits statistical inference and the
quantification of uncertainty. Existing work on statistical inference for Q-learning has focused mainly on the off-policy
evaluation (OPE) problem, where one aims to estimate the value function of a given policy using pre-collected data. In this
setting, a parametric Cramer–Rao lower bound has been established by Jiang and Li [2016], and asymptotic efficiency has
been established for certain estimators using linear approximation [Uehara et al., 2020, Hao et al., 2021, Yin and Wang,
2020, Mou et al., 2020a] or bootstrapping [Hao et al., 2021]. Further inferential work includesthe asymptotic analysis of
multi-stage algorithms [Luckett et al., 2019, Shi et al., 2020], asymptotic behavior of robust estimators [Yang et al., 2021],
and work by Kallus and Uehara [2020] on a semiparametric doubly robust estimator.

In contradistinction to existing work, we establish a functional central limit theorem that captures the weak convergence of
the whole trajectory rather than its endpoint. Such functional results have not been presented previously in the RL literature.
Furthermore, we supplement these upper bounds with a semiparametric efficiency lower bound which additionally considers
the randomness of rewards. We also show that averaged Q-learning is the most efficient RAL estimator vis-a-vis this lower
bound.

Sample complexity for Q-learning. For the goal of obtaining an ε-accurate estimate of the optimal Q-function in a
γ-discounted MDP in the presence of a generative model, model-based Q-value-iteration has been shown to achieve optimal
minimax sample complexity Õ

(
D

ε2(1−γ)3

)
[Azar et al., 2013, Agarwal et al., 2020, Li et al., 2020a]. In the model-free

context, Wainwright [2019b] showed empirically that classical Q-learning suffers from at least worst-case fourth-order
scaling in (1− γ)−1 in sample complexity. A complexity bound of Õ

(
D

ε2(1−γ)5

)
has been provided [Wainwright, 2019b,

Chen et al., 2020b]; this is far from the optimal though better than previous efforts [Even-Dar et al., 2003, Beck and Srikant,
2012]. Li et al. [2021a] gave a sophisticated analysis showing the complexity of Q-learning is Õ

(
D

ε2(1−γ)4

)
and provided a

matching lower bound to confirm its sharpness. Wainwright [2019c], Khamaru et al. [2021b] introduced a variance-reduced
variant of Q-learning [Gower et al., 2020] that achieves the optimal sample complexity and instance complexity. Our results
show that a simple average over all history Qt is sufficient to guarantee the same optimality. The averaged method is fully
online without requiring additional samples and storage space.

Instance-dependent convergence in RL. Recent years have witnessed new instance-specific bounds, where an instance-
dependent functional of a variance structure appears as the dominant term on stochastic errors. Unlike global minimax
bounds which are worst-case in nature, instance-specific bounds help identify the difficulty of estimation case by case. Such
bounds have been established for policy evaluation in the tabular setting [Pananjady and Wainwright, 2020, Khamaru et al.,
2021a, Li et al., 2020a] or with linear function approximation [Li et al., 2021b] and for optimal value function estimation [Yin
and Wang, 2021]. The most related work to ours is by Khamaru et al. [2021b], who show that a variance-reduced variant
of Q-learning achieves the instance-dependent optimality after identifying an instance-dependent lower bound for Q∗

estimation. By contrast, our result shows that a simple average is sufficient to yield optimality.

Nonlinear stochastic approximation. Q-learning has also been studied through the lens of nonlinear stochastic approxi-
mation. From this general point of view, asymptotic convergence has been provided [Tsitsiklis, 1994, Borkar and Meyn,
2000]. On the nonasymptotic side, Q-learning is studied either in the synchronous setting [Shah and Xie, 2018, Wainwright,
2019b, Chen et al., 2020b] or the asynchronous setting where only one sample from current state-action pair is available
at a time [Qu and Wierman, 2020, Li et al., 2020b, Chen et al., 2021]. The sample complexities obtained therein are far
from optimal. Others consider Q-learning with linear function approximation in the ℓ2-norm [Melo et al., 2008, Chen et al.,
2019]. Asymptotic convergence of averaged Q-learning has been studied by Lee and He [2019a,b] via the ODE (ordinary
differential equation) approach. Our results are complementary to these results, including asymptotic statistical properties
and finite-sample analysis in the ℓ∞-norm. Though peculiar to averaged Q-learning, we believe our analysis can be extended
to nonlinear SA problems.
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B CENTRAL LIMIT THEOREM FOR AVERAGED Q-LEARNING

For completeness, we present a CLT for the averaged Q-learning sequence Q̄T := 1
T

∑T
t=1Qt in this part. This result can

be derived not only from our Theorem 3.1 but also from CLT for non-linear SA, e.g., Mokkadem and Pelletier [2006].
Theorem B.1 (Asymptotic normality for Q∗). Under Assumptions 3.1, 3.2 and 3.3, we have

√
T (Q̄T −Q∗)

d→ N (0,VarQ),

where the asymptotic variance is given by

VarQ = (I − γP π∗
)−1Var(Z)(I − γP π∗

)−⊤ ∈ RD×D. (18)

Here Var(Z) is the covariance matrix of the Bellman noise Z defined in (7).

Asymptotic variance. Theorem B.1 implies that the average of the sequence (Qt) has an asymptotic normal distribution
with VarQ the asymptotic variance. VarQ includes Var(Z), the covariance matrix of Bellman noiseZ, multiplied with a pre-
factor (I−γP π∗

)−1. By a von Neumann expansion, (I−γP π∗
)−1 is equivalent to

∑∞
t=0(γP

π∗
)t. As argued by Khamaru

et al. [2021b], the sum of the powers of γP π∗
accounts for the compounded effect of an initial perturbation when following

the MDP induced by π∗. The Bellman noise Z reflects the noise present in the empirical Bellman operator (4) as an estimate
of the population Bellman operator (5). Note that this implies ∥(I − γP π∗

)−1∥ ≤
∑∞

t=0 γ
t∥(P π∗

)t∥∞ = (1 − γ)−1.
∥diag(VarQ)∥∞ coincides with the instance-dependent functional proposed by Khamaru et al. [2021b] that controls the
difficulty of estimating Q∗ in the ℓ∞-norm.

Asymptotic normality for V ∗ estimation. If the optimal policy is unique, we can obtain a similar result for the optimal
value function V ∗, making use of the asymptotic normality of Q̄T . We define an estimator V̄T ∈ RS greedily from
Q̄T ∈ RD: the s-th entry of V̄T is V̄T (s) ∈ argmaxa∈A Q̄T (s, a). As a corollary of Theorem B.1, V̄T enjoys a similar
asymptotic normality with the asymptotic variance defined by VarV . One can check that

VarV = Ππ∗
VarQ(Ππ∗

)⊤, (19)

where Ππ∗ ∈ {0, 1}S×D is the projection matrix associated with the deterministic optimal policy π∗ (see (2)). Hence, VarV
is formed by selecting entries from VarQ. In particular, VarV (s, s′) = VarQ((s, π∗(s)), (s′, π∗(s′))) for any s, s′ ∈ S.
The proof is deferred to Appendix B.2.
Lemma B.1. If π∗ is unique, then we have a positive optimality gap gap := mins mina ̸=π∗(s) |V ∗(s) − Q∗(s, a)| > 0
where π∗(s) is the unique action satisfying V ∗(s) = Q∗(s, a∗(s)). For any Q-function estimatorQ ∈ RD, it follows that
{πQ ̸= π∗} ⊆ {∥Q−Q∗∥∞ ≥ gap

2 } and

∥(P πQ − P π∗
)(Q−Q∗)∥∞ ≤ L∥Q−Q∗∥2∞ with L =

4

gap
, (20)

where πQ is the greedy policy with respective to Q defined by πQ(s) := argmaxa∈A Q(s, a). If argmaxa∈A Q(s, a) has
more than one element, we break the tie by randomness.
Corollary B.1 (Asymptotic normality for V ∗). Let V̄T ∈ RS be the greedy value function computed from Q̄T ∈ RD, i.e.,
V̄T (s) ∈ argmaxa∈A Q̄T (s, a). Under Assumptions 3.1 and 3.3, if we assume the optimal policy π∗ is unique, then

√
T (V̄T − V ∗)

d→ N (0,VarV ),

where the asymptotic variance is

VarV = (I − γPπ∗)−1Var(Ππ∗
Z)(I − γPπ∗)−⊤ ∈ RS×S , (21)

and Var(Ππ∗
Z) is the covariance matrix of the projected Bellman noise Ππ∗

Z.

Insights on sample efficiency. The asymptotic results shed light on the sample efficiency of averaged Q-learning. Under
ideal conditions, we have

√
TE∥Q̄T −Q∗∥∞ → E∥Z∥∞ ≈

√
lnD

√
∥diag(VarQ)∥∞ where Z ∼ N (0,VarQ). (22)

In this case, roughly speaking, to obtain an ε-accurate estimator of the optimal Q-value functionQ∗ (i.e., E∥Q̄T −Q∗∥∞ ≤
ε), we require approximately T = O

(
lnD
ε2 ∥diag(VarQ)∥∞

)
iterations or equivalently DT = O

(
D lnD

ε2 ∥diag(VarQ)∥∞
)

samples. This explains why Khamaru et al. [2021b] regarded ∥diag(VarQ)∥∞ as the difficulty indicator because it affects
the sample complexity directly.
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B.1 Proof of Theorem B.1

Proof of Theorem B.1. One can prove Theorem B.1 by applying continuous mapping theorem to Theorem 3.1 with the
functional f : D([0, 1],RD) → RD, f(w) = w(1). Once we can prove f is a continuous functional in (D([0, 1],RD), d0),
an application of (27) would conclude the proof. Recalling the metric (25) defined on D([0, 1],RD), we have for any
w1, w2 ∈ D([0, 1],RD),

∥f(w1)− f(w2)∥∞ = ∥w1(1)− w2(1)∥∞ ≤ inf
λ∈Λ

sup
t∈[0,1]

∥w1(λ(t))− w2(t)∥∞

≤ inf
λ∈Λ

{
sup

0≤s<t≤1

∣∣∣∣ln λ(t)− λ(s)

t− s

∣∣∣∣+ sup
t∈[0,1]

∥w1(λ(t))− w2(t)∥∞

}
= d0(w1, w2).

We even show that f is 1-Lipschitz continuous in (D([0, 1],RD), d0) and thus complete the proof.

B.2 Proof of Corollary B.1

Proof of Corollary B.1. We first prove
VarV = Ππ∗

VarQ(Ππ∗
)⊤. (23)

Recall the definition

VarQ = (I − γP π∗
)−1Var(Z)(I − γP π∗

)−⊤ ∈ RD×D

VarV = (I − γPπ∗)−1Var(Ππ∗
Z)(I − γPπ∗)−⊤ ∈ RS×S .

For one thing, we have Var(Ππ∗
Z) = Ππ∗

Var(Z)(Ππ∗
)⊤. For another thing, we have Ππ∗

(I − γP π∗
)−1 = (I −

γPπ∗)−1Ππ∗
. This is because

(I − γPπ∗)Ππ∗
= Ππ∗

− γΠπ∗
PΠπ∗

= Ππ∗
(I − γP π∗

).

Putting these together, (23) follows from direct verification.

We then prove the asymptotic normality of V̄T . Let π̄t is the greedy policy with respect to Q̄t, i.e., π̄t(s) ∈
argmaxa∈A Q̄t(s, a). From the definition of our estimator,

V̄T = Ππ̄T Q̄T and V ∗ = Ππ∗
Q∗

which implies
V̄T − V ∗ =

(
Ππ̄T Q̄T −Ππ∗

Q̄T

)
+
(
Ππ∗

Q̄T −Ππ∗
Q∗
)
.

On the other hand, it is easy to see that
√
T
(
Ππ∗

Q̄T −Ππ∗
Q∗
)

d.→ N (0,Ππ∗
VarQ(Ππ∗

)⊤) = N (0,VarV ).

If we can prove √
T
(
Ππ̄T Q̄T −Ππ∗

Q̄T

)
= oP(1), (24)

then the conclusion follows from Slutsky’s theorem. We have that
√
TE∥Ππ̄T Q̄T −Ππ∗

Q̄T ∥∞ ≤
√
TE∥Ππ̄T −Ππ∗

∥∞∥Q̄T ∥∞
(a)

≤
√
T

1− γ
E∥Ππ̄T −Ππ∗

∥∞

(b)
=

2
√
T

1− γ
P (π̄T ̸= π∗)

(c)

≤ 2
√
T

1− γ
P
(
∥Q̄T −Q∗∥∞ ≥ gap

2

)
≤ 2

√
T

1− γ

4

gap2
E∥Q̄T −Q∗∥2∞

(d)

≤ 1

1− γ

8

gap2
1√
T

T∑
t=1

E∥Qt −Q∗∥2∞,
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where (a) uses ∥Q̄T ∥∞ ≤ (1 − γ)−1, (b) uses the fact that both π̄T and π∗ are deterministic policies and thus ∥Ππ̄T −
Ππ∗∥∞ = 2 · 1{π̄T ̸=π∗}, (c) uses the fact {π̄t ̸= π∗} ⊆ {∥Q̄t −Q∗∥∞ ≥ gap

2 } which we derived in Lemma B.1, and
finally (d) follows from Jensen’s inequality.

From Theorem E.1, we know 1√
T

∑T
t=1 E∥Qt − Q∗∥2∞ → 0 as T → ∞. Therefore, we have that

√
TE∥Ππ̄T Q̄T −

Ππ∗
Q̄T ∥∞ = o(1) which implies (24) is true.

B.3 Proof of Lemma B.1

Proof of Lemma B.1. Recall that gap = mins mina ̸=π∗(s) |Q∗(s, π∗(s))−Q∗(s, a)|. If gap = 0, by definition, there must
exist some s0 ∈ S and a0 ∈ A such that V ∗(s0) = Q∗(s0, a0) and a0 ̸= π∗(s0), which is contradictory with the uniqueness
of π∗. Hence, a unique π∗ implies a positive gap.

For anyQ satisfying ∥Q−Q∗∥∞ < gap
2 , we must have ∥Q(s, ·)−Q∗(s, ·)∥∞ < gap

2 for any s ∈ S . In this case, it must
be true that πQ(s) = π∗(s) for all s ∈ S. Otherwise, there exists some s ∈ S such that πQ(s) ̸= π∗(s). We then have

Q(s, πQ(s)) < Q∗(s, πQ(s)) +
gap

2

(a)

≤ Q∗(s, π∗(s))− gap

2
< Q(s, π∗(s)),

where (a) follows from the definition of the optimality gap. The result Q(s, πQ(s)) < Q(s, π∗(s)) contradicts with the fact
that πQ(s) is the greedy policy with respect to Q at state s, which implies Q(s, π∗(s)) ≤ Q(s, πQ(s)). This implies that the
event {πQ ̸= π∗} ⊆ {∥Q−Q∗∥∞ ≥ gap

2 } and thus 1{πQ ̸=π∗} ≤ 1{∥Q−Q∗∥∞≥ gap
2 }. Hence,

∥(P πQ − P π∗
)(Q−Q∗)∥∞ ≤ ∥P πQ − P π∗

∥∞∥Q−Q∗∥∞
≤ ∥P ∥∞∥ΠπQ −Ππ∗

∥∞∥Q−Q∗∥∞
= 1 · 2 · 1{πQ ̸=π∗} · ∥Q−Q∗∥∞
≤ 2 · 1{∥Q−Q∗∥∞≥ gap

2 }∥Q−Q∗∥∞

≤ 4

gap
∥Q−Q∗∥2∞,

where the last line uses 1{∥Q−Q∗∥∞≥ gap
2 } ≤ 2

gap∥Q−Q∗∥∞.

B.4 Proof of Proposition 3.1

Proof of Proposition 3.1. Let g : D([0, 1],RD) → R be a functional defined as

g(w) = w(1)⊤
(∫ 1

0

w(r)w(r)⊤dr

)−1

w(1) for any w ∈ D([0, 1],RD).

Here the domain of g is

dom(g) =

{
w ∈ D([0, 1],RD),

∫ 1

0

w(r)w(r)⊤dr is invertible
}
.

Once we prove g is continuous in (dom(g), d0), the continuous mapping theorem together with Theorem 3.1 would complete
the proof for Proposition 3.1.

In Appendix B.1, we have shown f : D([0, 1],RD) → RD, f(w) = w(1) is 1-Lipschitz continuous in (D([0, 1],RD), d0).
Let h : D([0, 1],RD) → RD×D be defined by h(w) =

∫ 1

0
w(r)w(r)⊤dr. Hence, once we prove h is continuous in

(D([0, 1],RD), d0), it follows that g = f⊤h−1f is also continuous in (dom(g), d0). To that end, we only show each entry
of h is continuous in w. This is true because of each entry of h is in form of integration which is a continuous functional on
the Skorohod space D([0, 1],R).

Finally, by Theorem 3.1 and definition of weak convergence, we know that as T goes to infinity,

P (ϕT /∈ dom(g)) → P (BD /∈ dom(g)) = 0.

Hence, with probability approaching to one,
∫ 1

0
ϕT (r)ϕT (r)

⊤dr is invertible and thus g(ϕT ) is well defined.
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C PROOF OF THEOREM 3.1

C.1 Preliminaries and High-level Idea

In this section, we provide a self-contained proof of our functional central limit theorem (FCLT). Let ∆t = Qt −Q∗ be the
error vector at iteration t. The application of Polyak-Ruppert average [Polyak and Juditsky, 1992] gives an estimator forQ∗:
Q̄T = 1

T

∑T
t=1Qt. Then its partial sum of the first r-fraction (r ∈ [0, 1]) is 1

T

∑⌊Tr⌋
t=1 Qt. The associated standardized

partial-sum process is defined by

ϕT (r) =
1√
T

⌊Tr⌋∑
t=1

∆t =
1√
T

⌊Tr⌋∑
t=1

(Qt −Q∗).

Here ϕT (·) should be viewed as a D-dimensional random function. For simplicity, we also use ϕT = {ϕT (r)}r∈[0,1] to
denote the whole function.

C.1.1 Weak convergence of measures in Polish spaces

We will introduce some basic knowledge of weak convergence in metric spaces. See Chapter VI in [Jacod and Shiryaev,
2003] for a detailed introduction.

A Polish space is a topological space that is separable, complete, and metrizable. Let D([0, 1],Rd) =
{càdlàg function ω(r) ∈ Rd, r ∈ [0, 1]} collect all d-dimensional functions which are right continuous with left lim-
its. Define D([0, 1],Rd) as the σ-field generated by all maps X 7→ X(r) for r ∈ [0, 1]. The J1 Skorokhod topology equips
D([0, 1],Rd) with a metric d0 such that (D([0, 1],Rd), d0) is a Polish space and D([0, 1],Rd) is its Borel σ-field (the σ-field
generated by all open subsets). In particular, for any w1, w2 ∈ D([0, 1],Rd),

d0(w1, w2) = inf
λ∈Λ

{
sup

0≤s<t≤1

∣∣∣∣ln λ(t)− λ(s)

t− s

∣∣∣∣+ sup
t∈[0,1]

∥w1(λ(t))− w2(t)∥∞

}
, (25)

where Λ denotes the class of strictly increasing continuous mappings λ : [0, 1] → [0, 1] with λ(0) = 0 and λ(1) = 1.

An important subset of D([0, 1],Rd) is C([0, 1],Rd) = {continuous ω(r) ∈ Rd, r ∈ [0, 1]}, which collects all d-dimensional
continuous functions defined on [0, 1]. The uniform topology equips C([0, 1],Rd) with the uniform norm

∥ω∥sup := sup
r∈[0,1]

∥ω(r)∥∞. (26)

The resulting (C([0, 1],Rd), ∥ · ∥sup) is a Polish space. Additionally, we have d0(w1, w2) ≤ ∥w1 − w2∥sup for any
w1, w2 ∈ D([0, 1],Rd). The J1 Skorokhod topology is weaker than the uniform topology. However, if X ∈ D([0, 1],Rd) is
a continuous function, a sequence {Xt}t≥0 ⊆ D([0, 1],Rd) converges to X for the Skorokhod topology if and only if it
converges to X under the uniform norm ∥ · ∥sup. Hence, the Skorokhod topology relativized to C([0, 1],Rd) coincides with
the uniform topology there.

Any random element Xt ∈ D([0, 1],Rd) introduces a probability measure on D([0, 1],Rd) denoted by L(Xt) such that
(D([0, 1],Rd),D([0, 1],Rd),L(Xt)) becomes a probability space. We say a sequence of random elements {Xt}t≥0 ⊆
D([0, 1],Rd) weakly converges to X , if for any bounded continuous function f : D([0, 1],Rd) → R, we have

Ef(XT ) → Ef(X) as T goes to infinity. (27)

The condition is equivalent to that any finite-dimensional projections of ϕT converge in distribution. We denote the weak
convergence by XT

w→ X .

Theorem C.1 (Slutsky’s theorem on Polish spaces). Suppose S is a Polish space with metric d and {(Xt, Yt)}t≥0 are
random elements of S × S . Suppose XT

w→ X and d(XT , YT )
w→ 0, then YT

w→ X .

By Slutsky’s theorem in Theorem C.1, if ∥YT ∥sup
w→ 0 and XT

w→ X , then XT + YT
w→ X . A sufficient condition to

∥YT ∥sup
w→ 0 is E∥YT ∥sup → 0 by Markov’s inequality.

Proposition C.1. For two random sequences {Xt}t≥0, {Yt}t≥0 ⊆ D([0, 1],Rd) satisfying E∥YT ∥sup → 0 and XT
w→ X ,

we have XT + YT
w→ X .
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C.1.2 Proof Idea

In the following, we will show under the three assumptions in the main text, we can establish

ϕT
w→ Var

1/2
Q BD,

whereBD ∈ C([0, 1],RD) is the standard D-dimensional Brownian motion on [0, 1]. That is the associated measure of ϕT

weakly converges to the measure introduced by Var
1/2
Q BD on D([0, 1],RD).

To proceed the proof, we will use two auxiliary sequences {∆1
t}t≥0 and {∆2

t}t≥0 defined in Lemma C.1. The proof of
Lemma C.1 can be found in Appendix C.4.1.

Lemma C.1. Denote G = I − γP π∗
,At = I − ηtG and Wt = (rt − r) + γ(Pt − P )Vt−1 for short. The auxiliary

sequences {∆1
t}t≥0 and {∆2

t}t≥0 are defined iteratively: ∆1
0 = ∆2

0 = ∆0 and for t ≥ 1

∆1
t = At∆

1
t−1 + ηt

[
Wt + γ(P πt−1 − P π∗

)∆t−1

]
(28)

∆2
t = At∆

2
t−1 + ηtWt . (29)

As long as supt ηt ≤ 1, it follows that all t ≥ 0,

∆2
t ≤ ∆t ≤ ∆1

t . (30)

The two sequences form a sandwich bound for ∆t, producing ∆2
t ≤ ∆t ≤ ∆1

t coordinate-wise. We similarly define the
error vectors of their first r-fraction partial sums as

ϕ1
T (r) :=

1√
T

⌊Tr⌋∑
t=1

∆1
t and ϕ2

T (r) :=
1√
T

⌊Tr⌋∑
t=1

∆2
t .

Then, it is valid that ϕ1
T ,ϕ

2
T ∈ D([0, 1],RD) and for any r ∈ [0, 1],

ϕ2
T (r) ≤ ϕT (r) ≤ ϕ1

T (r). (31)

In the following subsections, we will show that under Assumption 3.1, 3.2 and 3.3, we can find a random function
Z ∈ D([0, 1],RD) which satisfies

Z w→ Var
1/2
Q BD. (32)

Furthermore, ϕ1
T and ϕ2

T weakly converge to Z such that

lim
T→∞

E∥ϕk
T −Z∥sup = 0 for k = 1, 2. (33)

By the sandwich inequality (31), we have

E∥ϕT −Z∥sup ≤ E∥ϕ1
T −Z∥sup + E∥ϕ2

T −Z∥sup → 0

as T goes to infinity. Proposition C.1 implies ϕT weakly converges to a rescaled Brownian motion Var
1/2
Q BD, by which

we complete the proof.

C.2 Functional CLT for ϕ1
T

We first establish the FLCT of ϕ1
T (r) =

1√
T

∑⌊Tr⌋
t=1 ∆1

t , i.e., lim
T→∞

E∥ϕ1
T −Z∥sup = 0 for some L(Z) = L(Var1/2Q BD).

The FCLT of ϕ2
T (r) =

1√
T

∑⌊Tr⌋
t=1 ∆2

t can be validated in an almost identical way. We start by rewriting (28) as

∆1
t = At∆

1
t−1 + ηt

(
Zt + γD1

t−1

)
, (34)

whereAt = I − ηt(I − γP π∗
), Zt = (rt − r) + γ(Pt − P )V ∗, and

D1
t−1 = (Pt − P )(Vt−1 − V ∗) + (P πt−1 − P π∗

)∆t−1. (35)
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We comment that {Zt}t≥0 collects the i.i.d. noise inherent in the empirical Bellman operator and {D1
t−1}t≥1 captures the

closeness between the current Q-function estimatorQt−1 and the optimalQ∗. Recurring (34) gives

∆1
t =

t∏
j=1

Aj∆0 +

t∑
j=1

t∏
i=j+1

Aiηj
(
Zj + γD1

j−1

)
.

Here we use the convention that
∏t

i=t+1Ai = I for any t ≥ 0. For any r ∈ [0, 1], summing the last equality over
t = 1, · · · , ⌊Tr⌋ and scaling it properly, we have

ϕ1
T (r) =

1√
T

⌊Tr⌋∑
t=1

∆1
t =

1√
T

⌊Tr⌋∑
t=1

t∏
j=1

Aj∆0 +
1√
T

⌊Tr⌋∑
t=1

t∑
j=1

t∏
i=j+1

Aiηj
(
Zj + γD1

j−1

)
=

1√
T

⌊Tr⌋∑
t=1

t∏
j=1

Aj∆0 +
1√
T

⌊Tr⌋∑
j=1

⌊Tr⌋∑
t=j

t∏
i=j+1

Aiηj
(
Zj + γD1

j−1

)
=

1

η0
√
T
(A

⌊Tr⌋
0 − η0I)∆0 +

1√
T

⌊Tr⌋∑
j=1

A
⌊Tr⌋
j

(
Zj + γD1

j−1

)
, (36)

where the last line uses the following notation:

AT
j = ηj

T∑
t=j

t∏
i=j+1

Ai for any T ≥ j ≥ 0. (37)

Define G = I − γP π∗
with γ ∈ [0, 1), then Ai = I − ηiG. Typically speaking, AT

j approximates G uniformly well
(see Lemma C.4). By the observation, we further expand (36) and decompose ϕ1

T (r) into six terms {ψi}5i=0 which will be
analyzed respectively in the following:

ϕ1
T (r) =

1

η0
√
T
(A

⌊Tr⌋
0 − η0I)∆0 +

1√
T

[Tr]∑
j=1

A
⌊Tr⌋
j

(
Zj + γD1

j−1

)
=

1

η0
√
T
(A

⌊Tr⌋
0 − η0I)∆0 +

1√
T

⌊Tr⌋∑
j=1

G−1Zj +
1√
T

⌊Tr⌋∑
j=1

(A
⌊Tr⌋
j −G−1)Zj

+
γ√
T

⌊Tr⌋∑
j=1

A
⌊Tr⌋
j (Pj − P )(Vj−1 − V ∗) +

γ√
T

⌊Tr⌋∑
j=1

A
⌊Tr⌋
j (P πj−1 − P π∗

)∆j−1

=
1

η0
√
T
(A

⌊Tr⌋
0 − η0I)∆0 +

1√
T

⌊Tr⌋∑
j=1

G−1Zj +
1√
T

⌊Tr⌋∑
j=1

(AT
j −G−1)Zj

+
γ√
T

⌊Tr⌋∑
j=1

AT
j (Pj − P )(Vj−1 − V ∗) +

1√
T

⌊Tr⌋∑
j=1

(A
⌊Tr⌋
j −AT

j ) [Zj + γ(Pj − P )(Vj−1 − V ∗)]

+
γ√
T

⌊Tr⌋∑
j=1

A
⌊Tr⌋
j (P πj−1 − P π∗

)∆j−1

:= ψ0(r) +ψ1(r) +ψ2(r) +ψ3(r) +ψ4(r) +ψ5(r). (38)

Readers should keep in mind that all ψi’s depend on T , a dependence which we omit for simplicity. In the following, we
will show (32) is true by setting Z = ψ1. In order to establish (33), we will show that E∥ψi∥sup = o(1) for i = 0, 2, 3, 4, 5.
In this way, based on (38), we have

E∥ϕ1
T −ψ1∥sup ≤

∑
i=0,2,3,4,5

E∥ψi∥sup = o(1) as T → ∞,

and validate (33). To that end, we first study the properties of {AT
j }0≤j≤T since it appears in many ψi’s.
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C.2.1 Properties of {AT
j }0≤j≤T

First, prior work [Polyak and Juditsky, 1992] considers a general step size {ηt}t≥0 satisfying Assumption 3.3 and establishes
the following lemma.

Lemma C.2 (Lemma 1 in [Polyak and Juditsky, 1992]). For {ηt}t≥0 satisfying Assumption 3.3,

• Uniform boundedness: ∥AT
j ∥∞ ≤ C0 uniformly for all T ≥ j ≥ 0 for some constant C0 ≥ 1;

• Uniform approximation: limT→∞
1
T

∑T
j=1 ∥AT

j −G−1∥2 = 0.

Lemma C.2 shows that when the step size ηt decreases at a slow rate,AT
j is uniformly bouned (that is supT≥j≥1 ∥AT

j ∥∞ <

∞) and is a good surrogate of G−1 := (I − γP π∗
)−1 in the asymptotic sense: limT→∞

1
T

∑T
j=1 ∥AT

j −G−1∥2 = 0.7

It is sufficient to derive our asymptotic result. However, on purpose of non-asymptotic analysis, we should provide a
non-asymptotic counterpart capturing the specific decaying rate in the ℓ∞-norm. Therefore, we consider two specific step
sizes, namely (S1) the linear rescaled step size and (S2) polynomial step size. Define η̃t = (1− γ)ηt as the rescaled step
size for simplicity, we have

(S1) linear rescaled step size that uses ηt = 1
1+(1−γ)t (equivalently η̃t =

1−γ
1+(1−γ)t );

(S2) polynomial step size that uses ηt = t−α with α ∈ (0, 1) for t ≥ 1 and η0 = 1.

The first is uniform boundedness whose proof is provided in Appendix C.4.2.

Lemma C.3 (Uniform boundedness). There exists some c > 0 such that

∥AT
j ∥∞ ≤ C0 :=


ln(1+(1−γ)T )

1−γ (S1)

c2
1

1−α√
1−α

1

(1−γ)
1

1−α
(S2)

for any T ≥ j ≥ 1.

The second is the uniform approximation. The proof is deferred in Appendix C.4.3. We observe that as T grows,
1
T

∑T
j=1 ∥AT

j −G−1I∥2∞ vanishes under (S2), but is only guaranteed to be bounded for (S1). This is not contradictory
with Lemma C.2 since (S1) doesn’t satisfy Assumption 3.3.

Lemma C.4 (Uniform approximation). There exists some constant c > 0 such that√√√√ 1

T

T∑
j=1

∥AT
j −G−1∥2∞ ≤


5

1−γ (S1)

cα2
1

1−α√
T

[
1

(1−α)
3
2

1

(1−γ)
1+ 1

1−α
+ 1

(1−γ)2

√∑T
j=1

1
j2(1−α)

]
+ 1

(1−γ)

√
1

T η̃T
. (S2)

C.2.2 Establishing the Functional CLT

Uniform negligibility of ψ0. It is clear that ψ0 is a deterministic function. Using the uniform boundedness ofAT
j (T ≥

j ≥ 0) in Lemma C.2, we have

∥ψ0∥sup = sup
r∈[0,1]

∥ψ0(r)∥∞ =
1

η0
√
T

sup
r∈[0,1]

∥(A⌊Tr⌋
0 − η0I)∆0∥∞

≤ 1

η0
√
T

(
sup

0≤t≤T
∥At

0∥∞ + η0

)
∥∆0∥∞

≤ 1

η0
√
T

2C0

1− γ
→ 0 as T → ∞,

where we use η0 ≤ 1 ≤ C0 and ∥∆0∥∞ ≤ 1
1−γ .

7The original Lemma 1 in [Polyak and Juditsky, 1992] uses the ℓ2-norm and spectral norm. Due to the equivalence between these
norms, we formulate our Lemma C.2.
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Partial-sum asymptotic behavior ofψ1. Recall thatZj = (rj −r)+γ(Pj −P )V ∗ is the noise inherent in the empirical
Bellman operator at iteration j. Since at each iteration the simulator generates rewards rj and produces the empirical
transition Pj in an i.i.d. fashion, T1(r) is the scaled partial sum of ⌊Tr⌋ independent copies of the random vector Zj

which has zero mean and finite variance denoted by Var(Zj) = Var(rj + γPjV
∗) = EZjZ

⊤
j . Additionally, it is clear

that ∥Zj∥∞ ≤ (1 − γ)−1 is uniformly bounded and thus its moments of any order is uniformly bounded. By Theorem
4.2 in [Hall and Heyde, 2014] (or Theorem 2.2 in [Jirak, 2017]), we establish the following FCLT for the partial sums of
independent random vectors.
Lemma C.5. For any r ∈ [0, 1],

ψ1(·) =
1√
T

⌊T ·⌋∑
j=1

G−1Zj
w→ Var

1/2
Q BD(·),

whereBD is the D-dimensional standard Brownian motion and the variance matrix VarQ is

VarQ = G−1Var(Zj)G
−⊤ = (I − γP π∗

)−1Var(Zj)(I − γP π∗
)−⊤.

Uniform negligibility of ψ2. Recall that ψ2(r) = 1√
T

∑⌊Tr⌋
j=1 (AT

j −G−1)Zj . If we define Xt = 1√
T

∑t
j=1(A

T
j −

G−1)Zj , then ψ2(r) = X⌊Tr⌋. Let Ft = σ({rj ,Pj}0≤j≤t) be the σ-field generated by all randomness before and
including iteration t. Then {Xt,Ft} is a martingale since E[Xt|Ft−1] =Xt−1. As a result {∥Xt∥2,Ft} is a submartingale
since by conditional Jensen’s inequality, we have E[∥Xt∥2|Ft−1] ≥ ∥E[Xt|Ft−1]∥2 = ∥Xt−1∥2. By Doob’s maximum
inequality for submartingales (which we use to derive the following (∗) inequality),

E sup
r∈[0,1]

∥ψ2(r)∥22 = E sup
0≤t≤T

∥Xt∥22
(∗)
≤ 4E∥XT ∥22

= 4E∥T2(1)∥22 = 4E

∥∥∥∥∥∥ 1√
T

T∑
j=1

(AT
j −G−1)Zj

∥∥∥∥∥∥
2

2

=
4

T

T∑
j=1

E∥(AT
j −G−1)Zj∥22 ≤ 4

T

T∑
j=1

∥AT
j −G−1∥22E∥Zj∥22

≤ c1 ·
1

T

T∑
j=1

∥AT
j −G−1∥2.

Here, we change to the ℓ2-norm since it will facilitate the analysis. The last inequality follows by using a finite c1
satisfying E∥Zj∥22 supT≥j≥1 ∥AT

j −G−1∥2 ≤ c1. Indeed, we can set c1 = ( 1
1−γ + supT≥j ∥AT

j ∥2)tr(VarQ) thanks to

Lemma C.2. In addition, Lemma C.2 implies 1
T

∑T
j=1 ∥AT

j −G−1∥2 → 0 as T goes to infinity. As a result, E∥ψ2∥sup =

E supr∈[0,1] ∥ψ2(r)∥∞ ≤ E supr∈[0,1] ∥ψ2(r)∥2 ≤
√

E supr∈[0,1] ∥ψ2(r)∥22 = o(1).

Uniform negligibility of ψ3. Recall that ψ3(r) =
γ√
T

∑⌊Tr⌋
j=1 A

T
j (Pj − P )(Vj−1 − V ∗). By a similar argument in the

analysis of ψ2, we have E supr∈[0,1] ∥ψ3(r)∥22 ≤ 4E∥ψ3(1)∥22 by Doob’s maximum inequality. Therefore,

E sup
r∈[0,1]

∥ψ3(r)∥22 ≤ 4E∥ψ3(1)∥22
(a)
=

4

T

T∑
j=1

E∥AT
j (Pj − P )(Vj−1 − V ∗)∥22

≤ 4

T

T∑
j=1

∥AT
j ∥22E∥Pj − P ∥22∥Vj−1 − V ∗∥22

(b)

≤ c2 ·
1

T

T∑
j=1

E∥Vj−1 − V ∗∥22,

where (a) follows since all cross terms have zero mean due to E[(Pj − P )(Vj−1 − V ∗)|Fj−1] = 0, and (b) follows by
setting c2 = 16D(supT≥j ∥AT

j ∥2)2 because of the uniform boundedness of ∥AT
j ∥∞ from Lemma C.2 and ∥Pj − P ∥22 ≤

D∥Pj −P ∥2∞ = 4D. By Theorem E.4, we know 1
T

∑T
j=1 E∥Vj−1 −V ∗∥22 → 0 under the general step size when T → ∞.

As a result, E∥ψ3(r)∥sup = E supr∈[0,1] ∥ψ3(r)∥∞ ≤ E supr∈[0,1] ∥ψ3(r)∥2 ≤
√

E supr∈[0,1] ∥ψ3(r)∥22 = o(1).
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Uniform negligibility ofψ4. Recall thatψ4(r) =
1√
T

∑⌊Tr⌋
j=1 (A

⌊Tr⌋
j −AT

j )εj where εj = Zj+γ(Pj−P )(Vj−1−V ∗).
It is clear that we have supj≥0 E∥Qt −Q∗∥4 < ∞ as a result of supj≥0 EE∥Qj_∞4 < ∞ in Lemma C.6. Notice that the

coefficientA⌊Tr⌋
j −AT

j changes as r varies. The analysis of ψ4 should be more careful and subtle.

Lemma C.6 (Moment bounds). Under Assumption 3.1, it follows that

sup
t≥0

E∥Qt∥4∞ < ∞.

Proof of Lemma C.6. By Lemma E.2, ∥∆t∥∞ ≤ at + bt + ∥Nt∥∞. It implies that E∥∆t∥4∞ ≤ 33E
(
a4t + b4t + ∥Nt∥4∞

)
.

Notice that

at = (1− ηt(1− γ))at−1

bt = (1− ηt(1− γ))bt−1 + ηtγ∥Nt−1∥∞
Nt = (1− ηt)Nt−1 + ηtZt.

First, it is easy to find that supt≥0 at < ∞ since it is deterministic and decays exponentially fast. Second, we have
supt≥0 ∥Nt∥4∞ < ∞. This is because we have E∥Nt∥4∞ ≤ (1− ηt)E∥Nt−1∥4∞ + ηtE∥Zt∥4∞ from Jensen’s inequality. It
is easy to show supt≥0 ∥Nt∥4∞ < supt≥0 E∥Zt∥4∞ < ∞ by this inequality and induction. Finally, iterating the expression
of bt, we have bT = γ

∑T
t=1

∏T
j=t+1(1− (1− γ)ηj)ηt∥Nt−1∥∞ = γ

1−γ

∑T
t=1 η̃(t,T )∥Nt−1∥∞ with η̃(t,T ) a probability

defined on [T ] in (59). The last equation implies bT is a probability weighted sum of Nt(t ∈ [T ]). Hence, by Jensen’s
inequality, we know supt≥0 Eb4t < supt≥0 E∥Zt∥4∞ < ∞.

Recall Ft = σ({rj ,Pj}0≤j≤t) is the σ-field generated by all randomness before and including iteration t. {εt,Ft} is a
martingale difference since E[εt|Ft−1] = 0. Furthermore, εt has finite moments of any order since it is almost surely
bounded ∥εt∥∞ = O((1− γ)−1). On the other hand, by definition (37), it follows that for any 0 ≤ k ≤ T ,

k∑
j=1

(AT
j −Ak

j )εj =

k∑
j=1

T∑
t=k+1

 t∏
i=j+1

Ai

 ηjεj =

T∑
t=k+1

k∑
j=1

 t∏
i=j+1

Ai

 ηjεj

=

T∑
t=k+1

(
t∏

i=k+1

Ai

)
k∑

j=1

 k∏
i=j+1

Ai

 ηjεj

=
1

ηk+1
AT

k+1Ak+1

k∑
j=1

 k∏
i=j+1

Ai

 ηjεj

On one hand, ∥AT
k+1Ak+1∥2 ≤ c3 is uniformly bounded with c3 = (supT≥j ∥AT

j ∥2)(1 + ∥G∥2) for any T ≥ k + 1 from
Lemma C.2. On the other hand, we define an auxiliary sequence {Yk}k≥1 as following: Y1 = 0 and Yk+1 = AkYk + ηkεk

for any k ≥ 1. One can check that Yk+1 =
∑k

j=1

(∏k
i=j+1Ai

)
ηjεj where we use the convention

∏k
i=k+1Ai = I for

any k ≥ 0. These results imply we can apply Lemma D.1. Putting these pieces together, we have that

∥ψ4∥sup ≤ sup
r∈[0,1]

∥ψ4(r)∥2 ≤ c3 sup
0≤k≤T

∥∥∥∥∥∥ 1√
Tηk+1

k∑
j=1

 k∏
i=j+1

Ai

 ηjεj

∥∥∥∥∥∥
2

= c3 sup
0≤k≤T

1√
T

∥Yk+1∥2
ηk+1

(∗)
= oP(1),

where (∗) follows from Lemma D.1.

Uniform negligibility of ψ5. In the following, we will prove ∥ψ5∥sup = oP(1) by showing E∥ψ5∥sup = o(1). It is worth
mentioning that ψ5 arises purely due to the non-stationary nature of Q-learning. If we consider a stationary update process,
e.g., policy evaluation [Mou et al., 2020a,b, Khamaru et al., 2021b], πt would remain the same all the time and ψ5 would
disappear in the case. Notice that ψ5(r) =

γ√
T

∑⌊Tr⌋
j=1 A

⌊Tr⌋
j (P πj−1 −P π∗

)∆j−1 is a sum of correlated random variables
(which are even not mean-zero). We need a high-order residual condition Assumption 3.2 to bound E∥ψ5∥sup. With such a
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Lipschitz condition, Lemma C.7 shows E∥ψ5∥sup is dominated by 1√
T

∑T
j=1 E ∥∆j−1∥2∞, which is o(1) for the general

step size as suggested by Theorem E.1. The proof of Lemma C.7 is in Appendix C.4.4.
Lemma C.7. It follows that

E∥ψ5∥sup = E sup
r∈[0,1]

∥ψ5(r)∥∞ ≤ γLC0 ·
1√
T

T∑
j=1

E ∥∆j−1∥2∞ .

Putting the pieces together. From (36), ϕ1
T =

∑5
i=0ψi. We have shown ψ1

w→ Var
1/2
Q BD in the sense of

(D([0, 1],RD), d0) and ∥ψi∥sup = oP(1) for i ̸= 1. Using ∥ϕ1
T − ψ1∥sup ≤

∑
i ̸=1 ∥ψi∥sup, we know that

∥ϕ1
T −ψ1∥sup = oP(1). Proposition C.1 implies ϕ1

T
w→ Var

1/2
Q BD. We then establish the FCLT for ϕ1

T (r).

C.3 Functional CLT for ϕ2
T

We can repeat the above analysis for ϕ2
T . We rewrite (29) as

∆2
t = At∆

2
t−1 + ηt

(
Zt + γD2

t−1

)
, (39)

whereAt = I − ηt(I − γP π∗
) and Zt = (rt − r)+ γ(Pt −P )V ∗ are the same as those defined in (34) except thatD1

t−1

(defined in (35)) is replaced by
D2

t−1 = (Pt − P )(Vt−1 − V ∗). (40)

Since D2
t−1 is much simpler than D1

t−1, the analysis for ϕ2
T (r) should be easier than ϕ1

T (r). Using the notation AT
j

(see(37)), we decompose ϕ2
T (r) into five terms:

ϕ2
T (r) =

1√
T

⌊Tr⌋∑
t=1

∆2
t =

1

η0
√
T
(A

⌊Tr⌋
0 − η0I)∆0 +

1√
T

[Tr]∑
j=1

A
⌊Tr⌋
j

(
Zj + γD2

j−1

)
=

1

η0
√
T
(A

⌊Tr⌋
0 − η0I)∆0 +

1√
T

⌊Tr⌋∑
j=1

G−1Zj +
1√
T

⌊Tr⌋∑
j=1

(AT
j −G−1)Zj

+
γ√
T

⌊Tr⌋∑
j=1

AT
j (Pj − P )(Vj−1 − V ∗)

+
1√
T

⌊Tr⌋∑
j=1

(A
⌊Tr⌋
j −AT

j ) [Zj + γ(Pj − P )(Vj−1 − V ∗)]

:= ψ0(r) +ψ1(r) +ψ2(r) +ψ3(r) +ψ4(r). (41)

Here {ψi}4i=0 are exactly the same as those in (38). Our previous analysis provides us a low-hanging fruit result: ψ1
w→

Var
1/2
Q BD in the sense of (D([0, 1],RD), d0) and ∥ψi∥sup = oP(1) for i ̸= 1. Then we know that ∥ϕ2

T − T1∥sup = o(1)

and ϕ2
T

w→ Var
1/2
Q BD due to Proposition C.1. We thus establish the FCLT for ϕ2

T .

C.4 Proofs of Lemmas

C.4.1 Proof of Lemma C.1

Proof of Lemma C.1. We use mathematical induction to prove the statement. When t = 0, the inequality (30) holds by
initialization. Assume (30) holds at t − 1, i.e., ∆2

t−1 ≤ ∆t−1 ≤ ∆1
t−1. Let us analyze the case of t. By the Q-learning

update rule, it follows that

∆t = (1− ηt)∆t−1 + ηt [(rt − r) + γ(PtVt−1 − PV ∗)]

(a)
= (1− ηt)∆t−1 + ηt [Wt + γ(PVt−1 − PV ∗)]

(b)
= (1− ηt)∆t−1 + ηt

[
Wt + γ(P πt−1Qt−1 − P π∗

Q∗)
]

(c)
= At∆t−1 + ηt

[
Wt + γ(P πt−1 − P π∗

)Qt−1

]
, (42)
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where (a) usesWt = (rt−r)+γ(Pt−P )Vt−1; (b) uses PVt−1 = P πt−1Qt−1 and PV ∗ = P π∗
Q∗, and (c) follows by

arrangement and the shorthandAt = I − ηt(I − γP π∗
). Since all the entries ofAt = I − ηt(I − γP π∗

) are non-negative
(which results from the assumption supt ηt ≤ 1), thenAt∆

2
t−1 ≤ At∆t−1 ≤ At∆

1
t−1.

For one hand, based on (42), we have

∆2
t = At∆

2
t−1 + ηtWt ≤ At∆t−1 + ηtWt

≤ At∆t−1 + ηt

[
Wt + γ(P πt−1 − P π∗

)Qt−1

]
= ∆t,

where the last inequality uses P πt−1Qt−1 ≥ P π∗
Qt−1 which results from the fact πt−1 is the greedy policy with respect

toQt−1. For the other hand, it follows that

∆t = At∆t−1 + ηt

[
Wt + γ(P πt−1 − P π∗

)Qt−1

]
≤ At∆

1
t−1 + ηt

[
Wt + γ(P πt−1 − P π∗

)Qt−1

]
= At∆

1
t−1 + ηt

[
Wt + γ(P πt−1 − P π∗

)∆t−1 + γ(P πt−1 − P π∗
)Q∗

]
≤ At∆

1
t−1 + ηt

[
Wt + γ(P πt−1 − P π∗

)∆t−1

]
= ∆1

t ,

where the last inequality uses P πt−1Q∗ ≤ P π∗
Q∗ which results from the fact π∗ is the greedy policy with respect toQ∗.

Hence, we have proved ∆2
t ≤ ∆t ≤ ∆1

t holds at iteration t.

C.4.2 Proof of Lemma C.3

Proof of Lemma C.3. By the definition of (37), we have ∥AT
j ∥∞ ≤ ηj

∑T
t=j

∏t
i=j+1(1− η̃i). Plugging the specific form

of {ηt}, we have for (S1)

∥AT
j ∥∞ ≤ ηj

T∑
t=j

t∏
i=j+1

1 + (1− γ)(i− 1)

1 + (1− γ)i
= ηj

T∑
t=j

1 + (1− γ)j

1 + (1− γ)t

≤ 1

1− γ
ln

1 + (1− γ)T

1 + (1− γ)(j − 1)
≤ ln(1 + (1− γ)T )

1− γ
(43)

and for (S2)

∥AT
j ∥∞ = ηj

T∑
t=j

t∏
i=j+1

(1− (1− γ)i−α) ≤ ηj

T∑
t=j

exp

−(1− γ)

t∑
i=j+1

i−α


(a)

≤ eηj

T+1∑
t=j+1

exp

(
− 1− γ

1− α

(
t1−α − j1−α

))

≤ eηj

∫ ∞

j

exp

(
− 1− γ

1− α

(
t1−α − j1−α

))
dt

(b)

≤ eηj
1− γ

∫ ∞

0

(
1− α

1− γ
y + j1−α

) α
1−α

exp (−y) dy

(c)

≤ eηj
1− γ

max
{
2

α
1−α , 1

}∫ ∞

0

[(
1− α

1− γ
y

) α
1−α

+ jα

]
exp (−y) dy

=
e

(1− γ)jα
max

{
2

α
1−α , 1

}[(1− α

1− γ

) α
1−α

Γ

(
1

1− α

)
+ jα

]
(d)

≤ emax
{
2

α
1−α , 1

}[ √
2πe

√
1− α(1− γ)

1
1−α

+
1

1− γ

]

≤ c2
1

1−α

√
1− α

1

(1− γ)
1

1−α

,
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where (a) uses
∑t

i=j i
−α ≥ 1

1−α ((t + 1)1−α − j1−α) and exp((1 − γ)j−α) ≤ e, (b) uses the change of variable y =
1−γ
1−α (t

1−α−j1−α), (c) uses (a+b)p ≤ max{2p−1, 1}(ap+bp) for any p > 0, and (d) uses (1−α)
α

1−αΓ
(

1
1−α

)
≤

√
2πe1/2√
1−α

from (65) and max
{
2

α
1−α , 1

}
≤ 2

1
1−α .

C.4.3 Proof of Lemma C.4

Proof of Lemma C.4. For (S1), we have

1

T

T∑
j=1

∥AT
j −G−1∥2∞ ≤ 2

T

T∑
j=1

(∥AT
j ∥2∞ + ∥G−1∥2∞)

≤ 2 +
8

(1− γ)2
1

T

T∑
j=1

ln2
1 + (1− γ)T

1 + (1− γ)(j − 1)

≤ 2 +
8

(1− γ)2

 ln2(1 + (1− γ)T )

T
+

1

T

T−1∑
j=1

ln2
T

j


(a)

≤ 2 +
7

1− γ
+

16

(1− γ)2
≤ 25

(1− γ)2
,

where (a) uses ln2(1 + x)/x ≤ 7
8 for all x ≥ 0 and

∫ 1

0
ln2 xdx = Γ(3) = 2Γ(1) = 2.

For (S2), based on (37) andG = η−1
j (I − (I − ηjG)), we have

AT
j −G−1 = (AT

j G− I)G−1 =

T∑
t=j

 t∏
i=j+1

(I − ηiG)−
t∏

i=j

(I − ηiG)

G−1 −G−1

=

T∑
t=j+1

 t∏
i=j+1

(I − ηiG)−
t−1∏
i=j

(I − ηiG)

G−1 −
T∏

t=j

(I − ηtG)G−1

=

T∑
t=j+1

(ηj − ηt)

t−1∏
i=j+1

(I − ηiG)−
T∏

t=j

(I − ηtG)G−1

:=M
(1)
T,j +M

(2)
T,j . (44)

On the one hand,

∥∥∥M (2)
T,j

∥∥∥
∞

≤ ∥G−1∥∞
T∏

t=j

∥I − ηtG∥∞ ≤
∏T

t=j(1− η̃t)

1− γ
≤ (1− η̃T )

T−j+1

1− γ
.
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On the other hand,

∥∥∥M (1)
T,j

∥∥∥
∞

=

∥∥∥∥∥∥
T∑

t=j+1

(ηt − ηj)

t−1∏
i=j+1

(I − ηiG)

∥∥∥∥∥∥
∞

≤
T∑

t=j+1

|ηt − ηj | exp

−
t−1∑

i=j+1

η̃i


≤

T∑
t=j+1

t−1∑
k=j

|ηk+1 − ηk| exp

−
t−1∑

i=j+1

η̃i


(a)

≤
T∑

t=j+1

t−1∑
k=j

α

k
ηk exp

−
t−1∑

i=j+1

η̃i


(b)

≤ eα

(1− γ)j

T∑
t=j+1

m̃j,t−1 exp (−m̃j,t−1) =
eα

(1− γ)j

T−1∑
t=j

m̃j,t exp (−m̃j,t)

(c)

≤ ecα

(1− γ)j

[
2

1
1−α

(1− α)
3
2

1

(1− γ)
1

1−α

+
2

1
1−α

1− γ
(j − 1)α

]
,

where (a) uses the fact that for ηt = t−α, we have

ηt − ηt+1

ηt
= 1−

(
1− 1

t+ 1

)α

≤ 1− exp(−α

t
) ≤ α

t
,

where we use ln(1+ x) ≥ x/(1+ x) in the first inequality and ln(1+ x) ≤ x in the second inequality. (b) uses the notation
m̃j,t :=

∑t
i=j η̃i and exp(η̃j) ≤ exp(1) = e. (c) uses the following lemma.

Lemma C.8. Let m̃j,t :=
∑t

i=j η̃i and recall η̃i = (1− γ)i−α. Then T ≥ j ≥ 1, for some constant c > 1,

T∑
t=j

m̃j,t exp (−m̃j,t) ≤ c

[
2

1
1−α

(1− α)
3
2

1

(1− γ)
1

1−α

+
2

1
1−α

1− γ
(j − 1)α

]
.

Therefore,

1

T

T∑
j=1

∥AT
j −G−1∥2∞ ≤ 2

T

T∑
j=1

[∥∥∥M (1)
T,j

∥∥∥2
∞

+
∥∥∥M (2)

T,j

∥∥∥2
∞

]

≤ 2c

T

T∑
j=1

[
α2

j2
2

2
1−α

(1− α)3
1

(1− γ)2+
2

1−α

+
α22

2
1−α

(1− γ)4
1

j2(1−α)
+

(1− η̃T )
2(T−j+1)

(1− γ)2

]

≤ cα222+
2

1−α

T

 1

(1− α)3
1

(1− γ)2+
2

1−α

+
1

(1− γ)4

T∑
j=1

1

j2(1−α)

+
1

(1− γ)2
1

T η̃T
.

Proof of Lemma C.8. Clearly we have

1− γ

1− α

(
(t+ 1)1−α − j1−α

)
≤ m̃j,t =

t∑
i=j

η̃i ≤
1− γ

1− α

(
t1−α − (j − 1)

1−α
)
.
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Then m̃j,t ≤ 1−γ
1−α

(
t1−α − (j − 1)

1−α
)
≤ m̃j−1,t−1. Hence,

T∑
t=j

m̃j,t exp (−m̃j,t) =

T∑
t=j

m̃j,t exp(−m̃j−1,t−1) exp(η̃j−1 − η̃t)

= e

T∑
t=j

1− γ

1− α

(
t1−α − (j − 1)

1−α
)
exp

(
− 1− γ

1− α

(
t1−α − (j − 1)

1−α
))

≤ 2e

∫ ∞

j−1

1− γ

1− α

(
t1−α − (j − 1)

1−α
)
exp

(
− 1− γ

1− α

(
t1−α − (j − 1)

1−α
))

dt

(a)
=

2e

1− γ

∫ ∞

0

y exp (−y)

(
1− α

1− γ
y + (j − 1)1−α

) α
1−α

dt

(b)

≤ emax{2
α

1−α , 2}
1− γ

∫ ∞

0

y exp (−y)

[(
1− α

1− γ
y

) α
1−α

+ (j − 1)α

]
dt

(c)

≤ e2
1

1−α

1− γ

[(
1− α

1− γ

) α
1−α

Γ

(
1 +

1

1− α

)
+ (j − 1)α

]
(d)

≤
√
2πe

3
2 2

1
1−α

(1− α)
3
2

1

(1− γ)
1

1−α

+
e2

1
1−α

1− γ
(j − 1)α,

where (a) uses the change of variable y = 1−γ
1−α

(
t1−α − (j − 1)

1−α
)

, (b) uses (a + b)p ≤ max{2p−1, 1}(ap + bp) for

any p > 0, (c) uses max
{
2

α
1−α , 2

}
≤ 2

1
1−α , (d) uses Γ

(
1 + 1

1−α

)
= 1

1−αΓ
(

1
1−α

)
and (1− α)

α
1−αΓ

(
1

1−α

)
≤

√
2πe√
1−α

from (65).

C.4.4 Proof of Lemma C.7

Proof of Lemma C.7. By Lemma B.1 and Lemma C.3, it follows that

E∥T5∥sup = E sup
r∈[0,1]

∥T5(r)∥∞ ≤ γ√
T
E sup

r∈[0,1]

⌊Tr⌋∑
j=1

∥∥∥A⌊Tr⌋
j (P πj−1 − P π∗

)∆j−1

∥∥∥
∞

≤ γ√
T
E

T∑
j=1

sup
r∈[0,1]

∥∥∥A⌊Tr⌋
j

∥∥∥
∞

∥∥∥(P πj−1 − P π∗
)∆j−1

∥∥∥
∞

≤ γLC0 ·
1√
T
E

T∑
j=1

∥∆j−1∥2∞ .

Here we use supr∈[0,1]

∥∥∥A⌊Tr⌋
j

∥∥∥
∞

≤ C0 due to Lemma C.2.

D UNIFORM NEGLIGIBILITY OF NOISE RECURSION

Definition D.1 (Hurwitz matrix). We say −G ∈ Rd×d is a Hurwitz (or stable) matrix if Reλi(G) > 0 for i ∈ [d]. Here
λi(·) denotes the i-th eigenvalue.

Lemma D.1 (A generalization of Lemma B.7 in [Li et al., 2022]). Let {εt}t≥0 be a martingale difference sequence adapting
to the filtration Ft. Define an auxiliary sequence {yt}t≥0 as following: y0 = 0 and for t ≥ 0,

yt+1 = (I − ηtG)yt + ηtϵt. (45)

It is easy to verify that

yt+1 =

t∑
j=0

 t∏
i=j+1

(I − ηiG)

 ηjϵj . (46)
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Let {ηt}t≥0 satisfy Assumption 3.3. If −G ∈ Rd×d is Hurwitz, and supt≥0 E∥εt∥4 < ∞, then we have that

1√
T

sup
0≤t≤T

∥yt+1∥
ηt+1

p.→ 0.

Proof of Lemma D.1. In the sequel, we denote y̌t = yt√
ηt−1

. We will also use a ≾ b to denote a ≤ Cb for unimportant
positive constants C with the specific value of C changing according to the context. Then the update rule (45) can be
rewritten as

y̌t+1 =
yt+1√
ηt

=
1

√
ηt
(yt − ηtGyt + ηtϵt)

= y̌t +

(√
ηt−1

ηt
− 1

)
y̌t −

√
ηtηt−1Gy̌t +

√
ηtϵt.

(47)

Step 1: Divide the time interval. For a specific λ > 0, we divide the the time interval [0, T ] into several disjoint portions
with the tk the k-th endpoint such that

∑tk+1−1
tk

ηs ≥ λ. In particular, {tk}k≥0 is defined iteratively by t0 = 0 and

tk+1 = min

{
n :

n−1∑
s=tk

ηs ≥ λ

}
∧ {T}.

Clearly, K is the number of portions and we have 0 = t0 < t1 < · · · < tK = T . Since
∑∞

t=1 ηt = ∞, we know that

K → ∞ as T → ∞ What’s more, K is upper bounded by 1
λ

T∑
t=0

ηt due to

T−1∑
t=0

ηt =

K−1∑
k=0

tk+1−1∑
s=tk

ηs ≥ λK. (48)

The fact sup
t≤T

∥yt∥
ηt−1

≤ sup
t≤T

∥y̌t∥√
ηT

implies we have for any ϵ > 0,

P
(

1√
T

sup
t≥T

∥yt∥
ηt−1

> ϵ

)
≤ P

(
sup
t≤T

∥y̌t∥ > ϵ
√
TηT

)
. (49)

Lemma D.2. Let {yt}t≥0 be defined in the way of (45). If −G ∈ Rd×d is Hurwitz and supt≥0 E∥εt∥p < ∞ for p ≥ 4, then
the sequence {yt}t≥0 is (L4,

√
ηt)-consistency, that is, there exists a universal constant C4 > 0 such that E∥yt∥4 ≤ C4η

2
t

for all t ≥ 0.

The proof of Lemma D.2 is deferred in Section D.1. Lemma D.2 implies that supt≥0 E∥y̌t∥4 ≾ 1. Let B :={
sup1≤k≤K ∥y̌tk∥ ≤ ϵ

√
TηT

}
be the event where all ∥y̌tk∥’s are smaller than ϵ

√
TηT for 1 ≤ k ≤ K. By the union bound

and Markov inequality,

P(Bc) ≤
K∑

k=1

P
(
∥y̌tk∥ > ϵ

√
TηT

)
≤

K∑
k=1

E∥y̌tk∥4

ϵ4(TηT )2
≤ sup

t≥0
E∥y̌t∥4 ·

K

ϵ4(TηT )2
≾

∑T
t=0 ηt

λϵ4(TηT )2
→ 0.

Here the last inequality uses (48) and the condition on {ηt}t≥0 that
∑T

t=0 ηt

(TηT )2 → 0 due to
∑T

t=0 ηt

TηT
≤ C and ηTT → ∞. The

above result implies for given λ, ϵ > 0, the event B holds with probability approaching one. Hence, we focus our analysis
on the event B. Conditioning on the event B, we split our target event into several disjoint events whose probability will be
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analyzed latter.

P
(
sup
t≤T

∥y̌t∥ > 3ϵ
√
TηT

)
≤ P(Bc) + P

(
sup
t≤T

∥y̌t∥ > ϵ
√
TηT ;B

)

≤ P(Bc) +

K−1∑
k=0

P

(
sup

t∈[tk,tk+1−1]

∥y̌t∥ > 3ϵ
√

TηT ;B

)

≤ P(Bc) +

K−1∑
k=0

P

(
sup

t∈[tk,tk+1−1]

∥y̌t − y̌tk∥ > 2ϵ
√
TηT ;B

)

≤ P(Bc) +

K−1∑
k=0

P

(
sup

t∈[tk,tk+1−1]

∥y̌t − y̌tk∥ > 2ϵ
√
TηT

)

:= P(Bc) +

K−1∑
k=1

Pk. (50)

Step 2: Bound each Pk. Leveraging (47) recursively implies for given r < t,

y̌t − y̌r =

t−1∑
s=r

{(√
ηs−1

ηs
− 1

)
y̌s −

√
ηs−1ηsGy̌s +

√
ηsϵs

}
.

As a result,

Pk = P

(
sup

t∈[tk,tk+1−1]

∥∥∥∥∥
t−1∑
s=tk

{(√
ηs−1

ηs
− 1

)
y̌s −

√
ηs−1ηsGy̌s +

√
ηsϵs

}∥∥∥∥∥ > 2ϵ
√

TηT

)

≤ P

(
sup

t∈[tk,tk+1−1]

∥∥∥∥∥
t−1∑
s=tk

{(√
ηs−1

ηs
− 1

)
y̌s −

√
ηs−1ηsGy̌s

}∥∥∥∥∥ > ϵ
√
TηT

)

+ P

(
sup

t∈[tk,tk+1−1]

∥∥∥∥∥
t−1∑
s=tk

√
ηsϵs

∥∥∥∥∥ > ϵ
√

TηT

)
=: P(1)

k + P(2)
k . (51)

In the following, we highlight the dependence on T and λ and use ≾ to omit universal constants.

We consider to bound P(1)
k first. Since ηt

ηt−1
= 1 − o(ηt−1), we have

√
ηt−1

ηt
− 1 = 1√

1−o(ηt−1)
− 1 = o(ηt−1). Hence,

there exists a universal positive C > 0 such that
∥∥∥(√ηt−1

ηt
− 1
)
y̌t −

√
ηt−1ηtGy̌t

∥∥∥ ≤ Cηt∥y̌t∥ for all t ≥ 0. As a result,

P(1)
k = P

(
sup

t∈[tk,tk+1−1]

t−1∑
s=tk

∥∥∥∥(√ηs−1

ηs
− 1

)
y̌s −

√
ηs−1ηsGy̌s

∥∥∥∥ > ϵ
√
TηT

)

≤ P

(
tk+1−1∑
s=tk

C0ηs∥y̌s∥ > ϵ
√
TηT

)
≾

1

ϵ2TηT
· E

(
tk+1−1∑
s=tk

ηs∥y̌s∥

)2

≤ 1

ϵ2TηT

{(
tk+1−1∑
s=tk

ηs

)(
tk+1−1∑
s=tk

ηsE∥y̌s∥2
)}

≤
sup
t≥0

E∥y̌t∥2

ϵ2TηT

(
tk+1−1∑
s=tk

ηs

)2

≾
1

ϵ2TηT

(
tk+1−1∑
s=tk

ηs

)2

. (52)

Let K0 = max{m ≥ 0 : ηm ≥ λ}. Since ηt decreases in t and converges to 0, we know K0 also decreases in λ. If tk ≤ K0,

we have tk+1 = tk + 1 and thus
tk+1−1∑
s=tk

ηs = ηtk ≤ η0; otherwise,
tk+1−1∑
s=tk

ηs ≤ 2λ by definition. Summing over P(1)
k from
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0 to K − 1 and using (52) yield

K−1∑
k=0

P(1)
k =

K0−1∑
k=0

P(1)
k +

K−1∑
k=K0

P(1)
k ≾

K0−1∑
k=0

η20
ϵ2TηT

+

K−1∑
k=K0

4λ2

ϵ2TηT

≤ 1

ϵ2TηT

(
K0η

2
0 + 4Kλ2

) (48)
≾

1

ϵ2TηT

(
K0 + λ

T∑
t=0

ηt

)

≾
K0

ϵ2TηT
+

λ

ϵ2
.

The last inequality uses
∑T

t=0 ηt ≤ CTηT for all T ≥ 1. For a given λ, letting T → ∞ can make the first term go to zero.
Then letting λ → 0 make the second term vanish too. Hence, we have

lim
λ→0

lim
T→∞

K−1∑
k=0

P(1)
k = 0.

Next, we consider to bound P(2)
k . To than end, we will use the Burkholder inequality which relates a martingale with its

quadratic variation.

Lemma D.3 (Burkholder’s inequality [Burkholder, 1988]). Fix any p ≥ 2. For a martingale difference {xt}t∈[T ] in a real
(or complex) Hilbert space, each with finite Lp-norm, one has

E

∥∥∥∥∥
T∑

t=1

xt

∥∥∥∥∥
p

≤ BpE

(
T∑

t=1

∥xt∥2
) p

2

where Bp is a universal positive constant depending only on p.

Hence,

P(2)
k = P

(
sup

t∈[tk,tk+1−1]

∥∥∥∥∥
t−1∑
s=tk

√
ηsϵs

∥∥∥∥∥ > ϵ
√

TηT

)

≤ 1

ϵ4(TηT )2
E sup

t∈[tk,tk+1−1]

∥∥∥∥∥
t−1∑
s=tk

√
ηsϵs

∥∥∥∥∥
4

(a)

≾
1

ϵ4(TηT )2
E

(
tk+1−1∑
s=tk

ηs∥ϵs∥2
)2

(b)

≾

(
tk+1−1∑
s=tk

ηs

)2

ϵ4(TηT )2

tk+1−1∑
s=tk

ηs
tk+1−1∑
l=tk

ηl

E∥ϵs∥4

(c)

≾
1

ϵ4(TηT )2

(
tk+1−1∑
s=tk

ηs

)2

where (a) uses Lemma D.3; (b) uses Jensen’s inequality; and (c) uses sup
t≥0

E∥ϵt∥4 < ∞. As before, we will discuss two

cases depending on whether ηt is larger than λ or not. It is equivalent to whether tk is greater than K0. Similar to the
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argument in bounding
K−1∑
k=0

P(1)
k , we have

K−1∑
k=0

P(2)
k =

K0−1∑
k=0

P(2)
k +

K−1∑
k=K0

P(2)
k

≾
1

ϵ4(TηT )2

(
K0−1∑
k=0

η20 +

K−1∑
k=K0

2p/2λ2

)

≾
1

ϵ4(TηT )2
(
K0 +Kλ2

)
≾

K0

ϵ4(TηT )2
+

λ

ϵ4
·
∑T

t=0 ηt
(TηT )2

≾
K0

ϵ4(TηT )2
+

λ

ϵ4
· C

TηT

where the last inequality uses
∑T

t=0 ηt ≤ CTηT for all T ≥ 1. From the last inequality, letting T → ∞ makes these two
terms converge to zero. Hence, we have

lim
λ→0

lim
T→∞

K−1∑
k=0

P(2)
k = 0.

Step 3: Putting the pieces together. Therefore,

lim
T→∞

P
(

1√
T

sup
t≥T

∥yt∥
ηt−1

> ϵ

)
(49)
≤ lim

T→∞
P
(
sup
t≤T

∥y̌t∥ > ϵ
√
TηT

)
(50)
≤ lim

T→∞

(
P(Bc) +

K−1∑
k=1

Pk

)
= lim

T→∞

K−1∑
k=1

Pk

(51)
≤ lim

T→∞

K−1∑
k=1

(
P(1)
k + P(2)

k

)
.

Since the probability of the left-hand side has nothing to do with λ, letting λ → 0 gives

lim
T→∞

P
(

1√
T

sup
t≥T

∥yt∥
ηt−1

> ϵ

)
≤ lim

λ→0
lim

T→∞

K−1∑
k=1

(
P(1)
k + P(2)

k

)
= 0.

D.1 Proof of Lemma D.2

For the proof in the section, we will consider random variables (or matrices) in the complex field C. Hence, we will introduce
new notations for them. For a vector v ∈ C (or a matrix U ∈ Cd×d), we use vH (or UH) to denote its Hermitian transpose
or conjugate transpose. For any two vectors v,u ∈ C, with a slight abuse of notation, we use ⟨v,u⟩ = vHu to denote the
inner product in C. For simplicity, for a complex matrix U ∈ Cd×d, we use ∥U∥ to denote the its operator norm introduced
by the complex inner product ⟨·, ·⟩. When U ∈ Rd×d, ∥U∥ is reduced to the spectrum norm.

Proof of Lemma D.2. By Lemma D.4,G = UDU−1 for two non-singular matrices U ,D ∈ Cd×d that satisfies 2µ · I ⪯
D +DH with µ := mini∈[d] λi(G) for simplicity.

Lemma D.4 (Property of Hurwitz matrices, Lemma 1 in [Mou et al., 2020a]). If −G ∈ Rd×d be a Hurwitz matrix (i.e.,
Reλi(G) > 0 for all i ∈ [d]), there exists a non-degenerate matrix U ∈ Cd×d such that G = UDU−1 for some matrix
D ∈ Cd×d that satisfies

2min
i∈[d]

λi(G) · I ⪯D +DH

whereDH denotes the conjugate transpose or Hermitian transpose.
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Notice that

∥U−1yt+1∥2 = ∥U−1 [(I − ηtG)yt + ηtϵt] ∥2

= ∥U−1(I − ηtG)yt∥2 + η2t ∥U−1ϵt∥2 + 2ηtRe⟨U−1(I − ηtG)yt,U
−1ϵt⟩

≤ ∥I − ηtD∥2∥U−1yt∥2 + η2t ∥U−1ϵt∥2 + 2ηtRe⟨(I − ηtD)U−1yt,U
−1ϵt⟩.

We then bound ∥I − ηtD∥ as following.

∥I − ηtD∥2 = sup
v∈Cd,∥v∥=1

vH(I − ηtD)H(I − ηtD)v

= sup
v∈Cd,∥v∥=1

(
∥v∥2 − ηtv

H(DH +D)v + η2t v
HDHDv

)
≤ 1− 2ηtµ+ η2t ∥D∥2.

For simplicity, we define

ht =
∥U−1yt∥2

ηt
.

Then we have

ht+1 =
∥U−1yt+1∥2

ηt+1
≤
(
1− 2ηtµ+ η2t ∥D∥2

) ηt
ηt+1

ht +
η2t
ηt+1

∥U−1ϵt∥2

+
2ηt
ηt+1

Re⟨(I − ηtD)U−1yt,U
−1ϵt⟩.

:=
(
1− 2ηtµ+ η2t ∥D∥2

) ηt
ηt+1

ht + zt (53)

where for simplicity we denote

zt =
η2t
ηt+1

∥U−1ϵt∥2 +
2ηt
ηt+1

Re⟨(I − ηtD)U−1yt,U
−1ϵt⟩.

Taking the second-order moment on the both sides of (53), we obtain

Eh2
t+1 ≤

[(
1− 2ηtµ+ η2t ∥D∥2

) ηt
ηt+1

]2
Eh2

t + E|zt|2

+ 2

[(
1− 2ηtµ+ η2t ∥D∥2

) ηt
ηt+1

]
Ehtzt.

Due to ηt+1 = (1− o(ηt))ηt and ηt = o(1), there exists t0 > 0 so that for any t ≥ t0, ηt ≤ 2ηt+1 and

0 <
ηt

ηt+1
(1− 2ηtµ+ η2t ∥D∥2) = (1 + o(1))(1 + o(ηt))

2(1− 2ηtµ+ o(ηt)) ≤ 1− µηt < 1.

By Jensen’s inequality,

E|zt|2 ≤ 2
(
4η2tE∥U−1ϵt∥4 + 16E|Re⟨(I − ηtD)U−1yt,U

−1ϵt⟩|2
)

≾ η2tE∥U−1ϵt∥4 + E∥U−1yt∥2 · ∥U−1ϵt∥2

= η2tE∥U−1ϵt∥4 + E(ηtht) · ∥U−1ϵt∥2

≾ η2tE∥U−1ϵt∥4 + ηt

√
Eh2

t · E∥U−1ϵt∥4.

Since E[Re⟨(I − ηtD)U−1yt,U
−1ϵt⟩|Ft] = 0, it follows that

Ehtzt = Eht
η2t
ηt+1

∥U−1ϵt∥2 ≤ 2ηt · Eht∥U−1ϵt∥2 ≤ 2ηt
(
E∥U−1ϵt∥4

) 1
2
(
Eh2

t

) 1
2

where the last inequality follows from Hölder’s inequality. Notice that supt≥0 E∥ϵt∥4 ≾ 1 by assumption. Putting the
pieces together, we have that there exists some c > 0 such that

Eh2
t+1 ≤ (1− µηt)Eh2

t + c
(
ηt
(
Eh2

t

) 1
2 + η2t

)
.
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By induction, one can show that

Eh2
t ≤ c+

√
c2 + 4cµη0
2µ

≾ 1

of which the right hand side is the solution of the quadratic equation µx = c (
√
x+ η0). Since U is non-singular, Eh2

t ≾ 1
is equivalent to E∥yt∥4η−2

t ≾ 1.

E A CONVERGENCE RESULT

Denote ∆t = Qt − Q∗ as the error of the Q-function estimate Qt in the t-th iteration. In this section, we study both
asymptotic and non-asymptotic convergence of 1

T

∑T
t=0 E∥∆t∥2∞.

E.1 For General Step Sizes

We first show that 1
T

∑T
t=0 E∥∆t∥2∞ = o

(
1√
T

)
when using the general step size in Assumption 3.3.

Theorem E.1. Under Assumption 3.1 and using the general step size in Assumption 3.3, we have

lim
T→∞

1√
T

T∑
t=0

E∥∆t∥2∞ = 0. (54)

Proof of Theorem E.1. We will make use of the convergence result in [Chen et al., 2020b].

Theorem E.2 (Theorem 2.1 and Corollary 2.1.3 in [Chen et al., 2020b]). Consider the algorithm xt+1 = xt + ηt(H(xt)−
xt + εt) and x∗ is the solution of H(x) = x. Assume (i) ∥H(x) − H(y)∥∞ ≤ γ∥x − y∥∞ for any x,y ∈ RD; (ii)
E[εt|Ft] = 0 and E[∥εt∥2∞|Ft] ≤ A+B∥xt∥2∞ and (iii) ηt is positive and non-increasing. If η0 ≤ α2

α3
, it follows that

E∥xt+1 − x∗∥2∞ ≤ α1∥x0 − x∗∥2∞
t∏

j=0

(1− α2ηj) + α4(A+ 2B∥x∗∥2∞)

t∑
j=1

η2j

t∏
i=j+1

(1− α2ηi).

where

α1 ≤ 3

2
, α2 ≥ 1− γ

2
, α3 ≤ 32e(B + 2) logD

1− γ
, α4 ≤ 16e logD

1− γ
.

Recall the update rule is Qt = (1 − ηt)Qt−1 + ηt(rt + γPtVt−1) = Qt−1 + ηt(r + γPVt−1 − Qt−1 + εt) where
εt = rt−r+ γ(Pt−P )Vt−1. Let Ft = σ({(rτ ,Pτ )}0≤τ<t). Hence, E[εt|Ft] = 0 and E[∥εt∥2∞|Ft] ≤ 2E∥rt−r∥2∞+
2γ2E∥Pt − P ∥2∞∥Vt−1∥2∞ := A+B∥Qt−1∥2∞ where the last equation uses A = 2E∥rt − r∥2∞, B = 2γ2E∥Pt − P ∥2∞
and ∥Vt−1∥∞ = ∥Qt−1∥∞. Then setting η̃t = (1− γ)ηt, by Theorem E.2, we have

E∥∆t∥2∞ ≤ 2∥∆0∥2∞
t∏

j=1

(1− 0.5η̃j) + C1

t∑
j=1

ηj · 0.5η̃j
t∏

i=j+1

(1− 0.5η̃i). (55)

where
C1 =

32e logD

(1− γ)2
(A+ 2B∥Q∗∥2∞).

To simplify the notation, we denote

η̃(t,T ) =


∏T

j=1 (1− 0.5η̃j) , if t = 0

0.5η̃t
∏T

j=t+1 (1− 0.5η̃j) , if 0 < t < T

0.5η̃T , if t = T.

(56)

It is clear that we have
∑T

t=0 η̃(t,T ) = 1. Then it follows that

E∥∆t∥2∞ ≤ 2∥∆0∥2∞η̃(0,T ) + C1

t∑
j=1

ηj · η̃(j,t).
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Therefore, it follows that

1√
T

T∑
t=1

E∥∆t∥2∞ ≤ 1√
T

T∑
t=1

[
2η̃(0,t)∥∆0∥2∞ + C1

t∑
s=1

η̃(s,t)ηs−1

]
=

2∥∆0∥2∞√
T

T∑
t=1

η̃(0,t) +
C1√
T

T∑
t=1

t∑
s=1

η̃(s,t)ηs−1.

Recall that Assumption 3.3 requires the step size satisfies

(C1) 0 ≤ supt ηt ≤ 1, ηt ↓ 0 and tηt ↑ ∞ when t → ∞;

(C2) ηt−1−ηt

ηt−1
= o(ηt−1) for all t ≥ 1;

(C3) 1√
T

∑T
t=0 ηt → 0 when T → ∞.

Noticing tηt ↑ ∞ due to (C1), we must have
∑T

t=1 η̃t −
1
4 lnT → +∞ and thus implies

√
T η̃(0,T ) =

√
T

T∏
t=1

(1− 0.5η̃t) ≤ exp

(
1

2
lnT − 2

T∑
t=1

η̃t

)
→ 0,

which, together with the Stolz–Cesaro theorem, implies 1√
T

∑T
t=1 η̃

2
(0,t) → 0.

On the other hand, by Lemma E.1 and (C3), it follows that

1√
T

T∑
t=1

t∑
s=1

η̃(s,t)ηs−1 =
1√
T

T∑
s=1

ηs−1 ·
T∑

t=s

η̃(s,t) ≤
c√
T

T∑
t=1

ηt−1 → 0.

Lemma E.1. There exists some c > 0 such that
∑T

l=t η̃(t,l) ≤ c for any T ≥ t ≥ 1. Here {η̃(t,l)}l≥t≥0 is defined in (56)
and {η̃t}t≥0 satisfies Assumption 3.3.

Putting all pieces together, we have established (54).

Proof of Lemma E.1. We define m̃t,l :=
∑l

i=t η̃i. Due to tη̃t ↑ ∞, we have tη̃t ≤ iη̃i for all i ≥ t and thus

m̃t,l :=

l∑
i=t

η̃i ≥ tη̃t

l∑
i=t

1

i
≥ tη̃t

(
ln

l

t
− 1

2t

)
= − η̃t

2
+ tη̃t ln

l

t
.

Since tη̃t ↑ ∞, there exists some t0 > 0 such that any t ≥ t0, we have tη̃t ≥ 2. Therefore, we have for all l ≥ t ≥ t0,

1

η̃l
≤ l

tη̃t
≤ 1

η̃t
exp

(
m̃t,l +

η̃t

2

tη̃t

)
≤

√
e

η̃t
exp

(
m̃t,l

2

)
. (57)

In the following, we will discuss three cases.

• If T ≥ t ≥ t0, by definition, it follows that

T∑
l=t

η̃(t,l) =

T∑
l=t

η̃t

l∏
j=t+1

(1− η̃j) ≤
η̃t

1− η̃t

T∑
l=t

exp (−m̃t,l)

(a)

≤ η̃t
1− η̃t

T∑
l=t

η̃l ·
√
e

η̃t
exp

(
−m̃t,l

2

)
(b)

≤
√
e

γ

T∑
l=t

η̃l exp

(
−m̃t,l

2

)
(c)

≤ 2
√
e

γ
,

where (a) follows from (57); (b) uses 1− η̃t ≥ 1− η̃0 = γ; and (c) uses
∑T

l=t η̃l exp
(
− m̃t,l

2

)
≤
∫∞
0

exp(−x/2)dx =

2 due to m̃t,l ↑ ∞ as l → ∞.
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• If T ≥ t0 ≥ t, by definition, η̃(t,l) = η̃(t,t0)η̃(t0,l)/η̃t0 ≤ C2η̃(t0,l) where C2 = sup0≤t≤t0 η̃(t,t0)/η̃t0 . Then we have∑T
l=t η̃(t,l) =

∑t0
l=t η̃(t,l) +

∑T
l=t0

η̃(t,l) ≤ t0 + C2

∑T
l=t0

η̃(t0,l) ≤ t0 + C2
2
√
e

γ .

• If t0 ≥ T ≥ t, we have
∑T

l=t η̃(t,l) ≤ t0.

Putting the three cases together, we can set c = t0 + 2max{C0, 1}
√
e/γ which ensures that

∑T
l=t η̃(t,l) ≤ c for any

T ≥ t ≥ 1.

E.2 For Two Specific Step Sizes

To obtain an logD dependence (which implies the rewards are distributed either sub-gaussian or sub-exponential), we use a
almost-surely bounded rewards assumption as follows.

Assumption E.1. We assume 0 ≤ R(s, a) ≤ 1 for all (s, a) ∈ S ×A.

Theorem E.3. Under Assumption E.1, there exist some positive constant c > 0 such that

• If ηt = 1
1+(1−γ)t , it follows that

1

T

T∑
t=0

E∥∆t∥2∞ ≤ c

[
∥∆0∥2∞
(1− γ)2

1

T
+

ln(2eD)

(1− γ)5
ln2(eT )

T

]
.

• If ηt = t−α with α ∈ (0, 1) for t ≥ 1 and η0 = 1, it follows that

1

T

T∑
t=0

E∥∆t∥2∞ ≤ c

[
∆0√

1− α(1− γ)
1

1−α

1

T
+

ln(2eD)

(1− α)(1− γ)4
1

Tα

]
,

where

∆0 = 3∥∆0∥2∞ +
48γ2 ln(2eD)

(1− γ)3

(
2α

1− γ

) 1
1−α

.

E.3 Proof of Theorem E.3

Our proof is divided into three steps. The first is a upper bound for ∥∆t∥∞ provided by Lemma E.2: ∥∆t∥∞ ≤
at + bt + ∥Nt∥∞, As a result, ∥∆t∥2∞ ≤ 3(a2t + b2t + ∥Nt∥2∞). Lemma E.2 follows from Theorem 1 in [Wainwright,
2019b] which views Q-learning as a cone-contractive operator and establishes a ℓ∞-norm bound.

Lemma E.2 (Theorem 1 in [Wainwright, 2019b]). For any sequence of step sizes {ηt}t≥0 in the interval (0, 1), the iterates
{∆t}t≥0 satisfies the sandwich relation

−(at + bt)1+Nt ≤ ∆t ≤ (at + bt)1+Nt (58)

where {at}t≥0, {bt}t≥0 are non-negative scalars and {Nt}t≥0 are random vectors collecting noise terms from empirical
Bellman operators. The three sequences are defined in a recursive way: they are initialized as a0 = ∥∆0∥∞, b0 = 0 and
N0 = 0 and satisfy the following recursion:

at = (1− ηt(1− γ))at−1

bt = (1− ηt(1− γ))bt−1 + ηtγ∥Nt−1∥∞
Nt = (1− ηt)Nt−1 + ηtZt,

where Zt = (rt − r) + γ(Pt − P )V ∗ is the empirical Bellman error at iteration t.

The second step is to bound E∥NT ∥2∞ which is an autoregressive process of independent Bellman noise terms. One can
prove the result following a similar argument of Lemma 2 in [Wainwright, 2019b].

Lemma E.3. Under Assumption E.1 and assuming (1− ηt)ηt−1 ≤ ηt for any t ≥ 1, we have

E∥Nt∥2∞ ≤ 2ηt ln(2eD)

(1− γ)2
.
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The final step is to establish the dependence of E∥∆T ∥2∞ on {ηt}t≥0. Wainwright [2019b] finds it is crucial to set ηt to
be proportional to 1/(1 − γ) to ensure the sample complexity has polynomial dependence on 1/(1 − γ). We then set
η̃t = (1− γ)ηt as the rescaled step size. We first redefine

η̃(t,T ) =


∏T

j=1 (1− η̃j) , if t = 0

η̃t
∏T

j=t+1 (1− η̃j) , if 0 < t < T

η̃T , if t = T.

(59)

It is clear that we have
∑T

t=0 η̃(t,T ) = 1.

Lemma E.4. Under Assumption 3.1, if (1− ηt)ηt−1 ≤ ηt for any t ≥ 1, then we have

E∥∆T ∥2∞ ≤ 3η̃2(0,T )∥∆0∥2∞ +
6γ2 ln(2eD)

(1− γ)4

T∑
t=1

η̃(t,T )ηt−1 +
6 ln(2eD)

(1− γ)2
ηT , (60)

where {η̃(t,T )}T≥t≥0 defined in (59) and {Nt}t≥0 is defined in Lemma E.2.

Proof of Lemma E.4. By the recursion of {at}t≥0 and {bt}t≥0 in Lemma E.2, it follows that

aT =

T∏
t=1

(1− η̃t)∥∆0∥∞ = η̃(0,T )∥∆0∥∞

bT = γ

T∑
t=1

T∏
j=t+1

(1− η̃j)ηt∥Nt−1∥∞ =
γ

1− γ

T∑
t=1

η̃(t,T )∥Nt−1∥∞.

Hence, a2T = η̃2(0,T )∥∆0∥2∞ and

Eb2T =
γ2

(1− γ)2
E

(
T∑

t=1

η̃(t,T )∥Nt−1∥∞

)2
(a)

≤ γ2

(1− γ)2

T∑
t=1

η̃(t,T )E∥Nt−1∥2∞

where (a) uses
∑T

t=1 η̃(t,T ) = 1− η̃(0,T ) ≤ 1 and Jensen’s inequality.

Therefore,

E∥∆T ∥2∞ ≤ 3(a2T + Eb2T + E∥NT ∥2∞)

≤ 3η̃2(0,T )∥∆0∥2∞ +
3γ2

(1− γ)2

T∑
t=1

η̃(t,T )E∥Nt−1∥2∞ + 3E∥NT ∥2∞. (61)

Given the condition (1− ηt)ηt−1 ≤ ηt, we can apply Lemma E.3 which implies

E∥Nt∥2∞ ≤ 2ηt ln(2eD)

(1− γ)2
.

Plugging these bounds into (61) yields (60).

With these lemmas, we are ready to prove the following theorem.

Theorem E.4. Under Assumption 3.1, we have the following bounds for E∥∆T ∥2∞. Here c > 0 is a universal positive
constant and might be overwritten (and thus different) in different statements. The specific value of different c’s can be found
in our proof.

• If ηt = 1
1+(1−γ)t , it follows that for all T ≥ 1,

E∥∆T ∥2∞ ≤ 12∥∆0∥2∞
(1− γ)2

1

(1 + T )2
+

12γ2 ln(2eD)

(1− γ)5
ln(eT )

T
.
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• If ηt = t−α with α ∈ (0, 1) for t ≥ 1 and η0 = 1, it follows that for all T ≥ 1,

E∥∆T ∥2∞ ≤ ∆0 exp

(
− 1− γ

1− α

(
(1 + T )1−α − 1

))
+

114 ln(2eD)

(1− γ)4
1

Tα

, where

∆0 = 3∥∆0∥2∞ +
48γ2 ln(6D)

(1− γ)3

(
2α

1− γ

) 1
1−α

.

Proof of Theorem E.4. We discuss the two cases separately.

(I) Linearly rescaled step size. If we use a linear rescaled step size, i.e., ηt = 1
1+(1−γ)t (equivalently η̃t =

1−γ
1+(1−γ)t ), then

we have (i) 1− ηt ≤ 1− η̃t =
1+(1−γ)(t−1)

1+(1−γ)t = η̃t/η̃t−1 = ηt/ηt−1 for t ≥ 1 and (ii) η̃(t,T ) ≤ η̃T . It implies Lemma E.4 is

applicable. Notice that
∑T

t=1 η̃t−1 ≤ 1 +
∑T−1

t=1
1
t ≤ 1 + ln(T − 1) ≤ ln(eT ) and ln (1−γ)(T+1)

2 ≤ ln 1+(1−γ)(T+1)
1+(1−γ) =∫ T+1

1
1−γ

1+(1−γ)tdt ≤
∑T

t=1
1−γ

1+(1−γ)t =
∑T

t=1 η̃t. Hence,

η̃2(0,T ) =

T∏
t=1

(1− η̃t)
2 ≤ exp

(
−2

T∑
t=1

η̃t

)
≤ 4

(1− γ)2
1

(1 + T )2

T∑
t=1

η̃(t,T )ηt−1 =
1

1− γ

T∑
t=1

η̃(t,T )η̃t−1 ≤ η̃T
1− γ

T∑
t=1

η̃t−1 ≤ η̃T ln(eT )

1− γ
.

Finally, plugging these inequalities into (60), we have

E∥∆T ∥2∞ ≤ 12∥∆0∥2∞
(1− γ)2

1

(1 + T )2
+

12γ2 ln(2eD)

(1− γ)5
ln(eT )

T
. (62)

(II) Polynomial step size. If we choose a polynomial step size, i.e., ηt = t−α with α ∈ (0, 1) for t ≥ 1 and η0 = 1, then
we again have 1− ηt = 1− 1

tα ≤
(
t−1
t

)α
= ηt/ηt−1 for t ≥ 1, which implies Lemma E.3 is applicable. Note that

(T + 1)1−α − (t+ 1)1−α

1− α
=

∫ T+1

t+1

j−αdj ≤
T∑

j=t+1

j−α ≤
∫ T

t

j−αdj =
T 1−α − t1−α

1− α
, (63)

which implies that
∑T

t=1 ηt ≥
∑T

t=1 t
−α ≥ 1

1−α

(
(T + 1)1−α − 1

)
and (T + 1)1−α ≤ 1 + T 1−α. Hence,

η̃2(0,T ) =

T∏
t=1

(1− η̃t)
2 ≤ exp

(
−2(1− γ)

T∑
t=1

ηt

)
≤ exp

(
−2

1− γ

1− α

(
(1 + T )1−α − 1

))
.

Additionally, using ηt−1 ≤ 2ηt for all t ≥ 1 and (63), we have,

η̃(t,T )

1− γ
ηt−1 =

T∏
j=t+1

(1− η̃j)ηtηt−1 ≤ 8

T∏
j=t+1

(1− η̃j)η
2
t+1 ≤ 8 exp

−
T∑

j=t+1

η̃j

 η2t+1

≤ 8 exp

(
− 1− γ

1− α
(1 + T )1−α

) exp
(

1−γ
1−α (t+ 1)1−α

)
(t+ 1)2α

,

which implies

1

1− γ

T∑
t=1

η̃(t,T )ηt−1 ≤ 1

1− γ

T−1∑
t=1

η̃(t,T )ηt−1 + ηT ηT−1 ≤ 1

1− γ

T−1∑
t=1

η̃(t,T )ηt−1 + η2T

≤ 8

T∑
t=2

exp

(
− 1− γ

1− α
(1 + T )1−α

) exp
(

1−γ
1−α t

1−α
)

t2α
+

2

T 2α
.

At the the end of this subsection, we will prove that
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Lemma E.5. For any α ∈ (0, 1) and β > 0, it follows that

T∑
t=1

exp
(

1−γ
1−α t

1−α
)

tβ
≤
(

β

1− γ

) 1
1−α

exp

(
1− γ

1− α

)
+

β

(1− γ)α

exp
(

1−γ
1−α (1 + T )1−α

)
(1 + T )β−α

. (64)

By setting β = 2α, we have

T∑
t=1

exp
(

1−γ
1−α t

1−α
)

t2α
≤
(

2α

1− γ

) 1
1−α

exp

(
1− γ

1− α

)
+

2

1− γ

exp
(

1−γ
1−α (1 + T )1−α

)
(1 + T )α

.

Therefore,

1

1− γ

T∑
t=1

η̃(t,T )ηt−1 ≤ 8

(
2α

1− γ

) 1
1−α

exp

(
− 1− γ

1− α

(
(1 + T )1−α − 1

))
+

16

1− γ

1

(1 + T )α
+

2

T 2α
.

Putting together the pieces, we can safely conclude that

E∥∆T ∥2∞ ≤ 3∥∆0∥2∞ exp

(
−2

1− γ

1− α

(
(T + 1)1−α − 1

))
+

6 ln(2eD)

(1− γ)2
1

Tα
+

96γ2 ln(2eD)

(1− γ)4
1

(1 + T )α

+
12γ2 ln(2eD)

(1− γ)3
1

T 2α
+

48γ2 ln(2eD)

(1− γ)3
exp

(
− 1− γ

1− α

(
(1 + T )1−α − 1

))( 2α

1− γ

) 1
1−α

≤ ∆0 exp

(
− 1− γ

1− α

(
(1 + T )1−α − 1

))
+

114 ln(2eD)

(1− γ)4
1

Tα
,

where

∆0 = 3∥∆0∥2∞ +
48γ2 ln(6D)

(1− γ)3

(
2α

1− γ

) 1
1−α

.

Proof of Lemma E.5. We do this via a similar argument of Lemma 4 in [Wainwright, 2019b]. Let f(t) =
exp( 1−γ

1−α t1−α)
tβ

. By

taking derivatives, we find that f(t) is decreasing in t on the interval [0, t∗] and increasing for [t∗,∞), where t∗ =
(

β
1−γ

) 1
1−α

.
Hence,

T∑
t=1

f(t) ≤
{

Tf(1) if T ≤ ⌊t∗⌋,
⌊t∗⌋f(1) +

∫ T+1

t∗
f(t)dt if T > ⌊t∗⌋.

Using integrating by parts, it follows that

I∗ :=

∫ T+1

t∗
f(t)dt =

exp
(

1−γ
1−α t

1−α
)

(1− γ)tβ−α

∣∣∣∣T+1

t∗
+

β − α

1− γ

∫ T+1

t∗

exp
(

1−γ
1−α t

1−α
)

t1+β−α
dt

≤
exp

(
1−γ
1−α (1 + T )1−α

)
(1− γ)(1 + T )β−α

+
β − α

1− γ

∫ T+1

t∗

f(t)

t1−α
dt

≤
exp

(
1−γ
1−α (1 + T )1−α

)
(1− γ)(1 + T )β−α

+
β − α

1− γ

1

(t∗)1−α

∫ T+1

t∗
f(t)dt

=
exp

(
1−γ
1−α (1 + T )1−α

)
(1− γ)(1 + T )β−α

+
β − α

β
I∗,

where the last equality uses definition of t∗ and I∗. Hence, we have

I∗ =

∫ T+1

t∗
f(t)dt ≤ β

(1− γ)α

exp
(

1−γ
1−α (1 + T )1−α

)
(1 + T )β−α

.
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Putting together the pieces, we have shown that if T > ⌊t∗⌋,

T∑
t=1

f(t) ≤ t∗f(1) + I∗ =

(
β

1− γ

) 1
1−α

exp

(
1− γ

1− α

)
+

β

(1− γ)α

exp
(

1−γ
1−α (1 + T )1−α

)
(1 + T )β−α

.

If T ≤ ⌊t∗⌋, then
T∑

t=1

f(t) ≤ ⌊t∗⌋f(1) ≤ t∗f(1) =

(
β

1− γ

) 1
1−α

exp

(
1− γ

1− α

)
.

Thus we have proved the inequality is true for any choice of T .

Based on Theorem E.4, we now can prove Theorem E.3 by averaging the individual error bounds.

Proof of Theorem E.3. The result directly follows from Theorem E.4.

• For the first item, we already have E∥∆T ∥2∞ ≤ 12∥∆0∥2
∞

(1−γ)2
1

(1+T )2 + 12γ2 ln(2eD)
(1−γ)5

ln(eT )
T . Using

∑∞
t=1 t

−2 = π2

6 and∑T
t=1 t

−1 ≤ 1 + lnT = ln(eT ), we have for some universal constant c > 0,

1

T

T∑
t=0

E∥∆t∥2∞ ≤ 1

T
∥∆0∥2∞ +

1

T

T∑
t=1

[
12∥∆0∥2∞
(1− γ)2

1

(1 + t)2
+

12γ2 ln(2eD)

(1− γ)5
ln(eT )

T

]
= c

[
∥∆0∥2∞
(1− γ)2

1

T
+

ln(2eD)

(1− γ)5
ln2(eT )

T

]
.

• For the second item, we have E∥∆T ∥2∞ ≤ ∆0 exp
(
− 1−γ

1−α

(
(1 + T )1−α − 1

))
+ 114 ln(2eD)

(1−γ)4
1
Tα with ∆0 =

3∥∆0∥2∞ + 48γ2 ln(2eD)
(1−γ)3

(
2α
1−γ

) 1
1−α

. Notice that

∞∑
t=2

exp

(
− 1− γ

1− α

(
t1−α − 1

))
≤
∫ ∞

1

exp

(
− 1− γ

1− α

(
t1−α − 1

))
dt

(a)
=

exp
(

1−γ
1−α

)
1− γ

∫ ∞

0

e−x

(
1− α

1− γ
x

) α
1−α

dx

(b)
=

exp
(

1−γ
1−α

)
(1− α)

α
1−αΓ( 1

1−α )

(1− γ)
1

1−α

(c)

≤
√
2πe√
1− α

1

(1− γ)
1

1−α

and
∑T

t=1 t
−α ≤

∫ T

0
t−αdt = T 1−α

1−α . Here (a) uses the change of variable x = 1−γ
1−α t

1−α and (b) uses the definition of
gamma function Γ(z) =

∫∞
0

e−xxz−1dx. Finally (c) follows from a numeral inequality about gamma function. Since

Γ(1 + x) <
√
2π
(

x+1/2
e

)x+1/2

for any x > 0 (see Theorem 1.5 of [Batir, 2008]), then

Γ

(
1

1− α

)
≤

√
2π

(
1 + α

2(1− α)

) 1+α
2(1−α)

exp

(
− 1 + α

2(1− α)

)
,

which implies that

exp

(
1− γ

1− α

)
(1− α)

α
1−αΓ

(
1

1− α

)
≤

√
2πe√
1− α

. (65)
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Therefore,

1

T

T∑
t=0

E∥∆t∥2∞ ≤ 1

T
∥∆0∥2∞ +

1

T

T∑
t=1

[
∆0 exp

(
− 1− γ

1− α

(
(1 + t)1−α − 1

))
+

114 ln(2eD)

(1− γ)4
1

tα

]

≤ c

[
∆0√

1− α(1− γ)
1

1−α

1

T
+

ln(2eD)

(1− α)(1− γ)4
1

Tα

]
.

F PROOF OF THEOREM 5.1

In the section, we provide the proof for our finite-sample analysis of averaged Q-learning in the ℓ∞-norm. Our main idea is
similar to Appendix C. The average Q-learning estimator Q̄T has the error

∆̄T :=
1

T

T∑
t=1

∆t =
1

T

T∑
t=1

(Qt −Q∗). (66)

Using two auxiliary sequences {∆1
t}t≥0 and {∆2

t}t≥0 defined in Lemma C.1, we similarly define

∆̄1
T :=

1

T

T∑
t=1

∆1
t and ∆̄2

T :=
1

T

T∑
t=1

∆2
t .

Because ∆2
t ≤ ∆t ≤ ∆1

t coordinate-wise, it is valid that

∆̄2
T ≤ ∆̄T ≤ ∆̄1

T . (67)

As a result, E∥∆̄T ∥∞ ≤ Emax{∥∆̄1
T ∥∞, ∥∆̄2

T ∥∞}. Hence, bounding ∥∆̄T ∥∞ in expectation is reduced to bound the
maximum between ∥∆̄1

T ∥∞ and ∥∆̄2
T ∥∞. Given ∆̄1

T and ∆̄2
T are defined in a similar way (see Lemma C.1), they share a

similar error decomposition.

F.1 Error Decomposition

Setting r = 1 in (36), we obtain

∆̄1
T =

1

T

T∑
t=1

∆1
t =

1

η0T
(AT

0 − η0I)∆0 +
1

T

T∑
j=1

AT
j

(
Zj + γD1

j−1

)
.

Similar to (38), we decompose ∆̄1
T into five separate terms

∆̄1
T =

1

η0T
(AT

0 − η0I)∆0 +
1

T

T∑
j=1

G−1Zj +
1

T

T∑
j=1

(AT
j −G−1)Zj

+
γ

T

T∑
j=1

AT
j (Pj − P )(Vj−1 − V ∗) +

γ

T

T∑
j=1

AT
j (P

πj−1 − P π∗
)∆j−1

:= T0 + T1 + T2 + T3 + T4. (68)
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Here one should distinguish Ti with ψi, the former a random variable and the latter a random function. Comparing (35)
and (40), we find thatD1

j−1 =D2
j−1 + (P πj−1 − P π∗

)∆j−1. Repeating the same argument to ∆̄2
T , we obtain

∆̄2
T =

1

T

T∑
t=1

∆2
t =

1

η0T
(AT

0 − η0I)∆0 +
1

T

T∑
j=1

AT
j

(
Zj + γD2

j−1

)
=

1

η0T
(AT

0 − η0I)∆0 +
1

T

T∑
j=1

G−1Zj +
1

T

T∑
j=1

(AT
j −G−1)Zj

+
γ

T

T∑
j=1

AT
j (Pj − P )(Vj−1 − V ∗)

= T0 + T1 + T2 + T3. (69)

Here {Ti}3i=0 are exactly the same as in (68). Putting the pieces together, we have

E∥∆̄T ∥∞ ≤ Emax{∥∆̄1
T ∥∞, ∥∆̄2

T ∥∞} ≤
4∑

i=0

E∥Ti∥∞. (70)

F.2 Bounding the Separate Terms

For ∥T0∥∞. Recall that C0 = supT≥j≥0 ∥AT
j ∥∞. Since η0 = 1 ≤ C0, it is obvious that

∥T0∥∞ =
1

η0T
∥(AT

0 − η0I)∆0∥∞ ≤ 1

η0T
(∥AT

0 ∥∞ + η0)∥∆0∥∞ ≤ 2C0

1− γ

1

T
. (71)

For ∥T1∥∞. We apply (85) in Lemma H.1 to bound T1 := 1
T

∑T
j=1G

−1Zj . Indeed, by settingBj ≡ I,Xj =
1
TG

−1Zj ,

we have B = 1, X = 1
(1−γ)2T and ∥WT ∥∞ ≤ ∥diag(VarQ)∥∞

T defined therein. Hence,

E∥T1∥∞ ≤ 6
√

∥diag(VarQ)∥∞

√
ln(2D)

T
+

4 ln(6D)

3(1− γ)2T
. (72)

For ∥T2∥∞. We also apply (85) in Lemma H.1 to analyze T2 := 1
T

∑T
j=1(A

T
j −G−1)Zj . Indeed, by setting Bj =

AT
j −G−1,Xj =

1
TZj , we have B = 2C0, X = 1

(1−γ)T and ∥WT ∥∞ ≤ 1
T 2

∑T
j=1 ∥AT

j −G−1∥2∞∥Var(Z)∥∞ defined
therein. Hence,

E∥T2∥∞ ≤ 6
√
∥Var(Z)∥∞

√
ln(2D)

T

√√√√ 1

T

T∑
j=1

∥AT
j −G−1∥2∞ +

8C0 ln(6D)

3(1− γ)T
. (73)

For ∥T3∥∞. We apply (86) in Lemma H.1 to analyze T3 := γ
T

∑T
j=1A

T
j (Pj − P )(Vj−1 − V ∗). Because T3 is more

complex than T1 and T2, we defer the detailed proof in Appendix F.5.
Lemma F.1.

E∥T3∥∞ ≤ 4γC0

√
ln(2DT 2)

T
·

√√√√ 1

T

T∑
j=1

E ∥∆j−1∥2∞ +
32γC0 ln(3DT 2)

3(1− γ)T
. (74)

where C0 is the uniform bound given in Lemma C.3 and D = |S × A|.

For ∥T4∥∞. We have already analyzed T4 := γ
T

∑T
j=1A

T
j (P

πj−1 − P π∗
)∆j−1 in Lemma C.7. It follows that

E∥T4∥∞ =
1√
T
E∥ψ5(1)∥∞ ≤ 1√

T
E∥ψ5∥sup ≤ γLC0 ·

1

T

T∑
j=1

E ∥∆j−1∥2∞ . (75)

Remark F.1. Under Assumption 3.1 3.2 and 3.3, we assert that
√
TE∥Ti∥ = o(1) for i = 0, 2, 3, 4. It is handy to

verify
√
T∥T0∥ = o(1). Lemma C.2 implies 1

T

∑T
j=1 ∥AT

j −G−1∥2∞ = o(1), by which we conclude
√
TE∥T2∥ = o(1).

Theorem E.1 shows 1√
T

∑T
t=0 E∥∆t∥2∞ → 0 when we use the general step size. We then know that both

√
TE∥T3∥ and

√
TE∥T4∥ converge to zero when T goes to infinity.
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F.3 Specific Rates for Two Step Sizes

(I) Linearly rescaled step size. If we use a linear rescaled step size, i.e., ηt = 1
1+(1−γ)t (equivalently η̃t =

1−γ
1+(1−γ)t ),

then Lemma C.3 and Lemma C.4 give

C0 =
2

1− γ
ln(1 + (1− γ)T ) = O

(
lnT

1− γ

)
and

1

T

T∑
j=1

∥AT
j −G−1∥2∞ ≤ 25

(1− γ)2
.

Hiding constant factors in c, Theorem E.3 gives

1

T

T∑
t=0

E∥∆t∥2∞ ≤ c

[
∥∆0∥2∞
(1− γ)2

1

T
+

ln(2eD)

(1− γ)5
ln2(eT )

T

]
.

Hence, combining these bounds with (71), (72), (73), (74), and (75), we have

E∥∆̄T ∥∞ = O

(
lnT

(1− γ)2T
+

√
∥Var(Z)∥∞
(1− γ)2

√
lnD

T
+

lnD

(1− γ)2
lnT

T

+
γ lnT

√
ln(DT )

(1− γ)3

(
1

T
+

√
lnD

1− γ

lnT

T

)
+

γ ln(DT )

(1− γ)2
lnT

T

+ +
γL lnT

1− γ

(
1

(1− γ)4
1

T
+

lnD

(1− γ)5
ln2 T

T

))
= O

(√
∥Var(Z)∥∞
(1− γ)2

√
lnD

T

)
+ Õ

(
L

(1− γ)6
1

T

)
,

where Õ(·) hides polynomial dependence on logarithmic terms namely lnD and lnT . Here we use ∥diag(VarQ)∥∞ ≤
∥Var(Z)∥∞

(1−γ)2 to simplify the final inequality.

(II) Polynomial step size. If we choose a polynomial step size, i.e., ηt = t−α with α ∈ (0.5, 1) for t ≥ 1 and η0 = 1,
then hiding constant factors in c, Lemma C.3 and Lemma C.4 give

C0 = O

(
1

(1− γ)
1

1−α

)
√√√√ 1

T

T∑
j=1

∥AT
j −G−1∥2∞ = O

(
1

(1− γ)1+
1

1−α

1√
T

+
1

(1− γ)2
1

T 1−α
+

1

(1− γ)
3
2

1

T
1−α
2

)
,

where O(·) hides constant factors on α. Theorem E.3 gives

1

T

T∑
t=0

E∥∆t∥2∞ ≤ O

(
lnD

(1− γ)3+
1

1−α

1

T
+

lnD

(1− γ)4
1

Tα

)
.
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Hence, combining these bounds with (71), (72), (73), (74), and (75), we have

E∥∆̄T ∥∞ = O

(
1

(1− γ)1+
1

1−αT
+
√
∥diag(VarQ)∥∞

√
lnD

T
+

ln(D)

(1− γ)2T

+

√
lnD

(1− γ)2T

(
1

(1− γ)1+
1

1−α

1√
T

+
1

(1− γ)2
1

T 1−α
+

1

(1− γ)
3
2

1

T
1−α
2

)

+
γ

(1− γ)
1

1−α

√
ln(DT )

T

( √
lnD

(1− γ)1.5+
1

2(1−α)

1√
T

+

√
lnD

(1− γ)2
1

T
α
2

)

+
γ

(1− γ)1+
1

1−α

lnDT

T
+

γL

(1− γ)
1

1−α

(
lnD

(1− γ)3+
1

1−α

1

T
+

lnD

(1− γ)4
1

Tα

))

= O

(√
∥diag(VarQ)∥∞

√
lnD

T
+

√
lnD

(1− γ)3
1

T 1−α
2

)
+ Õ

(
L

(1− γ)3+
2

1−α

1

T
+

γL

(1− γ)4+
1

1−α

1

Tα

)
,

where Õ(·) hides polynomial dependence on logarithmic terms, namely lnD and lnT . Here we use ∥Var(Z)∥∞ ≤ 1
(1−γ)2 ,

T− 1+α
2 ≤ T−α to simplify the final inequality.

F.4 A Useful Inequality

The following is a useful inequality which will be used frequently in the subsequent proof.

Lemma F.2. For any matricesA,V with a compatible order, we have

∥diag(AV A⊤)∥∞ ≤ ∥V ∥max∥A∥2∞, (76)

where ∥V ∥max = maxi,k |V (i, k)|.

Proof of Lemma F.2. For any diagonal entry i, it follows that

|(AV A⊤)(i, i)| =
∣∣∣∣∑

l

(AV )(i, l)A(i, l)

∣∣∣∣ = ∣∣∣∣∑
l

∑
k

A(i, k)V (k, l)A(i, l)

∣∣∣∣
≤
∑
l

∑
k

|A(i, k)| · |V (k, l)| · |A(i, l)|

≤ ∥V ∥max

∑
k

|A(i, k)| ·
∑
l

|A(i, l)|

≤ ∥V ∥max∥A∥2∞.

F.5 Proof of Lemma F.1

Proof of Lemma F.1. Recall that T3 = γ
T

∑T
j=1A

T
j (Pj−P )(Vj−1−V ∗) and Fj is the σ-field generated by all randomness

before (and including) iteration j. We will apply Lemma H.1 to prove our lemma. Using the notation defined therein, we set
Xj =

γ
T (Pj −P )(Vj−1−V ∗) andBj = A

T
j . Clearly, {Xj}j≥0 is a martingale difference sequence since E[Xj |Fj−1] =

γ
T E[Pj − P |Fj−1](Vj−1 − V ∗) = 0. As a result, X = 4γ

T (1−γ) , B = C0, D = |S × A| and Uj = Var[Xj |Fj−1].8

Recall thatWT = diag(
∑T

j=1BjUjB
⊤
j ). To upper bound E∥WT ∥∞, we aim to find a upper bound for ∥WT ∥∞. We first

note that

∥WT ∥∞ =

∥∥∥∥∥∥diag
 T∑

j=1

BjUjB
⊤
j

∥∥∥∥∥∥
∞

≤
T∑

j=1

∥∥diag (BjUjB
⊤
j

)∥∥
∞ ≤

T∑
j=1

∥Bj∥2∞ ∥Uj∥max.

8To distinguish Var[Xj |Fj−1] and the value function Vj , we use Uj to denote the conditional variance.
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Here the last inequality uses (76). To bound ∥Uj∥max, we find that for any i ̸= k, Uj(i, k) = E[e⊤i XjX
⊤
j ek|Fj−1] = 0

due to each coordinate ofXj are independent conditioning on Fj−1. Hence,

∥Uj∥max = max
i,k

|Uj(i, k)| = max
i

|Uj(i, i)| =
∥∥E[diag(XjX

⊤
j )|Fj−1]

∥∥
∞

≤ E
[∥∥diag(XjX

⊤
j )
∥∥
∞

∣∣∣∣Fj−1

]
(a)

≤ E[∥Xj∥2∞ |Fj−1]

=
γ2

T 2
E[∥(Pj − P )(Vj−1 − V ∗)∥2∞ |Fj−1]

≤ γ2

T 2
∥Vj−1 − V ∗∥2∞E∥Pj − P ∥2∞

(b)

≤ 4γ2

T 2
∥Vj−1 − V ∗∥2∞,

where (a) again uses (76) and (b) uses ∥Pj − P ∥∞ ≤ ∥Pj∥∞ + ∥P ∥∞ = 2.

Putting the pieces together, we have

∥WT ∥∞ ≤ 4γ2

T

T∑
j=1

∥Bj∥2∞ ∥Vj−1 − V ∗∥2∞ ≤ 4γ2C2
0

T 2

T∑
j=1

∥Vj−1 − V ∗∥2∞,

where we use supj ∥Bj∥∞ ≤ B = C0

1−γ . The rest follows from (86) in Lemma H.1 by plugging the corresponding B,X,D

and σ2 and the inequality ∥Vj−1 − V ∗∥∞ ≤ ∥Qj−1 −Q∗∥∞ = ∥∆j−1∥∞.

G PROOF OF THE INFORMATION-THEORETIC LOWER BOUND

G.1 Proof of Theorem 4.1

The semiparametric model Pθ ∈ PP ×PR described in Section 4 is described through an infinite-dimensional parameter
θ = (P , R), which is partitioned into a finite-dimensional parameter P ∈ RD×S and an infinite-dimensional parameter
R. The reason why R is infinite dimensional is because we don’t specify the probability model of each R(s, a), which
is equivalent to considering the class of all p.d.f.’s on the interval [0, 1], which is infinite dimensional. The parameter of
interest is a smooth function of θ, denoted by β(θ) = Q∗ ∈ RD. To compute the semiparametric Cramer-Rao lower bound
(see Definition 4.7 of [Vermeulen, 2011]), we need to compute

sup
Pγ⊂P

Γ(γ0)I(γ0)
−1Γ⊤(γ0), (77)

where Pγ is any parametric submodel containing the truth, i.e., Pγ0
= Pθ. Hence, under one kind of parameterization, the

true model Pθ can be recovered by setting γ = γ0 in the parametric submodel Pγ . Here, Γ(γ0) = ∂Q∗

∂γ |γ=γ0
is the score

and I(γ0) is the corresponding Fisher information matrix. Let γ0(R) (resp. γ0(P )) be the finite-dimensional part of γ0 that
relates with R (resp. P ). Due to the (variational) independence between P and R, γ0(P ) doesn’t intersect with γ0(R).
Hence, (77) can be divided into two parts

sup
Pγ(P )⊂PP

Γ(γ0(P ))I(γ0(P ))−1Γ⊤(γ0(P )) + sup
Pγ(R)⊂PR

Γ(γ0(R))I(γ0(R))−1Γ⊤(γ0(R))

(∗)
=Γ(P )I(P )−1Γ⊤(P ) + sup

Pγ(R)⊂PR

Γ(γ0(R))I(γ0(R))−1Γ⊤(γ0(R)),

where Pγ(R) (resp. Pγ(P )) denotes the parametric submodel depending only on R (resp. P ). The equality (∗) follows
because in the case the parametric model PP is the full model and the parametric Cramer-Rao lower bound is not affected
by any one-to-one reparameterization. Here, Γ(P ) = ∂Q∗

∂P and I(P ) is the (constrained) information matrix.

In the following, we will first handle the parametric part (i.e., the transition kernel P ) by computing the (constrained)
information matrix and then cope with the nonparametric part (i.e., the random reward R) by using semiparametric tools.
Combining the two parts together, we find that the semiparametric efficiency bound is

1

T
· (I − γP π∗

)−1Var(γPjV
∗)(I − γP π∗

)−⊤ +
1

T
· (I − γP π∗

)−1Var(rj)(I − γP π∗
)−⊤

=
1

T
· (I − γP π∗

)−1Var(Zj)(I − γP π∗
)−⊤,

using the notation Zj = rj + γPjV
∗ and the independence of rj and Pj .
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G.1.1 Parametric Part

We first investigate the Cramer-Rao lower bound for estimating Q∗ using samples from {Pt}t∈[T ] whose distribution is
determined by P ∈ P with P defined in (15). Note that P ∈ P is linearly constrained, i.e.,

h(P ) = 0,

where h : RD×S → RD with its (s̃, ã)-th coordinate of h given by

hs̃,ã(P ) =
∑
s,a,s′

P (s′|s, a)1{(s,a)=(s̃,ã)} − 1. (78)

Hence, we encounter the Cramer-Rao lower bound for constrained parameters. Let CT (P ) is the inverse Fisher information
matrix using T i.i.d. samples under the constraint h(P ) = 0. Hence, CT (P ) = C1(P )

T and the constrained Cramer-Rao
lower bound [Moore Jr, 2010] is

Γ(P )I(P )−1Γ⊤(P ) =

(
∂Q∗

∂P

)⊤

CT (P )
∂Q∗

∂P
=

1

T
·
(
∂Q∗

∂P

)⊤

C1(P )
∂Q∗

∂P
, (79)

where ∂Q∗

∂P is the partial derivatives computed ignoring the linear constraint h(P ) = 0.

To give a precise formulation of the bound (79), we first compute ∂Q∗

∂P .
Lemma G.1. Under Assumption 3.2,Q∗ is differentiable w.r.t. P with the partial derivatives given by

∂Q∗(s, a)

∂P (s′|s̃, ã)
= γV ∗(s′) · (I − γP π∗

)−1((s, a), (s̃, ã)).

We then compute C1(P ) via the following lemma.
Lemma G.2. The (s, a)-th row of the random matrix Pt is given by Pt(s

′|s, a) = 1{st(s,a)=s′} where st(s, a) is the
generated next-state from (s, a) at iteration t with probability given as the (s, a)-th row of P . Hence P = EPt and P
belongs to the following parametric space

P =
{
P ∈ RD×S : P (s′|s, a) ≥ 0 for all (s, a, s′) and h(P ) = 0

}
,

with h defined in (78). The constrained inverse Fisher information matrix C1(P ) is

C1(P ) = diag
({

diag(P (·|s, a))− P (·|s, a)P (·|s, a)⊤)
}
(s,a)

)
.

By Lemma G.1 and G.2, we have(
∂Q∗

∂P

)⊤

C1(P )
∂Q∗

∂P
((s, a), (s̄, ā)) =

∑
(s̃,ã)

γ2G−1((s, a), (s̃, ã))G−1((s̄, ā), (s̃, ã))

·

(∑
s̃′

V ∗(s̃′)2P (s̃′|s̃, ã)− (
∑
s̃′

V ∗(s̃′)P (s̃′|s̃, ã))2
)
.

The Cramer-Rao lower bound is thus equal to(
∂Q∗

∂P

)⊤

CT (P )
∂Q∗

∂P
= T · (I − γP π∗

)−1Var(γPjV
∗)(I − γP π∗

)−⊤.

At the end of this part, we provide the deferred proof for Lemma G.1 and G.2.

Proof of Lemma G.1. Notice thatQ∗ = R+ γPV ∗. Then by the chain rule, we have

∂Q∗(s, a)

∂P (s′|s, a)
= γV ∗(s′) + γ

∑
s1

P (s1|s, a)
∂V ∗(s1)

∂P (s′|s, a)
,

∂Q∗(s, a)

∂P (s′|s̃, ã)
= γ

∑
s1

P (s1|s̃, ã)
∂V ∗(s1)

∂P (s′|s̃, ã)
for any (s, a) ̸= (s̃, ã).
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Assumption 3.2 implies the optimal policy π∗ is unique. Hence, using V ∗(s1) = maxa Q
∗(s1, a) = Q∗(s1, π

∗(s1)), we
have

∂V ∗(s1)

∂P (s′|s, a)
=

∂Q∗(s1, π
∗(s1))

∂P (s′|s, a)
.

Notice that P ∗((s, a), (s̃, ã)) = P (s̃|s, a)1{ã=π∗(s̃)}. Putting all the pieces together and solving { ∂Q∗(s,a)
∂P (s′|s̃,ã)}s,a,s′,s̃,ã from

the linear system, we have

∂Q∗(s, a)

∂P (s′|s̃, ã)
= γV ∗(s′) · (I − γP ∗)−1((s, a), (s̃, ã)).

Proof of Lemma G.2. We write our the log-likelihood of sample Pt as

log fP (Pt) =
∑
s,a,s′

1{st(s,a)=s′} logP (s′|s, a),

which implies ∂
∂P log fP (Pt) ∈ RS2A with the (s, a, s′)-th entry given by

∂ log fP (Pt)

∂P (s′|s, a)
=

1{st(s,a)=s′}

P (s′|s, a)
. (80)

By definition of the Fisher information matrix, we have

I1(P ) = E

{
∂

∂P
log fP (Pt)

[
∂

∂P
log fP (Pt)

]⊤}
∈ RS2A×S2A,

which implies

I1(P )((s, a, s′), (s̃, ã, s̃′)) =

{
1{s′=s̃′}
P (s′|s,a) if (s, a) = (s̃, ã),

1 if (s, a) ̸= (s̃, ã).

By definition of h(P ), we rearrange h(P ) into an S2A× SA matrix given by

H(P )((s, a, s′), (s̃, ã)) :=
∂hs̃,ã(P )

∂P (s′|s, a)
= 1{(s̃,ã)=(s,a)}.

Let U(P ) ∈ RS2A×(S2A−SA) be the orthogonal matrix whose column space is the orthogonal complement of the column
space of H(P ), which stands for H(P )⊤U(P ) = 0 and U(P )⊤U(P ) = I . Using results in [Moore Jr, 2010], the
constrained CRLB is

C1(P ) = U(P )
(
U(P )⊤I1(P )U(P )

)−1
U(P )⊤.

We define an auxiliary matrixX ∈ RSA×S2A satisfying

X((s, a), (s̃, ã, s̃′)) = −1

2
· 1{(s,a)̸=(s̃,ã)}.

ByH(P )⊤U(P ) = 0, we have

C1(P ) = U(P )
(
U(P )⊤(H(P )X + I1(P ) +X⊤U(P )⊤)U(P )

)−1
U(P )⊤

:= U(P )
(
U(P )⊤D(P )U(P )

)−1
U(P )⊤,

where D(P )((s, a, s′), (s, a, s′)) = 1/P (s′|s, a) and takes value 0 elsewhere. Now we reformulate D(P ) as a block
diagonal matrix D(P ) = diag({D(s,a)}(s,a)) := diag({1/P (·|s, a)}(s,a)) where D(s,a) is a diagonal matrix with
D(s,a)(s

′, s′) = 1/P (s′|s, a). Similarly, we haveH(P ) = diag({1S}(s,a)), where 1S is an all-1 vector with dimension S,
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and U(P ) = diag({U(s,a)}(s,a)), where U(s,a) ∈ RS×S−1 satisfying U⊤
(s,a)1S = 0. In this way, C1(P ) has a equivalent

block diagonal formulation

C1(P ) = diag

({
U(s,a)

(
U⊤

(s,a)D(s,a)U(s,a)

)−1

U⊤
(s,a)

}
(s,a)

)
.

For each block (s, a) of C1(P ), the submatrix is exactly the constrained Cramer-Rao bound of a multinomial distribution
Ps,a = {P (·|s, a)}, which is equal to diag(Ps,a)− Ps,aP

⊤
s,a. Therefore,

C1(P ) = diag
({

diag(P (·|s, a))− P (·|s, a)P (·|s, a)⊤)
}
(s,a)

)
.

G.1.2 Nonparametric Part

Next, we move on discussing the efficiency on rewards. Unlike Pt that is generated according to a parametric model,
the generating mechanism of rt can be arbitrary. In other words, a finite dimensional parametric space is not enough to
cover the possible distributions of rt. Thus, semiparametric theory is needed here. Fortunately, our interest parameter
Q∗ = (I−γP π∗

)−1r is linear in r := Ert, implying only the expectation of rt matters. In semiparametric theory [Van der
Vaart, 2000, Tsiatis, 2006], the efficienct influence function for mean estimation is exatly the random variable minus its
expectation. Lemma G.3 shows it is still true in our case.

Lemma G.3. Let Assumption 3.2 hold. Given a random sample rt, the most efficient influence function for estimating
Q∗(s, a) for any (s, a) is

ϕ(s, a) = (I − γP π∗
)−1(rt − r)(s, a),

where r = Ert. Hence, the semiparametric efficiency bound of estimatingQ∗ with {rt}t∈[T ] is

sup
Pγ(R)⊂PR

Γ(γ0(R))I(γ0(R))−1Γ⊤(γ0(R)) =
1

T
· (I − γP π∗

)−1Var(rt)(I − γP π∗
)−1.

Proof of Lemma G.3. As rt(s, a) are independent with different (s′, a′) pairs, we can only consider randomness of one pair
(s, a).

Firstly, we consider a submodel family PRε
of PR that is parameterized by ε such that when ε = 0, we recover the

distribution of R(s, a). That is PRε
= {Rε : ε ∈ [−δ, δ] and R(s, a) = Rε(s, a)|ε=0}. This can be achieved by

manipulating density functions of each R(s, a). It is clear that PRε
is a parametric family on rewards and we can make use

of results in parametric statistics for our purpose. By definition, we have for (s, a),

∂Q∗(s, a)

∂ε

∣∣∣∣
ε=0

=
∂

∂ε

(
Ert(s, a) + γ

∑
s′

P (s′|s, a)Q∗(s′, π∗(s′))

)∣∣∣∣
ε=0

=
∂Ert(s, a)

∂ε

∣∣∣∣
ε=0

+ γ
∑
s′

P (s′|s, a)∂Q
∗(s′, π∗(s′))

∂ε

∣∣∣∣
ε=0

.

For any (s̃, ã) ̸= (s, a), we have

∂Q∗(s̃, ã)

∂ε

∣∣∣∣
ε=0

= γ
∑
s′

P (s′|s̃, ã)∂Q
∗(s′, π∗(s′))

∂ε

∣∣∣∣
ε=0

.

Recursively expanding the above terms like what we have done in Lemma G.1, we have

∂Q∗(s̃, ã)

∂ε

∣∣∣∣
ε=0

=
∂Ert(s, a)

∂ε

∣∣∣∣
ε=0

· (I − γP π∗
)−1((s̃, ã), (s, a)).
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Let Fε denote the cumulative distribution function of Rε(s, a). Then we have

∂Ert(s, a)
∂ε

∣∣∣∣
ε=0

=

∫
rt(s, a)

∂

∂ε
dFε

∣∣∣∣
ε=0

=

∫
(rt(s, a)− r(s, a))

∂

∂ε
log dFε

∣∣∣∣
ε=0

dF0,

where r(s, a) = Ert(s, a) and ∂
∂ε log dFε is the score function. Therefore,

∂Q∗(s̃, ã)

∂ε

∣∣∣∣
ε=0

=

∫
ϕ(s̃, ã)

∂

∂ε
log dFε

∣∣∣∣
ε=0

dF0, (81)

where

ϕ(s̃, ã) = (rt − r)(s, a) · (I − γP π∗
)−1((s̃, ã), (s, a)).

Since the parametric submodel family Rε is arbitrary, we conclude that the efficient influence function of Q∗(s̃, ã) is ϕ(s̃, ã)
by Theorem 2.2 in [Newey, 1990]. Finally, as rt(s, a) is independent with each other rt(s′, a′)’s, our final result is obtained
by summing the above equation over all (s, a).

G.2 Proof of Theorem 4.2

Proof of Theorem 4.2. Recall that ∆̄T = 1
T

∑T
t=1(QT −Q∗). Combining (67), (68) and (69), we have

√
T (T0 + T1 + T2 + T3) ≤ ∆̄1

T ≤
√
T∆̄T ≤

√
T∆̄2

T ≤
√
T (T0 + T1 + T2 + T3 + T4),

where the inequality holds coordinate-wise. In Appendix F.2, we have analyze E∥Ti∥∞ with explicit upper bounds. It is
easy to verify that

√
TE∥Ti∥ = o(1) for i = 0, 2, 3, 4 (see Remark F.1). Hence,

∆̄T =
√
TT1 + oP(1) =

1√
T

T∑
t=1

(I − γP π∗
)−1Zt + oP(1) :=

1√
T

T∑
t=1

ϕ(rt,Pt) + oP(1),

where Zt = (rt − r) + γ(Pt −P )V ∗ is the Bellman noise at iteration t. This implies Q̄T is asymptotically linear with the
influence function ϕ(rt,Pt) := (I − γP ∗)−1Zt.

The remaining issue is to prove regularity. By definition, a RAL estimator is regular for a semiparametric model P =
PP × PR if it is a RAL estimator for every parametric submodel Pγ = PP × PRε ⊂ P where γ = (P , ε) is the finite-
dimensional parameter controlling Pγ . In a parametric submodel PP × PRε

, by Theorem 2.2 in [Newey, 1990], for the
asymptotically linear estimator Q̄T ofQ∗ which has the influence function

ϕ(rt,Pt) = (I − γP π∗
)−1 [(rt − r) + γ(Pt − P )V ∗] ,

its regularity is equivalent to the equality

Eϕ(rt,Pt)S
⊤
γ (γ0) =

∂Q∗

∂γ

∣∣∣∣
γ=γ0

, (82)

where Sγ(·) is the score function, γ = (P ′, ε) ∈ PP × [−δ, δ] is the finite-dimensional parameter and γ0 = (P , 0) is the
true underlying parameter. Since P and ε are variationally independent, Sγ(γ0) = (SP (γ0), Sε(γ0)).

For the transition kernel P . Since our parametric space PP has a linear constraint, it is not easy to compute the
constrained score function. Hence, for P = {P (s′|s, a)}s,a,s′ , we regard {P (s′|s, a)}s,a,s′ ̸=s0 as free parameters where
s0 ∈ S is any fixed state and use it as our new parameter. For a fixed (s, a), once P (s′|s, a) is determined for all s′ ̸= s0,
one can recover P (s0|s, a) by P (s0|s, a) = 1 −

∑
s′ ̸=s0

P (s′|s, a). In this way, each {P (s′|s, a)}s′ ̸=s0 lies in a open
set. We still denote the set collecting all feasible {P (s′|s, a)}s,a,s′ ̸=s0 as P , but readers should remember that current
P = {P (s′|s, a)}s,a,s′ ̸=s0 ∈ RSA×(S−1). From (80) and under our new notation of P , SP (γ0) ∈ RSA(S−1) with entries
given by

SP (γ0)(s, a, s
′) =

1{st(s,a)=s′}

P (s′|s, a)
−

1{st(s,a)=s0}

P (s0|s, a)
for any s′ ̸= s0.
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By Lemma G.1 and the chain rule, it follows that ∂Q∗

∂P ∈ RSA×SA(S−1) and its (s̃, ã, s′)-th column is

γ(I − γP π∗
)−1(·, (s̃, ã)) [V ∗(s′)− V ∗(s0)] . (83)

Since (I − γP π∗
)−1 has a full rank (i.e., SA), it is easy to see that ∂Q∗

∂P also has rank SA by varying (s̃, ã) and fixing s′, s0
in (83). On the other hand, the (s̃, ã, s′)-th column of Eϕ(rt,Pt)SP (θ0)

⊤ is

(Eϕ(rt,Pt)SP (γ0)
⊤)(·, (s̃, ã, s′)) = Eϕ(rt,Pt)

[
1{st(s,a)=s′}

P (s′|s, a)
−

1{st(s,a)=s0}

P (s0|s, a)

]
= γ(I − γP π∗

)−1E(Pt − P )V ∗
[
1{st(s,a)=s′}

P (s′|s, a)
−

1{st(s,a)=s0}

P (s0|s, a)

]
= γ(I − γP π∗

)−1(·, (s̃, ã)) [V ∗(s′)− V ∗(s0)] ,

where the last equality uses the following result. By direct calculation, the (s, a)-th entry of E(Pt −
P )V ∗

[
1{st(s,a)=s′}
P (s′|s,a) − 1{st(s,a)=s0}

P (s0|s,a)

]
is 0 for all (s, a) ̸= (s̃, ã) (due to independence) and the (s̃, ã)-th entry is

V ∗(s′)− V ∗(s0). Indeed, the (s̃, ã)-th entry of the mentioned matrix is

E
∑
i∈S

(1{st(s,a)=i} − P (i|s, a))V ∗(i)

[
1{st(s,a)=s′}

P (s′|s, a)
−

1{st(s,a)=s0}

P (s0|s, a)

]

=

V ∗(s′)−
∑
i ̸=s0

P (i|s, a)V ∗(i)

+
∑
i∈S

P (i|s, a)V ∗(i) = V ∗(s′)− V ∗(s0).

Therefore, combining the results for all (s̃, ã, s′)(s′ ̸= s0), we have

Eϕ(rt,Pt)SP (γ0)
⊤ =

∂Q∗

∂P
,

which implies (82) holds for the P part.

For the random reward R. Using the notation in the proof of Lemma G.3, Sε(γ0) =
∂
∂ε log dFε|ε=0. By (81), we have

∂Q∗

∂ε

∣∣∣∣
ε=0

= E(I − γP π∗
)−1(rt − r)Sε(γ0) = Eϕ(rt,Pt)Sε(γ0)

which implies (82) holds for the ε part.

PRε can be arbitrary, so (82) holds for all parametric submodels. This means Q̄T is regular for all parametric submodels
and thus is regular for our semiparametric model.

H A USEFUL CONCENTRATION INEQUALITY

We introduce a useful concentration inequality in this section. It captures the expectation and high probability concentration
of a martingale difference sum in terms of ∥ · ∥∞. It uses a similar idea of Theorem 4 in Li et al. [2021a] and is built on
Freedman’s inequality [Freedman, 1975] and the union bound.
Lemma H.1. Assume {Xj} ⊆ Rd are martingale differences adapted to the filtration {Fj}j≥0 with zero conditional mean
E[Xj |Fj−1] = 0 and finite conditional variance Vj = E[XjX

⊤
j |Fj−1]. Moreover, assume {Xj}j≥0 is uniformly bounded,

i.e., supj ∥Xj∥∞ ≤ X . For any sequence of deterministic matrices {Bj}j≥0 ⊆ RD×d satisfying supj ∥Bj∥∞ ≤ B, we
define the weighted sum as

YT =

T∑
j=1

BjXj

and let WT = diag(
∑T

j=1BjVj(Bj)
⊤) be a diagonal matrix that collects conditional quadratic variations. Then, it

follows that

P

(
∥YT ∥∞ ≥ 2BX

3
ln

2D

δ
+

√
2σ2 ln

2D

δ
and ∥WT ∥∞ ≤ σ2

)
≤ δ (84)

E∥YT ∥∞1{∥WT ∥∞≤σ2} ≤ 6σ
√

ln(2D) +
4BX

3
ln(6D). (85)
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Generally, we have

E∥YT ∥∞ ≤ 8BX

3
ln(3DT 2) + 2

√
E∥WT ∥∞

√
ln(2DT 2). (86)

Proof of Lemma H.1. Fixing any i ∈ [D], we denote the i-th row ofBj as b⊤j . For simplicity, we omit the dependence of bj
on i. Then the i-th coordinate of YT is YT (i) =

∑T
j=1 b

⊤
j Xj andWT (i, i) =

∑T
j=1 b

⊤
j Vjbj . Clearly {b⊤j Xj} is a scalar

martingale difference with WT (i, i) =
∑T

j=1 E[(b⊤j Xj)
2|Fj−1] the quadratic variation and |b⊤j Xj | ≤ ∥bj∥1∥Xj∥∞ ≤

∥Bj∥∞∥Xj∥∞ = BX the uniform upper bound. By Freedman’s inequality [Freedman, 1975], it follows that

P(|YT (i)| ≥ τ andWT (i, i) ≤ σ2) ≤ 2 exp

(
− τ2/2

σ2 +BXτ/3

)
.

Then by the union bound, we have

P(∥YT ∥∞ ≥ τ and ∥WT ∥∞ ≤ σ2) = P
(
max
i∈[D]

|YT (i)| ≥ τ and max
i∈[D]

|WT (i, i)| ≤ σ2

)
≤
∑
i∈[D]

P
(
|YT (i)| ≥ τ and max

i∈[D]
|WT (i, i)| ≤ σ2

)
≤
∑
i∈[D]

P
(
|YT (i)| ≥ τ and |WT (i, i)| ≤ σ2

)
≤ 2D exp

(
− τ2/2

σ2 +BXτ/3

)
. (87)

Solving for τ such that the right-hand side of (87) is equal to δ gives

τ =
BX

3
ln

2D

δ
+

√(
BX

3
ln

2D

δ

)2

+ 2σ2 ln
2D

δ
.

Using
√
a+ b ≤

√
a+

√
b gives an upper bound on τ and provides the high probability result.

The tail bound of ∥YT ∥∞1{∥WT ∥∞≤σ2} has already been derived in (87). For the expectation result, we refer to the
conclusion of Exercise 2.8 (a) in [Wainwright, 2019a] which implies that

E∥YT ∥∞1{∥WT ∥∞≤σ2} ≤ 2σ(
√
π +

√
ln(2D)) +

4BX

3
(1 + ln(2D))

≤ 6σ
√
ln(2D) +

4BX

3
ln(6D),

where the last inequality uses
√
a+

√
b ≤

√
2(a+ b).

For the last result, we aim to bound E∥YT ∥∞ without the condition ∥WT ∥∞ ≤ σ2 for some positive number σ. We first
assert that there exists a trivial upper bound for ∥WT ∥∞ which is ∥WT ∥∞ ≤ TB2X2. This is because

∥WT ∥∞ =

∥∥∥∥∥∥diag
 T∑

j=1

BjVj(Bj)
⊤

∥∥∥∥∥∥
∞

≤
T∑

j=1

∥∥diag (BjVj(Bj)
⊤)∥∥

∞

(a)

≤ ∥Vj∥max∥Bj∥2∞
(b)

≤ TB2X2,

where (a) uses Lemma F.2 and (b) is due to ∥Vj∥max ≤ X2 for all j ∈ [T ]. However, if we set σ2 = TB2X2 in (85), the
resulting expectation bound of E∥YT ∥∞ has a poor dependence on T .

To refine the dependence, we adapt and modify the argument of Theorem 4 in Li et al. [2021a]. For any positive integer K,
we define

HK =

{
∥YT ∥∞ ≥ 2BX

3
ln

2DK

δ
+

√
4max

{
∥WT ∥∞,

TB2X2

2K

}
ln

2DK

δ

}
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and claim that we have P(HK) ≤ δ. We observe that the event HK is contained within the union of the following K events:
HK ⊆ ∪k∈[K]Bk where for 0 ≤ k < K, Bk is defined to be

Bk =

{
∥YT ∥∞ ≥ 2BX

3
ln

2DK

δ
+

√
2
TB2X2

2k−1
ln

2DT

δ
and

TB2X2

2k
≤ ∥WT ∥∞ ≤ TB2X2

2k−1

}

BK =

{
∥YT ∥∞ ≥ 2BX

3
ln

2DK

δ
+

√
2
TB2X2

2K−1
ln

2DT

δ
and ∥WT ∥∞ ≤ TB2X2

2K−1

}
.

Invoking (84) with a proper σ2 = TB2X2

2k−1 and δ = δ
K , we have P(Bk) ≤ δ

K for all k ∈ [K]. Taken this result together with
the union bound gives P(HK) ≤

∑
k∈[K] P(Bk) ≤ δ. Then we have

E∥YT ∥∞ = E∥YT ∥∞1HK
+ E∥YT ∥∞1Hc

K

(a)

≤ TBXP(HK) + E

[
2BX

3
ln

2DK

δ
+

√
4max

{
∥WT ∥∞,

TB2X2

2K

}
ln

2DK

δ

]
(b)

≤ BX +
2BX

3
ln(2DT 2) + 2E

√
max {∥WT ∥∞, B2X2} ln(2DT 2)

(c)

≤ BX +
8BX

3
ln(2DT 2) + 2E

√
∥WT ∥∞ ln(2DT 2)

(d)

≤ 8BX

3
ln(3DT 2) + 2

√
E∥WT ∥∞

√
ln(2DT 2),

where (a) uses ∥YT ∥∞ ≤ TBX , (b) follows by setting δ = 1
T and K = ⌈log2 T ⌉ ≤ T , (c) uses

√
a+ b ≤

√
a+

√
b, and

(d) follows from Jensen’s inequality and exp( 38 ) ≤
3
2 .

I PROOF FOR ENTROPY REGULARIZED Q-LEARNING

In this section, we provide the counterpart results for Q-Learning with entropy. Since the proof is almost similar to that of
Q-Learning, we just provide a sketch for simplicity. Recall that the matrix-form of the update rule is

Q̃t = (1− ηt)Q̃t−1 + ηt(rt + γPtLλQ̃t−1).

It is easy to show Lλ is a 1-contraction with respect to ∥ · ∥∞.

I.1 Convergence Under the General Step Sizes

Theorem I.1. Under Assumption 3.1 and using the general step size in Assumption 3.3, we have

lim
T→∞

1√
T

T∑
t=0

E∥Q̃t −Q∗
λ∥2∞ = 0

whereQ∗
λ is the unique fixed point of the regularized Bellman equationQ∗

λ = r + γPLλQ
∗
λ.

Proof of Theorem I.1. Denote ∆̃t = Q̃t − Q∗
λ for simplicity. We will show that limT→∞

1√
T

∑T
t=0 E∥∆̃t∥2∞ = 0 for

the sequence generated via (16). Similar to Theorem E.1, we notice that the update rule satisfies Q̃t = Q̃t−1 + ηt(r +

γPLλQ̃t−1−Q̃t−1+εt) where εt = rt−r+γ(Pt−P )LλQ̃t−1. Hence, E[εt|Ft] = 0 and E[∥εt∥2∞|Ft] ≤ 2E∥rt−r∥2∞+

2γ2E∥Pt − P ∥2∞∥LλQ̃t−1∥2∞ := A + B∥Q̃t−1∥2∞ with A = 2E∥rt − r∥2∞, B = 2γ2E∥Pt − P ∥2∞. By Theorem E.2,
we arrive the same inequality as (55). Following the same analysis therein, we can show limT→∞

1√
T

∑T
t=0 E∥∆̃t∥2∞ = 0

under the general step size in Assumption 3.3.

I.2 Establishment of FCLT in Proof of Theorem 6.1

Proof of Theorem 6.1. Since the analysis is almost similar to that in Theorem 3.1, we just specify the differences. The
three-step analysis in Section 3.2 still applies here except that we show only modify the first step.
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Similar error decomposition. Let ∆̃t = Q̃t −Q∗
λ. By the regularized Bellman equationQ∗

λ = r+ γPLλQ
∗
λ, it follows

that

∆̃t = (1− ηt)∆̃t−1 + ηt

[
rt + γPtLλQ̃t−1 − (r + γPLλQ

∗
λ)
]

= (1− ηt)∆̃t−1 + ηt

[
(rt − r) + γ(PtLλQ̃t−1 − PLλQ

∗
λ)
]

= (1− ηt)∆̃t−1 + ηt

[
Z̃t + γPt(LλQ̃t−1 − LλQ̃

∗
λ)
]

= (1− ηt)∆̃t−1 + ηt

[
Z̃t + γZ̃ ′

t + γP (LλQ̃t−1 − LλQ̃
∗
λ)
]
,

where we use Z̃t = (rt − r) + γ(Pt −P )LλQ
∗
λ is the regularized Bellman noise and Z̃ ′

t = (Pt −P )(LλQ̃t−1 −LλQ̃
∗
λ)

(which is still a martingale difference.)

To analyze LλQ̃t−1 − LλQ̃
∗
λ, we introduce an intermediate linear operator Lπ

λ, which is defined by

(Lπ
λQ)(s) := Ea∼π(·|s) [Q(s, a)− λ log π(a|s)] ,

for a given policy π and regularization coefficient λ. As a result of notation, (LλQ)(·) = supπ∈Π(Lπ
λQ)(·) for allQ ∈ RD.

We assume LλQ̃t = Lπ̃t

λ Q̃t and LλQ̃
∗
λ = Lπ∗

λ

λ Q̃
∗
λ. Hence,

LλQ̃t−1 − LλQ̃
∗
λ = Lπ̃t−1

λ Q̃t−1 − Lπ∗
λ

λ Q̃
∗
λ = (Lπ̃t−1

λ − Lπ∗
λ

λ )Q̃t−1 + P
π∗
λ∆̃t−1

where the last equation uses Lπ∗
λ

λ Q̃t−1 − Lπ∗
λ

λ Q̃
∗
λ = P π∗

λ∆̃t−1 by definition. Putting pieces together,

∆̃t = Ãt∆t−1 + ηt

[
Z̃t + γZ̃ ′

t + γZ̃ ′′
t

]
where Ãt = I − ηt(I − γP π∗

λ), Z̃ ′
t = (Pt − P )(LλQ̃t−1 − LλQ̃

∗
λ), and Z̃ ′′

t = P (Lπ̃t−1

λ − Lπ∗
λ

λ )Q̃t−1. Recurring the
last equality gives

∆̃t =

t∏
j=1

Ãj∆̃0 +

t∑
j=1

t∏
i=j+1

Ãiηj

(
Z̃j + γZ̃ ′

t + γZ̃ ′′
t

)
.

Besides, using the general step size in Assumption 3.3, we can show 1√
T

∑T
t=1 E∥∆̃t∥2∞ → 0 (in Theorem I.1).

Satisfied Lipschitz condition. In order to apply the second and third analysis in Section 3.2, we only need to show
that ∥Z̃ ′′

t ∥∞ ≤ L∥∆̃t−1∥2∞ for an appropriate L > 0. Notice that Lπ∗
λ

λ Q̃t−1 ≤ Lπ̃t−1

λ Q̃t−1 and Lπ̃t−1

λ Q̃∗
λ ≤ Lπ∗

λ

λ Q̃
∗
λ

coordinately. It implies that Z̃ ′′
t = P (Lπ̃t−1

λ − Lπ∗
λ

λ )Q̃t−1 satisfies

0 ≤ Z̃ ′′
t ≤ P

[
(Lπ̃t−1

λ − Lπ∗
λ

λ )Q̃t−1 − (Lπ̃t−1

λ − Lπ∗
λ

λ )Q̃∗
λ

]
= (P π̃t−1 − P π∗

λ)∆̃t−1.

Hence, ∥Z̃ ′′
t ∥∞ ≤ ∥(P π̃t−1−P π∗

λ)∆̃t−1∥∞ ≤ ∥P π̃t−1−P π∗
λ∥∞∥∆̃t−1∥∞ ≤ ∥Ππ̃t−1−Ππ∗

λ∥∞∥∆̃t−1∥∞. By definition
of Ππ , we know that

∥P π̃t−1 − P π∗
λ∥∞ ≤ sup

s∈S
∥π̃t−1(·|s)− π∗

λ(·|s)∥∞.

On the other hand, π̃t−1, πλ has a closed form in terms of Q̃t−1 andQ∗
λ respectively. Actually, we have that π̃t−1(·|s) ∝

exp(Q̃t−1(s, ·)/λ) and π∗
λ(·|s) ∝ exp(Q∗

λ(s, ·)/λ). By the following lemma, we know that ∥πt−1(·|s) − πλ(·|s)∥∞ ≤
1
λ∥Q

∗
λ(s, ·)− Q̃t−1(s, ·)∥∞. As a result, we have ∥Z̃ ′′

t ∥∞ ≤ L∥∆̃t−1∥2∞ with L = 1
λ .

Lemma I.1. For any vector v ∈ Rd, let softmax : Rd → Rd be defined by softmax(v)(i) = exp(v(i))/
∑

j∈[d] exp(v(j)).
Then, ∥softmax(v1)− softmax(v2)∥∞ ≤ ∥v1 − v2∥∞.

Proof of Lemma I.1. For any v, it is easy to find that softmax(v) = ∂L(v)
∂v where L(v) = log(

∑
j∈[d] exp(v(j))). It is

easy to show that
∥∥∥∂2L(v)

∂2v

∥∥∥
∞

≤ 1 for any v. Hence, the result follows from Taylor’s expansion.

The rest proof is almost the same as that in Section 3.2.
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Figure 3: Left: log-log plots of the sample complexity T (ε, γ) versus the discount complexity parameter (1− γ)−1. Right:
the coverage rate and the average length of the 95% confidence interval for regularized Q-Learning.

I.3 Non-asymptotic Bounds in Proof of Theorem 6.1

The error decomposition in Appendix F.1 still apply here. Let ∆t = Q̃t −Q∗
λ for simplicity. Hence, it follows that

E∥∆̄T −Q∗
λ∥∞ ≤

4∑
i=0

E∥T̃i∥∞

where

T̃0 =
1

η0T
(AT

0 − η0I)∆̃0, T̃1 =
1

T

T∑
j=1

G−1Z̃j , T̃2 =
1

T

T∑
j=1

(AT
j −G−1)Z̃j

T̃3 =
γ

T

T∑
j=1

AT
j (Pj − P )(LλQj−1 − LλQ

∗
λ), T̃4 =

γ

T

T∑
j=1

AT
j (P

πj−1 − P π∗
)∆j−1.

Pay attention that theAT
j used above depends on π∗

λ rather than π∗ now. As argued in last subsection, Assumption 3.2 is
satisfied here with L = 1

λ .

The remaining thing are to repeat what we have done in Appendix F.2, analyzing each term T̃i’s using non-asymptotic
concentration inequalities. There are some important aspects to notice. First, for any j, ∥Z̃j∥∞ ≤ 2(1 + γ∥LλQ

∗
λ∥∞) ≤

2(1+ γ∥Q∗
λ∥∞ + γλEntropy(π∗

λ)) ≤
1+λ log 1

|A|
1−γ = Õ( 1

1−γ ) where we use Entropy(π∗
λ) ≤ log 1

|A| and ∥Q∗ −Q∗
λ∥∞ ≤

λ
1−γ log 1

|A| (which is proved in Theorem 5 of [Yang et al., 2019]). Second, the properties ofAT
j ’s in Lemma C.3 and C.4

still hold with the same parameters. Finally, we have a counterpart Theorem E.4 due to Theorem 1 in [Wainwright, 2019b]
also holds here. The possible difference is that ∥Z̃j∥∞ is bounded λ

1−γ log 1
|A| instead of 1

1−γ , which is equivalent up to log
factors. Hence, up to log factors, Theorem E.4 also holds for entropy regularized Q-Learning. Putting pieces together, we
complete the proof.

J DETAILS OF EXPERIMENTS

The setup of MDP. According to Theorem 5.1, for sufficiently small error ε > 0, we expect the sample complexity
T (ε, γ) is always upper bounded by ∥diag(VarQ)∥∞ and 1

(1−γ)3 at a worst case. To ensure Assumption 3.2, we consider a
random MDP. In particular, for each (s, a) pair, the random reward R(s, a) ∼ U(0, 1) is the uniformly sampled from (0, 1)

and the transition probability P (s′|s, a) = u(s′)/
∑

s u(s), where u(s)
i.i.d.∼ U(0, 1). The size of the MDP we choose is

|S| = 4, |A| = 3. We consider 30 different values of γ equispaced between 0.6 and 0.9. For a given γ, we run Q-learning
algorithm for 105 steps (which already ensures convergence) and repeat the process independently for 103 times. Finally,
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we average the ℓ∞ error ∥Q̄T −Q∗∥∞ of the 103 independent trials as an approximation of E∥Q̄T −Q∗∥∞ and compute
T (ε, γ) by definition. The polynomial step size ηt = t−α uses α ∈ {0.51, 0.55, 0.60} and the resacled linear step size is
ηt = (1+(1−γ)t)−1. In Figure 2, we choose ε = e−4 and plot the results on a log-log scale. We then plot the least-squares
fits through these points and the slopes of these lines are also provided in the legend.

Confirming the theoretical predictions. In the body, we show the least-squares fits through the points
{(log ∥diag(VarQ)∥∞, log T (ε, γ))}γ∈Γ. As a complementary, we also show the fits through {(log(1 −
γ)−1, log T (ε, γ))}γ∈Γ in Figure 3.

Online inference experiments. We visualize the empirical coverage rate and confidence interval lengths of averaged
Q-Learning in Figure 1. We use the random scaling method (Algorithm 1 in [Lee et al., 2021]) to compute the weighting
matrix WT ∈ RD×D where WT =

∫ 1

0
ϕ̄T (r)ϕ̄T (r)

⊤dr and ϕ̄T (r) = ϕT (r)− r · ϕT (1). We focus on the inference of
the optimal value function on the first state s0 and the first action a0, i.e., Q∗(s0, a0). We use 104 steps of value iteration to
compute the optimal value functionQ∗. From [Lee et al., 2021, Li et al., 2022], the asymptotic confidence interval is given
by [

Q̄T (s0, a0)− 6.753

√
WT ((s0, a0), (s0, a0))

T
, Q̄T (s0, a0) + 6.753

√
WT ((s0, a0), (s0, a0))

T

]
.

We set T = 104 and discard the first 5% samples as a warm-up. This warm-up is quite important; otherwise WT would
change rapidly (as a result of fast convergence ofQT ) and deteriorate the performance. The performance is measured by
two statistics: the coverage rate and the average length of the 95% confidence interval. We also provide similar results for
regularized Q-Learning in Figure 3.
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