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Abstract

Energy-Based Models (EBMs) have proven to be
a highly effective approach for modelling densi-
ties on finite-dimensional spaces. Their ability
to incorporate domain-specific choices and con-
straints into the structure of the model through
composition make EBMs an appealing candidate
for applications in physics, biology and computer
vision and various other fields. Recently, Energy-
Based Processes (EBP) for modelling stochas-
tic processes was proposed for unconditional ex-
changeable data (e.g., point clouds). In this work,
we present a novel subclass of EBPs, called F-
EBM for conditional exchangeable data, which
is able to learn distributions of functions (such
as curves or surfaces) from functional samples
evaluated at finitely many points. Two unique
challenges arise in the functional context. Firstly,
training data is often not evaluated along a fixed
set of points. Secondly, steps must be taken
to control the behaviour of the model between
evaluation points, to mitigate overfitting. The
proposed model is an energy based model on
function space that is decomposed spectrally,
where a Gaussian Process path measure is used
to reweight the distribution to capture smooth-
ness properties of the underlying process being
modelled. The resulting model has the ability to
utilize irregularly sampled training data and can
output predictions at any resolution, providing an
effective approach to up-scaling functional data.
We demonstrate the efficacy of our proposed ap-
proach for modelling a range of datasets, includ-
ing data collected from Standard and Poor’s 500
(S&P) and UK National grid.
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1 INTRODUCTION

The problem of generative modelling is concerned with
learning distributions from samples. This challenge arises
naturally in various applications of machine learning for
which a number of well-established methods has been pro-
posed including Variational Autoencoders (Kingma and
Welling, 2013), Generative Adversarial Networks (Good-
fellow et al., 2014) and Energy-Based Models (EBM) -
which are intimately connected (Che et al., 2020).

Broadly, these methods all assume that the samples are in-
trinsically finite dimensional. When the underlying data
is continuous, generative models are usually trained on a
discretization of the data; ultimately, it learns a probabil-
ity distribution on a finite dimensional space whose dimen-
sion scales with the resolution of the data (Ramsay, 1982).
For example, in the context of images, the energy of an
EBM is often defined on the same resolution of the data
(Du and Mordatch, 2019). A key distinguishing feature be-
tween classical finite dimensional generative models and
the proposed formulation is the ability to generate predic-
tions along any mesh and at any resolution. This natu-
rally leads to important applications, including up-scaling
the resolution of functional data, as well as data imputation
over irregularly sampled datasets.

In this work, we propose a novel class of generative model
for data which is assumed to live within an infinite dimen-
sional space of functions F . In this setting, the data will
consist of a finite set of function discretizations; each eval-
uated over a finite set of points. Based on this data, we
seek to learn a generative model for the associated distri-
bution over the function space F directly. The functional
data context poses unique challenges. Firstly, it is often
the case that the evaluation points along which the func-
tions are discretized is not uniform across samples, i.e.,
each function in the sample can be evaluated over a dif-
ferent set of points. We address this challenge by con-
structing a likelihood which can accommodate observa-
tions along irregular meshes. The second challenge relates
to how to inform the characteristics of the learned func-
tional distribution between evaluation points. For this, we
use a Gaussian process path measure “tilt” the model to-
wards functions with certain characteristics. We note that
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the key difference between functional data (or conditional
exchangeable data) and unconditional exchangeable data
(as in Yang et al. (2020b), e.g., point clouds) is that the
evaluation points are available in functional settings, and
so do not explicitly share the same challenges.

In summary, our contributions include introducing a novel
class of energy-based models that is fully flexible and well
adapted to functional data for generative modelling and re-
gression. We compare our proposed model with other pop-
ular models such as the Neural Process, Gaussian Process
and Variational Implicit Processes for generative modelling
and as well as function inference on a range of synthetic
and real-life datasets. Specifically, we evaluate whether
each model can accurately interpolate between points, and
upscale the underlying function, as well as, its ability to
“trick” a two-sample test. We demonstrate the benefits
and abilities of our proposal for modelling FashionMNIST
(Xiao et al., 2017) as a resolution independent model that
can freely upscale and downscale images.

2 BACKGROUND

Our proposed methodology builds upon the energy-based
modelling (EBM) paradigm (Hinton, 2002) and is a sub-
class of energy-based processes (EBP) (Yang et al., 2020b,
Section 3.2) that provides a generalization of EBMs to
infinite dimensional spaces. In the classical setting,
EBMs seek to learn a density proportional to exp(−E(x))
over sample space. The normalization constant C =∫
exp(−E(x)) dx (known as the partition function) is typ-

ically unknown and must be approximated. The energy
function E(·), often parametrized using a neural network,
seeks to assign low-energy values to inputs x in the data
distribution and high-energy values to others. The flexi-
bility and expressibility of the energy function give rise to
several advantages of EBMs over other generative models,
such as those based on transformation of noise. One key
advantage is its compositionality property that allows for
incorporation of domain-specific knowledge through, e.g.,
summing up two or more energy functions which repre-
sent different goals or constraints (Mnih and Hinton, 2005).
This makes EBMs promising candidates for modelling real
life phenomena (Du et al., 2020; Matsubara et al., 2020)
and thus have found applications in physics (Noé et al.,
2019) and biology (Ingraham et al., 2019) to name a few.

A latent variable EBM has the form pθ(Y,Z) =
1
Cθ

exp(−Eθ(Y, Z)) where Y is observed, Z is a latent
variable with energy function Eθ : Y × Z → R, and
Cθ =

∫
Y,Z exp(−Eθ(y, z))dydz is the normalizing con-

stant. We will focus on these kinds of EBM.

Generating samples from an EBM is itself a challenging
problem. Common approaches of generating these samples
is via a Markov Chain Monte Calo (MCMC) algorithm,
such as Hamiltonian Monte Carlo (Neal et al., 2011). In

our work, we utilize Langevin Monte Carlo without an ac-
cept/reject step (Neal, 1993, Section 5.3) with the following
transition:

Yt+1 = Yt − ht∇YtEθ(Yt, Zt) +
√
2htωt, (1)

Zt+1 = Zt − ht∇Zt
Eθ(Yt, Zt) +

√
2htω

′
t, (2)

where ht is the step size and ωt, ω
′
t ∼ N (0, I). Samples

from the conditional distribution pθ(Z |Y = y) can be gen-
erated using Eq. 2 for a fixed Yt = y. It can be shown that
as t → ∞ and λt → 0 then we have (Yt, Zt) ∼ pθ(Y,Z)
(Roberts and Tweedie, 1996). In practice, the chain is run
for a finite number of iterations with a fixed step size, which
is sufficient to produce samples close to its stationary dis-
tribution pθ(Y, Z) (Teh et al., 2016; Vollmer et al., 2016).

Given n samples from the data distribution Y :=

{Yi}ni=1
i.i.d∼ p(Y ), the parameters of an EBM can be ob-

tained by maximizing the log marginal likelihood L(θ) =
1
n

∑n
i=1 log

∫
Z pθ(Yi, z)dz. However, directly optimizing

L is infeasible due to the intractability of the normalizing
constant. Contrastive divergence is a method for approxi-
mately maximizing the marginal likelihood by approximat-
ing the gradient update. The derivative of the log marginal
likelihood can be written as

∂L(θ)
∂θ

= EYi∼p(Y )EZ∼pθ(Z |Yi)

[
∂Eθ(Yi, Z)

∂θ

]
(3)

− E(Y,Z)∼pθ(Y,Z)

[
∂Eθ(Y,Z)

∂θ

]
, (4)

where p(Y) is the empirical distribution of Y. The deriva-
tion can be found in Appendix B.1. This quantity can
be estimated using samples from the conditional and joint
distribution for the respective terms. However, generating
these samples from most models is a difficult problem. In-
stead, Contrastive divergence uses samples drawn approxi-
mately from the required distributions by running short run
MCMC chains and so defined as

CD(θ) = EYi∼p(Y )EZ∼Λ[pk
θ (Z |Yi)]Eθ(Yi, Z) (5)

− E(Y,Z)∼Λ[pk
θ (Y,Z)]Eθ(Y, Z), (6)

where pkθ(Z |Yi) and pkθ(Y, Z) is the conditional and
joint distribution respectively after running k steps of the
Langevin dynamics for instance, and Λ is the stop gradi-
ent operator as in Du et al. (2021). Intuitively, minimizing
Equation 6 results in a decrease of the energy of samples
from the data distribution (and posterior) and increase in
the synthetic samples, which follows “analysis by synthe-
sis” scheme (Grenander et al., 2007).

3 PROPOSAL: F-EBM

Setting. We assume that we observe N independent re-
alizations f1, . . . , fN ∈ F of an (unknown) probability
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(a) Neural Process (b) Gaussian Process (weight-view) (c) F-EBM (ours)

Figure 1: Graphical models of (a) Neural process, (b) Gaussian process, and (c) F-EBM. Grey nodes indicate the variable
is observed. Dashed lines indicate inference (given c context points). Continuous lines indicate the generative process, and
dashed lines the inference.

measure P supported on the space F : X → Y . For
an arbitrary function fi, it is evaluated on M (possibly
distinct) points Xi := (xm)Mm=1 ⊂ XM taking values
Yi := (f (xm))

M
m=1 ⊂ YM . In this setting, the dataset

takes the form (X,Y ), where X = {Xn}Nn=1 and Y =
{Yn}Nn=1. Note that, for notational simplicity, we shall as-
sume that each representation has the same number of eval-
uation points. The extension to the more general setting is
straightforward. Given the tuple (X,Y ), our objective is
to learn a representation of the unknown probability distri-
bution P.

Gaussian Process (weight-view). Consider a mean-
zero Gaussian process (GP) GP(0, k) with positive-
definite kernel k, the Karhunen-Loeve expansion (Sulli-
van, 2015b, Section 11.1) provides a method for sam-
pling from the GP via its eigensystem {(λi, ei)}∞i=1. In
other words, through Mercer’s theorem, we have k(x, t) =∑∞

i=1 λiei(x)ei(t) where the eigenvalues λi and eigen-
functions ei(·) are solutions to the eigenvalue problem
λiei(t) =

∫
X k(t, x)ei(x) dx. Then, Karhunen-Loeve ex-

pansion states that samples from the GP can be expressed
as the following infinite sum f(·) =

∑∞
i=1 ξi

√
λiei(·)

where {ξi}∞i=1 is a sequence of independent N (0, 1) ran-
dom variables. Given ξ = (ξi)

∞
i=1 ∼ Π :=

∏∞
i=1 N (0, 1),

the map g(ξ)(·) =
∑∞

i=1 ξi
√
λiei(·) defines a GP path

measure as the push forward of measure Π. In other words,
for ξ ∼ Π, we have g(ξ) ∼ GP(0, k). Figure 1b shows the
graphical model of a GP in weight-space view.

Proposal: F-EBM. The Karhunen-Loeve weight-space
interpretation provides an inspiring perspective for con-
structing an energy-based model that can be informed by
the kernel. We propose a distribution of functions which is
tilted by a GP path measure: the path measure plays the role
of reweighting the eigenfunctions depending on its smooth-
ness.

Given a kernel and its (approximate) eigensystem
({λi}

dξ

i=1, {ei(·)}
dξ

i=1), we define the map g̃θgen(Z)(·) :=∑dξ

i=1 µθgen(Z)i
√
λiei(·) where µθgen : RdZ → Rdξ is a

parameterized function. The eigenvalues play the crucial
role of reweighting the eigenfunction to bias the model to-

wards smoother functions; the level of which is determined
by the kernel. Each sample takes the form f(·) = g̃θ(Z)(·)
where Z be a Rdz -valued r.v. with density pθprior . The
function µθgen can be thought of as a “generator” that syn-
thesizes samples in the weight space instead of generating
directly in the data space.

As for the distribution of Z, denoted by pθprior (Z),
there are a variety of choices. We utilize energy-based
modelling and choose a prior density pθprior (Z) ∝
exp(−Eθprior (Z))p0(Z) where Eθprior : RdZ → R and
p0 :=

∏dZ

i=1 N (0, σ2
0) is the reference or base distribution.

This technique is known as exponential tilting (see Xiao
et al. (2020); Pang et al. (2020) in the context of genera-
tive modelling). We found that a Gaussian prior for pθprior
was too simple which resulted in poor fit of the model, and
using an energy-based prior (with no base distribution) re-
sulted in a distribution that is hard to sample from (see Sec-
tion 5.3).

Given evaluations of a function (X,Y ), we relate the
observations to an underlying function g̃θgen(Z) (in-
duced the random variable Z) using a likelihood func-
tion pθgen(Y |Z,X). The likelihood is constructed by as-
suming that each point is sampled independently of each
other. In order words, the likelihood pθgen(Y |Z,X) takes
the form ΠM

i=1pθgen(yi |, Z, xi). There are many choices
for the (point-wise) likelihood. In this work, we focus
on the case where pθgen(yi |Z, xi) is Gaussian and (con-
tinuous) Bernoulli (see Loaiza-Ganem and Cunningham
(2019)). More precisely, for the Gaussian case, we have
pθgen(yi |Z, xi) ∝ exp(−∥yi − g̃θgen(Z)(xi)∥2/2σ2).

Combining the Karhunen-Loeve interpretation and (tilted)
energy-based prior, we can construct a generative model
over function space. In particular, we propose the following
energy-based model:

pθ(Y,Z|X) = pθgen(Y |Z,X)pθprior (Z),

where θ = (θgen, θprior). The difference between F-EBM,
and Neural processes, and Gaussian processes can be seen
from the graphical model perspective as in Figure 1c. In
Appendix A, we show that F-EBM defines a valid stochas-
tic process using Kolmogorov extension theorem.
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One method of training the model is by minimizing con-
trastive divergence (CD) (Hinton, 2002). However, we
found that directly applying contrastive divergence as in
Eq. 6 did not produce sufficiently satisfying results. In-
stead, following in Pang et al. (2020), one can improve the
objective by returning to the gradient of the maximum like-
lihood and applying further reductions to avoid approxi-
mations until the last step. The gradients of the marginal
likelihood can be written as

∇θgenL(θ) = −Ep(X,Y )Epθ(Z|X,Y )∇ log pθ(Y |Z,X),

∇θpriorL(θ) = Ep(X,Y )Epθ(Z|X,Y )∇Eθ(Z)

− Epθ(Z)∇Eθ(Z).

Its derivation can be found in Appendix B.2. Now, we
can apply approximation techniques and estimated the gra-
dient using samples generated from Langevin MC target-
ing the prior pθprior (Z) and the conditional distribution
pθ(Z |Y,X). In other words, we minimize the following
loss:

L(θ) := −Ep(X,Y )EΛ(pk
θ (Z|X,Y )) log pθ(Y |Z,X),

+Ep(X,Y )EΛ(pk
θ (Z|X,Y ))Eθ(Z)− EΛ(pk

θ (Z))Eθ(Z).
(7)

where pk(·) denotes the distribution after k steps of the
Langevin algorithm, and Λ is the stop gradient operator.
The loss yields a simple interpretation. When minimizing
this quantity, the parameter θgen will be updated such the
observation (X,Y ) and the posterior latent variable Z has
a higher likelihood. In the case of a Gaussian likelihood,
this will correspond to minimizing the mean squared er-
ror between Y and g̃θ(Z)(X). As for the prior parameter
θprior, the update is akin to CD where we are decreasing
the energy of the posterior latent variable and increasing
the energy of the model latent samples.

Estimating eigensystem of a kernel. For a given kernel
k, we typically do not have analytical expressions for the
associated Mercer eigensystem and must resort to numer-
ical approximation. To this end, we employ the Nyström
method to approximate the eigenvalue problem, i.e., we
have

λiei(t) =

∫
X
k(t, x)ei(x)dp(x) ≈

1

l

l∑
j=1

k(t, xj)ei(xj),

(8)
for some choice of X := {xj}lj=1 ⊂ X . Substituting
t = xk for k = 1, . . . , l results in an eigenvalue prob-
lem 1

lK(X,X)êi(X) = λ̂iêi(X) where K(X,X) =
(k(xi, xj)ij) ∈ Rl×l is the gram matrix, and êi(X) =

[êi(x1), . . . , êi(xl)]
⊤ ∈ Rl. To obtain {(λ̂i, êi(X))}li=1,

we solve for the eigenspectrum of the scaled gram matrix
1
lK(X,X) with eigenvectors normalized to have ℓ2 norm
equal to

√
l yields the desired result. The eigenvalues λ̂i

converge to λi in the limit l → ∞ (Baker, 1979, Theorem
3.4). The eigenvectors correspond to the eigenfunctions

{êi(X)}li=1 evaluated at X but we require eigenfunctions
to be evaluated at arbitrary locations. One common esti-
mator is to solve for e(t) in Equation 8 and using estimates
of {λ̂i, êi(X)}li=1 (for instance, see Williams and Seeger
(2001, Eq. 9)). However, we found that the estimates of
eigenfunctions with small eigenvalues were not accurate.
Other methods of accurately interpolating between evalu-
ated points can be used such as kernel ridge regression (see
Appendix D).

Inference of f . Given a context pair (Xc, Y c), one may
want to infer the underlying latent function f . To do
this, we first obtain samples from the conditional distri-
bution p(Z |Y,X), which is then passed through the map
g̃ to induce a distribution over the functions (see Figure
1c). We write p(f |Y,X) to denote the distribution of
g̃θ(Z) |Y,X . Inference of a function (corresponding to a
potentially infinite-dimensional vector) is cast as inference
of Z with a much lower dimensionality and allows for effi-
cient use of MCMC methods.

Kernel Choice. The kernel can be used to capture any prior
belief about the underlying function and plays a crucial role
in the learnt model. One method is to construct kernels
from the product and sums of well-studied existing ker-
nels, such as the Gaussian and Matérn kernel (Williams and
Rasmussen, 2006, see Section 4.2). Other choices include
constructing an explicit feature map with a neural network,
or obtain a data-driven basis via functional Principal com-
ponent analysis. A combination of all the aforementioned
methods can also be used in conjunction.

4 RELATED WORK

Stochastic processes provide an elegant method for defin-
ing distributions of functions. A popular example is
the Gaussian processes (GP) (Williams and Rasmussen,
2006). A significant search effort has been made to im-
prove expressivity of GP by learning complex kernel func-
tions (see Damianou and Lawrence (2013); Wilson et al.
(2016) to name a few). An alternative research direc-
tion has been to construct expressive stochastic processes
using neural networks. These include neural processes
(NP) and its variants (Garnelo et al., 2018a,b; Al-Shedivat
et al., 2017), EBP (Yang et al., 2020b), π-VAE (Mishra
et al., 2022) and Variational implicit processes (VIP) (Ma
et al., 2019). NP and VIP has been proposed to learn
an approximation of a stochastic process by combining
the perks of GPs and neural networks for scalable infer-
ence while quantifying its uncertainty. While VIP, GPs
and NPs can be used as generative models for functional
data, the focus has been on uncertainty quantification and
prediction rather than generative modelling. Yang et al.
(2020b) proposed the form of EBM for stochastic pro-
cesses called energy-based process (EBP) taking the form
pθ(Y,Z;X) ∝ exp(−fθ(Y,Z;X))p(Z) where particular
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forms of the likelihood fθ and p(Z) recovers popular mod-
els such as Gaussian processes and Neural processes.

Our proposal F-EBM is a particular instantiation of
both EBP and VIP. Energy-based processes (Yang et al.,
2020b, Section 3.2) have the form pθ(Y,Z;X) ∝
exp(−fθ(Y,Z;X))p(Z), and so choosing fθ(Y,Z;X)) =
− log

[
pθgen(Y |Z,X)

]
+Eθprior (Z) and p(Z) = p0(Z), it

is clear that F-EBM is a particular EBP. As for (noiseless)
Variational implicit processes (Ma et al., 2019, Definition
1), they have the form f = hθ(·, Z) and Z ∼ p(Z) and
choosing hθ(·, Z) = g̃θ(Z)(·) and Z to be sampled from
a distribution with density pθprior (Z), we have shown that
F-EBM is a VIP.

The recently proposed π-VAE (Mishra et al., 2022) extends
the VAE formalism to function classes and effectively pro-
viding a generative model for stochastic processes. This is
achieved by performing a projection of the data onto a finite
number of basis of functions. The encoder/decoder pair
are then trained to learn the distribution of the associated
basis coefficients, from which realizations of the learned
stochastic process can be readily generated. This is simi-
lar, in spirit, to our approach which relies on a set of basis
functions and transforms the problem into density estima-
tion on the weight space domain. However, our approach
can be seen as defining a prior for this transformation re-
sulting in a more stable transformation, particularly for ir-
regular meshes which is not the case for π-VAE as seen in
Table 4.

There are other related works that focus on learning im-
plicit representations of images as functions (Dupont et al.,
2022; Anokhin et al., 2021) and physics-informed mod-
elling (Yang et al., 2020a; Meng et al., 2022). Dupont et al.
(2022) proposed a GAN approach for learning a genera-
tive model for images as functions. Concurrently, PI-GAN
(Yang et al., 2020a) proposed as a GAN approach for learn-
ing an approximation of a stochastic process, focusing on
endowing the generator with prior knowledge in the form
of stochastic differential equation. Meng et al. (2022) ex-
tended it further by using DeepONets (Lu et al., 2021) to
incorporate physical knowledge and proposed a method for
inference of the latent function by using HMC (Neal et al.,
2011). Note that the form of the PI-GAN requires some
extensions to accommodate for learning functions with dif-
ferent evaluation points whilst our proposal does not.

5 EXPERIMENTS

First, in Section 5.1, we begin by looking at the cali-
bration of our proposal on draws from a noiseless Gaus-
sian process. Then, in Section 5.2, we benchmark our
model against existing models such as π-VAE, GP using
the Matérn, NP, VIP (with a neural sampler, see Ma et al.
(2019, Example 1)) and EBP (Gaussian model, see Yang
et al. (2020b, Section 3.2)) on synthetic and real data. Fol-

lowing that, in Section 5.3, we compare the between differ-
ent choices of pθprior (Z). Then, in Section 5.4, we show
how our proposal can be used as a resolution-independent
generative model that can freely upscale and downscale im-
ages.The details for the experiments can be found in the
Appendix C. The code can be found online at https:
//github.com/jenninglim/functional-ebm.

5.1 Calibration

We are interested in examining the calibration of our pro-
posed method. This is performed by visually inspecting
the confidence intervals and its average predictive CDF as
recommended in Gneiting et al. (2007, Section 3.2).

The dataset is composed of 100 draws from a noiseless GP
with a Gaussian kernel where each function evaluated at 50
distinct irregular points randomly sampled from U(−5, 5).
The baseline is a noisy GP that shares the same kernel as the
underlying ground-truth noiseless GP, but assumes a Gaus-
sian observational noise in the likelihood. This baseline
model provides a glimpse of the performance when you
know the underlying functional process, but makes in in-
correct assumption about the noise.

In Figure 2, it can be seen that the confidence intervals and
average predictive CDF (see Section 3.2, Gneiting et al.
2007) of the proposed methods are similar in calibration to
the GP. The average predictive CDF also hints the cost of
assuming noisy observations.

5.2 Benchmark

We utilize four datasets composed of one synthetic and
three real-world datasets. The samples from the dataset
can be seen in Table 1. The first Quadratic (n = 400,
m = 30) is a bi-modal dataset composed of quadratic
functions that was generated by sampling the sign of the
quadratic term from a uniform distribution on {−1, 1}. The
dataset was designed to test the model’s capacity to ex-
press bi-modality. We use 200 samples for training and
the remainder for evaluation. The second Melbourne
(n = 1138, m = 24) is a real-life dataset where each sam-
ple is the number of pedestrians on a certain street in Mel-
bourne recorded throughout different times of the day. We
use 796 samples for training and the remainder for evalua-
tion. The third dataset GridWatch (n = 532, m = 144)
is another real-life dataset where each sample is the de-
mand of energy on the UK National Grid throughout dif-
ferent times of the day. We use 372 samples for training
and the remainder for evaluation. Finally, we use Stocks
(n = 400, m = 200) where each sample corresponds to a
stock highest performance on that day, recorded over 200
days starting from February 2013 (when data is available).
The data is taken from S&P 500. We use 200 samples for
training and the remainder for evaluation. See Appendix
C.3 for preprocessing details. These datasets are “simple”,

https://github.com/jenninglim/functional-ebm
https://github.com/jenninglim/functional-ebm
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Table 1: Visualisation of 100 samples drawn from the dataset, F-EBM (ours), π-VAE, Neural Process (NP), Energy-based
processes (EBP), and Variational Implicit processes (VIP).

Dataset F -EBM (ours) π-VAE NP EBP VIP
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Table 2: Test power of two-sample test comparing samples of the data with samples from the model. Bold indicates the
best score (lower is better). The test power is averaged over 200 trials with 10 samples drawn from the dataset and model
at significance level α = 0.05.

Dataset Quadratic Melbourne Stocks GridWatch

F -EBM (ours) 0.09 0.09 0.08 0.09
π-VAE 0.22 0.32 0.11 0.16

Neural Process 0.59 0.95 1.00 1.00
EBP 0.322 0.52 0.31 0.56
VIP 0.09 0.11 0.86 1.00

Gaussian Process 1.00 0.77 0.67 1.00

Table 3: Comparison between the performance of F-EBM for different priors on Quadratic dataset.

Downsample Middle Random

Prior Type Test Power p = 1
4

p = 1
3

p = 1
2

p = 1
4

p = 1
2

p = 3
4

p = 1
4

p = 1
2

p = 3
4

Gaussian (dz = 100) 1.00 0.006 0.005 0.004 0.256 0.006 0.005 0.006 0.003 0.003
EBM (dz = 10) 0.10 0.029 0.026 0.029 3.32 0.057 0.066 0.048 0.040 0.043

EBM (dz = 100) 0.65 3.337 2.933 0.924 83.374 72.046 30.640 95.854 45.024 7.528

Tilted 0.08 0.005 0.004 0.003 0.044 0.008 0.006 0.008 0.005 0.004

Figure 2: Calibration plots. We show the 95% confidence interval generated from 300 samples of (a) Gaussian Process,
F-EBM with (b) Gaussian, and (c) Matérn kernel. In (d), we show the average predictive CDF of various models in
comparison with the data.

in the sense, that they are low dimensional, but they exhibit
complex properties such as bimodality, multi-modality and

large support. For these datasets, we chose to use a Gaus-
sian likelihood.
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Evaluation. We measure the quality of the trained model
by considering its goodness-of-fit and predictive error. We
compare our proposed model to a Gaussian process (GP)
implemented in GPyTorch (Gardner et al., 2018), a Neu-
ral process (NP) which follows recommended practices (Le
et al., 2018), and our own implementation of π-VAE, EBP,
VIP (see Appendix C.4 for details).

Goodness-of-fit. It is desirable for our model to be a good
fit to the data distribution. Since evaluating generative
models is highly difficult, we consider the three methods
for evaluating the fit. (1) We visually inspect the samples
generated from the model. (2) As a quantitative measure,
we evaluate the model’s fit by computing the test power
of a functional non-parametric two-sample test to compare
the synthetic samples and samples from the dataset. Since
all models are wrong (Box, 1976), we expect the test to
reject the null hypothesis that the learnt model is equal
to the generating process of the dataset and so, the test
power will indicate the fidelity of the model. We use the
test proposed by Wynne and Duncan (2022). (3) Follow-
ing Yoon et al. (2019), we visually evaluate this by plot-
ting a 2-dimensional (dimensionally-reduced) embeddings
of both the samples generated by the model and taken from
the dataset. A high degree of overlap between the data
and model embedding’s distribution suggests a good fit to
the data distribution. For dimensionality reduction meth-
ods, we apply t-SNE (Van der Maaten and Hinton, 2008)
and PCA (Bryant and Yarnold, 1995) on both the original
data and the generated synthetic samples. For the sake of
brevity, we defer these figures to Appendix E.

Predictive error. The predictive distribution is one of the
central quantities of interest for NPs and GPs. We measure
its fidelity with the difference between the mean function of
the model and the underlying “true” function. Since the un-
derlying function is usually unknown to us (except in syn-
thetic settings), we split the dataset into disjoint sets, where
one will be used to infer the function and the other is used to
evaluate the conditional distribution. Given a portion p ∈
(0, 1), we consider three methods for splitting the dataset
(X,Y ) to create the context pair (Xc, Y c) and the evalua-
tion pair (Xe, Y e) such that the context pair has p portion
of the original data (and 1 − p for the evaluation dataset).
As shown in Figure 4, the splits were chosen either (a)
uniformly without replacement, (b) selected to be between
sampled points in the infer dataset, or (c) down-sampled
version of the original sampled points. We report the
mean of squared errors averaged over the evaluation set.,
i.e, EX,Y

[
1

|Xe|
∑

(xi,yi)∈(Xe,Y e)(E[f(xi)]− yi)
2
]

where
the inner expectation is estimated using samples from
p(f |Y c;Xc).

Goodness-of-fit. Table 1 shows samples generated from
the model and samples from the dataset. It is clear from the
samples that both F-EBM, π-VAE can capture the intri-

cacies of each dataset better than both the NP, VIP. EBP
performs well on Quadratic, but falls short in other
datasets. For more complicated datasets, EBP, NP, and VIP
can capture certain characteristics of the dataset (such as
the mode) but cannot capture the tails of the data distri-
bution. It is hard to distinguish between π-VAE and F-
EBM using only samples. Fortunately, the results of the
test power of the two-sample test shown in Table 2 tells
a different story. It can be seen that F-EBM achieves the
lowest test power for almost all datasets, with π-VAE being
a close contender. These results suggest that F-EBM is a
good choice for generative modelling.

Predictive Error. Table 4 shows the prediction error on
a range of datasets. Most competitors are designed for re-
gression, and are competitive baselines for this problem.
However, the performance of GP on Quadratic is no-
ticeably poorer than others. This may be due to us not
performing any pre-processing for Quadratic. For the
GP, interpolating between regions where there are not many
observe points the mean will tend towards the prior mean
which will accumulate large errors in this problem (see Fig-
ure 4). For other datasets where we pre-process the dataset,
GP produces more competitive results. π-VAE also has
high errors, particularly on the “Middle” split and small
context pair on “Random”. This is due to error from esti-
mating the initial coefficients for small context pairs, which
leads to high errors in the approximate posterior distribu-
tion. NPs and VIP performs well on all datasets and affirms
that they are good choices for regression. EBP also per-
forms well, particularly on the Stocks dataset. Overall, it
can be seen that F-EBM performs competitively across all
datasets.

5.3 Prior Choice

The choice of prior pθprior is critical when designing gen-
erative models. For instance, in Variational Autoencoders
(VAE) (Kingma and Welling, 2013), a promising research
direction for increasing the performance has been design-
ing more expressive priors (for instance, see Aneja et al.
(2021); Tomczak and Welling (2018)). In our case, we of-
ten found that the posterior pθ(f |Z,X) could accurately
reconstruct the underlying function, but sampling from a
simple prior would result in a poor fit of the distribution.

In this section, we investigate the choice of prior on F-
EBM on the Quadratic dataset. We compare between a
Gaussian prior, energy-based prior, and energy tilted prior
whilst keeping other all hyperparameters equal. Specifi-
cally, we compare between pθprior (z) ∝ exp(−∥z∥2/2σ2

0),
exp(−Eθ(z)), and exp(−Eθ(Z) − ∥z∥2/2σ2

0) . We show
the results in Table 3. It can be seen that using a Gaus-
sian prior was too simple and resulted in poor fit of the
data as indicated with the high test power, but it performs
the best on the predictive error tasks. As for the energy-
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Table 4: The mean of squared errors to measure the mismatch between the mean function and the true function on unseen
points. The mean function is averaged from 100 samples drawn from p(f |Xc, Y c). The error is computed on the evalua-
tion pair and averaged over the evaluation dataset. Bold indicates the lowest score (lower is better). High indicates a value
greater than 100.

Downsample Middle Random

Dataset Model p = 1
4

p = 1
3

p = 1
2

p = 1
4

p = 1
2

p = 3
4

p = 1
4

p = 1
2

p = 3
4

Quadratic F -EBM 0.005 0.004 0.003 0.044 0.008 0.006 0.008 0.005 0.004
π-VAE 0.144 0.167 0.092 High 7.402 0.025 1.001 0.330 0.027

NP 7.431 10.491 9.447 34.785 15.596 3.112 8.048 7.686 7.599
EBP 0.039 0.040 0.034 0.474 0.012 0.004 0.042 0.016 0.016
VIP 3.752 5.070 4.296 2.710 2.973 2.611 3.961 4.422 3.803
GP 28.089 36.523 19.934 High 75.350 25.556 70.742 39.231 8.275

Melbourne F -EBM 0.054 0.048 0.024 0.773 0.421 0.110 0.275 0.068 0.042
π-VAE High 0.393 0.195 High 32.294 0.082 12.288 0.860 0.093

NP 0.194 0.179 0.174 1.271 1.016 0.452 0.231 0.278 0.266
EBP 0.344 0.400 0.280 0.961 0.782 0.421 0.500 0.474 0.447
VIP 0, 286 0.410 0.297 0.850 0.781 0.446 0.460 0.491 0.392
GP 0.424 0.420 0.213 1.526 1.450 0.723 1.047 0.648 0.508

Stocks F -EBM 0.008 0.007 0.006 0.023 0.007 0.006 0.008 0.006 0.005
π-VAE 0.030 0.030 0.022 High High High High 0.023 0.011

NP 0.039 0.037 0.037 0.092 0.040 0.018 0.038 0.039 0.041
EBP 0.010 0.009 0.007 0.009 0.006 0.004 0.011 0.007 0.006
VIP 0.082 0.103 0.105 0.100 0.135 0.082 0.080 0.100 0.111
GP 0.053 0.031 0.017 1.133 1.081 0.938 0.135 0.036 0.011

GridWatch F -EBM 0.006 0.006 0.005 0.065 0.042 0.010 0.008 0.005 0.005
π-VAE 0.376 0.330 0.249 High High High High 0.260 0.122

NP 0.158 0.155 0.160 0.162 0.178 0.123 0.163 0.166 0.159
EBP 0.301 0.378 0.251 0.900 0.725 0.353 0.466 0.465 0.408
VIP 3.752 5.070 4.296 2.710 2.973 2.611 3.961 4.422 3.803
GP 0.338 0.209 0.106 0.938 0.581 0.389 0.567 0.283 0.156

100x100 28x28 15x15

Resolution

Sample 1

Sample 2

Sample 3

(a) Scaled samples

14x14 100x100 28x28

F-EBMInputOriginal

28x28

GP NP
100x100 28x28 100x100 28x28

(b) Upscaling Images

Figure 3: Visualization of synthetic samples learnt from FashionMNIST. Figure 3a shows the three functions evaluated at
different resolutions. Figure 3b displays upsampled samples generated by F-EBM, GP and NP conditioned on the “Input”
which is a downsampled variant the “Original” image.

based prior, it can be seen that the model performs sig-
nificantly better at a lower dimension (dz = 10) than at
higher dimensions (dz = 100). We suspect that this is due
to the inherit difficulties of sampling in higher dimensional
spaces for energy-based models and requires several tricks
to work (see Du and Mordatch (2019)). The tilted energy-
based prior approach was the most balanced and appeared
to be able to combine the benefits of energy-based priors
and a simple Gaussian prior for this example. We suspect
that this can be attributed to the regularizing effect of the
base distribution p0 to create a distribution that is easier to
sample from.

5.4 Resolution-Independent Learning of Images

One of the benefits of F-EBM is its ability to learn com-
plex functions. We demonstrate its capabilities on Fash-
ionMNIST dataset (Xiao et al., 2017). In this setting, the
inputs corresponds to the random fourier feature embed-
ding (Tancik et al., 2020) of the Cartesian coordinate of
each pixel and the output is the pixel intensity. Since Y is
pixel data defined on [0, 1], we define the point-wise like-
lihood to be the continuous Bernoulli (Loaiza-Ganem and
Cunningham, 2019). It can be seen that in Figure 5 that the
model can produce diverse samples for shoes, shirts, and
others. Unlike most generative models, our proposed ap-
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proach can scale the images to arbitrary resolutions, as can
be seen in Figure 3a and 3b. In Figure 3a, we demonstrate
for each sample the model can upscale (or downscale) be-
yond the dataset’s resolution, since each sample is a func-
tion that can be evaluated at any scale we desire. Figure
3b shows a sampled function from the model conditioned
on a downsampled input from the dataset. The model can
accurately infer the underlying function which can be used
to produce high (or low) resolution images. For complete-
ness, we show conditional samples for GP and NP.

6 CONCLUSION, LIMITATIONS AND
FUTURE WORK

We introduced F-EBM, a class of models that are suit-
able for learning functional data distributions. In addition,
we have shown that F-EBM can accurately perform infer-
ence over function space, which performs similarly or bet-
ter than current approaches.

The most important limitations of our proposed work per-
tains to the choice of hyperparameters such as the kernel,
truncation levels and architecture of the neural network.
Although there is a large range of possible choices, we
would like to emphasize that we did not perform a signif-
icant amount of hyperparameter tuning between problems
and that we used the Matérn kernel, and simple neural net-
work for all our problems. We found that the most critical
hyperparameters are those of the sampler in Eq. 7, and we
believe significant gains can be made tuning this parameter.
One potential avenue is to consider variational methods to
tune this (similar to Nijkamp et al. (2020)).

An extension can be made to F-EBM to perform condi-
tional generative modelling by simply encoding an addi-
tional variable as input to the neural network. This exten-
sion will allow the model to learn conditional distributions
that will be independent of the resolution of the data, which
is usually what is applied to current models (for instance,
see conditional GANs (Mirza and Osindero, 2014)).
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G. E. Karniadakis. Learning functional priors and pos-
teriors from data and physics. Journal of Computational
Physics, 457:111073, 2022.

M. Mirza and S. Osindero. Conditional generative adver-
sarial nets. arXiv preprint arXiv:1411.1784, 2014.

S. Mishra, S. Flaxman, T. Berah, H. Zhu, M. Pakkanen, and
S. Bhatt. π vae: a stochastic process prior for bayesian
deep learning with mcmc. Statistics and Computing, 32
(6):96, 2022.

A. Mnih and G. Hinton. Learning nonlinear constraints
with contrastive backpropagation. In Proceedings. 2005
IEEE International Joint Conference on Neural Net-
works, 2005., volume 2, pages 1302–1307. IEEE, 2005.

R. M. Neal. Probabilistic inference using Markov chain
Monte Carlo methods. Department of Computer Sci-
ence, University of Toronto Toronto, ON, Canada, 1993.

R. M. Neal et al. Mcmc using hamiltonian dynamics.
Handbook of markov chain monte carlo, 2(11):2, 2011.

E. Nijkamp, B. Pang, T. Han, L. Zhou, S.-C. Zhu, and Y. N.
Wu. Learning multi-layer latent variable model via vari-
ational optimization of short run mcmc for approximate
inference. In European Conference on Computer Vision,
pages 361–378. Springer, 2020.
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Energy-Based Models for Functional Data using Path Measure Tilting:
Supplementary Materials

A Mathematical Background

In this section, we provide some background on the mathematical formulation of stochastic processes as random variables
on Hilbert spaces. An important class of stochastic process which are central to this work is the Gaussian process (Williams
and Rasmussen, 2006). Let D ⊂ Rd be compact. Given a positive definite kernel k : D × D → R and a function
m : D → R we say x is a Gaussian process with mean function m and covariance function k if for every finite collection
of points {sn}Nn=1 the random vector (x(s1), . . . , x(sN )) is a multivariate Gaussian random variable with mean vector
(m(s1), . . . ,m(sN )) and covariance matrix k(sn, sm)Nn,m=1. The mean function and covariance function completely
determines the Gaussian process. We write x ∼ GP(m, k) to denote the Gaussian process with mean function m and
covariance function k.

Let X be a real, separable Hilbert space with inner product ⟨·, ·⟩ and norm ∥·∥. Let B(X) be the Borel σ-algebra on X . A
measure µ on (X,B(X)) is said to be Gaussian if there exists m ∈ X and a linear operator C such that the push-forward
lh∗µ is a Gaussian measure on (R,B(R)) with mean ⟨h,m⟩ and variance ⟨h,Ch⟩, for all h ∈ H where lh(·) = ⟨h, ·⟩.
The element m ∈ X is called the mean and C is the covariance operator, which is a symmetric non-negative operator with
finite trace. The characteristic functional of a Gaussian measure µ on X satisfies

µ̂(λ) =

∫
X

ei⟨λ,x⟩µ(dx) = ei⟨m,h⟩− 1
2 ⟨Ch,h⟩.

It is therefore uniquely determined by m and C. We therefore use the notation µ ≡ Nm,C . See (Prato, 2006) for further
properties of Gaussian measures on Hilbert spaces.

Gaussian processes can be uniquely associated to a Gaussian measure on the X = L2(D). Indeed, a Gaussian
process GP(m, k) on D, where m ∈ L2(D) and k is positive-definite continuous, is characterized by a Gaussian measure
on X with mean m and covariance operator defined by

Cf(·) =
∫

k(·, y)f(y) dy, ∀f ∈ L2(D).

It can be shown that the covariance C is a positive trace class operator which admitting the spectral decomposition
C· =

∑∞
i=1 λiei⟨ei, ·⟩, where {{λi}∞i=1, {ei}∞i=1} is the eigensystem associated with the operator C. Moreover we can

write the kernel as k(x, y) =
∑∞

i=1 λiei(x)ei(y), for all x, y ∈ D.

Given a second-order stochastic process x(·) taking values in L2(D) the Karhunen-Loeve expansion provides an
important characterization. Suppose that the point-wise covariance k(s, t) = Cov[x(s), s(t)] is continuous, and the mean
function defined by t → m(t)) = E[x(t)] lies in L2(D). Let C be the non-negative definite trace class covariance operator
associated to k, and let {{λi}∞i=1, {ei}∞i=1} eigensystem. The Karhunen-Loeve expansion (Sullivan, 2015a, Theorem
11.4) for the random process x(·) is given by

x(·) ∼ m+

∞∑
i=1

√
λiξiei(·),

where {ξi}∞i=1 are unit-variance uncorrelated random variables. In the special case where the process x(·) is Gaussian then
the ξi are actually independent standard Gaussian random variables, yielding a convenient means of generating realizations
of the process, when the eigensystem of the covariance is available.
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The model proposed in Section 3 is characterized by the density of the joint distribution of Y = (f(x1), . . . , f(xM )), for
a set of evaluation points X = (x1, . . . , xM ) in X defined by

pθ(y1, . . . , yM |x1, . . . , xM ) ∝
∫

pθ(Y, z|X) exp(−Eθprior (z))p0(dz)

=

∫ M∏
i=1

pθ(yi|xi, z) exp(−Eθprior (z))p0(dz).

To show that this characterizes a stochastic process indexed by X we verify Kolmogorov’s consistency conditions. Firstly,
note that, for any permutation π1, . . . , πM of 1, . . . ,M , then

pθ(yπ1
, . . . , yπM

|xπ1
, . . . , xπM

) =
1

Z

∫ M∏
i=1

pθ(yπi
|xπi

, z) exp(−Eθprior (z))p0(dz),

=
1

Z

∫ M∏
i=1

pθ(yi|xi, z) exp(−Eθprior (z))p0(dz)

= pθ(y1, . . . , yM |x1, . . . , xM ),

where Z =
∫
· · ·

∫ ∫ ∏M
i=1 pθ(yi|xi, z)p0(dz) dy1 . . . dyM .

Secondly, we show that the finite dimensional distributions are consistent with respect to marginalization. To this end,
consider∫

pθ(y1, . . . , yM+1 |x1, . . . , xM+1) dyM+1 =

∫
1

Z

∫ M+1∏
i=1

pθ(yi|xi, z) exp(−Eθprior (z))p0(dz) dyM+1

=

∫
1

Z

∫
pθ(yM+1|xM+1, z)

M∏
i=1

pθ(yi|xi, z) exp(−Eθprior (z))p0(dz) dyM+1

=
1

Z

∫ ∫
pθ(yM+1|xM+1, z) dyM+1

M∏
i=1

pθ(yi|xi, z) exp(−Eθprior (z))p0(dz)

=
1

Z

∫ M∏
i=1

pθ(yi|xi, z) exp(−Eθprior (z))p0(dz)

= pθ(y1, . . . , yM |x1, . . . , xM ).

These two conditions establish that the proposed model defines a valid stochastic process.

B Derivations

B.1 Gradients of Maximum Likelihood

Given a latent EBM defined as
pθ(y, z|X) =

1

C(X)
exp(−Eθ(y, z|X)),

where C(X) =
∫
exp(−E(y, z|X))dydz. The marginal is given by pθ(y|X) =

∫
pθ(y, z|X)dz. The type-II likelihood

for a given dataset (X,Y ) is ∏
(x,y)∈(X,Y )

pθ(y|x).

Maximizing the type-II likelihood is equivalent to minimizing the following loss L:

L(θ) = −E(x,y)∼p(X,Y ) log pθ(y|x),

where the expectation w.r.t p(X,Y ) is an expectation w.r.t. the empirical distribution. We will show that its gradient is
given by

∇L(θ) = E(x,y)∼p(X,Y )EZ∼pθ(z|y,x)[∇E(y, Z|x)]− Ex∼p(X)Ey,z∼pθ(y,z|X) [∇E(y, z|X)] .
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To see this first, we have

∇L(θ) = −E(x,y)∼p(X,Y )

[
∇pθ(y|x)
pθ(y|x)

]
.

Then, we have

∇pθ(y|x)
pθ(y|x)

=
∇

∫
pθ(y, z|x)dz
pθ(y|x)

=

∫
pθ(y, z|x)∇ log pθ(y, z|x)dz

pθ(y|x)

=

∫
pθ(z|y, x)∇ log pθ(y, z|x)dz

= EZ∼pθ(z|y,x)[∇ log pθ(y, Z|x)].

So we have

∇L(θ) = −E(x,y)∼p(X,Y )EZ∼pθ(z|y,x)[∇ log pθ(y, Z|x)]. (9)

Note that

∇ log pθ(y, Z|x) = −∇E(y, Z|x)−∇ logC(x), (10)

and

∇ logC(x) = ∇ log

∫
exp(−E(y, z|X))dydz

=
∇

∫
exp(−E(y, z|X))dydz∫
exp(−E(y, z|X))dydz

= −
∫
exp(−E(y, z|X))∇E(y, z|X)dydz∫

exp(−E(y, z|X))dydz

= −
∫

pθ(y, z|X)∇E(y, z|X)dydz

= −Ey,z∼pθ(y,z|X) [∇E(y, z|X)] .

Putting this into Eq. 10 and Eq. 9, we have as desired.

B.2 Gradients of F-EBM

Recall that the gradient of the marginal likelihood can be written as

∇L(θ) = E(X,Y )∼p(X,Y )EZ∼pθ(Z|Y,X)[∇E(Y,Z|X)]− EX∼p(X)EY,Z∼pθ(Y,Z|X) [∇E(Y,Z|X)] .

and we have for the tilted model

Eθ(Y,Z;X) = − log pθgen(Y |Z,X)− log pθprior (Z)

= − log pθgen(Y |Z,X) + Eθprior (Z)− log p0(Z).

Thus, the gradient w.r.t θgen is given by

∇θgenL(θ) = E(X,Y )∼p(X,Y )EZ∼pθ(Z |Y )∇θgenEθ(Y, Z|X)− EX∼p(X)E(Y,Z)∼pθ(Y,Z|X)∇θgenEθ(Y,Z|X),

(a)
= −E(X,Y )∼p(X,Y )EZ∼pθ(Z |Y )∇θgen log pθgen(Y |Z,X) + EX∼p(X)E(Y,Z)∼pθ(Y,Z)∇θgen log pθgen(Y |Z,X),

= −E(X,Y )∼p(X,Y )EZ∼pθ(Z |Y )∇θgen log pθgen(Y |Z,X),
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where (a) we use the fact that the second term is zero. To see this note that, we have for all X

E(Y,Z)∼pθ(Y,Z;X)∇θgen log pθgen(Y |Z,X) =

∫
pθ(y, z|X)∇θgen log pθgen(y|z,X)dydz

=

∫
pθ(y, z|X)

[
∇θgen log pθ(y, z|X)−∇θgen log pθprior (z)

]
dydz

=

∫
pθ(y, z|X)

∇θgenpθ(y, z;X)

pθ(y, z|X)
dydz =

∫
∇θgenpθ(y, z|X)dydz = ∇θgen1

= 0.

For the gradient w.r.t θprior, we have

∇θpriorCD(θ) = E(X,Y )∼p(X,Y )EZ∼pθ(Z |Y )∇θpriorEθ(Y,Z|X)− EX∼p(X)E(Y,Z)∼pθ(Y,Z|X)∇θpriorEθ(Y, Z|X),

= E(X,Y )∼p(X,Y )EZ∼pθ(Z |Y )∇θpriorEθprior (Z)− EZ∼pθprior
(Z)∇θpriorEθprior (Z).

C Experiment details

The code was implemented in PyTorch (Paszke et al., 2019). All the experiments were either performed on the CPU or on
a RTX 2060 Super. All F-EBM models took a maximum of 4 hours to train.

C.1 Dataset availability

The datasets can be found online for Melbourne (https://tinyurl.com/rr4vu2b3) and GridWatch
(7https://www.gridwatch.templar.co.uk/). The stocks datasets were collected by querying Investors Ex-
change (IEX).

C.2 Training and design choices F-EBM

For all our experiments, we use the same neural architecture and kept all the training settings the same, except from the
parameters of the Langevin sampler and latent dimension.

• Architecture. For the mapping µθ, we use a three hidden layered neural network with 512 hidden units and ReLU
activations. We utilize skip connections between the first and second hidden layer, as well as the second and third
layer. For the Eθprior (x), we use a similar neural network with 512 hidden layers and ReLU activations with similar
skip connections.

• Kernel. We use a Matérn kernel and limit the number of estimated eigenfunction and eigenvalues to be equal to m.
Recall that m is the number of evaluation points of each function.

• Optimization. We use Adam optimizer with learning rate set to 10−3 for both θgen and θprior with all other parame-
ters kept as default. We reduce the learning rate on plateau by a factor of 0.9 and 0.8 for θgen and θprior respectively
until a minimum of 10−4 and 10−5 respectively. We use a batch size of 128 and was run for 500 epochs with early
stopping.

• Langevin Dynamics. Contrastive divergence is calculated by samples generated from stochastic gradient Langevin
dynamics. For Quadratic, we use a variable step size that linearly interpolated starting at 10−2 to 10−3 for 100
steps. As for the others (Melbourne, Stocks, and Gridwatch), we use constant step sizes of 10−2 for 100 steps.

• Latent Dimension dz . We use dz = 100 for Quadratic and dz = 20 for the others (Melbourne, Stocks, and
Gridwatch).

C.3 Pre-processing

We detail the pre-processing applied to each dataset.

• Quadratic. We do not perform any preprocessing for this dataset.

https://tinyurl.com/rr4vu2b3
https://www.gridwatch.templar.co.uk/
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Downsample Middle Random

Kernel Test Power p = 1
4 p = 1

3 p = 1
2 p = 1

4 p = 1
2 p = 3

4 p = 1
4 p = 1

2 p = 3
4

Gaussian 0.09 1.170 1.160 1.089 1.169 1.126 1.049 1.116 1.114 1.085
Matérn 0.09 1.175 1.166 1.094 1.173 1.137 1.050 1.177 1.119 1.086

Gaussian* 0.10 1.150 1.148 1.077 1.160 1.122 1.038 1.146 1.101 1.082
Matérn* 0.10 1.184 1.180 1.105 1.197 1.140 1.045 1.175 1.127 1.096

GP 0.08 1.062 1.054 1.038 1.075 1.046 1.005 1.079 1.042 1.041

Table 5: Performance of the proposed method using kernel ridge regression (indicated by the lack of *) and neural network
(indicated by the *) on noiseless Gaussian process dataset used in Section 5.1.

• Stocks. We normalize the dataset to have zero mean and unit variance.

• Gridwatch. We normalize each sample to have zero mean and unit variance.

• Melbourne. We normalize the dataset to have zero mean and unit variance.

C.4 Baselines

• Gaussian process. We use the same kernel as F-EBM, with its parameters obtained from maximizing the marginal
likelihood.

• Neural process. We use a modified implementation of neural processes available online: https://github.com/
EmilienDupont/neural-processes. We set the dimension of the representation of the context points to be
512 and the dimension of the latent variable to be 512. The encoder and decoder was a 3-layer neural network with
512 hidden units with ReLU activations with the same skip connection. We trained the model up to 1000 epochs with
early stopping.

• π-VAE. We set the intermediate dimension of the encoder and decoder networks to 100 with ReLU activation, and
the dimension of the latent variable to 5. For each dataset, the model is trained with early stopping with patience 100.
We use the Adam optimizer with a learning rate set to 5 × 10−3. As feature map Φ(·) we use a basis representation
given by Φ(·) = (ϕ1(·), . . . , ϕB(·)) where {ϕi(·)}Bi=1 is a set of B basis functions. For the basis, we compare a
Matérn kernel induced basis (m estimated basis functions) with a FPCA based basis (0.99 explained variability) and
consequently choose the Matérn kernel induced basis for all datasets except Melbourne. The initial coefficients for
the interpolation are estimated from the context pairs via least squares.

• Energy based process (EBP). We implement the Gaussian energy-based process (Yang et al., 2020b, See 3.2). This
is a Gaussian process with a kernel k(x, x′) = ϕθ(x)

⊤ϕθ(x
′). Its marginal likelihood is tractable and ϕθ be directly

optimized (Yang et al., 2020b, Section 3.2 & Appendix B.1).

• Variational Implicit processes (VIP). We use the neural sampler VIP (Ma et al., 2019, Example 1) is a 3-layered
neural network with 512 hidden units, with Sigmoid Linear Unit (SiLU) activations and skip connections. The key
difference between our implementation and the approach of Ma et al. (2019) is in the wake phase. We obtain the
parameters of the neural sampler by optimizing the marginal likelihood of the optimal GP from the sleep phase. In
Ma et al. (2019), they instead optimized an approximation of the marginal log likelihood.

D Approximating Eigenfunctions

Nyström method produces an estimator for the eigenvalues and eigenfunctions that solve the problem

λiei(t) =

∫
X
k(t, x)ei(x)dp(x) ≈

1

l

l∑
j=1

k(t, xj)ei(xj), (11)

for some X := {xi}li=1.

https://github.com/EmilienDupont/neural-processes
https://github.com/EmilienDupont/neural-processes
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Recall that K(X,X) = (k(xi, xj)ij) ∈ Rl×l is the gram matrix, and êi(X) = [êi(x1), . . . , êi(xl)]
⊤ ∈ Rl. The Nyström’s

eigenfunction estimator is given by

ẽi(t) :=
1

lλ̂i

l∑
j=1

k(t, xj)êi(xj), (12)

where the eigensystem {λ̂i, êi(X)}li=1 are the eigenvalues and eigenvectors of 1
lK(X,X) with its eigenvectors v scaled

such that ∥v∥22 = l. The deviation of the standard normalization factor of one is to ensure that∫
êi(x)êi(x)p(x)dx ≈ 1

l

l∑
j=1

êi(xj)êi(xj) =
1

l
∥êi(X)∥22 = 1.

We found that the estimator in Eq. 12 produced accurate estimates for large eigenvalues, but for the smaller eigenvalues, it
was a poor fit. Instead, one can treat this as a regression problem with inputs X and {êi(X)}li=1 and utilize effective re-
gression algorithms. For instance, for the majority of this work, we use kernel ridge regression. However, other models can
be used instead, such as neural networks with least squares minimization. In Table 5, we compare the performance between
using neural networks trained by minimizing least squares and kernel ridge regression and found negligible differences on
the noiseless Gaussian process dataset used in Section 5.1.

E Additional Figures

NP GP -EBM True Context Eval

−5 0 5

0

10

20

(a) Random
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(b) Middle
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(c) Down-sample

Figure 4: A visualization of the three methods used for splitting evaluations (X,Y ) of a quadratic function with p = 1
4 .

The context pair (Xc, Y c) shown in red used to compute the mean function for various models (F-EBM, GP and NP)
which is evaluated on the evaluation pair (Xe, Y e) shown in green.
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Figure 5: Samples from the F-EBM.
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Table 6: The PCA embeddings of 100 samples of both samples generated from the model (blue) and samples from the data
(red)

F-EBM (ours) π-VAE NP GP
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Table 7: The t-SNE embeddings of 100 samples of both samples generated from the model (blue) and samples from the
data (red).

F-EBM (ours) π-VAE NP GP
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