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Abstract

In this work, we consider the off-policy policy
evaluation problem for contextual bandits and fi-
nite horizon reinforcement learning in the non-
stationary setting. Reusing old data is critical
for policy evaluation, but existing estimators that
reuse old data introduce large bias such that we
can not obtain a valid confidence interval. In-
spired from a related field called survey sam-
pling, we introduce a variant of the doubly robust
(DR) estimator, called the regression-assisted DR
estimator, that can incorporate the past data with-
out introducing a large bias. The estimator uni-
fies several existing off-policy policy evaluation
methods and improves on them with the use of
auxiliary information and a regression approach.
We prove that the new estimator is asymptoti-
cally unbiased, and provide a consistent variance
estimator to a construct a large sample confi-
dence interval. Finally, we empirically show that
the new estimator improves estimation for the
current and future policy values, and provides a
tight and valid interval estimation in several non-
stationary recommendation environments.

1 INTRODUCTION

Off-policy policy evaluation (OPE) is the problem of esti-
mating the expected return of a target policy from a dataset
collected by a different behavior policy. OPE has been used
successfully for many real world systems, such as recom-
mendation systems (Li et al., 2011) and digital marketing
(Thomas et al., 2017), to select a good policy to be de-
ployed in the real world. A variety of estimators have been
proposed, particularly based on importance sampling (IS)
(Hammersley and Handscomb, 1964) and modifications to
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reduce variance, such as self-normalization (Swaminathan
and Joachims, 2015b), direct methods that use reward mod-
els and variance reduction techniques like the doubly ro-
bust (DR) estimator (Dudı́k et al., 2011; Jiang and Li, 2016;
Thomas and Brunskill, 2016). Often high-confidence esti-
mation is key, with the goal to estimate confidence intervals
around these value estimates that maintain coverage with-
out being too loose (Thomas et al., 2015a,b; Swaminathan
and Joachims, 2015a; Kuzborskij et al., 2021).

Much less work has been done, however, for the nonsta-
tionary setting where the reward and transition dynamics
change over time. Extending these approaches to the non-
stationary setting is key as most real world systems change
with time, or appear to due to partial observability. In
this setting, we face a critical bias-variance tradeoff: us-
ing past data introduces bias, but not using past data in-
troduces variance. Jagerman et al. (2019) introduced the
sliding-window IS and exponential-decay IS estimator, that
gradually reduces the impact of older data to control the
bias-variance tradeoff. There is some other work predicting
future OPE values for a target policy in a nonstationary en-
vironment, by using time-series forecasting (Thomas et al.,
2017; Chandak et al., 2020); the goal there, however, is
to forecast future policy values using past value estimates,
rather than to estimate the current value.

Much of the other work tackling nonstationary problems
has been for policy optimization. There is a relatively large
body of work on nonstationary bandits in the on-policy set-
ting (e.g., see Yu and Mannor (2009)). More pertinent
to this work is a recent approach in the off-policy setting
(Hong et al., 2021). Their focus, however, is on the use
of change point detection and hidden Markov models for
policy optimization in the online phase. As a result, these
ideas do not directly apply to nonstationary OPE.

In this work, we propose a new approach for nonstation-
ary OPE by exploiting ideas from a related field called sur-
vey sampling (Cochran, 1977), where handling nonstation-
ary data has been a bigger focus. We propose a variant
of the DR estimator, called the regression-assisted DR es-
timator, for nonstationary environments. We exploit two
ideas: (1) using auxiliary variables from the past data to
build a proxy value and incorporate the proxy value in the
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estimator without introducing bias, and (2) a regression ap-
proach on top of the proxy value to reduce variance further.
Using the regression approach introduces some bias, how-
ever, we prove that the estimator is asymptotically unbiased
and provide a consistent variance estimator to construct a
large sample confidence interval (CI). Moreover, we show
that this regression-assisted estimator unifies several ex-
isting OPE methods, including the weighted IS estimator.
We empirically show that in several recommendation prob-
lems, formalized as contextual bandits, that the new esti-
mator improves the estimation and provides a tighter and
valid CI empirically compared to the sliding-window esti-
mators. We then extend the idea to finite horizon reinforce-
ment learning, and highlight similar improvements.

2 PROBLEM SETUP

In this section, we describe our main problem setting: off-
policy policy evaluation (OPE) in the nonstationary setting.
To convey the core insights of our paper precisely, we first
focus on contextual bandits.

Notation. We start by describing the standard station-
ary setting for OPE in the contextual bandit setting. Let
S be a set of contexts, A be a set of actions, and r :
S × A → R be the reward function. The goal is to
evaluate the value of a target policy π, that is, estimate
J(π) = ES∼P,A∼π(·|S)[r(S,A)], using an offline (off-
policy) dataset. The dataset is created through the inter-
action of a behavior policy with the environment: (1) the
environment draws a context si from P ∈ ∆(S) and (2)
the behavior policy draws an action ai from πb(·|si) and
observes ri = r(si, ai). This process repeats n times, giv-
ing dataset D = {(si,xi, ai, ri)}ni=1. We assume that we
also observe the context feature xs ∈ Rd for each context
s in the dataset.

Nonstationary OPE. Dealing with arbitrary nonstation-
arity may not be possible. Fortunately, many real world
environments have structures than can be exploited. We
consider a piecewise stationary setting with known change
points, where the reward function changes across intervals
but remains stationary within each interval. For example,
an environment can be stationary within each day or each
week or for a number of interactions. We assume the set of
contexts and the set of actions do not change over time.

Let rk denote the reward function for the k-th interval and
Dk = {(si, ai, rk(si, ai))}nk

i=1 denote the data of size nk
collected over the k-th interval. The goal is to estimate

Jk(π) =
∑

s∈S,a∈A
P (s)π(a|s)rk(s, a)

given previous datasets D1, . . . , Dk−1 and a newly sam-
pled Dk. The problem mirrors the real world where we
have plenty of past data D1, . . . , Dk−1 but only a small

amount of new dataDk to estimate the current value Jk(π).
We consider a stationary context distribution to present the
paper succinctly, however, our methods described in the pa-
per are applicable to the settings where the context distri-
bution is also changing.

It is often necessary in high-stakes applications to provide
confidence intervals. Let D = (Dt)

k
t=1 denote the set of

all data collected across different intervals. Given D and a
desired level of failure probability α ∈ (0, 1), it would be
ideal to estimate a high confidence lower bound CI− and a
high confidence upper bound CI+ such that

Pr
(
CI−(D, α) ≤ Jk(π) ≤ CI+(D, α)

)
= 1− α

where the probability is under the randomness of Dk and
conditional on all old data D1, . . . , Dk−1.

3 BACKGROUND

In this section, we review existing estimators for stationary
OPE and describe how OPE can be written using the survey
sampling formulation. We use this survey sampling for-
mulation to introduce the proposed estimators in the next
section.

3.1 Estimators for Stationary OPE

A foundational strategy to estimate J(π) in stationary OPE
is to use importance sampling. The IS estimator is given by

ĴIS(π) =
1

n

n∑
i=1

π(ai|si)
πb(ai|si)

r(si, ai).

This IS estimator can have high variance since the impor-
tance ratio can be very large. The weighted IS (WIS) es-
timator (Sutton and Barto, 1998), also known as the self-
normalized estimator (Swaminathan and Joachims, 2015b),
normalizes the importance weights and is more commonly
used. The WIS estimator is given by

ĴWIS(π) =

n∑
i=1

π(ai|si)/πb(ai|si)∑n
j=1 π(aj |sj)/πb(aj |sj)

r(si, ai).

Besides these IS-based estimators, another common esti-
mator is the direct method (DM). We learn a reward pre-
diction model r̂ and use

ĴDM(π) =
1

n

n∑
i=1

∑
a∈A

π(a|si)r̂(si, a).

The doubly robust (DR) estimator (Dudı́k et al., 2011) com-
bines the DR and the IS estimator,

ĴDR(π) =
1

n

n∑
i=1[

π(ai|si)
πb(ai|si)

(r(si, ai)− r̂(si, ai)) +
∑
a∈A

π(a|si)r̂(si, a)

]
.
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There are other OPE estimators such as estimators with
clipping (Bottou et al., 2013) or shrinkage (Su et al., 2020).
Dudı́k et al. (2012) studied the setting where the policies
are non-stationary (history-dependent) but the environment
is stationary, which is different from our setting. Chandak
et al. (2021) focus on estimating the reward distribution and
do not discuss how to efficiently leverage past data under
non-stationarity.

3.2 OPE as Survey Sampling

Survey sampling can be dated back to Hansen and Hur-
witz (1943); Horvitz and Thompson (1952), where they
consider the problem of selecting a sample of units from
a finite population to estimate unknown population param-
eters. Formally, let U = {1, . . . , N} be the population of
interest, yi be the study variable and xi be the auxiliary
variable for the unit i ∈ U . A subset of the population,
called a sample, is selected according to a sampling design.
We observe the study variable for units in the sample, and
the goal is to estimate the population total of the study vari-
ables ty =

∑
i∈U yi.

To formalize OPE under survey sampling, let the popula-
tion be U = S × A and the study variable be ys,a =
P (s)π(a|s)r(s, a). The population total of y is the value
of the policy: ty =

∑
(s,a)∈U ys,a = J(π). The weight-

ing P (s)π(a|s) goes into the study variable since the goal
is to estimate the total of study variable without weighting.
Even though we have P (s) in the study variable, the term
often cancels out in the estimator.

This formulation has some subtle differences from the stan-
dard OPE formulation. First, it assumes that S × A is fi-
nite, since U is finite in survey sampling. Second, the study
variable is fixed, that is, the reward function is determin-
istic. These limitations can be overcome by assuming that
the finite population is generated as a random sample from
an infinite superpopulation; this superpopulation model is
discussed in the appendix. For the main body, we assume a
finite population with fixed study variables.

Of particular interest for nonstationarity is the model-
assisted approach for survey sampling (Särndal et al.,
1992). The key idea is to use the auxiliary variable xs,a
to form a proxy value ŷs,a such that ŷs,a is close to the
study variable ys,a. A simple example is that the auxiliary
variable xs,a might be the value of ys,a at a past time and
we can use proxy value ŷs,a = xs,a. A general form for a
model-assisted estimator, assuming the population total of
the proxy value is known, is the difference estimator (Cas-
sel et al., 1976):

∑
(s,a)∈U ŷs,a+

∑
(s,a)∈D

ys,a−ŷs,a

nps,a
where

ps,a is the probability of selecting the pair (s, a). This es-
timator is unbiased and can be much lower variance, if the
proxy value is close to the study variable. This strategy is
like adding a control variate, but specific to survey sam-
pling since the source of stochasticity is different than the

typical Monte Carlo setting.

4 OPE ESTIMATORS UNDER
NONSTATIONARITY

In the section, we propose an estimator for nonstationary
environments. There are two popular strategies that con-
sider the bias-variance tradeoff when reusing the past data
in non-stationary environments: sliding window IS and ex-
ponential decay IS (Jagerman et al., 2019). The sliding
window IS estimator directly uses the IS estimator for the
data in the most recentB intervals. Though not proposed in
the original work, it is natural to extend this idea to other es-
timators. For example, for the direct method, we can build
a reward model from the data in the most recentB intervals
and evaluate the policy with the reward prediction.

The window size B controls the bias-variance tradeoff. If
B = 0 then we only use the most recent data Dk: the esti-
mator does not introduce bias by using past data but suffers
high variance due to having a small sample size. If we use a
large B, the estimator might introduce large bias but might
have lower variance due to a larger sample size. Sliding
window estimators require carefully choosingB to balance
the bias from using past data and the variance from not us-
ing past data. The balance usually depend on how fast the
environment is changing, which is usually unknown. More-
over, even with a small value of B, the bias of the sliding
window estimator can be so large that the confidence inter-
val is invalid, as we will show in the experiment section.

Therefore, the main question that we aim to address is:

How can we reuse the past data for nonstationary OPE
without introducing large bias?

One natural way to leverage the past data would be to use
the DR estimator with a reward prediction learned from the
past data, as described in the following section. However,
naively using the past data to construct a reward prediction
may not be the best approach in the nonstationary setting.
This raises a followup question: How can we obtain a good
reward prediction to both reduce the error of estimation
and also obtain tight CIs? To address this challenge we
draw inspiration from the survey sampling literature, and
propose the regression-assisted DR estimator, that helps re-
duce variance further and provides tighter CIs.

4.1 The Difference and DR estimator

We can leverage the idea of the difference estimator in sur-
vey sampling, for our nonstationary OPE setting. We can
use the past data Dk−B , . . . , Dk−1 to build a reward pre-
diction r̂k as a function of the context feature and the ac-
tion: r̂k(s, a) = m(xs, a; θ) for some function m param-
eterized by θ. The reward prediction can be used as the
proxy value in the estimator. The resulting difference esti-
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mator, for interval k, is

t̂Diff,k =
∑

(s,a)∈U

P (s)π(a|s)r̂k(s, a)

+
1

n

∑
(s,a)∈Dk

π(a|s)
πb(a|s)

(r(s, a)− r̂k(s, a)). (1)

The elegance of this approach is that we can leverage past
data by incorporating it into the proxy value in the differ-
ence estimator, without introducing any bias.

While the estimator is unbiased, the variance depends on
the quality of the reward prediction r̂k (Thomas and Brun-
skill, 2016). The environment is nonstationary, so past data
has to be used carefully to get a good estimate, and in some
cases, the estimate may be poor. In the next section, we dis-
cuss how to obtain a better prediction by fitting a regression
on top of the reward prediction.

A careful reader would have noticed one other nuance with
the above difference estimator: it requires the population
total of the proxy value ŷs,a = P (s)π(a|s)r̂k(s, a), which
is the first term in Eq (1). In some cases, this information
may be known and it should be leveraged to get a better
estimator for OPE. In other cases, we will need to estimate
it. In the standard contextual bandit setting, given a sample
Dk, we often assume that we know the auxiliary variable
xs,a for all units in the set {(s, a) : s ∈ Dk, a ∈ A}. If we
estimate the population total from Dk with the information
about the auxiliary variables, the estimator becomes

t̂DR,k =
1

n

∑
s∈Dk

∑
a∈A

π(a|s)r̂k(s, a)

+
1

n

∑
(s,a)∈Dk

π(a|s)
πb(a|s)

(rk(s, a)− r̂k(s, a)). (2)

This estimator reduces to the DR estimator. Therefore, the
DR estimator is the difference estimator when the popula-
tion total of the proxy value is estimated by sample Dk.

However, there are other options to estimate the pop-
ulation total, that do not result in the standard DR
estimator. Of particular relevance here is that we
can use past data D′ to estimate this population total:
1

|D′|
∑

s∈D′
∑

a∈A π(a|s)r̂k(s, a). This term does not rely
on rewards in the past data—which might not be correct
due to nonstationarity—and only requires access to the
auxiliary variables xs in these datasets. If we assume only
the rewards are nonstationary, rather than the context distri-
bution, making these old datasets a perfectly viable option
to estimate this population total. In survey sampling, this is
usually motivated by assuming that there might be another
survey that contains the auxiliary variables (Yang and Kim,
2020).

4.2 The Regression-Assisted DR Estimator

We consider a model on top of the reward prediction from
the past data to mitigate variance further. Let ϕk(s, a)⊤ =
(1, r̂k(s, a)) be the augmented feature vector with the re-
ward prediction and define zs,a = P (s)π(a|s)ϕk(s, a).
Note that zs,a is a function of the auxiliary variable xs. We
consider a (heteroscedastic) linear regression model such
that the study variables ys,a := P (s)π(a|s)rk(s, a) are re-
alized values of the random variables Ys,a with Eξ[Ys,a] =
z⊤s,aβ and Vξ(Ys,a) = σ2

s,a = P (s)π(a|s)σ2 where the
expectation and variance are with respect to the model ξ,
and β, σ are the model coefficients. These are the assump-
tions underlying the regression estimator, rather than as-
sumptions about the real world. Further, even though we
consider a linear regression on the feature vector ϕ for the
regression-assisted DR estimator, the reward prediction it-
self can be non-linear (e.g., a neural network).

The weighted least squares estimate of β is βk =

argminβ
∑

(s,a)∈U
1

σ2
s,a

(
z⊤s,aβ − ys,a

)2
. Suppose the rel-

evant matrix is invertible, βk can be estimated using sample
data Dk:

β̂k =

 ∑
(s,a)∈Dk

π(a|s)
πb(a|s)

ϕk(s, a)ϕk(s, a)
⊤

−1

 ∑
(s,a)∈Dk

π(a|s)
πb(a|s)

ϕk(s, a)rk(s, a)

 . (3)

If we know the population total of z⊤s,aβ̂k, then the
regression-assisted DR (Reg) estimator is

t̂Reg,k =
∑

(s,a)∈U

P (s)π(a|s)ϕk(s, a)⊤β̂k

+
1

n

∑
(s,a)∈Dk

π(a|s)
πb(a|s)

(
rk(s, a)− ϕk(s, a)

⊤β̂k

)
. (4)

More generally, we can use the same data or the past data
to estimate the population total, as described above.

This β̂k consists only of the weight on the past reward
model and the bias unit. This may not seem like a par-
ticularly useful addition, but because it is estimated using
Dk, it allows us to correct the past reward prediction.

Further, the regression-assisted DR estimator actually pro-
vides a natural way to combine existing estimators in the
OPE literature, depending on the choice of the feature vec-
tor ϕ and the coefficients β. To see this, we first show how
WIS can be seen as an instance of this estimator.1

1Mahmood et al. (2014) have a similar observation that the
solution β̂ is the WIS estimator if ϕ(s, a) = 1 for all (s, a). They
also extend the estimate with linear features ϕ and use ϕ(s, a)β̂
directly, which is more related to the model-based approach. In
our work, the model prediction is used as the proxy value so the
resulting estimators are different.
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We provide the theoretical result in the stationary setting
where ϕ is fixed, so we can drop the subscript k for simplic-
ity. For the nonstationary setting, the inference for t̂Reg,k

is conducted conditional on the past dataD1, . . . , Dk−1, so
ϕ is again fixed and all results extends to the nonstationary
setting. The proofs can be found in Appendix B.

Theorem 1 (WIS as a special case of the regression-as-
sisted estimator). Suppose we use a linear regression
model with univariate feature ϕ(s, a) = 1. Then the
regression-assisted DR estimator with estimated coefficient
β̂ from Eq (3) has the same form as the WIS estimator:

t̂Reg =
∑

(s,a)∈D

π(a|s)/πb(a|s)∑
(s′,a′)∈S π(a

′|s′)/πb(a′|s′)
r(s, a). (5)

The result provides a novel perspective for the WIS esti-
mator: it can be viewed as fitting a regression to predict the
reward with a constant feature. As a result, the only dif-
ference between the regression-assisted DR estimator and
the WIS estimator is the choice of feature vector for reward
prediction. If there are other features that might be useful
for predicting the reward, we can include it with the regres-
sion approach and potentially improve the WIS estimator.

In Table 1, we show that we can recover other estima-
tors based on different choices for the coefficients β =
(β1, β2)

⊤ with the feature vector ϕ(s, a)⊤ = (1, r̂(s, a)).
If β1 = 0, β2 = 0, we recover the IS estimator. If
β1 = 0, β2 = 1, we recover the difference estimator or
the DR estimator. If β2 = 0 and β1 is learned from data,
we recover the WIS estimator.

Table 1: A Unifying View of Existing Estimators.

IS DR WIS Reg
β1 0 0 β̂1 β̂1
β2 0 1 0 β̂2

There are other approaches to estimate the coefficients from
data. The more robust DR estimator (Farajtabar et al.,
2018) minimizes the estimated variance V̂(t̂Reg) with re-
spect to the coefficient to achieve the lowest asymptotic
variance among all coefficient β under some mild condi-
tions. Kallus and Uehara (2019) further consider an ex-
panded model class on top of the reward prediction and
minimize the estimated variance among both the expanded
model class and the reward prediction model class. How-
ever, it often unclear how large the sample size needs to
be such that the estimator with the lowest asymptotic vari-
ance indeed has a lower variance against other estimators
in practice. On the other hand, there is a considerable lit-
erature in survey sampling on improving estimation for the
total and variance estimator when the sample size is small
or the feature vector is high dimensional. For example,
Breidt and Opsomer (2000); McConville et al. (2017) pro-

pose different models as an alternative to the linear regres-
sion model. These regression models can be potentially
more useful for feature selection or to find a model that fits
the population well.

5 THEORETICAL ANALYSIS

In the regression approach, if the coefficients are estimated
from the same data Dk, the estimator becomes biased. For
example, the DR estimator is unbiased since the coeffi-
cients are fixed, and the WIS estimator is biased since one
of the coefficients is estimated. In this section, we show
that even if we run the regression on the same data we use
to build the estimator, the regression-assisted DR estimator
still enjoys asymptotic properties.

To prove these theoretical properties, there are a number of
results from the survey sampling literature that we build on.
For completeness, we provide a brief overview of survey
sampling in Appendix A, and the proof of these properties
under survey sampling notation in Appendix B.

Theorem 2 (Properties of the estimator). Let AV(·) denote
the asymptotic variance in term of the first order, that is
V(·) = AV(·) + o(n−1), we have (1) t̂Reg is asymptotically
unbiased with a bias of order O(n−1), and (2)

AV(t̂Reg) =
1

n ∑
(s,a)∈U

P (s)
π(a|s)2

πb(a|s)
(r(s, a)− ϕ(s, a)⊤β)2 − t2e


where te =

∑
U P (s)π(a|s)(r(s, a)− ϕ(s, a)⊤β).

Variance estimation for the regression-assisted DR esti-
mator. The exact form of the variance of the regression-
assisted DR estimator is often difficult to obtain, so we use
the approximate variance from Theorem 2. Replacing the
unknown β by the sample-based estimate β̂, we have a vari-
ance estimator

V̂(t̂Reg) =
1

n(n− 1) ∑
(s,a)∈D

(
π(a|s)
πb(a|s)

(r(s, a)− ϕ(s, a)⊤β̂)

)2

− nt̂2e


where t̂e =

∑
D

π(a|s)
nπb(a|s) (r(s, a) − ϕ(s, a)⊤β̂). Särndal

et al. (1989) propose the weighted residual technique which
can potentially result in better interval estimation. See Ap-
pendix C for a derivation.

Finally, we show the variance estimator is consistent and
the regression-assisted estimator is asymptotically normal.

Theorem 3. The variance estimator V̂(t̂Reg) is consistent,

and t̂Reg−ty√
V̂(t̂Reg)

D→ N (0, 1).
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Based on Theorem 3, we can construct a large sample CI.

Corollary 1. Let σ̂=
√
V̂(t̂Reg) and zα denote the 100(1−

α) percentile of the standard normal distribution, then

Pr
(
t̂Reg − zα/2σ̂ ≤ J(π) ≤ t̂Reg + zα/2σ̂

)
→ 1− α.

6 EXPERIMENTS

In this section, we demonstrate the effectiveness of the
regression-assisted DR estimators in a semi-synthetic and
a real world recommendation environment. We compare
the proposed estimator to existing estimators, including
IS, WIS, DM and Diff (which is DR without estimating
the population total). We also include the IS, WIS, DM
with the sliding window (SW) approach of window size B.
When B = 0, SW-IS and SW-WIS is the standard IS and
WIS. For Diff, Reg, we use the past data Dk−B , . . . , Dk−1

to learn a reward prediction.

For the semi-synthetic dataset, we follow the experimental
design from Dudı́k et al. (2011). We use the supervised-
to-bandit conversion to construct a partially labeled dataset
from the YouTube dataset in the LibSVM repository. We
construct a nonstationary environment by generating a se-
quence of reward functions based on the environment de-
sign in Chandak et al. (2020). For each true positive
context-action pair in the original classification dataset, the
reward follows a sine wave with some noise over time. We
use PCA to reduce the dimension of the context features to
32. The target policy is obtained by training a classifier on
a small subset of the original classification dataset.

We adapt the Movielens25m dataset (Harper and Konstan,
2015) for the real world experiment. To construct a non-
stationary environment, we divide the rating data chrono-
logically. Each interval contains the rating data for 60 days
and we use the rating data for K = 24 intervals ending
November 21, 2019. We consider only active users who
gave at least one rating for at least half of the K intervals,
resulting in a total number of around 2000 users. During
each interval, we compute the rating matrix r(u, g) for each
user and genre by averaging the user u’s rating for all rated
movies in the genre g. As a result, we have a sequence of
rating functions which represent users’ average rating for
each genre over time. The user features are built by matrix
factorization on the average rating data with hidden size 32,
and the target policy is obtained by training a classifier on
a small subset of the average rating data.

For the OPE objective, we consider an uniform weighting
P (s) = 1/|S| for all users s. We also let nk = α|S| for all
k and α ∈ {0.1, 1.0}. For each interval k = 0, . . . ,K, we
sample data Dk using a random policy. For estimators that
require a reward prediction, we build the reward prediction
by linear regression on historical data for each action sep-
arately, which is the same approach used in Dudı́k et al.

(2011). More experiment details can be found in Appendix
E, and Algorithm 1 describes the experimental procedure.

In nonstationary OPE, the aim is to estimate Jk(π) with
data from D1 to Dk. All of the estimators discussed in
this paper, however, can be extended to predict the future
values using the ideas from Thomas et al. (2017); Chan-
dak et al. (2020). Suppose we have the OPE estimators for
each interval up to interval k, that is, Ĵ1(π), . . . , Ĵk(π), we
can fit these data to a forecasting model to predict the fu-
ture value Jk+1(π), . . . , Jk+δ(π). We therefore test both
settings: estimating Jk(π) and predicting Jk+1(π). For the
experiments predicting Jk+1(π), we adapt the method pro-
posed in Chandak et al. (2020) and predict the future values
by fitting a regression. That is, Ĵk+δ(π) = ψ(k + δ)⊤ŵk

where ŵk is the OLS estimator for the regression problem
with feature map ψ(t) = (cos(2πtn))d−1

n=0 and target Ĵt(π)
for t = 1, . . . , k, where we set d = 5 in the experiment.

Sensitivity to window size and sample size. We vary the
window sizeB and sample size n, and report the sensitivity
plot in Figure 1. The error is averaged overK intervals, that

is, RMSE =
√

1
K

∑K
k=1(Ĵk(π)− Jk(π))2. We can see

that the sliding window (SW) estimators, including SW-IS,
SW-WIS and SW-DM, are sensitive to the window size,
while Diff and Reg are robust to the window size. Reg
outperforms IS and WIS and simply using B = 1 reduces
the error by a large margin. Reg also has a lower error
compared to Diff, especially with small window size and
sample size. This suggests that Reg is more robust to a bad
reward prediction from the past data, which implies it is
more robust to the speed of the nonstationarity.

We report the error for predicting the future value Jk+1(π)
in Figure 1. Reg has the lowest error for predicting the fu-
ture values except in MovieLens with small sample size.
We also find that even SW-DM and SW-IS have low error
for estimating the current value Jk for some hyperparame-
ters, they still have high error for predicting the future value
Jk+1. We hypothesize that approximately unbiased esti-
mators generally have better future prediction even though
they might have high variance. It is possible that the fore-
casting model cancels out the noise in approximately unbi-
ased estimators and results in better future value prediction.

Empirical validation of the interval estimation. We use

Ĵk(π) ± 1.96

√
V̂(Ĵk(π)) as the approximate 95% CI. We

report the empirical coverage of the CI using the estimated
variance in Figure 2. The empirical coverage is defined
as the number of rounds such that the CI contains the true
value divided by the total number of rounds K. The results
shown here are with n = 1.0|S|. IS (B = 0), WIS (B = 0),
Diff and Reg all have the desired coverage and Reg has the
smallest width. All sliding window estimators have large
bias when B > 0, so the coverage is poor and it is unclear
how to compare to estimators with the desired coverage.
Note that even with a small value ofB, for example,B = 1

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html
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Figure 1: Sensitivity curves. Top row: estimating Jk(π). Bottom row: predicting Jk+1(π). “True J” is the baseline if
we use the true values to predict the future values. The number are averaged over 30 runs with one standard error. Across
runs, the target policy and the sequence of reward functions are fixed, but the sampled data is random.
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Figure 2: The empirical coverage and the width of CIs. Higher coverage and lower width is better.

in MovieLens, sliding window estimators fail to provide a
valid CI. The result suggests that Reg provides an accurate
and tight CI.

Empirical investigation of the feature vectors. Besides
using one past reward prediction as the only feature, we
also investigate the utility when we (1) include the context
features; and (2) include separate past reward predictions,
that is, ϕk(s, a) = (1, r̂k−B(s, a), . . . , r̂k−1(s, a)) where
we learn a reward model r̂t for interval t from data Dt sep-
arately. Since these additional features could be correlated,
we use ridge regression when estimating the coefficients.
The regularization parameter is chosen by cross-validation.

We aim to answer two questions: (1) whether including the
context feature or the past reward predictions helps, and (2)
how we should include the past reward information. To an-
swer the questions, we test five different feature vectors:
(a) Reg: we use one past reward prediction as described
in Section 4.2, with and without the context features, (b)
Reg-AR: we use separate past reward predictions with and
without context features, and (c) Reg-Feature: we use con-
text features only. We show the comparison in Figure 3.
We find that including the context features helps in general,

however, using only the context features is not sufficient.
The past reward information helps deal with nonstationar-
ity. Moreover, using separate predictions only improves
the accuracy in MovieLens with n = 0.1|S|. In these ex-
periments, there was no one dominant way to include past
reward information, and more experimentation is needed to
understand when one might be preferred.

We provide an ablation study to investigate the impact
when the population total of the proxy value is estimated in
Appendix F. We found that using the past data to estimate
the population total results in very similar performance as
we know the population total.

7 EXTENSION TO REINFORCEMENT
LEARNING

The estimators for contextual bandits can be ex-
tended to finite horizon reinforcement learning (RL).
Let M = (S,A, P, r,H, ν) be a finite horizon fi-
nite MDP. Our goal is to estimate the value of
a policy J(π) =

∑
τ∈(S×A)H Pπ

M (τ)R(τ) where
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Figure 4: Results for the RL environment. First column: estimating Jk(π). Second column: predicting Jk+1(π). Third
and fourth column: coverage and width of CI.

Pπ
M (τ) = ν(s0)π(a0|s0)P (s1|s0, a0) . . . π(aH−1|sH−1)

is the probability of seeing the trajectory τ =
(s0, a0, . . . , sH−1, aH−1) by running π in M , and R(τ) =∑H−1

h=0 r(sh, ah).

To formalize OPE for RL under survey sampling, let U =
(S ×A)H be the population containing all trajectories and
yτ = Pπ

M (τ)R(τ) be the study variable. Note that there
are many ways to view OPE for RL in the survey sampling
framework, which corresponds to different existing estima-
tors for RL such as the trajectory-wise IS, per-decision IS
(PDIS) estimator and marginalized IS estimator. We pro-
vide more discussion in Appendix D.

The regression-assisted estimator with fitted Q evalua-
tion. We use fitted Q evaluation (FQE), which has been
shown to be effective for several stationary OPE bench-
marks empirically (Voloshin et al., 2021), to build a proxy
value R̂(τ) for each trajectories τ ∈ U .

In nonstationary environments, FQE outputs Q̂k−1(s, a)
from the past data Dk−B , . . . , Dk−1, and we use R̂(τ) =
V̂k−1(s0) =

∑
a∈A π(a|s0)Q̂k−1(s0, a) as the proxy value

where s0 is the initial state of the trajectory τ . Similar to
the estimator for contextual bandits, we first estimate the
coefficient with the feature vector ϕ(s0)⊤ = (1, V̂k−1(s0))
and use the regression-assisted DR estimator

t̂Reg-FQE,k =
∑
s0∈S

ν(s0)ϕ(s0)
⊤β̂k+

1

n

∑
τ∈Dk

π(a0|s0) . . . π(aH−1|sH−1)

πb(a0|s0) . . . πb(aH−1|sH−1)
(R(τ)− ϕ(s0)

⊤β̂k).

When ν is unknown, we can estimate the population to-
tal of the proxy value by 1/|D′|

∑
s0∈D′ ϕ(s0)

⊤β̂ from the
past data D′ or the same data Dk. The regression-assisted
DR estimator can be viewed as a biased-corrected FQE es-
timator for nonstationary environments.

Experimental results. We consider an RL environment
with a binary tree structure, that is, a finite horizon MDP
with H = 10, |A| = 2, |S| = |A|H − 1, and an initial state
s0. For each state, taking action 1 leads to the left child
and taking action 2 leads to the right child. The reward
for each state-action pair follows a sine wave with differ-
ent frequency and amplitude. The environment mimics the
session-aware recommendation problem where we take a
sequence of actions for one customer during a short ses-
sion. We use a random policy to collect 10 trajectories for
every interval. The target policy is a trained policy using
Q-learning on the underlying environment.

From Figure 4, Reg has the lowest error for estimating the
current value and predicting the future value in general. We
show the coverage of the one-sided CI since we mainly care
about the lower bound on the policy value for safe policy
improvement. The results show that Reg again provides a
valid and tight interval estimation, and is promising for safe
policy improvement in nonstationary RL environments.

8 CONCLUSION

We proposed the regression-assisted DR estimator for OPE
in the nonstationary setting, inspired by estimators from
the survey sampling literature. The estimator incorporates
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past data into a proxy value without introducing large bias,
and uses a regression approach to build a reward predic-
tion well suited for nonstationary environments. As far as
we know, these two ideas have not been applied to nonsta-
tionary OPE. We theoretically show that we can construct
a large sample confidence interval and empirically demon-
strate that the proposed estimator provides tight and valid
high-confidence estimation in several recommendation en-
vironments in contextual bandits and finite horizon RL.
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A OVERVIEW OF SURVEY SAMPLING

In this section, we introduce the survey sampling terminology and how to use it for OPE. Survey sampling can be dated
back to Hansen and Hurwitz (1943); Horvitz and Thompson (1952), where they consider the problem of selecting a sample
of units from a finite population to estimate unknown population parameters. For example, if the goal is to estimate
the customer satisfaction rate for a product, survey sampling is concerned with selecting a subset of customers to conduct
surveys. Since then, the field has investigated a variety of practical scenarios, including dealing with missing data, handling
non-stationarity and understanding to how to leverage auxiliary information.

Formally, let U = {1, . . . , N} be the population of interest, yi be the study variable and xi be the auxiliary variable for
the unit i ∈ U . Continuing the above example, the population could be all customers, the study variable could be the
satisfaction level, and the auxiliary variable could be the information about the customer. A subset of the population, called
a sample, is selected according to a sampling design. We observe the study variable for units in the sample, and the goal is
to estimate the population total of the study variables ty =

∑
i∈U yi.

A sampling design I = (I1, . . . , IN ) is a random vector describing how the sample is drawn from the population: Ii > 0
means that the unit i is selected in the sample and Ii = 0 means the unit is not selected. For example, a multinomial design
is a with-replacement and fixed-size design where we draw n units independently and identically according to probability
pi with

∑
i∈U pi = 1. In this case, the design vector I follows the multinomial distribution with parameters n and (pi)

N
i=1,

that is, P (I1 = ii, . . . , IN = iN ) = n!
ΠN

i=1ii!
piii . . . p

iN
N if

∑
i ii = n and 0 otherwise. In survey sampling, the study variable

is fixed and the randomness comes from the sampling design I.

Given a sample D of fixed size n, the Hansen-Hurwitz (HH) estimator (Hansen and Hurwitz, 1943) for multinomial design
is t̂HH =

∑
i∈D

yi

E[Ii]
=
∑

i∈D
yi

npi
. The estimator t̂HH is an unbiased estimator for ty if pi > 0 for all i ∈ U .

This formalize OPE under survey sampling, let the population be U = S × A and the study variable be ys,a =
P (s)π(a|s)r(s, a). The population total of y is the value of the policy: ty =

∑
(s,a)∈U ys,a = J(π). The weighting

P (s)π(a|s) goes into the study variable since the goal is to estimate the total of study variable without weighting. Even
though we have P (s) in the study variable, the term often cancels out as we will see for the HH estimator.

For OPE, the sampling design is the multinomial design with sampling probability ps,a = P (s)π(a|s). Given a sample
D = {(si, ai, r(si, ai))}ni=1, the HH estimator is

t̂HH =
∑

(s,a)∈D

ys,a
nps,a

=
∑

(s,a)∈D

P (s)π(a|s)r(s, a)
nP (s)πb(a|s)

=
1

n

∑
(s,a)∈D

π(a|s)
πb(a|s)

r(s, a).

It has the same form as the IS estimator. In the case where the sampling design p is not known and needs to be estimated
by a propensity model, it is called the inverse propensity score (IPS) estimator.

The HH estimator is called the design-based estimator in the survey sampling literature. This is because the primary source
of randomness is from the sampling design. Another approach is called the model-based approach which assumes the study
variables are generated by a superpopulation model. The goal is to model the relationship between the study variable and
the auxiliary variable. The resulting estimator is similar to the direct method.

The model-based approach. The model-based approach is a popular approach in the survey sampling literature. Chambers
and Clark (2012) provide an introduction for the model-based approach. Different from design-based and model-assisted
approaches, the study variables are assumed to be generated by a superpopulation model and typically depends on the
auxiliary variable. More previously, we assume the values yi, . . . , yn are realization of random variables Y1, . . . , Yn. The
joint distribution of Y1, . . . , Yn is denoted by ξ, which is called the superpopulation distribution. For example, we assume
Eξ[Yi|xi] = x⊤

i β and Vξ(Yi|xi) = σ2
i for some unknown model parameter β and σi. The selected sample D is treated

as a constant and the sample values of yi are random. Estimation and inference are deduced conditional on the selected
sample and the model.

For OPE, we have ys,a = P (s)π(a|s)r(s, a) and auxiliary vector xs,a = P (s)π(a|s)ϕ(s, a). We assume a linear model:
Eξ[Ys,a|xs,a] = x⊤

s,aβ, Vξ(Ys,a|xs,a) = σ2
s,a = (P (s)π(a|s)σ)2, and Ys,a’s are independent. Using the WLS estimator to

estimate β

β̂ =

 ∑
(s,a)∈D

xs,ax
⊤
s,a

σ2
s,a

† ∑
(s,a)∈D

xs,ays,a
σ2
s,a

 =

 ∑
(s,a)∈D

ϕ(s, a)ϕ(s, a)⊤

† ∑
(s,a)∈D

ϕ(s, a)r(s, a)

 ,



Asymptotically Unbiased Off-Policy Policy Evaluation when Reusing Old Data in Nonstationary Environments

we have the model-based estimator

t̂MB =
∑

(s,a)∈D

ys,a +
∑

(s,a) ̸∈D

x⊤
s,aβ̂.

That is, the population total is estimated by the total of study variables in the sample and the total of the study variables of
units not in the sample.

The model-based estimator is similar to the direct method (DM) in OPE. The key difference is that DM does not use the
sample value of ys,a but uses the prediction for all units, that is,

t̂DM =
∑

(s,a)∈U

x⊤
s,aβ̂.

The model-based survey sampling framework provide a way to do inference for the DM estimator, which is conditional on
the selected sample and the model ξ. Let tx =

∑
(s,a)∈U xs,a, then

Vξ(t̂DM) = Vξ

 ∑
(s,a)∈U

x⊤
s,aβ̂

 = t⊤xVξ(β̂)tx = σ2t⊤x

 ∑
(s,a)∈D

ϕ(s, a)ϕ(s, a)⊤

†

tx.

Plugging in the estimator σ̂2 = 1
n−p

∑
(s,a)∈D(r(s, a)− ϕ(s, a)⊤β̂)2 for σ, we have an estimated variance

V̂(t̂DM) = σ̂2t⊤x

 ∑
(s,a)∈D

ϕ(s, a)ϕ(s, a)⊤

†

tx.

B TECHNICAL DETAILS

For the theoretical analysis, we make the following assumptions:

1. ∀(s, a) ∈ U , Lp ≤ ps,a for some real number Lp > 0.

2. ∀(s, a) ∈ U , Ly ≤ ys.a ≤ Uy for some real number Ly, Uy .

3. ∀(s, a) ∈ U , Lx ≤ ϕ(s, a) ≤ Ux for some real vector Lx, Ux. The inequality holds element-wise.

4. The estimated matrix of the covariates
∑

(s,a)∈D
π(a|s)
πb(a|s)ϕ(s, a)ϕ(s, a)

⊤ and the finite population matrix∑
(s,a)∈U ϕ(s, a)ϕ(s, a)

⊤ are invertible.

In short, we need to make sure the data collection policy chooses each action with a non-zero probability, and the reward
and feature vector are bounded.

B.1 Proof of Theorem 1

Definition 1 (The ratio estimator). Let zs,a ∈ R be the auxiliary variable, tz be the populating total of the auxiliary
variable, which is assumed to be known, and t̂HH and t̂z be the HH estimator for ty and tz respectively. The ratio estimator
is given by

t̂Ratio = tz
t̂HH

t̂z
.

Now we show that the ratio estimator is a special case of the regression estimator.

Lemma 1. Suppose we have univariate auxiliary information zs,a. Under the linear model Eξ[Ys,a] = βzs,a and
Vξ(Ys,a) = σ2

s,a = zs,aσ
2 for some β ∈ R and σ ∈ R+, the regression estimator is equivalent to the ratio estimator.
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Proof. First note that the regression estimator has an alternative expression as

t̂Reg =
∑

(s,a)∈U

zs,aβ̂ +
∑

(s,a)∈D

ys,a − zs,aβ̂

nps,a

=
∑

(s,a)∈D

ys,a
nps,a

+

 ∑
(s,a)∈U

zs,a −
∑

(s,a)∈D

zs,a
nps,a

 β̂

=
∑

(s,a)∈D

ys,a
nps,a

+

 ∑
(s,a)∈U

zs,a −
∑

(s,a)∈D

zs,a
nps,a

 ∑
(s,a)∈D

zs,azs,a
nps,aσ2

s,a

−1 ∑
(s,a)∈D

zs,ays,a
nps,aσ2

s,a



=
∑

(s,a)∈D

ys,a
nps,a

1 +
 ∑

(s,a)∈U

zs,a −
∑

(s,a)∈D

zs,a
nps,a

 ∑
(s,a)∈D

zs,azs,a
nps,aσ2

s,a

−1

zs,a
σ2
s,a


︸ ︷︷ ︸

gs.a

=
∑

(s,a)∈D

gs,ays,a
nps,a

where gs,a can be viewed as the weight for each unit in the sample.

Under the model σ2
s,a = zs,aσ

2, for each (s′, a′) ∈ D, we have

gs′,a′ = 1 +

 ∑
(s,a)∈U

zs,a −
∑

(s,a)∈D

zs,a
nps,a

 ∑
(s,a)∈D

zs,azs,a
nps,aσ2zs,a

−1(
zs′,a′

σ2zs′,a′

)

= 1 +

 ∑
(s,a)∈U

zs,a −
∑

(s,a)∈D

zs,a
nps,a

 ∑
(s,a)∈D

zs,a
nps,a

−1

= 1 +

 ∑
(s,a)∈U

zs,a

 ∑
(s,a)∈D

zs,a
nps,a

−1

− 1

= tz/

 ∑
(s,a)∈D

zs,a
nps,a


The second equality follows by cancelling out the right most term with the σ2 in the inverse bracket. Note that the weight
is the same for each unit in the sample. Plugging into the previous equation, we have

t̂Reg = tz

∑
(s,a)∈D ys,a/nps,a∑
(s,a)∈D zs,a/nps,a

= t̂Ratio.

Proof of Theorem 1. We first show that the WIS estimator belongs to a class of estimators called the ratio estima-
tor in survey sampling in Definition 1. Suppose the auxiliary variable zs,a = P (s)π(a|s), and we know tz =∑

(s,a)∈U P (s)π(a|s) = 1. Then, the ratio estimator is

t̂Ratio = tz
t̂HH

t̂z
=

 ∑
(s,a)∈D

ys,a
nps,a

 ∑
(s,a)∈D

zs,a
nps,a

−1

=
∑

(s,a)∈D

π(a|s)/πb(a|s)∑
(s′,a′)∈D π(a

′|s′)/πb(a′|s′)
r(s, a)

which is the WIS estimator in the OPE literature.

Then, we prove a more general statement that a ratio estimator with univariate auxiliary information zs,a is a special case
of the regression estimator under the linear model Eξ[Ys,a] = βzs,a and Vξ(Ys,a) = σ2

s,a = zs,aσ
2 for some β ∈ R and

σ ∈ R+ in Lemma 1.
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B.2 Proof of Theorem 2

Lemma 2 (Variance of the HH estimator for multinomial design). Let z be a mapping from S × A to [a, b] for two
constants a < b, and t̂HH be the HH estimator for the variable ys,a = P (s)π(a|s)z(s, a). With multinomial design n and
ps,a = P (s)πb(a|s), the variance is given by

V(t̂HH) =
1

n

 ∑
(s,a)∈U

y2s,a
ps,a

− t2y

 =
1

n

 ∑
(s,a)∈U

P (s)π(a|s) π(a|s)
πb(a|s)

z(s, a)2 − t2y

 .

Proof. Recall the HH estimator is

t̂HH =
∑
D

ys,a
nps,a

=
∑
U

Is,ays,a
nps,a

.

where Is,a is the (s, a)-th element of the design vector I. The variance is

V(t̂HH) = V

(∑
U
Is,a

ys,a
nps,a

)
=

∑
(s,a)∈U

V(Is,a)

(
ys,a
nps,a

)2

+
∑

(s,a)̸=(s′,a′)

Cov(Is,a, Is′,a′)

(
ys,a
nps,a

)(
ys′,a′

nps′,a′

)
.

We know V(Is,a) = nps,a(1 − ps.a) and Cov(Is,a, Is′,a′) = −nps.aps′,a′ from the properties of the multinomial distri-

bution, hence, after some calculation, we have V(t̂HH) =
1
n

(∑
(s,a)∈U

y2
s,a

ps,a
− t2y

)
. The proof is completed by plugging in

the value of ys,a and ps,a.

Proof of Theorem 2. Note that we assume the first term in Eq (3) is invertible. We can write the estimator as t̂Reg =

t̂y + (tz − t̂z)Â
−1Ĉ where t̂y is the HH estimator for ty =

∑
U P (s)π(a|s)r(s, a) and tz =

∑
U zs,a and t̂z be the HH

estimator for tz . Â and Ĉ denote the first and second matrix is Eq (3) respectively. Moreover, let tzj be the j-th element of
the vector tz , and t̂zj be the j-th element of the vector t̂zj .

LetA =
∑

U P (s)π(a|s)ϕ(s, a)ϕ(s, a)⊤, C =
∑

U P (s)π(a|s)ϕ(s, a)r(s, a) andB = A−1C. Using the Taylor lineariza-
tion technique (see Section 6.6 of Särndal et al. (1992)), and we can approximate t̂Reg at t̂y = ty , t̂1 = t1, t̂z = tz , Â = A

and Ĉ = C:

t̂Reg = ty + 1(t̂y − ty)−
∑
j

Bj(t̂z,j − tz,j) +
∑
i,j

(tz − tz)
⊤[−A−1

EijA
−1
]C(Âij −Aij)+∑

j

(tz − t̂z)
⊤ej(Ĉj − Cj) + . . .

= t̂y + (tz − t̂z)
⊤B + ...

where Eij is a matrix where the ij- and ji-th elements are one and all other elements are zero, and ej is a vector where the
j-th element is one and zero otherwise.

Since the random variable is bounded, the moments exist. Taking the expectation, we get

E[t̂Reg] = E[t̂y + (tz − t̂z)
⊤B] +O(n−1) = ty +O(n−1). (6)

The first equality follows from the remainder terms of the Taylor expansion are the expectations of (t̂y − ty)
p and (t̂z,j −

tz,j)
p for p ≥ 2, which is of orderO(1/n). The second equality follows from t̂z is an unbiased estimator for tz . Therefore,

t̂Reg is asymptotically unbiased.

Furthermore,

V(t̂Reg) = E[(t̂Reg − E[t̂Reg])
2]

= E[(t̂Reg − ty + ty − E[t̂Reg])
2]

= E[(t̂Reg − ty)
2 + (ty − E[t̂Reg])

2 + 2(t̂Reg − ty)(ty − E[t̂Reg])]

= E[(t̂Reg − ty)
2] + o(n

−1
)

= E[(t̂y − t̂zB︸ ︷︷ ︸
(a)

−ty + txB)2] + o(n
−1
)
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The last equality comes from Eq (6). Note that (a) is the HH estimator t̂e =
∑

D
π(a|s)

nπb(a|s) (r(s, a) −
ϕ(s, a)⊤B) so the expectation (the first term in the last line) is the variance of (a) which is given by
1
n

(∑
(s,a)∈U P (s)π(a|s)

π(a|s)
πb(a|s) (r(s, a)− ϕ(s, a)⊤B)2 − t2e

)
with te =

∑
U P (s)π(a|s)(r(s, a) − ϕ(s, a)⊤B) by

Lemma 2.

Since the variance converges to zero and the estimator is asymptotically unbiased, we also know t̂Reg
p→ ty .

B.3 Proof of Theorem 3

Proof of consistency. Define

V̂n(β) =
1

n(n− 1)

 ∑
(s,a)∈D

(
π(a|s)
πb(a|s)

(r(s, a)− ϕ(s, a)⊤β)

)2

− nt̂e(β)
2

 , and

Vn(β) =
1

n

 ∑
(s,a)∈U

P (s)π(a|s) π(a|s)
πb(a|s)

(r(s, a)− ϕ(s, a)⊤β)2 − te(β)
2


where t̂e(β) =

∑
D

π(a|s)
nπb(a|s) (r(s, a)−ϕ(s, a)

⊤β) and te(β) =
∑

U P (s)π(a|s)(r(s, a)−ϕ(s, a)⊤β). Then it is sufficient
to show that

n|V̂n(β̂n)−Vn(βWLS)|
p→ 0.

For ϵ > 0, by the triangle inequality,

Pr(n|V̂n(β̂n)−Vn(βWLS)| > ϵ) ≤ Pr(n|V̂n(β̂n)− V̂n(βWLS)| > ϵ/2) + Pr(n|V̂n(βWLS)−Vn(βWLS)| > ϵ/2).

For the first term, using the fact that β̂n
p→ βWLS and the continuous mapping theorem, we get V̂n(β̂n)

p→ V̂n(βWLS),
which implies limn→∞ Pr(n|V̂n(β̂n)− V̂n(βWLS)| > ϵ/2) = 0.

Define es,a(β) = r(s, a)−ϕ(s, a)⊤β, twe2(β) =
∑

U P (s)π(a|s)
π(a|s)
πb(a|s)es,a(β)

2 (the first term of Vn(β)) and t̂we2(β) =∑
D

(
π(a|s)

nπb(a|s)es,a(β)
)2

(the first term of V̂(β)). Then, for the second term, we have

Pr(n
∣∣∣V̂n(βWLS)−Vn(β)

∣∣∣ > ϵ/2)

= Pr(

∣∣∣∣ n

n− 1
t̂we2(βWLS)−

n

n− 1
t̂e(βWLS)

2 − twe2(βWLS) + te(βWLS)
2

∣∣∣∣ > ϵ/2)

≤ Pr(

∣∣∣∣ n

n− 1
t̂we2(βWLS)− twe2(βWLS)

∣∣∣∣ > ϵ/4) + Pr(

∣∣∣∣ n

n− 1
t̂e(βWLS)

2 − te(βWLS)
2

∣∣∣∣ < ϵ/4).

Note that t̂we2(βWLS) and t̂(βWLS)
2 are the HH estimators for twe2(βWLS) and te(βWLS) respectively, so they are

consistent. As a result, we have

lim
n→∞

Pr(n
∣∣∣V̂n(β̂WLS)−Vn(βWLS)

∣∣∣ > ϵ/2) = 0,

which completes the proof.

Proof of asymptotic normality. It is known that the HH estimator for with-replacement sampling is asymptotically normal
(for example, see Theorem 2 of Félix-Medina (2003) or McConville (2011)), that is,[√

n(t̂y − ty)√
n(t̂z − tz)

]
D→ N

(
0,

[
Σy Σyz

Σzy Σz

])
where Σy,Σyz,Σzy and Σz are the limiting covariance matrices. Then we follow the proof idea from Theorem 3.2 of
McConville (2011). Using the Slutsky’s Theorem and the fact that β̂n

p→ βWLS , we have[ √
n(t̂y − ty)√
n(t̂z − tz)β̂n

]
D→ N (0,

[
Σy ΣyzβWLS

β⊤
WLSΣ

zy β⊤
WLSΣ

zβWLS

]
).
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Note that
√
n(t̂Reg − ty) =

√
n(t̂y − ty) −

√
n(t̂z − tz)β̂n. By the Delta method, we have

√
n(t̂Reg − ty)

D→ N (0, σ2)
where σ2 = Σy − ΣyzβWLS − β⊤

WLSΣ
zy + β⊤

WLSΣ
zβWLS . Note that we can write the variance of t̂y − t̂zβWLS as

V(t̂y − t̂zβWLS) =
1
n (Σ

y −ΣyzβWLS −β⊤
WLSΣ

zy +β⊤
WLSΣ

zβWLS), and in the proof for Theorem 2, we show that the

asymptotic variance of t̂Reg is AV(t̂Reg) = V(t̂y − t̂zβWLS). Therefore, AV(t̂Reg) = σ2/n, and (t̂Reg − ty)/
√

AV(t̂Reg)
D→

N (0, 1).

By the consistency of the variance estimator and Slutsky’s theorem, we have

t̂Reg − ty√
V̂(t̂Reg)

=
t̂Reg − ty√
AV(t̂Reg)

√
AV(t̂Reg)√
V̂(t̂Reg)

D→ N (0, 1).

C VARIANCE ESTIMATION

In this section, we provide the variance estimation for all estimators used in our experiments.

Variance estimation for the IS estimators. For the IS estimator from the Monte Carlo literature, we first note that
the estimator can be written as 1

n

∑
iWiRi where Wi = π(Ai|Si)

πb(Ai|Si)
and Ri = r(Si, Ai). Then, the variance is given by

V(ĴIS(π)) =
1
nV (WR) due to the i.i.d. property, and V (WR) can be estimated by the sample variance. Therefore, we

have an unbiased variance estimator

V̂(ĴIS(π)) =
1

n

[
1

n− 1

n∑
i=1

(
WiRi − ĴIS(π)

)2]
.

For the HH estimator from the survey sampling literature, we can use the Sen-Yates-Grundy variance estimator (Sen, 1953;
Yates and Grundy, 1953) for the multinomial design, which is given by

V̂(t̂HH) =
1

n(n− 1)

 ∑
(s,a)∈D

(
π(a|s)
πb(a|x)

r(s, a)

)2

− nt̂2HH

 .
The variance estimator V̂(t̂HH) is an unbiased estimator for the true variance V(t̂HH). Interestingly, it also has the same
form as the variance estimator for the IS estimator.

Variance estimation for the WIS estimator. Using the Taylor linearization technique, the ratio estimator is approxi-
mately by t̂Ratio = txR̂tx ≈ R+ (t̂y −Rt̂x). Define us,a = ys,a −Rxs,a, tu =

∑
i∈U us,a and t̂u = 1

n

∑
D

us,a

ps,a
, then we

have an approximate variance AV(t̂Ratio) = V(t̂u). Based on the approximation, the estimated variance is given by

V̂(t̂WIS) =
1

n(n− 1)

 ∑
(s,a)∈D

(
π(a|s)
πb(a|x)

(r(s, a)− t̂WIS)

)2

− n

 1

n

∑
(s,a)∈D

π(a|s)
πb(a|s)

(r(s, a)− t̂WIS)

2
 .

Variance estimation for the difference and DR estimator. Since the first term of the difference estimator is fixed, the
variance of the difference estimator equals to the variance of the HH estimator t̂∆ = 1

n

∑
(s,a)∈D

π(a|s)
πb(a|s)∆(s, a) where

∆(s, a) = r(s, a)− r̂(s, a). Then the variance estimator is

V̂(t̂Diff) =
1

n(n− 1)

 ∑
(s,a)∈D

(
π(a|s)
πb(a|x)

∆(s, a)

)2

− nt̂2∆

 .
For the DR estimator where the first term is also estimated from D, first note that the DR estimator can be written as

t̂DR =
1

n

∑
(s,a)∈D

(π(a|x)(r(s, a)− r̂(s, a)) + πb(a|s)r̂π(s))
πb(a|s)
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which is the HH estimator for t =
∑

U P (s)(π(a|s)(r(s, a) − r̂(s, a)) + πb(a|s)r̂π(s)). Therefore, we have the variance
estimator

V̂(t̂DR) =
1

n(n− 1)

 ∑
(s,a)∈D

(
(π(a|x)(r(s, a)− r̂(s, a)) + πb(a|s)r̂π(s))

πb(a|s)

)2

− nt̂2DR

 .
Variance estimation for the regression-assisted estimator. We briefly describe the weighted residual technique from
Särndal et al. (1989). Using the definition of gs,a = 1 + (tx − t̂x)(

∑
i∈D

π(a|s)ϕ(s,a)ϕ(s,a)⊤
nπb(a|s) )−1ϕ(s, a), the regression

estimator can be written as

t̂Reg =
∑

(s,a)∈U

P (s)π(a|s)ϕ(s, a)⊤βWLS +
∑

(s,a)∈D

π(a|s)
nπb(a|s)

gs,a(r(s, a)− ϕ(s, a)⊤βWLS).

It follows that

V(t̂Reg) = V

 ∑
(s,a)∈D

π(a|s)
nπb(a|s)

gs,a(r(s, a)− ϕ(s, a)⊤βWLS)


which is the variance of the HH estimator t̂e =

∑
D

π(a|s)
πb(a|s)gsa(r(s, a)−ϕ(s, a)

⊤β) for te =
∑

U P (s)π(a|s)gs,a(r(s, a)−
ϕ(s, a)⊤β). Ignoring the fact that the weight gs,a is sample dependent and replacing βWLS with β̂, we have the g-weighted
variance estimator

V̂(t̂Reg) =
1

n(n− 1)

 ∑
(s,a)∈D

(
π(a|s)
πb(a|x)

gsa(r(s, a)− ϕs,aβ̂)

)2

− nt̂2e

 .
D EXTENSION TO RL

In the main paper, we discuss OPE for RL by treating each trajectory as one unit in a population containing all possible
trajectories. That is, let U = (S × A)H be the population containing all trajectories and yτ = Pπ

M (τ)R(τ) be the study
variable. We use multinomial design with pτ = Pπb

M (τ) to obtain a sample of trajectories D. The resulting HH estimator
has the same form as the trajectory-wise IS estimator (Sutton and Barto, 1998). , that is,

t̂IS =
1

n

∑
τ∈D

Pπ
M (τ)

Pπb

M (τ)
R(τ) =

1

n

∑
τ∈D

π(a0|s0) . . . π(aH−1|sH−1)

πb(a0|s0) . . . πb(aH−1|sH−1)
R(τ).

However, there are many other ways to view OPE for RL in the survey sampling framework. One way is to consider
estimating the expected reward at each horizon separately. In this case, for h = 0, . . . ,H − 1, let Uh = (S × A)h+1 and
our goal is to estimate

Jh(π) =
∑
τ∈Uh

ν(s0)π(a0|s0)P (s1|s0, a0) . . . π(ah|sh)r(sh, ah)

which is the expected reward at horizon h under policy π. It is easy to see that J(π) =
∑H−1

h=0 Jh(π). Therefore, this can
be viewed as stratified sampling where stratum h contain all trajectories of horizon h. Using the IS estimator to estimate
Jh(π) for each horizon, we get the per-decision IS estimator (Precup et al., 2000). That is,

t̂PDIS =

H−1∑
h=0

Ĵh(π) =

H−1∑
h=0

1

n

∑
τ∈D

π(a0|s0) . . . π(ah|sh)
πb(a0|s0) . . . πb(ah|sh)

r(sh, ah). (7)

The sampling at each horizon might depend on the sampling at the previous horizon. In that case, we can’t easily get the
variance or an variance estimator since V (Ĵ(π)) ̸=

∑H−1
h=0 V (Ĵh(π)). However, we can still compute the variance and an

variance estimator via a recursive form (Jiang and Li, 2016).

Another way is to consider sampling transitions instead of episode. Let U = S × A and for (s, a) ∈ U , ys,a =

dπ(s, a)r(s, a) where dπ(s, a) = (
∑H−1

h=0 Pπ
M (Sh = s, ah = a))/H . We use multinomial design with ps,a = µ(s, a)

where µ is a data distribution that we can use to sample data. However, for this formulation, dπ(s, a) is usually unknown,
and there are existing work on estimating the density ratio (Liu et al., 2018).
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E EXPERIMENT DETAILS

The goal of the experiment design is to model the recommendation system where reward associated with each user-
item pair changes over time. For the Youtube dataset, we generate a sequence of reward functions based on the non-
stationary recommendation environment used in Chandak et al. (2020). For each positive context-action pair in the original
classification dataset, the reward follows a sine wave with noises. More precisely, rk(s, a) = 0.5 + amplitudes,a ∗ sin(k ∗
frequencys,a) + 0.01ε where ε ∼ Unif([0, 1]). For each interval, we also randomly sample some context-action pairs and
set their rewards to positive random values to increase the noise.

To obtain a target policy for the Youtube and MovieLens dataset, we fist train a classifier on a small subset of the original
multi-label classification dataset. Then we apply the softmax function on the outputs of the trained classifiers to obtain a
probability distribution over actions for each context. The conditional distribution is used as the target policy.

Similarly for the RL environment, the reward follows rk(s, a) = µs,a + 0.25 ∗ sin(k ∗ frequencys,a) + 0.01 ∗ ε where
ε ∼ Unif([0, 1]). To obtain a target policy, we fist train a Q-learning agent on the underlying environment for 1000 episodes
and then apply the softmax function on the Q-value as the target policy.

The summary statistics of the dataset are:

|S| |A|
Youtube 31703 47

MovieLens 1923 19

We provide a pseudocode for our experiment procedure in Algorithm 1.

Algorithm 1 Non-stationary OPE experiment with regression-assisted DR estimator

Input: a non-stationary environment M , a target policy π, a behavior policy πb, window size B, a prediction subroutine
Pred(X,Y, xtest) using linear regression with basis function ψ
for k = 0, . . . ,K do

Collect a dataset Dk = {(si, ai, rk(si, ai), πb(ai|si))}ni=1 from M
if k > 0 then

# Estimate the current value
Build a reward prediction r̂k from the past data Dk−B , . . . , Dk−1

Compute β̂k from Dk using Eq (3) with ϕ(s, a) = (1, r̂k(s, a))
Compute t̂Reg,k from Dk using Eq (4)
# Predict the future value
t̂Pred,k+1 = Pred(X = [ψ(1), . . . , ψ(k)], Y = [t̂Reg,1, . . . , t̂Reg,k], xtest = ψ(k + 1))

Compute the true value J1(π), . . . , Jk(π)
Output:

RMSEReg =
√

1
K

∑K
k=1(t̂Reg,k − Jk(π))2 # Error for estimating the current value

RMSEPred =
√

1
K

∑K
k=2(t̂Pred,k − Jk(π))2 # Error for predict the future value

F ADDITIONAL EXPERIMENTS

We provide more experiment results in this section.

Estimating the population total of the proxy values. For the experiments in the main paper, we use the population
total of the proxy values for the DM, Diff and Reg estimator. In this experiment, we test the regression-assisted estimator
when the population total of the proxy values are being estimated, that results in the estimator using Eq (2), which we call
RegDR, and the estimator with an independent survey D′, described in the last paragraph of Section 4.1, which we call
RegDR2.

In Figure 5, we found that RegDR2 has a similar RMSE compared to Reg, and both are slightly better than RegDR. This
suggests that using an independent survey has potential to improve the standard DR estimator in the non-stationary setting.
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Figure 5: Comparison when the population total of the proxy value is estimated. Top: estimating Jk(π). Bottom:
predicting Jk+1(π).
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Figure 6: Comparison to PDIS in the simulated RL environment. Left: estimating Jk(π). Right: predicting Jk+1(π).
Note that PDIS and IS are horizontal lines since they do not depend on B.

Moreover, even the population total needs to be estimated, the regression-assisted estimator can still perform well using
RegDR2.

Comparison to PDIS. For the RL experiment, we compare Reg to PDIS in Eq (7), which is expected to improve over
the standard trajectory-wise IS estimator. The result in Figure 6 shows that Reg still outperforms PDIS.
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