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Abstract

Thompson sampling has proven effective across
a wide range of stationary bandit environments.
However, as we demonstrate in this paper, it can
perform poorly when applied to non-stationary
environments. We show that such failures are
attributed to the fact that, when exploring, the
algorithm does not differentiate actions based
on how quickly the information acquired loses
its usefulness due to nonstationarity. Building
upon this insight, we propose predictive sam-
pling, an algorithm that deprioritizes acquiring
information that quickly loses usefulness. The-
oretical guarantee on the performance of predic-
tive sampling is established through a Bayesian
regret bound. We provide versions of predic-
tive sampling for which computations tractably
scale to complex bandit environments of prac-
tical interest. Through numerical simulation,
we demonstrate that predictive sampling outper-
forms Thompson sampling in all non-stationary
environments examined.

1 INTRODUCTION

Thompson sampling (Thompson, 1933) operates by sam-
pling at each timestep statistically plausible mean rewards
and selecting the action that maximizes the mean reward
among them. Its efficacy in stationary environments has
been established through empirical and theoretical analyses
(Agrawal and Goyal, 2012; Chapelle and Li, 2011; Russo
and Van Roy, 2014).

However, as we demonstrate in this paper, Thompson sam-
pling is not suited for non-stationary environments. In
particular, we illustrate through a didactic example that
Thompson sampling can suffer near worst case perfor-
mance in some non-stationary bandit environments (Sec-
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tion 3). A key observation is that Thompson sampling fails
to account for nonstationarity of future dynamics when se-
lecting an action, and as such attains unstatisfactory perfor-
mance.

Nonstationarity should impact how an agent selects its cur-
rent action to balance between exploration and exploita-
tion. In particular, when investing in acquiring informa-
tion about an action, an agent should consider the duration
over and the extent to which that information will remain
useful. Unlike in a stationary environment, where informa-
tion about an action remains equally useful across future
timesteps, the usefulness of information in a non-stationary
environment often decay as the reward distribution fluctu-
ates randomly. If the information will quickly become less
useful, the agent ought to be less inclined to invest in ac-
quiring it.

This insight motivates our proposal of predictive sampling
as an algorithm for non-stationary bandit learning (the de-
sign principle is covered in Section 5). We establish a
Bayesian regret bound satisfied by predictive sampling.
The bound grows linearly in

√
T∆, where T is the horizon,

and ∆ measures the total amount of useful information that
can be acquired by an agent. When the environment is sta-
tionary, ∆ is independent of T , and we recover a bound that
is linear in

√
T . When ∆ is linear in T , as is typically the

case in non-stationary environments that continually pro-
duce new information to evolve reward distributions, the
bound is linear in T .

We specialize the bound to a class of non-stationary
Bernoulli bandit environments that generalize the per-arm
abrupt switching model with a constant switching rate
(Mellor and Shapiro, 2013). In such environments, upper
and lower bounds each grow linearly in T , suggesting that
the linear dependence is fundamental. In addition, the up-
per bound exhibits a graceful dependence on environment
parameters, which demonstrates the effectiveness of pre-
dictive sampling across a range of such environments.

To quantify the advantage of predictive sampling over
Thompson sampling, we develop efficient procedures to
execute them in a class of non-stationary Gaussian bandits
and conduct experiments. The results demonstrate that pre-
dictive sampling outperforms Thompson sampling across
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all non-stationary bandit environments that we examine.

In addition, as an important step towards designing prac-
tical algorithms, we develop variations of Thompson sam-
pling and predictive sampling and develop efficient proce-
dures to execute them in a class of non-stationary logistic
bandits. This illustrates how computationally efficient vari-
ations of predictive sampling can be designed in an man-
ner analogous to Thompson sampling. A number of ex-
isting non-stationary bandit learning algorithms (Ghatak,
2021; Gupta et al., 2011; Mellor and Shapiro, 2013; Raj
and Kalyani, 2017; Trovo et al., 2020; Viappiani, 2013) can
be viewed as variations of Thompson sampling, and our ap-
proach serves to amplify the value of that work.

Primary Contributions The three primary contribu-
tions of this paper are: (1) evidence that conveys how and
why Thompson sampling is unsuitable for non-stationary
bandit environments, (2) a proposal and analysis of predic-
tive sampling for non-stationary bandit learning, and (3)
versions of predictive sampling that are computationally
tractable and apply to a broad range of complex bandit en-
vironments of practical interest.

Structure of The Paper The remainder of the paper pro-
ceeds as follows. Section 3 provides an didactic example to
illustrate how and why Thompson sampling attains unsat-
isfactory performance in some non-stationary bandit envi-
ronments. Section 4 contains the general formulation of a
bandit environment. Section 5 formally introduces predic-
tive sampling. Sections 6 and 7 include the regret analysis
and numerical experiments. The probabilistic framework,
information-theoretic notation and concepts, together with
technical proofs are presented in supplementary materials.

2 RELATED WORK

We consider non-stationary bandits as ‘restless bandits’
introduced by (Whittle, 1988). Many algorithms were
since proposed in the non-stationary bandit learning lit-
erature. These algorithms focus on heuristics on how to
make better inferences about the current mean reward. Pop-
ular heuristics for inference include using a fixed-length
sliding-window, weighing data by recency, and periodic
restarts. Given what is inferred, these algorithms apply
action-selection schemes that are designed for stationary
bandits, for example, TS, upper-confidence-bound meth-
ods (Lai and Robbins, 1985), and exponential-weight al-
gorithms (Auer et al., 2002; Freund and Schapire, 1997).
These algorithms, which include discounted TS (Raj and
Kalyani, 2017), sliding-window TS (Trovo et al., 2020),
reset-aware TS (Viappiani, 2013), Change-Point TS (Mel-
lor and Shapiro, 2013), dynamic TS (Gupta et al., 2011),
discounted UCB (Kocsis and Szepesvári, 2006; Garivier
and Moulines, 2008), sliding-window UCB (Cheung et al.,
2019; Garivier and Moulines, 2008), GLR-klUCB (Besson
and Kaufmann, 2019), adapt-EvE (Hartland et al., 2006),

and Rexp3 (Besbes et al., 2019), can be considered as vari-
ations of stationary bandit learning algorithms.

These algorithms have proven to work much more ef-
fectively in non-stationary bandits than stationary bandit
learning algorithms. However, by applying the action-
selection schemes designed for stationary bandits, these al-
gorithms implicitly assume that future dynamics is station-
ary, and therefore do not account for the future value of in-
formation. We complement this literature by proposing PS,
which intelligently accounts for the future when selecting
actions.

In terms of algorithmic design, most closely related to ours
is (Min et al., 2019), which proposes a family of informa-
tion relaxation sampling algorithms for stationary bandits.
When the actions are independent, PS is equivalent to an
extreme point of a class of such algorithms. While Min
et al. (2019) focuses on stationary bandits, we propose PS
for and analyze its performance in non-stationary bandits.

Our work is also closely related to the body of literature
on information-theoretic regret analyses in the stationary
bandit learning literature (Bubeck et al., 2015; Dong and
Van Roy, 2018; Hao et al., 2022; Lattimore and Szepesvári,
2019; Lu et al., 2021; Russo and Van Roy, 2014, 2016).
This area of the literature introduces the notion of an infor-
mation ratio and bounds the regret of an agent in terms of
its information ratio.

Our work adds to this stream of research by extending the
information-theoretic framework to non-stationary bandits.
Critical to our framework is a new notion of information
ratio that is better suited for non-stationary bandits and a
concept of predictive information. We bound the regret of
an agent in terms of the amount of cumulative predictive
information and the agent’s information ratio. We also de-
velop useful tools to bound the amount of cumulative pre-
dictive information by parameters of the bandits.

3 MOTIVATION

This section provides insight on why Thompson sampling
is not suitable for non-stationary bandit learning and why
it is crucial to deprioritize information that more quickly
loses usefulness. To illustrate these ideas, let us focus on a
specific example of a non-stationary bandit environment.

Example 1 (A two-armed non-stationary Bernoulli ban-
dit). Consider a Bernoulli bandit with a set of two actions
A = {1, 2}. We use θt,a to denote the mean reward asso-
ciated with action a at timestep t, and (θt : t ∈ Z+) to
denote the sequence of mean rewards associated with both
actions at all timesteps. We take the first action to be a
known benchmark: let θt,1 = 1 − ϵ for all t ∈ Z+. As
for action 2, we let θ0,2 ∼ unif{0, 1}. The mean reward
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associated with action 2 can vary over time. In particular,

θt+1,2 =

{
θt+1,new ∼ unif{0, 1}, with prob q = 1− ϵ,

θt,2, otherwise,

where ϵ = 1/100. That is, the mean reward for action 2
is “redrawn” with probability q at each timestep. We use
Rt+1,a to denote the reward that an agent receives upon
executing action a at timestep t. Conditioning on (θt :
t ∈ Z+), Rt+1,a is Bernoulli distributed with mean θt,a,
independent of the rewards associated with other times or
actions.

With this bandit environment, at timestep t ∈ Z+, selecting
action 1 gives an expected reward of θt,1 = 1− ϵ, selecting
action 2 gives an expected reward of at most 1 − 1

2q =
1
2 (1+ ϵ). So an optimal agent would select action 1 at each
timestep.

At each timestep t ∈ Z+, a Thompson sampling agent sam-
ples a mean reward estimate θ̂πTS

t,a for each action a ∈ A,
and executes an action AπTS

t that maximizes the estimate.
With this bandit environment, for all t ∈ Z+, since the
mean reward associated with the first action is known and
fixed at 1 − ϵ, TS samples θ̂πTS

t,1 = 1 − ϵ. Observe that
the mean reward associated with the second action is “re-
drawn” at each timestep with probability q, and when it is
“redrawn”, it takes value 1 with probability 1

2 . So the pos-
terior distribution of θt,2 always has at least 1

2q mass on 1.
As such, TS samples θ̂πTS

t,2 = 1 with a probability that is
at least 1

2q = 1
2 (1 − ϵ). So a Thompson sampling agent

would select action 2 at each timestep with a probability
that is at least 1

2 (1 − ϵ). Here, although action 2 is associ-
ated with a smaller expected reward compared to action 1,
a Thompson sampling agent selects action 2 with a positive
probability because it wishes to acquire more information
about this action.

Unfortunately, such information gathering is almost fruit-
less due to nonstationarity: with q = 1−ϵ = 99

100 , the mean
reward associated with action 2 is likely to be redrawn in
each timestep, so any information acquired about it rapidly
becomes meaningless. By failing to deprioritize acquiring
such information, a Thompson sampling agent would se-
lect action 2 more than it should, and as a result collects a
reward that is at least 1

5 less than that collected by an opti-
mal agent in expectation.

Following a similar argument, we establish the following
result: there exists a non-stationary Bernoulli bandit en-
vironment in which Thompson sampling obtains nearly 0
reward; a different agent (predictive sampling agent, as we
show in Section 5.2) obtains almost 1 per timestep. Since
rewards in a Bernoulli bandit are binary-valued, this indi-
cates that Thompson sampling performs almost as badly as
the worst-possible agent for this environment.

Proposition 1. For all ϵ > 0, there exists a non-stationary

Bernoulli bandit environment and a policy π that se-
lects Aπ

t at timestep t such that for all T ∈ Z++,
E[
∑T−1

t=0 Rt+1,Aπ
t
] ≥ (1−ϵ)T and E[

∑T−1
t=0 Rt+1,A

πTS
t

] ≤
ϵT .

It is worth mentioning that a number of non-stationary ban-
dit learning algorithms (Ghatak, 2021; Gupta et al., 2011;
Mellor and Shapiro, 2013; Raj and Kalyani, 2017; Trovo
et al., 2020; Viappiani, 2013) use various hueristics to es-
timate the current mean reward and then take Thompson
sampling as a subroutine to select action at each timestep.
Our argument on Thompson sampling with Example 1 ap-
plies and Proposition 1 extends to each of these algorithms.

4 BANDIT ENVIRONMENTS

This section introduces the general formulation of a bandit
environment.

4.1 Bandit Environments

We first formalize the concept of a bandit environment, in
which all random quantities are defined with respect to a
probability space (Ω,F ,P).
Definition 1 (bandit environment). Let A be a finite set,
and (Rt+1 : t ∈ Z) be a random sequence of vectors in
R|A|. The sequence (Rt+1 : t ∈ Z) is a bandit environ-
ment with a finite set A of actions if there exists a random
sequence (Pt,a : t ∈ Z) of probability distributions over R
for each a ∈ A, such that for all t ∈ Z and a ∈ A,

P(Rt+1,a ∈ ·|P−∞:∞, R¬(t+1), Rt+1,¬a) = Pt,a,

where R¬(t+1) denotes the sequence of all reward vectors
excluding Rt+1, Rt+1,¬a denotes the vector consisting of
all components of Rt+1 except for the ath, Pt denotes the
collection of Pt,a for a ∈ A, and P−∞:∞ denotes the col-
lection of Pt for t ∈ Z; we say that the sequence P−∞:∞
generates the bandit environment (Rt+1 : t ∈ Z).

In a bandit environment (Rt+1 : t ∈ Z), each Rt+1,a rep-
resents the reward that will be realized if an agent executes
action a at time t. By definition, each Rt+1,a can be viewed
as sampled from Pt,a, independently from other rewards
associated with other times or actions. While components
of Rt+1 are independent conditioning on Pt, they are not
necessarily independent unconditionally. We assume that
each reward has a well-defined and finite expectation.

It is worth noting that the reward distribution sequence
P−∞:∞ may not be unique for a bandit environment; mul-
tiple such sequences may generate the same environment.
We say that a bandit environment is stationary if there ex-
ists a sequence P−∞:∞, such that Pt = P0 for all t ∈ Z,
that generates the environment; we also say that P0 gener-
ates the environment. A bandit environment is called non-
stationary if it is not stationary.
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4.2 Policy

Let H denote the set of all sequences of a finite number
of action-reward pairs. We refer to the elements of H as
histories. Below we provide a formal definition of a policy.

Definition 2 (policy). A policy π is a function that maps a
history inH to a probability distribution over A.

So a policy π assigns, for each realization of history h ∈ H,
a probability π(a|h) of choosing an action a for all a ∈ A.
Let Hπ

0 be the empty history and for each time t ∈ Z++

let Hπ
t = (Aπ

0 , R1,Aπ
0
, . . . , Aπ

t−1, Rt,Aπ
t−1

), where P(Aπ
t ∈

·|Hπ
t ) = π(·|Hπ

t ). Then Hπ
t represents the history gener-

ated as an agent executes policy π by sampling each action
Aπ

t from π(·|Hπ
t ) and receives the reward Rt+1,Aπ

t
.

Much of the work presented in this paper studies an agent
that executes a specific policy, i.e., predictive sampling.
When it is clear from context, we suppress superscripts that
indicate this. For example, we use Ht for the history gen-
erated as an agent executes predictive sampling, and At for
the action.

5 PREDICTIVE SAMPLING

This section introduces predictive sampling, which is de-
signed around the insight that an agent should ideally de-
prioritize acquiring information that quickly loses its use-
fulness.

5.1 The Algorithm

We first introduce the notion of a learning target, which is
central to algorithm design in bandit learning. Many such
algorithms are designed to trade off between information
acquisition and immediate reward optimization. In such
contexts, a learning target is a random variable about which
an agent aims to acquire information. With a stationary
bandit, a natural learning target is the reward distribution,
and many agents trade off between immediate reward and
information about this distribution.

However, when the environment is non-stationary, taking
the reward distribution as the learning target does not depri-
oritize information that is losing its usefulness. The algo-
rithm design principle of using Rt+2:∞ as the learning tar-
get addresses this. To see why, observe that the agent trades
off between acquiring more information about Rt+2:∞ and
optimizing the current reward. Therefore, if selecting an
action offers information that more quickly loses useful-
ness, then selecting this action offers less information about
Rt+2:∞ and is thus deprioritized.

Based on this design principle, we propose predictive sam-
pling (PS), which differs from Thompson sampling in using
Rt+2:∞ instead of the reward distribution as the learning
target. As is known, a Thompson sampling agent samples a

statistically plausible model of the reward distribution from
its posterior at each timestep t and acts optimally by pre-
tending that the sample is the true model. Aiming for a
different learning target of Rt+2:∞, a predictive sampling
agent instead samples a statistically plausible sequence of
future rewards R̂

(t)
t+2:∞ at each timestep t, and acts opti-

mally by pretending that R̂(t)
t+2:∞ is the true sequence of

future rewards.

In characterizing the predictive sampling algorithm, we in-
troduce the following change-of-measure notation. Con-
sider random variables X and Y and a conditional proba-
bility P(Y ∈ ·|X = x) for all x in the image of X . Let
f(x) ≡ P(Y ∈ ·|X = x). Given a random variable Z with
the same image as X , f(Z) is a random variable. We use
the notation P(Y ∈ ·|X ← Z) for f(Z).

Algorithm 5 formally introduces predictive sampling. At
each timestep t, a predictive sampling agent:

1. (Step 2) samples an infinite sequence of future rewards
R̂

(t)
t+2:∞ from its posterior,

2. (Step 3) derives expected mean rewards θ̂t by pretend-
ing that R̂(t)

t+2:∞ will indeed be realized, and

3. (Step 4) selects the action that maximizes θ̂t,a.

For ease of comparison, we also present Thompson sam-
pling in Algorithm 2.

While Steps 2 and 3 of Algorithm 5 seem intractable,
Lemma 1 below suggests that these steps are equivalent
to sampling θ̂t from P(E[Rt+1|Ht, Rt+2:∞] ∈ ·|Ht). This
gives an alternative representation of the algorithm that can
be computationally tractable, as we will show.
Lemma 1. For all t ∈ Z+, P(θ̂t ∈ ·|Ht) =
P(E[Rt+1|Ht, Rt+2:∞] ∈ ·|Ht).

Algorithm 1: predictive sampling (PS)

1 for t = 0, 1, . . . , T − 1 do
2 sample: R̂(t)

t+2:∞ ∼ P(Rt+2:∞ ∈ ·|Ht)

3 estimate: θ̂t = E[Rt+1|Ht, Rt+2:∞ ← R̂
(t)
t+2:∞]

4 select: At ∈ argmaxa∈A θ̂t,a
5 observe: Rt+1,At

Algorithm 2: Thompson sampling (TS)

1 for t = 0, 1, . . . , T − 1 do
2 sample: P̂πTS

t ∼ P(PπTS
t ∈ ·|HπTS

t )

3 estimate: θ̂πTS
t = E[Rt+1|PπTS

t ← P̂πTS
t ]

4 select: AπTS
t ∈ argmaxa∈A θ̂πTS

t,a

5 observe: Rt+1,A
πTS
t

It is helpful to first consider predictive sampling’s applica-
tion to stationary bandit environments. Theorem 1 shows
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that in such contexts, predictive sampling executes the
same policy as Thompson sampling when the Thompson
sampling agent takes PπTS

t = P in its execution (see Al-
gorithm 2), where P generates the stationary bandit.

Theorem 1. Let (Rt+1 : t ∈ Z) be a stationary bandit
environment generated by a distribution P . A predictive
sampling agent and a Thompson sampling agent that takes
PπTS
t = P for all t ∈ Z+ execute the same policy.

In light of this equivalence relation, it is clear that pre-
dictive sampling is suited to the range of stationary ban-
dit environments for which Thompson sampling succeeds.
Such environments have been the subject of much research
in the bandit learning literature (Lattimore and Szepesvári,
2020; Russo et al., 2018). Moreover, recall that multiple
sequences P−∞:∞ may generate the same bandit environ-
ment, this equivalence relation also reveals that predictive
sampling is more robust compared to Thompson sampling
because its execution does not depend on parametrization.

5.2 Back to Example 1

Now that we have introduced predictive sampling, below
we apply it to Example 1 to illustrate how predictive sam-
pling achieves optimal behavior of selecting action 1 at
each timetsep in this bandit environment.

First, observe that E[Rt+1,2|Ht, Rt+2:∞] ≤ 1− 1
2q

2 < 119
200

a.s. Thus, by Lemma 1, a predictive sampling agent sam-
ples θ̂t,1 = 99

100 and θ̂t,2 < 119
200 following the alternative

representation of Steps 2 and 3, and selects action 1 fol-
lowing Step 4 of Algorithm 5 at each timestep t.

Besides attaining the optimal behavior in this example, pre-
dictive sampling in addition performs almost as well as the
best possible agent for the environments we constructed in
Proposition 1. Below we formally establish the result. The
results suggests that by suitably deprioritizing information,
predictive sampling succeeds in those environments where
we observe Thompson sampling fails.

Proposition 2. For all ϵ > 0, there exists a non-stationary
Bernoulli bandit environment such that for all T ∈ Z++,
E[
∑T−1

t=0 Rt+1,At
] ≥ (1−ϵ)T and E[

∑T−1
t=0 Rt+1,A

πTS
t

] ≤
ϵT .

5.3 Examples and Variations of TS and PS

We present computationally tractable examples and varia-
tions of Thompson sampling and predictive sampling. For
general environments, variations of the algorithms can be
designed and efficient procedures to execute them can be
constructed through a finite-sample approximation, which
we will discuss, and hidden Markov models (HMM). Here,
we focus on a class of Gaussian bandits to characterize the
advantage of predictive sampling over Thompson sampling
and a class of logistic bandits as an important step towards

designing practical algorithms.

We first introduce the bandit environments that we con-
sider. We refer to them as the AR(1) bandits and the AR(1)
logistic bandits because each of them is determined by a
sequence (αt : t ∈ Z+) and that each (αt,a : t ∈ Z+) inde-
pendently transitions according to a first-order autoregres-
sive (AR(1)) process. non-stationary bandit environments
that are similar to the AR(1) bandits have been considered
in (Gupta et al., 2011) and (Slivkins and Upfal, 2008).
Example 2 (AR(1) bandit). In an AR(1) bandit, each re-
ward distribution Pt,a is Gaussian with a random mean
θt,a = αt,a = E[Rt+1,a|Pt] and a deterministic vari-
ance σ2

a. Each realized reward can be interpreted as a sum
Rt+1,a = θt,a+Zt+1,a, where Zt+1,a is independent zero-
mean noise with deterministic variance σ2

a. The variable
αt,a changes over time, evolving according to

αt+1,a = (1− γa)ca + γaαt,a +Wt+1,a,

for each action a ∈ A. The coefficients ca and γa are
deterministic, and each takes value in R and [0, 1], respec-
tively; Wt+1,a is independent zero-mean Gaussian noise
with deterministic variance δ2a, where δa ∈ R+. When
γa = 1, we require that δa = 0. We assume that the se-
quence (αt,a : t ∈ Z+) is in steady-state: when γa < 1,
this steady-state distribution is N (ca, δ

2
a/(1− γ2

a)).
Example 3 (AR(1) logistic bandit). In an AR(1) logis-
tic bandit, each reward distribution Pt,a = P(Rt+1,a ∈
·|Pt) is Bernoulli. The mean reward E[Rt+1,a|Pt] =
exp(α⊤

t ϕa)

1+exp(α⊤
t ϕa)

, where αt ∈ Rd with a known d ∈ Z++ and

ϕa ∈ Rd denotes a known feature vector associated with
action a ∈ A. The variable αt,a is defined exactly as in
Example 2, transitioning following an AR(1) process.

While we have made no explicit assumptions on the prior
knowledge of the agents, with AR(1) bandits, AR(1) lo-
gistic bandits, or modulated Bernoulli banadits which we
will introduce, the agents could have already learned the
environment parameters in the long run. Since we focus on
the asymptotic behavior and performance, without loss of
generality, we assume that the environment parameters, ca,
γa, δa, qa, P(θ0,a ∈ ·), σa for all a ∈ A, are known to
both agents a priori. Such assumptions similarly appear in
(Slivkins and Upfal, 2008) and (Mellor and Shapiro, 2013)
and techniques to learn the environment parameters have
been discussed in (Wilson et al., 2010; Turner et al., 2009).

5.3.1 Examples of TS and PS in AR(1) Bandits

We first focus on Thompson sampling. Below we intro-
duce a lemma, which gives an alternative representation
of Thompson sampling: Steps 2 and 3 of Algorithm 2
are equivalent to sampling θ̂πTS

t from P(E[Rt+1|PπTS
t ] ∈

·|HπTS
t ).

Lemma 2. For all t ∈ Z+, P(θ̂πTS
t ∈ ·|HπTS

t ) =
P(E[Rt+1|PπPS

t ] ∈ ·|HπTS
t ).
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Suppose that a Thompson sampling agent maintains
P̂πTS
−∞:∞ = P−∞:∞. By Lemma 2, the Thompson sampling

agent samples θ̂πTS
t from P(θt ∈ ·|HπTS

t ), and selects an
action that maximizes θ̂πTS

t,a .

Recall that in an AR(1) bandit, P(θ0 ∈ ·) is Gaussian dis-
tributed. We use µ0 and Σ0 to denote its mean and covari-
ance. When action a is selected at timestep t, the agent
observes Rt+1,a ∼ N (θt,a, σ

2
a), where σa is deterministic

and known. So P(θt ∈ ·|HπTS
t ) is Gaussian. We use µπTS

t

and ΣπTS
t to denote its mean and covariance. Algorithm 3

provides an example of Thompson sampling in an AR(1)
bandit, where Step 5 can be derived using Kalman filter.

As for predictive sampling, first observe that P(θt ∈ ·|Ht)
is Gaussian. We use µt and Σt to denote its mean and vari-
ance. Since the actions are independent, Σt is diagonal,
and we use σ2

t,a to denote the a-th entry along its diagonal.

Recall that Lemma 2 suggests that predictive sampling
samples θ̂t from P(θ̂t|Ht) = P(E[Rt+1|Ht, Rt+2:∞] ∈
·|Ht). Proposition 3 shows that this posterior is Gaussian
with mean µ̃t and diagonal covariance matrix Σ̃t (we use
σ̃t,a to denote the a-th entry along its diagonal); µ̃t and
Σ̃t can be derived from µt, Σt and latent variables of the
AR(1) bandit. Algorithm 3 provides an example of pre-
dictive sampling in an AR(1) bandit, where Step 5 can be
derived by updating µt and Σt using Kalman filter, and up-
dating µ̃t and Σ̃t based on µt and Σt using Proposition 3.

Algorithm 3: PS in an AR(1) bandit

1 for t = 0, 1, . . . , T − 1 do
2 sample: θ̂t ∼ N (µ̃t, Σ̃t)

3 execute: At ∈ argmaxa∈A θ̂t,a
4 observe: Rt+1,At

5 update: µ̃t+1←E[θ̂t+1|Ht+1], Σ̃t+1←V(θ̂t+1|Ht+1)

Algorithm 4: TS in an AR(1) bandit

1 for t = 0, 1, . . . , T − 1 do
2 sample: θ̂πTS

t ∼ N (µπTS
t ,ΣπTS

t )

3 execute: AπTS
t ∈ argmaxa∈A θ̂πTS

t,a

4 observe: Rt+1,A
πTS
t

5 update: µπTS
t+1←E[θt+1|HπTS

t+1 ],Σ
πTS
t+1←V(θt+1|HπTS

t+1 )

Proposition 3. In an AR(1) bandit, for all t ∈ Z+ and
a ∈ A, conditioned on Ht, θ̂t,a is Gaussian with mean and

variance µ̃t,a = µt,a and σ̃2
t,a =

γ2
aσ

4
t,a

γ2
aσ

2
t,a+x∗

a
, where x∗

a =

1
2 (δ

2
a + σ2

a − γ2
aσ

2
a +

√
(δ2a + σ2

a − γ2
aσ

2
a)

2 + 4γ2
aδ

2
aσ

2
a).

5.3.2 Variations in AR(1) Logistic Bandits

We introduce two techniques, which we call incremental
Laplace approximation and Gaussian imagination, respec-

tively, in designing computationally tractable variations of
Thompson sampling and predictive sampling in AR(1) lo-
gistic bandits.

Incremental Laplace Approximation Laplace approxi-
mation (Laplace, 1986) is a standard practice in the litera-
ture and has been popular with stationary logistic bandits.
The key idea is to approximate the posterior of a variable
using a Gaussian distribution centered at the maximum a
posteriori (MAP) of the variable, with a variance that is
equal to the inverse of the Hessian of the log-posterior.

However, applying the method to approximate P(αt|Hπ
t )

is computationally onerous due to nonstationarity. To re-
duce the computational complexity, we propose what we
call incremental Laplace approximation: the practice of ap-
proximating the posterior incrementally at each timestep
using Laplace approximation. We demonstrate in supple-
mentary materials that incremental Laplace approximation
is comparable with the standard Laplace approximation in
stationary logistic bandits, but can be efficiently carried out
in non-stationary ones.

Gaussian Imagination In executing predictive sam-
pling, an agent needs to sample at each timestep t an in-
finite number of rewards R̂(t)

t+2:∞ and derive an conditional
expectation E[Rt+1|Ht, Rt+2:∞ ← R̂

(t)
t+2:∞]. This deriva-

tion is usually intractable. The agent can derive an ap-
proximation pretending that the rewards are Gaussian. This
practice is called Gaussian imagination (Liu et al., 2022).

Finite-sample Approximation An additional technique
that is useful in constructing computationally tractable vari-
ations of predictive sampling is to sample a finite number
of rewards R̂(t)

t+2:t+n+1, where n ∈ Z++ instead of R̂(t)
t+2:∞

and proceed with the inference.

Variations of Thompson sampling and predictive sampling
can be constructed using the aforementioned techniques.
We provide detailed steps in the supplementary materials.

6 REGRET ANALYSIS

This section provides theoretical guarantees on the perfor-
mance of predictive sampling.

6.1 Performance and Regret

To measure the performance of an agent, it can be helpful
to consider benchmarking it against an oracle who acts op-
timally with respect to the full knowledge of the learning
target; we define the regret as the gap between the expected
rewards accumulated by the agent and that accumulated by
the oracle. Indeed, when the environment is stationary,
a natural learning target is the reward distribution P . As
such, the regret is defined as

∑T−1
t=0 E[R∗−Rt+1,Aπ

t
], with
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R∗ = maxa∈A E[Rt+1,a|P ], where E[Rt+1|P ] is the mean
reward vector which does not depend on t.

In a non-stationary environment, as we have discussed in
Section 3, an agent should aim for a different learning tar-
get of Rt+2:∞ at each timestep t. To measure the perfor-
mance of such an agent, we define the regret associated
with policy π over T timesteps below:

Regret(T ;π) =

T−1∑
t=0

E
[
Rt+1,∗ −Rt+1,Aπ

t

]
, (1)

where Rt+1,∗ = maxa∈A E[Rt+1,a|Rt+2:∞] is the reward
accumulated by an oracle that acts optimally with respect
ot the full knowledge of Rt+2:∞ at timestep t. Since much
of the work presented in this paper studies a predictive sam-
pling agent, we use Regret(T ) to denote its regret.

It is worth highlighting that in stationary environments, the
two oracles execute the same policy, because E[Rt+1|P ] =
E[Rt+1|Rt+2:∞]. Thus, the regret (1) extends the same no-
tion in stationary bandits.

We establish in supplementary materials that the regret in-
curred by any agent is nonnegative in all bandit environ-
ments that we consider. Indeed, we establish the nonneg-
ativity under mild conditions, which hold in all stationary
environments and a broad class of non-stationary ones.

6.2 General Regret Analysis

Oftentimes, an agent is designed to trade off between ac-
quiring information and optimizing the current reward.
Whenever an agent incurs regret, the agent learns some-
thing useful. Based on this observation, one can bound the
regret through bounding the total amount of useful infor-
mation that can be acquired by an agent, and how efficient
the agent is in acquiring information per unit cost of regret.
As such, Bayesian analyses in stationary bandit learning
(Bubeck et al., 2015; Lattimore and Szepesvári, 2019; Lu
et al., 2021; Russo and Van Roy, 2016) bound the regret.

In a non-stationary bandit environment, we introduce
a metric that measures the total amount of useful
information, i.e., information about the learning tar-
get Rt+2:∞. Let Et = P(Rt+2:∞ ∈ ·|R−∞:t+1)
for all t ∈ Z; Et represents what an agent can
learn from past rewards about Rt+2:∞. Let ∆0 =
I(R2:∞; E0) and ∆t = supπ{I(Rt+2:∞; Et|Hπ

t ) −
I(Rt+1:∞; Et−1|Hπ

t )} for all t ∈ Z++. With this defini-
tion, ∆0 measures the amount of useful information in
the environment at timestep 0; ∆t measures the additional
amount of useful information that is relevant for learning
that arrives at the environment at timestep t. We then use
∆ =

∑T−1
t=0 ∆t to measure the total amount of useful in-

formation that can be acquired by an agent.

As a sanity check, we have the following proposition,
which shows that when the environment is stationary, ∆t =

0 for all t ∈ Z++, and that ∆ = ∆0.

Proposition 4. In a stationary environment, ∆t = 0 for all
t ∈ Z++.

We next introduce a notion of information ratio. Similar
notions have been introduced in stationary bandit learning
analyses to measure how ineffective an agent is in acquir-
ing information. The one we introduce differs from these
in its choice of learning target Rt+2:∞. That is, our in-
formation ratio measures the trade-off between a single-
timestep regret, defined against an oracle that acts opti-
mally with respect to Rt+2:∞, and the information obtained
about Rt+2:∞: let

Γπ
t =

E
[
Rt+1,∗ −Rt+1,Aπ

t

]2
I
(
Rt+2:∞;Aπ

t , Rt+1,Aπ
t
|Ht

) , (2)

for all t ∈ Z+.
Theorem 2 establishes a general regret bound that can be
applied to any agent; it characterizes how the regret is de-
termined by the ineffectiveness of the agent in gathering in-
formation in this environment, as measured by Γπ

t , and the
total amount of useful information ∆ in the environment.

Theorem 2. Let Γ
π

= supt∈Z+
Γπ
t . For all T ∈ Z+,

Regret(T ;π) ≤
√

Γ
π
T∆.

Theorem 3 below presents an upper bound on the regret of
predictive sampling, by applying the general bound estab-
lished by Theorem 2, and bounding the information ratio
of predictive sampling.

Theorem 3. If for all t ∈ Z+ and a ∈ A, P(Rt+1,a ∈
·|Ht) is almost surely σSG-sub-Gaussian, then for all T ∈
Z+, the regret that a predictive sampling agent incurs
Regret(T ) ≤

√
2|A|σ2

SGT∆.

Theorem 3 shows how the regret of predictive sampling de-
pends on the environment via ∆. The theorem provides
a foundation for deriving more refined regret bounds in
specialized models where ∆ can be carefully character-
ized. As a sanity check, when the environment is sta-
tionary, by Proposition 4, ∆ = ∆0 and Regret(T ) ≤√

2|A|σ2
SGT∆0,: a predictive sampling agent incurs a re-

gret that grows at a rate which is at most linear in
√
T .

6.3 Regret in Modulated Bernoulli Bandits

The general analysis enables us to focus on particular im-
portant examples of non-stationary bandit environments to
further examine the performance of predictive sampling
through carefully characterizing ∆ and obtaining more re-
fined regret bounds. In particular, we focus on the follow-
ing class of Bernoulli bandit environments, which general-
izes an abrupt switching model introduced in (Mellor and
Shapiro, 2013).

Example 4 (modulated Bernoulli bandit). Consider a
Bernoulli bandit with independent actions. Let each mean
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reward be denoted by θt,a = P(Rt+1,a = 1|Pt). A mean
reward varies over time, transitioning according to

θt+1,a =

{
θnewt+1,a ∼ P(θ0,a ∈ ·), with probability qa,

θt,a, otherwise,

where qa ∈ [0, 1] is deterministic and known. Conditioning
on (θt : t ∈ Z), Rt+1,a ∼ Bernoulli(θt,a), independent of
the rewards associated with other timesteps or actions.

6.3.1 Regret Lower Bound

We first establish a lower bound on the regret incurred by
any agent in a modulated Bernoulli bandit environment.

Theorem 4. There exists a modulated Bernoulli bandit en-
vironment and a constant C ∈ R++, such that for all policy
π, and all T ∈ Z++, Regret(T ;π) ≥ CT.

The result suggests that the modulated Bernoulli bandit is
challenging and a linear dependence of the regret on T can-
not be improved; this lower bound provides a baseline to
which upper bounds can be compared.

Below we present the key ideas of the proof. We first
construct a modulated Bernoulli bandit environment with
A = {1, 2}, and θ0,a ∼ unif{0, 1} for each a ∈ A; we
let q = [1/2, 1]. With this bandit environment, q2 = 1, so
selecting action 2 gives no useful information. If the proba-
bility of selecting action 2 is small, then the agent collects a
reward that is close to E[Rt,1] =

1
2 , and thus incurs a large

regret in the current timestep; if the probability of select-
ing action 2 is large, then the agent is short in information
compared to the oracle who knows Rt+2:∞, and thus in-
curs a large regret on the next timestep. We use this fact to
lower-bound the regret across all agents.

6.3.2 Regret Analysis of Predictive Sampling

We specialize the regret bound established in Theorem 3 to
a modulated Bernoulli bandit through bounding ∆.

Corollary 1. For all T ∈ Z+, the regret that a predic-
tive sampling agent incurs in a modulated Bernoulli bandit

is Regret(T ) ≤
√

1
2 |A|T{V1 + (T − 1)min{V1, V2}},

where V1 =
∑

a∈A(1 − qa)H(θ0,a), and V2 =∑
a∈A[qaH(θ0,a) +H(qa)].

First, the bound grows at a rate that is at most linear in
T , matching the lower bound established in Theorem 4,
which indicates that predictive sampling attains good per-
formance. Moreover, when qa = 0 for all a ∈ A, the envi-
ronment is stationary and we recover a bound that is linear
in
√
T , which confirms that predictive sampling succeeds

in such stationary environments. In addition, the bound
exhibits nice dependence on environment parameters. In
particular, as infa∈A qa → 1, Regret(T ) → 0, suggesting
that a predictive sampling agent performs well when the

mean reward vector transitions very often: in such environ-
ments, a predictive sampling agent deprioritizes acquiring
information about the mean reward and thus performs well.

7 EXPERIMENTS

To quantify the advantage of predictive sampling over
Thompson sampling, we conduct numerical experiments
in a range of non-stationary AR(1) bandits and AR(1) lo-
gistic bandits. Comparisons of predictive sampling with
state-of-the-art algorithms (Besbes et al., 2019; Garivier
and Moulines, 2008; Kocsis and Szepesvári, 2006) are pre-
sented in the supplementary materials.

7.1 AR(1) Bandits

To examine the advantage of predictive sampling over
Thompson sampling extensively, we focus on a se-
quence of AR(1) bandits with varying parameters: A =
{1, 2}, the stationary distribution of each arm’s mean re-
ward is N (0, 1), γ1 ∈ {0.1, 0.3, 0.5, 0.9}, and γ2 ∈
{0.1, 0.3, 0.5, 0.7, 0.9}, respectively.

Figure 1 plots the average reward collected by a predictive
sampling agent and that collected by a Thompson sampling
agent. Formally, the figure plots 95% confidence intervals
of E[ 1T

∑T−1
t=0 Rt+1,At ] and that of E[ 1T

∑T−1
t=0 Rt+1,A

πTS
t

]
for T = 1000. We observe that predictive sampling consis-
tently outperforms Thompson sampling.

7.2 AR(1) Logistic Bandits

We run experiments with AR(1) logistic bandits of the fol-
lowing specification: A = {1, 2, 3}, γ = [x, 0.9, 0.9],
δ2 = [1 − x2, 0.19, 0.19], where x ∈ {0.1, 0.9}. Let
ϕ ∈ {ϕind, ϕdep}, where

ϕind =

1 0 0
0 1 0
0 0 1

 and ϕdep =

0.9 0.1 0
0 0.9 0.1
0.1 0 0.9

 .

The set of experiments with ϕ = ϕind corresponds to ban-
dits with independent actions, and the set of experiments
with ϕ = ϕdep corresponds to ones with dependent actions.

Figure 2 plots the average rewards collected by a pre-
dictive sampling agent and a Thompson sampling agent.
Formally, the figure plots 95% confidence intervals of
E[ 1t

∑t−1
k=0 Rk+1,Ak

] and that of E[ 1t
∑t−1

k=0 Rk+1,A
πTS
k

]

for t ranging from 1 to T . Observe that an agent can collect
an average reward of 0.5 when taking actions uniformly at
random at every timestep. Based on this observation, the
plot suggests that predictive sampling consistently outper-
forms Thompson sampling across all bandit environments
that we examine and the advantage is both statistically and
practically significant.
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Figure 1: Average reward collected by predictive sampling (PS) and Thompson sampling (TS) agents in two-armed AR(1)
bandits with varying γ1 and γ2, with the error bars representing 95% confidence intervals
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Figure 2: Average reward collected by a predictive sampling agent and a Thompson sampling agent in non-stationary
AR(1) logistic bandits with varying parameters

8 CONCLUDING REMARKS

This paper demonstrates that TS and its variations that
were proposed in the literature are often not suited for non-
stationary bandit learning, because they fail to intelligently
account for the duration of information when selecting ac-
tions. To address this, we propose PS, an algorithm that
can be viewed as a version of TS that takes the sequence
of future rewards to be the learning target. We develop ef-
ficient procedures to execute PS in AR(1) bandits and a
practical approximation of it in AR(1) logistic bandits. We
demonstrate the efficacy of PS through coin-tossing exam-
ples, regret bounds, and numerical experiments.

At a high level, our paper illustrates how we can modify an
existing algorithm, in this case TS, to construct a new one,
in this case PS, that is more suited for non-stationary ban-
dits. As we discussed in Sections 2 and ??, similar to TS,
a number of existing algorithms also do not account for the
duration of information when selecting actions. Therefore,
a future direction would be to build algorithms more suited

for non-stationary bandits by modifying these existing al-
gorithms beyond TS through taking the sequence of future
rewards to be the learning target.

A key idea in this paper is taking the sequence of future
rewards Rt+2:∞ to be the learning target. We believe that
this is only a starting point—a future direction would be
to investigate other learning targets. For example, by suit-
ably defining the “optimal action” at each timestep, we may
alternatively take the sequence of future optimal actions
as the learning target. It remains an interesting question
whether this learning target or a different learning target
enables an agent to more intelligently account for the dura-
tion of information when selecting actions.
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A PROBABILISTIC FRAMEWORK

Probability theory emerges from an intuitive set of axioms, and this paper builds on that foundation. Statements and
arguments we present have precise meaning within the framework of probability theory. However, we often leave out
measure-theoretic formalities for the sake of readability. It should be easy for a mathematically-oriented reader to fill in
these gaps.

We will define all random quantities with respect to a probability space (Ω,F ,P). The probability of an event F ∈ F is
denoted by P(F ). For any events F,G ∈ F with P(G) > 0, the probability of F conditioned on G is denoted by P(F |G).

A random variable is a function with the set of outcomes Ω as its domain. For any random variable Z, P(Z ∈ Z) denotes
the probability of the event that Z lies within a set Z . The probability P(F |Z = z) is of the event F conditioned on the
event Z = z. When Z takes values in R and has a density pZ , though P(Z = z) = 0 for all z, conditional probabilities
P(F |Z = z) are well-defined and denoted by P(F |Z = z). For fixed F , this is a function of z. We denote the value,
evaluated at z = Z, by P(F |Z), which is itself a random variable. Even when P(F |Z = z) is ill-defined for some z,
P(F |Z) is well-defined because problematic events occur with zero probability.

For each possible realization z, the probability P(Z = z) that Z = z is a function of z. We denote the value of this function
evaluated at Z by P(Z). Note that P(Z) is itself a random variable because it depends on Z. For random variables Y and
Z and possible realizations y and z, the probability P(Y = y|Z = z) that Y = y conditioned on Z = z is a function of
(y, z). Evaluating this function at (Y,Z) yields a random variable, which we denote by P(Y |Z).

Particular random variables appear routinely throughout the paper. One is the environment E , a random probability measure
over RA such that, for all t ∈ Z+, P(Rt+1 ∈ ·|E) = E(·) and R1:∞ is i.i.d. conditioned on E . We often consider
probabilities P(F |E) of events F conditioned on the environment E .

A policy π assigns a probability π(a|h) to each action a for each history h. For each policy π, random variables
Aπ

0 , R1,Aπ
0
, Aπ

1 , R2,Aπ
1
, . . ., represent a sequence of interactions generated by selecting actions according to π. In par-

ticular, with Hπ
t = (Aπ

0 , R1,Aπ
0
, . . . , Rt,Aπ

t−1
) denoting the history of interactions through time t, we have P(Aπ

t |Hπ
t ) =

π(Aπ
t |Hπ

t ). As shorthand, we generally suppress the superscript π and instead indicate the policy through a subscript of P.
For example,

Pπ(At|Ht) = P(Aπ
t |Hπ

t ) = π(Aπ
t |Hπ

t ).

We denote independence of random variables X and Y by X ⊥ Y and conditional independence, conditioned on another
random variable Z, by X ⊥ Y |Z.

When expressing expectations, we use the same subscripting notation as with probabilities. For example, the expectation
of a reward Rt+1,Aπ

t
is written as E[Rt+1,Aπ

t
] = Eπ[Rt+1,At ].

Much of the paper studies properties of interactions under a specific policy πagent. When it is clear from context, we
suppress superscripts and subscripts that indicate this. For example, Ht = H

πagent

t , At = A
πagent

t , Rt+1 = Rt+1,A
πagent
t

.
Further,

P(At|Ht) = Pπagent
(At|Ht) = πagent(At|Ht) and E[Rt+1,At

] = Eπagent
[Rt+1,At

].

B INFORMATION-THEORETIC CONCEPTS, NOTATIONS, AND RELATIONS

We review some standard information-theoretic concepts and associated notations in this section.

A central concept is the entropy H(X), which quantifies the information content or, equivalently, the uncertainty of a
random variable X . For a random variable X that takes values in a countable set X , we will define the entropy to be
H(X) = −E[lnP(X)], with a convention that 0 ln 0 = 0. Note that we are defining entropy here using the natural rather
than binary logarithm. As such, our notion of entropy can be interpreted as the expected number of nats – as opposed to
bits – required to identify X . The realized conditional entropy H(X|Y = y) quantifies the uncertainty remaining after
observing Y = y. If Y takes on values in a countable set Y then H(X|Y = y) = −E[lnP(X|Y )|Y = y]. This can
be viewed as a function f(y) of y, and we write the random variable f(Y ) as H(X|Y = Y ). The conditional entropy
H(X|Y ) is its expectation H(X|Y ) = E[H(X|Y = Y )].

The mutual information I(X;Y ) = H(X) − H(X|Y ) quantifies information common to random variables X and Y , or
equivalently, the information about Y required to identify X . If Z is a random variable taking on values in a countable
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set Z then the realized conditional mutual information I(X;Y |Z = z) quantifies remaining common information after
observing Z = z, defined by I(X;Y |Z = z) = H(X|Z = z) − H(X|Y,Z = z). The conditional mutual information
I(X;Y |Z) is its expectation I(X;Y |Z) = E[I(X;Y |Z = Z)].

For random variables X and Y taking on values in (possibly uncountable) sets X and Y , mutual information is defined by
I(X;Y ) = supf∈Ffinite,g∈Gfinite

I(f(X); g(Y )), where Ffinite and Gfinite are the sets of functions mapping X and Y to finite
ranges. Specializing to the case where X and Y are countable recovers the previous definition. The generalized notion of
entropy is then given by H(X) = I(X;X). Conditional counterparts to mutual information and entropy can be defined in
a manner similar to the countable case.

One representation of mutual information, which we will use, is in terms of the differential entropy. The differential entropy
h(X) of a random variable X with probability density f is defined by

h(X) = −
∫

f(x) ln f(x)dx.

The conditional differential entropy h(X|Y ) of X conditioned on Y is evaluated similarly but with a conditional density
function. Finally, mutual information can be written as I(X;Y ) = h(X)− h(X|Y ).

We will also make use of KL-divergence as measures of difference between distributions. We denote KL-divergence by

dKL(P∥P ′) =

∫
P (dx) ln

dP

dP ′ (x).

Gibbs’ inequality asserts that dKL(P∥P ′) ≥ 0, with equality if and only if P and P ′ agree almost everywhere with respect
to P .

The following result is established by Theorem 5.2.1 of (Gray, 2011).

Lemma 3 (Variational form of the KL-divergence). For any probability distribution P and real-valued random variable
X , both defined with respect to a measureable space (Ω′,F′), let EP [X] =

∫
x∈ℜ xP (dx). For probability distributions P

and P ′ on a measureable space (Ω′,F′) such that P is absolutely continuous with respect to P ′,

dKL(P∥P ′) = sup
X

(EP [X]− lnEP ′ [exp(X)]), (3)

where the supremum is taken over real-valued random variables on (Ω′,F′) for which EQ[exp(X)] <∞.

Mutual information and KL-divergence are intimately related. For any probability measure P (·) = P((X,Y ) ∈ ·) over
a product space X × Y and probability measure P ′ generated via a product of marginals P ′(dx × dy) = P (dx)P (dy),
mutual information can be written in terms of KL-divergence:

I(X;Y ) = dKL(P∥P ′). (4)

Further, the following lemma presents an alternative representation of mutual information.

Lemma 4 (KL-divergence representation of mutual information). For any random variables X and Y ,

I(X;Y ) = E[dKL(P(Y ∈ ·|X)∥P(Y ∈ ·))]. (5)

In other words, the mutual information between X and Y is the KL-divergence between the distribution of Y with and
without conditioning on X .

Mutual information satisfies the chain rule and the data-processing inequality.

Lemma 5 (Chain rule for mutual information).

I(X1, X2, ..., Xn;Y ) =

n∑
i=1

I(Xi;Y |X1, X2, ..., Xi−1).

Lemma 6 (Data processing inequality for mutual information). If X and Z are independent conditioning on Y , then

I(X;Y ) ≥ I(X;Z).
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The following lemma presents one useful property of mutual information.

Lemma 7. Let A, B, and C be three random variables. If A ⊥ C|B then

I(A;B|C) ≤ I(A;B).

Proof. We prove for the case where B has finite entropy. For the case where B has infinite entropy, we use differential
entropy instead of entropy in the analysis.

I(A;B|C) = H(A|C)−H(A|B,C)

= H(A|C)−H(A|B)

≤ H(A)−H(A|B)

= I(A;B).

C ALTERNATIVE REPRESENTATIONS OF PREDICTIVE SAMPLING AND
THOMPSON SAMPLING: PROOFS OF LEMMAS 1 and 2

C.1 Proof of Lemma 1

Proof. With predictive sampling, first observe that for all t ∈ Z+, P(R̂(t)
t+2:∞ ∈ ·|Ht) = P(Rt+2:∞ ∈ ·|Ht). Therefore,

for all t ∈ Z+, P(θ̂t ∈ ·|Ht) = P(E[Rt+1|Ht, Rt+2:∞ ← R̂
(t)
t+2:∞] ∈ ·|Ht) = P(E[Rt+1|Ht, Rt+2:∞] ∈ ·|Ht).

C.2 Proof of Lemma 2

Proof. With Thompson sampling, we can first observe that for all t ∈ Z+, P(P̂πTS
t ∈ ·|HπTS

t ) = P(PπTS
t ∈ ·|HπTS

t ).
Therefore, for all t ∈ Z+, P(θ̂πTS

t ∈ ·|HπTS
t ) = P(E[Rt+1|PπTS

t ← P̂πTS
t ] ∈ ·|HπTS

t ) = P(E[Rt+1|PπTS
t ] ∈ ·|HπTS

t ).

D EQUIVALENCE OF PREDICTIVE SAMPLING TO THOMPSON SAMPLING IN
STATIONARY BANDIT ENVIRONMENTS: PROOF OF THEOREM 1

Proof. Observe that it is sufficient to show that for all t ∈ Z+,

P
(
θ̂t ∈ ·|Ht

)
= P

(
θ̂πTS
t ∈ ·|HπTS

t ← Ht

)
. (6)

We first show that if Ht and HπTS
t have the same support, then the change of measure is well-defined and (6) holds. Note

that, for any t ∈ Z+, limT→∞
1

T−t−1

∑T−1
k=t+1 Rk+1

a.s.
= E[Rt+1|P ] by the strong law of large numbers. Therefore, for all

t ∈ Z+,

E[Rt+1|Ht, Rt+2:∞]
a.s.
= E[Rt+1|Ht, Rt+2:∞,E[Rt+1|P ]] = E[Rt+1|E[Rt+1|P ]] = E[Rt+1|P ]. (7)

These conditional expectations determine how actions are sampled by predictive sampling and Thompson sampling, and
the equivalence implies that the two implement the same policy; that is, for all t ∈ Z+,

P(θ̂t ∈ ·|Ht)
(a)
= P(E[Rt+1|Ht, Rt+2:∞] ∈ ·|Ht)

(b)
= P(E[Rt+1|P ] ∈ ·|Ht) = P(E[Rt+1|P ] ∈ ·|HπTS

t ← Ht)
(c)
= P(θ̂πTS

t ∈ ·|HπTS
t ← Ht),

where (a) follows from Lemma 1, (b) follows from (7), and (c) follows from Lemma 2 and from the fact that the Thompson
sampling agent we consider implementing Algorithm 2 using PπTS

t = P for all t ∈ Z+.
Note that H0 = HπTS

0 , so it is clear that by induction, for all t ∈ Z+, Ht and HπTS
t have the same support and (6)

holds.
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E MAXIMUM ADVANTAGE OF PREDICTIVE SAMPLING OVER THOMPSON
SAMPLING: PROOFS OF PROPOSITIONS 1 and 2

Proof. It suffices to show that for all ϵ ∈ (0, 1), there exists a nonstationary bandit environment with rewards bounded in
[0, 1] such that for all T ∈ Z+, the following holds:

E

[
T−1∑
t=0

Rt+1,At

]
− E

[
T−1∑
t=0

Rt+1,A
πTS
t

]
≥ (1− ϵ)T. (8)

Let ϵ ∈ (0, 1). Consider a modulated Bernoulli bandit (see Example 4 in Section 5.3 ) with K arms, where

K =

⌈
log1− ϵ

6

( ϵ
3

1− ϵ
3

)⌉
+ 1.

Arm 1 has a deterministic mean of x = 1 − ϵ
3 , which does not change with time. Each of arm 2 through K’s mean

reward takes value 1 with probability p =
ϵ
6

1− ϵ
6

and takes value 0 with probability 1 − p. The probability of transition is
q = (0, b, ..., b), where b = 1− ϵ

6 . Note that this bandit environment is nonstationary by Lemma 8.

A predictive sampling agent estimates θ̂t at each timestep t ∈ Z+. Note that for all a ∈ {2, ...,K},

E [Rt+1,a|Ht, Rt+2:∞] = P (θt,a = 1|Ht, Rt+2:∞) ≤ 1− b2(1− p) = 1−
(
1− ϵ

3

)(
1− ϵ

6

)
,

which implies that for all a ∈ {2, ...,K},

θ̂t,a ≤ 1−
(
1− ϵ

3

)(
1− ϵ

6

)
< 1− ϵ

3
= x = θ̂t,1.

So a predictive sampling agent selects action 1 with probability one and collects cumulative reward

E

[
T−1∑
t=0

Rt+1,At

]
= xT. (9)

A Thompson sampling agent estimates θ̂πTS
t at each timestep t ∈ Z+. Note that θ̂πTS

t,1 = x = 1 − ϵ
3 ∈ (0, 1). So a

Thompson sampling agent selects action 1 at each timestep t ∈ Z+ with probability

P
(

max
a∈{2,...,K}

θ̂πTS
t,a < θ̂πTS

t,1 |H
πTS
t

)
=

K∏
a=2

P
(
θ̂πTS
t,a = 0|HπTS

t

)
≤ (b(1− p) + 1− b)

K−1
= (1− bp)K−1.

Note that x = 1− ϵ
3 > ϵ

3 = 1− b+ bp. So a Thompson sampling agent collects cumulative rewards

E

[
T−1∑
t=0

Rt+1,A
πTS
t

]
≤ (1− bp)K−1x+

[
1− (1− bp)K−1

]
(1− b+ bp). (10)

So by (9) and (10), for all T ∈ Z+,

E

[
T−1∑
t=0

Rt+1,At

]
− E

[
T−1∑
t=0

Rt+1,A
πTS
t

]
≥

{
x− (1− bp)K−1x−

[
1− (1− bp)K−1

]
(1− b+ bp)

}
T

≥
{
x− (1− bp)K−1x− (1− b+ bp)

}
T

≥ (1− ϵ)T.

Lemma 8. A modulated Bernoulli bandit is stationary if and only if for all a ∈ A, qa = 0, qa = 1, or P(θ0,a ∈ ·) is a
point mass.
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Proof. When the environment is stationary, by definition, there exists a distribution P that generates the environment. If
we use F̂n to denote the empirical distribution of R−n:1, then by Glivenko–Cantelli theorem, limn→+∞ ∥F̂n−P∥∞

a.s.
= 0.

Therefore,

P(R2 ∈ ·|R−∞:1) = P(R2 ∈ ·|P ) = P(R3 ∈ ·|P ) = P(R3 ∈ ·|R−∞:1).

This implies that a necessary condition for an environment to be stationary is

E[R2|R−∞:1] = E[R3|R−∞:1].

If we restrict our attentions to modulated Bernoulli bandit, a necessary condition for a such environment to be stationary is

E[θ1,a|R−∞:1] = E[θ2,a|R−∞:1], ∀a ∈ A. (11)

We first describe an alternative formulation of the modulated Bernoulli bandit environment. For all a ∈ A, θ0,a = X0,a

and, for all a ∈ A and t ∈ Z+,

θt+1,a =

{
Xt+1,a if Bt+1,a = 1
θt,a if Bt+1,a = 0.

where (Bt,a : t ∈ Z++) is an i.i.d. Bernoulli(qa) process and (Xt,a : t ∈ Z+) is an i.i.d. process with discrete range.
With this formulation, observe that for all t ∈ Z+ and a ∈ A,

θt+1,a = (1−Bt+1,a)θt,a +Bt+1,aXt+1,a. (12)

Now we proceed to show that a modulated Bernoulli bandit is stationary if and only if for all a ∈ A, qa = 0, qa = 1, or
P(θ0,a ∈ ·) is a point mass. We prove the two directions separately.

1. Suppose that the environment is stationary. By (12), for all a ∈ A,

E[θ2,a|R−∞:1] = E[(1−B2,a)θ1,a +B2,aX2,a|R−∞,1]

= (1− qa)E[θ1,a|R−∞:1] + qaE[X1,a]

= (1− qa)E[θ1,a|R−∞:1] + qaE[θ1,a].

Therefore, the necessary condition (11) simplifies to

E[θ1,a|R−∞ : 1] = (1− qa)E[θ1,a|R−∞:1] + qaE[θ1,a], ∀a ∈ A.

This implies that for all a ∈ A, either qa = 0, or E[θ1,a|R−∞,1] = E[θ1,a]. The latter implies that qa = 1 or that
P(θ0,a ∈ ·) is a point mass. Hence, we have proved that if the environment is stationary, then for all a ∈ A, qa = 0,
qa = 1, or P(θ0,a ∈ ·) is a point mass.

2. Suppose that qa = 0, qa = 1, or P(θ0,a ∈ ·) is a point mass for all a ∈ A. Below we construct a probability
distribution P that generates the bandit environment: for each a ∈ A,

(a) if qa = 0, then we let Pa ∼ Bernoulli(θ0,a);
(b) otherwise, we let Pa ∼ Bernoulli(E[θ0,a]).

It is clear that P generates the environment, so by definition, the environment is stationary. Hence, we have shown
that if qa = 0, qa = 1, or P(θ0,a ∈ ·) is a point mass for all a ∈ A, the bandit environment is stationary.

F AR(1) BANDITS: PROOF OF PROPOSITION 3

Proof. The analysis is done for predictive sampling and an arbitrary arm a ∈ A. We drop the the subscript a from most of
the random variables.
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For all t ∈ Z+, and n ∈ Z+, n ≥ 2, let

θ
H

t (n) = E[Rt+1|Ht, Rt+2:t+n+1].

We define

R̃t+2 = Rt+2, and R̃t+i = Rt+i − γRt+i−1 − (1− γ)c for all i ∈ {3, ..., n+ 1}.

Then we can rewrite θ
H

t (n) as follows:

θ
H

t (n) = E [Rt+1|Ht, Rt+2:t+n+1] = E
[
Rt+1|Ht, R̃t+2:t+n+1

]
.

Conditioned on Ht, for all n ≥ 2, Rt+1:t+n+1 is Gaussian, so the vector constructed by stacking Rt+1 and R̃t+2:t+n+1 is
also Gaussian. We use µn and Σn to denote its mean and variance. In particular, we view µn as a block matrix with blocks
µn1 ∈ R and µn2 ∈ Rn and Σn a block matrix with blocks Σn11 ∈ R, Σn12 ∈ R1×n, Σn21 ∈ Rn×1 and Σn22 ∈ Rn×n.
Observe that for all n ≥ 2, conditioned on Ht,

θ
H

t (n) = E
[
Rt+1|Ht, R̃t+2:t+n+1

]
= µn1 +Σn12Σ

−1
n22

(
R̃t+2:t+n+1 − µn2

)
.

Then, conditioned on Ht, θ
H

t (n) is Gaussian with mean

E
[
θ
H

t (n)
∣∣∣Ht

]
= µn1 = µt,a

and variance

V
(
θ
H

t (n)
∣∣∣Ht

)
= Σn12Σ

−1
n22Σn22Σ

−1
n22Σn21 = Σn12Σ

−1
n22Σn21.

Observe that for all t ∈ Z+ and k ∈ Z+, k ≥ 2:

R̃t+k+1 = Rt+k+1 − γRt+k − (1− γ)c = Wt+k + Zt+k+1 − γZt+k.

Then we have for all t ∈ Z+:

(i) V(Rt+1, R̃t+2|Ht) = V(Rt+1, Rt+2|Ht) = V(θt + Zt+1, γθt +Wt+1 + Zt+2|Ht) = γV(θt|Ht) = γσ2
t ;

(ii) V(Rt+1, R̃t+k+1|Ht) = V(θt + Zt+1,Wt+k + Zt+k+1 − γZt+k|Ht) = 0 for all k ≥ 2, k ∈ Z+;

(iii) V(R̃t+2|Ht) = V(Rt+2|Ht) = V(γθt +Wt+1 + Zt+2|Ht) = γ2σ2
t + δ2 + σ2;

(iv) V(R̃t+k+1|Ht) = V(Wt+k + Zt+k+1 − γZt+k|Ht) = δ2 + σ2 + γ2σ2, for all k ≥ 2, k ∈ Z+;

(v) V(R̃t+i+1, R̃t+k+1|Ht) = V(Wt+i + Zt+i+1 − γZt+i,Wt+k + Zt+k+1 − γZt+k|Ht) for all k > i ≥ 1. Hence,
V(R̃t+i+1, R̃t+k+1|Ht) = γσ2 for k = i+ 1, i ≥ 1, and V(R̃t+i+1, R̃t+k+1|Ht) = 0 for k ≥ i+ 2, i ≥ 1.

Based on these derivations,

Σn12 = γσ2
t

[
1 0 0 ... 0

]
,

and

Σn22 =


γ2σ2

t + δ2 + σ2 γσ2 0 ... 0
γσ2 δ2 + (1 + γ2)σ2 γσ2 ... 0
0 γσ2 δ2 + (1 + γ2)σ2 ... 0
...

...
...

...
0 0 0 ... δ2 + (1 + γ2)σ2

 .

We use Gaussian elimination to compute the inverse of Σn22. In particular, for k = 1, 2, ..., n − 1, we perform row
operations on the (k+1)-th to last row: Subtract rk times k-th to the last row from the (k+1)-th to last row. The sequence
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{rk} are such that the matrix becomes lower-triangular after the n− 1 row operations. If we use dk to denote the diagonal
entry of the matrix on the k-th to last row after these row operations. Then the sequence {dk} satisfies the following
recurrence:

d1 = δ2 + (1 + γ2)σ2,

dk = δ2 + (1 + γ2)σ2 − γ2σ4

dk−1
, k = 2, ..., n− 1,

dn = γ2(σ2
t − σ2) + δ2 + (1 + γ2)σ2 − γ2σ4

dn−1
.

Note that the recurrence induces the following fixed-point equation:

d∗ = δ2 + (1 + γ2)σ2 − γ2σ4

d∗
.

Solving for d∗, we have

d∗ =
1

2

(
γ2σ2 + σ2 + δ2 ±

√
(γ2σ2 + σ2 + δ2)2 − 4γ2σ4

)
=

1

2

(
γ2σ2 + σ2 + δ2 ±

√
(δ2 + σ2 − γ2σ2)2 + 4γ2δ2σ2

)
.

Then for all t ∈ Z+, the variance

V
(
θ̂t,a|Ht

)
= V

(
θ
H

t,a|Ht

)
= lim

n→∞
V
(
θ
H

t,a(n)|Ht

)
= lim

n→∞
Σn12Σ

−1
n22Σn21 =

γ2
aσ

4
t,a

d∗ + γ2
a(σ

2
t,a − σ2)

=
γ2
aσ

4
t,a

γ2
aσ

2
t,a + x∗

a

,

where

x∗
a =

1

2

(
δ2a + σ2

a − γ2
aσ

2
a +

√
(δ2a + σ2

a − γ2
aσ

2
a)

2 + 4γ2
aδ

2
aσ

2
a

)
.

G CHARACTERIZING ∆t IN STATIONRY ENVIRONMENTS: PROOF OF
PROPOSITION 4

Proof. By definition of stationary environments, there exists a distribution P such that the environment is generated by
P . Observe that for all t ∈ Z, and n ∈ Z+, if we use F̂t,n to denote the empirical distribution of Rt+1−n:t+1, then by
Glivenko–Cantelli theorem, limn→+∞ ∥F̂t,n − P∥∞ = 0. Therefore, for all t ∈ Z+,

Et = P(Rt+2:∞ ∈ ·|R−∞:t+1) = P(Rt+2:∞ ∈ ·|P,R−∞:t+1) = P(Rt+2:∞ ∈ ·|P ),

which corresponds to an infinite product of P . This implies that

∆t = I(Rt+2:∞; Et|Ht)− I(Rt+1:∞; Et−1|Ht) = 0

for all t ∈ Z++.
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H GENERAL REGRET BOUND: PROOF OF THEOREM 2

Proof. For all policy π and T ∈ Z+,

Regret(T ;π) =

T−1∑
t=0

E
[
Rt+1,∗ −Rt+1,Aπ

t

]
≤

T−1∑
t=0

E
[
Rt+1,∗ −Rt+1,Aπ

t

]
+

(a)

≤
T−1∑
t=0

√
Γπ
t I(Rt+2:∞;Aπ

t , Rt+1,Aπ
t
|Hπ

t )

(b)

≤

√√√√T−1∑
t=0

I
(
Rt+2:∞;Aπ

t , Rt+1,Aπ
t
|Hπ

t

)√
Γ
π
T , (13)

where [X]+ denotes the positive part of a random variable X , (a) follows from the definition of the information ratio, and
(b) follows from the Cauchy-Bunyakovsky-Schwarz inequality. Recall that Et = P(Rt+2:∞ ∈ ·|R−∞:t+1), so Rt+2:∞ ⊥
R−∞:t+1|Et, which implies that Rt+2:∞ ⊥ Hπ

t+1|Et. Hence, for all policy π and t ∈ Z+,

I(Rt+2:∞;Aπ
t , Rt+1,Aπ

t
|Hπ

t ) = I(Rt+2:∞; Et|Hπ
t )− I(Rt+2:∞; Et|Hπ

t+1).

Therefore, for all T ∈ Z+,

T−1∑
t=0

I(Rt+2:∞;Aπ
t , Rt+1,Aπ

t
|Hπ

t ) =

T−1∑
t=0

(
I(Rt+2:∞; Et|Hπ

t )− I(Rt+2:∞; Et|Hπ
t+1)

)
≤ I(R2:∞; E0) +

T−1∑
t=1

[I(Rt+2:∞; Et|Hπ
t )− I(Rt+1:∞; Et−1|Hπ

t )]

=

T−1∑
t=0

∆t = ∆. (14)

Incorporating (13) and (14), we have for all T ∈ Z+,

Regret(T ;π) ≤

√√√√T−1∑
t=0

I
(
Rt+2:∞;Aπ

t , Rt+1,Aπ
t
|Hπ

t

)√
Γ
π
T ≤

√
Γ
π
T∆.

I PREDICTIVE SAMPLING REGRET BOUND: PROOF OF THEOREM 3

We first establish the following lemma that upper-bounds the information ratio of predictive sampling. Then the proof of
Theorem 3 follows directly from the lemma and the general regret bound estalished by Theorem 2.

Lemma 9. If for all t ∈ Z+ and a ∈ A, P(Rt+1,a ∈ ·|Ht) is almost surely σSG-sub-Gaussian, then for all t ∈ Z+, the
information ratio associated with a predictive sampling agent is

Γt ≤ 2|A|σ2
SG.

Proof. For all t ∈ Z+, let

θ
H

t = E
[
Rt+1

∣∣Ht, Rt+2:∞
]
,

and AH
t,∗ ∈ argmaxa∈A θ

H

t,a and RH
t+1,∗ = Rt+1,AH

t,∗
. Then for all t ∈ Z+, we have

P(AH
t,∗ ∈ ·|Ht) = P(At ∈ ·|Ht)
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and AH
t,∗ ⊥ At|Ht.

We begin by establishing a relation using KL-divergence. For all a, a′ ∈ A, and λ ∈ R+, it follows from the variational
form of KL-divergence (Lemma 3 of Appendix B) with X = λ(Rt+1,a − E[Rt+1,a|Ht]) that for all t ∈ Z+ and h ∈ Ht,

dKL

(
P(Rt+1,a ∈ ·|AH

t,∗ = a′, Ht = h)
∥∥∥ P(Rt+1,a ∈ ·|Ht = h)

)
≥ E

[
X|Ht = h,AH

t,∗ = a′
]
− lnE[exp(X)|Ht = h]

≥ λE
[
Rt+1,a − E[Rt+1,a|Ht = h]|Ht = h,AH

t,∗ = a′
]
− 1

2
λ2σ2

SG.

By maximizing over λ, we obtain

(
E
[
Rt+1,a|AH

t,∗ = a′, Ht = h
]
− E [Rt+1,a|Ht = h]

)2
≤ 2σ2

SGdKL

(
P
(
Rt+1,a ∈ ·|AH

t,∗ = a′, Ht = h
) ∥∥∥ P (Rt+1,a ∈ ·|Ht = h)

)
. (15)

We next establish a relation between this KL-divergence and mutual information. In particular,

I
(
AH

t,∗;At, Rt+1,At |Ht = h
)

= I
(
AH

t,∗;At|Ht = h
)
+ I

(
AH

t,∗;Rt+1,At |At, Ht = h
)

(a)
= I

(
AH

t,∗;Rt+1,At |At, Ht = h
)

=
∑
a∈A

P(At = a|Ht = h)I
(
AH

t,∗;Rt+1,At |At = a,Ht = h
)

=
∑
a∈A

P(At = a|Ht = h)I
(
AH

t,∗;Rt+1,a|At = a,Ht = h
)

(b)
=

∑
a∈A

P(At = a|Ht = h)I
(
AH

t,∗;Rt+1,a|Ht = h
)

(c)
=

∑
a∈A

P(At = a|Ht = h)[∑
a′∈A

P
(
AH

t,∗ = a′|Ht = h
)
dKL

(
P
(
Rt+1,a ∈ ·|AH

t,∗ = a′, Ht = h
) ∥∥ P(Rt+1,a ∈ ·|Ht = h)

)]
(d)
=

∑
a∈A

∑
a′∈A

P
(
AH

t,∗ = a|Ht = h
)
P
(
AH

t,∗ = a′|Ht = h
)

dKL

(
P
(
Rt+1,a ∈ ·|AH

t,∗ = a′, Ht = h
) ∥∥ P(Rt+1,a ∈ ·|Ht = h)

)
(16)

where (a) follows from the fact that At ⊥ AH
t,∗|Ht, (b) follows from At ⊥ (AH

t,∗, Rt+1,a)|Ht, (c) follows from the KL-
divergence representation of mutual information (Lemma 4 of Appendix B), and (d) follows from P(At ∈ ·|Ht = h) =
P(AH

t,∗ ∈ ·|Ht = h) for all t ∈ Z+ and h ∈ Ht.
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Next, we bound the difference between Rt+1,AH
t,∗

and Rt+1,At . For all t ∈ Z+ and h ∈ Ht, we have

E
[
Rt+1,AH

t,∗
−Rt+1,At

∣∣Ht = h
]2

(a)
=

[∑
a∈A

P
(
AH

t,∗ = a
∣∣∣Ht = h

)(
E
[
Rt+1,a

∣∣∣AH
t,∗ = a,Ht = h

]
− E[Rt+1,a|Ht = h]

)]2

(b)

≤ |A|
∑
a∈A

P
(
AH

t,∗ = a|Ht = h
)2 (E [

Rt+1,a|AH
t,∗ = a,Ht = h

]
− E [Rt+1,a|Ht = h]

)2
≤ |A|

∑
a∈A

∑
a′∈A

P
(
AH

t,∗ = a|Ht = h
)
P
(
AH

t,∗ = a′|Ht = h
) (

E
[
Rt+1,a|AH

t,∗ = a′, Ht = h
]
− E [Rt+1,a|Ht = h]

)2
(c)

≤ 2|A|σ2
SG

∑
a∈A

∑
a′∈A

P
(
AH

t,∗ = a|Ht = h
)
P
(
AH

t,∗ = a′|Ht = h
)

dKL

(
P
(
Rt+1,a ∈ ·|AH

t,∗ = a′, Ht = h
)
∥P (Rt+1,a ∈ ·|Ht = h)

)
(d)
= 2|A|σ2

SGI
(
AH

t,∗;At, Rt+1,At
|Ht = h

)
, (17)

where (a) follows from At ⊥ Rt+1,a|Ht and P(At ∈ ·|Ht = h) = P(AH
t,∗ ∈ ·|Ht = h), (b) follows from the Cauchy-

Bunyakovsky-Schwartz inequality, (c) follows from Equation (15), and (d) follows from Equation (16). Hence,

E
[
Rt+1,AH

t,∗
−Rt+1,At

]2
= E

[
E
[
Rt+1,AH

t,∗
−Rt+1,At

|Ht

]]2
(a)

≤ E
[
E
[
Rt+1,AH

t,∗
−Rt+1,At

|Ht

]2]
(b)

≤ E
[
2|A|σ2

SGI
(
AH

t,∗;At, Rt+1,At
|Ht = Ht

)]
= 2|A|σ2

SGI
(
AH

t,∗;At, Rt+1,At
|Ht

)
, (18)

where (a) follows from Jensen’s Inequality and (b) follows from (17).

In addition, for all t ∈ Z+,

E[Rt+1,∗] = E
[
max
a∈A

E [Rt+1,a|Rt+2:∞]

]
= E

[
max
a∈A

E [E [Rt+1,a|Ht, Rt+2:∞] |Rt+2:∞]

]
(a)

≤ E
[
E
[
max
a∈A

E [Rt+1,a|Ht, Rt+2:∞]

∣∣∣∣Rt+2:∞

]]
= E

[
max
a∈A

E [Rt+1,a|Ht, Rt+2:∞]

]
= E

[
Rt+1,AH

t,∗

]
. (19)

By the data-processing inequality of mutual information (Lemma 6 of Appendix B), we have for all t ∈ Z+,

I (Rt+2:∞;At, Rt+1,At |Ht) ≥ I
(
AH

t,∗;At, Rt+1,At |Ht

)
. (20)

Then it follows from (18), (19) and (20) that for all t ∈ Z+,

Γt =
E [Rt+1,∗ −Rt+1,At ]

2
+

I (Rt+2:∞;At, Rt+1,At |Ht)
≤

E
[
Rt+1,AH

t,∗
−Rt+1,At

]2
+

I (Rt+2:∞;At, Rt+1,At |Ht)
≤

E
[
Rt+1,AH

t,∗
−Rt+1,At

]2
I
(
AH

t,∗;At, Rt+1,At
|Ht

) ≤ 2|A|σ2
SG.
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J REGRET LOWER BOUND: PROOF OF THEOREM 4

Proof. We introduce a modulated Bernoulli bandit (see Example 4 in Section 4.1) with a set of two actions A = {1, 2},
and for each a ∈ A,

θ0,a =

{
0 with probability 1/2

1 with probability 1/2.

We let q = [1/2, 1]. Then for all t ∈ Z+, the baseline at time t is

E[Rt+1,∗] = E
[
max
a∈A

E[Rt+1,a|Rt+2:∞]

]
= E

[
max
a∈A

E[Rt+1,a|R−∞:t]

]
(a)
= E

[
max
a∈A

E[θt,a|θt−1]

]
(b)
= E

[
max
a∈A

E[θt,a|θt−1,1]

]
= E

[
E
[
max
a∈A

E[θt,a|θt−1,1]

∣∣∣∣Hπ
t−1

]]
(c)
= E

∑
a′∈A

E
[
max
a∈A

E[θt,a|θt−1,1]

∣∣∣∣Hπ
t−1

]
P(Aπ

t−1 = a
′
|Hπ

t−1)

 , (21)

where (a) follows from that (θt : t ∈ Z) follows a Markov process, and that Rt+1 = θt, (b) follows from q2 = 1, and (c)
from that Aπ

t−1 is independent of θt−1 conditioned on Hπ
t−1.

For all policy π and all t ∈ Z+, the reward collected at time t is upper-bounded by

E
[
Rt+1,Aπ

t

]
= E

[
E
[
Rt+1,Aπ

t
|Hπ

t

]]
= E

[∑
a∈A

E [Rt+1,a|Hπ
t ]P(Aπ

t = a|Hπ
t )

]

≤ E
[
max
a∈A

E [Rt+1,a|Hπ
t ]

]
= E

[
E
[
max
a∈A

E[Rt+1,a|Hπ
t ]

∣∣∣∣Hπ
t−1

]]
= E

[
E
[
max
a∈A

E[Rt+1,a|Hπ
t−1, A

π
t−1, Rt,Aπ

t−1
]

∣∣∣∣Hπ
t−1

]]
(a)
= E

∑
a′∈A

E
[
max
a∈A

E[Rt+1,a|Hπ
t−1, Rt,a′ ]

∣∣∣∣Hπ
t−1

]
P(Aπ

t−1 = a
′
|Hπ

t−1)


(b)
= E

∑
a′∈A

E
[
max
a∈A

E[θt,a|Hπ
t−1, θt−1,a′ ]

∣∣∣∣Hπ
t−1

]
P(Aπ

t−1 = a
′
|Hπ

t−1)

 , (22)

where (a) follows from that Aπ
t−1 is independent of Rt conditioned on Hπ

t−1, and (b) from Rt+1 = θt. Observe that for

all t ∈ Z+, the term E
[
maxa∈A E[θt,a|Hπ

t−1, θt−1,a′ ]

∣∣∣∣Hπ
t−1

]
in (22) for each of a

′ ∈ A = {1, 2} can be derived or

upper-bounded as follows:

E
[
max
a∈A

E[θt,a|Hπ
t−1, θt−1,1]

∣∣∣∣Hπ
t−1

]
= E

[
max
a∈A

E[θt,a|θt−1,1]

∣∣∣∣Hπ
t−1

]
, (23)
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and

E
[
max
a∈A

E[θt,a|Hπ
t−1, θt−1,2]

∣∣∣∣Hπ
t−1

]
(a)
= E

[
max
a∈A

E[θt,a|Hπ
t−1]

∣∣∣∣Hπ
t−1

]
= max

a∈A
E[θt,a|Hπ

t−1]

(b)
= max

a∈A
E
[
E [θt,a|θt−2] |Hπ

t−1

]
(c)

≤ E
[
max
a∈A

E [θt,a|θt−2]

∣∣∣∣Hπ
t−1

]
(d)
= E

[
max
a∈A

E [θt,a|θt−2,1]

∣∣∣∣Hπ
t−1

]
, (24)

where (a) follows from q2 = 1, (b) follows from that θt is independent of Hπ
t−1 conditioned on θt−2 (recall that Hπ

t−1 =
(Aπ

0 , R1,Aπ
0
, ...Aπ

t−2, Rt−1,Aπ
t−2

) = (Aπ
0 , θ0,Aπ

0
, ...Aπ

t−2, θt−2,Aπ
t−2

)), (c) from Jensen’s inequality, and (d) again from
q2 = 1. Subtracting (22) from (21), we establish a lower bound on the instantaneous regret:

E[Rt+1,∗ −Rt+1,Aπ
t
] ≥ E

∑
a′∈A

E
[
max
a∈A

E[θt,a|θt−1,1]−max
a∈A

E[θt,a|Hπ
t−1, θt−1,a′ ]

∣∣∣∣Hπ
t−1

]
P(Aπ

t−1 = a
′
|Hπ

t−1)


(a)
= E

[
E
[
max
a∈A

E[θt,a|θt−1,1]−max
a∈A

E[θt,a|θt−2,1]

∣∣∣∣Hπ
t−1

]
P(Aπ

t−1 = 2|Hπ
t−1)

]
(b)
= E

[
1

16
P(Aπ

t−1 = 2|Hπ
t−1)

]
=

1

16
P(Aπ

t−1 = 2), (25)

where (a) follows from (23) and (24), and (b) from computing the conditional expectation, which turns out to be indepen-
dent of Hπ

t−1.

Below we derive another lower bound on the instantaneous regret. First, observe that for all policy π and all t ∈ Z+, the
reward collected at time t is upper-bounded by:

E
[
Rt+1,Aπ

t

]
= E

[
Rt+1,Aπ

t
|Aπ

t = 1
]
P (Aπ

t = 1) + E
[
Rt+1,Aπ

t
|Aπ

t = 2
]
P (Aπ

t = 2)

≤ E [Rt+1,1|Aπ
t = 1]P (Aπ

t = 1) + P (Aπ
t = 2)

≤ E [Rt+1,1] + P (Aπ
t = 2) ,

where both inequalities follow from that rewards are bounded in [0, 1]. Therefore, for all policy π and all t ∈ Z+, the
instantaneous regret can be lower-bounded as follows:

E
[
Rt+1,∗ −Rt+1,Aπ

t

]
≥ E [Rt+1,∗]− E [Rt+1,1]− P (Aπ

t = 2)

=
5

8
− 1

2
− P(Aπ

t = 2) =
1

8
− P(Aπ

t = 2). (26)

Incorporating the two lower bounds on instantaneous regret established in (25) and (26), respectively, we derive a lower
bound on the cumulative regret: for all policy π, and T ∈ Z++, T ≥ 2,

Regret(T ;π) ≥ max

{
T−2∑
t=0

1

16
P(Aπ

t = 2),

T−2∑
t=0

[
1

8
− P(Aπ

t = 2)

]}

≥ 16

17

T−2∑
t=0

1

16
P(Aπ

t = 2) +
1

17

T−2∑
t=0

[
1

8
− P(Aπ

t = 2)

]
=

1

136
(T − 1)

≥ 1

272
T. (27)
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For all policy π, and T = 1,

Regret(T ;π) = E[R1,∗]− E[R1,Aπ
0
]

≥ E[R1,∗]− E
[
max
a∈A

E[Rt+1,a]

]
=

5

8
− 1

2
=

1

8
≥ 1

272
T. (28)

Combining (27) and (28), we complete the proof.

K PREDICTIVE SAMPLING REGRET BOUND IN A MODULATED BERNOULLI
BANDIT: PROOF OF COROLLARY 1

We first introduce Lemma 10, which establishes an upper bound on ∆0 and an upper bound on ∆t that holds uniformly
over all t ∈ Z++ for a modulated Bernoulli bandit. Corollary 1 follows directly from Lemma 10 and Theorem 3.
Lemma 10. In a modulated Bernoulli bandit environment,

∆0 ≤
∑
a∈A

(1− qa)H(θ0,a),

∆t ≤ min

{∑
a∈A

(1− qa)H(θ0,a),
∑
a∈A

[qaH(θ0,a) +H(qa)]

}
, for all t ∈ Z++,

where H(qa) denotes the entropy of a Bernoulli(qa) random variable.

Proof. We first describe an alternative formulation of the modulated Bernoulli bandit environment. For all a ∈ A, θ0,a =
X0,a and, for all a ∈ A and t ∈ Z+,

θt+1,a =

{
Xt+1,a if Bt+1,a = 1
θt,a if Bt+1,a = 0.

where (Bt,a : t ∈ Z++) is an i.i.d. Bernoulli(qa) process and (Xt,a : t ∈ Z+) is an i.i.d. process with discrete range.
With this formulation, observe that for all t ∈ Z+ and a ∈ A,

θt+1,a = (1−Bt+1,a)θt,a +Bt+1,aXt+1,a. (29)

We derive the mutual information between θ1 and θ0:

I(θ1; θ0) =
∑
a∈A

I(θ1,a; θ0,a)

=
∑
a∈A

(H(θ1,a)−H(θ1,a|θ0,a))

≤
∑
a∈A

(H(θ0,a)−H(θ1,a|θ0,a, B1,a))

(a)
=

∑
a∈A

(H(θ0,a)−H((1−B1,a)θ0,a +B1,aX1,a|θ0,a, B1,a))

=
∑
a∈A

(H(θ0,a)−H(B1,aX1,a|θ0,a, B1,a))

=
∑
a∈A

(H(θ0,a)−H(B1,aX1,a|B1,a))

=
∑
a∈A

(H(θ0,a)− qaH(X1,a))

=
∑
a∈A

(H(θ0,a)− qaH(θ0,a))

=
∑
a∈A

(1− qa)H(θ0,a), (30)
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where (a) follows from (29).

Now we derive ∆0:

∆0 = I(R2:∞; E0)
(a)

≤ I(R2:∞; θ0) ≤ I(θ1; θ0)
(b)
=

∑
a∈A

(1− qa)H(θ0,a),

where (a) follows from R2:∞ ⊥ E0|θ0, where E0 = P(R2:∞ ∈ ·|R−∞:1), and (b) follows from (30).

For all t ∈ Z+,

∆t = I(Rt+2:∞; Et|Ht)− I(Rt+1:∞; Et−1|Ht)

(a)

≤ I(Rt+2:∞; Et)
(b)

≤ I(Rt+2:∞; θt)

≤ I(θt+1; θt)

(c)
= I(θ1; θ0)
(d)

≤
∑
a∈A

(1− qa)H(θ0,a),

where (a) follows from Lemma 7 of Appendix B and that Rt+2:∞ ⊥ Ht|Et, where Et = P(Rt+2:∞ ∈ ·|R−∞:t+1), (b)
from Rt+2:∞ ⊥ Et|θt, (c) from that (θt : t ∈ Z) is stationary, and (d) from (30).

In addition, for all t ∈ Z++,

∆t = I(Rt+2:∞; Et|Ht)− I(Rt+1:∞; Et−1|Ht)

(a)
= I(Rt+2:∞; θt|Ht)− I(Rt+2:∞; θt|Ht, Et)− I(Rt+1:∞; θt−1|Ht) + I(Rt+1:∞; θt−1|Ht, Et−1)

(b)
= I(Rt+2:∞; θt|Ht)− I(Rt+2:∞; θt|Et)− I(Rt+1:∞; θt−1|Ht) + I(Rt+1:∞; θt−1|Et−1)

(c)
= I(Rt+2:∞; θt|Ht)− I(Rt+1:∞; θt−1|Ht),

where (a) follows from Rt+2:∞ ⊥ (Ht, Et)|θt and Rt+1:∞ ⊥ (Ht, Et−1)|θt−1, (b) from (Rt+2:∞, θt) ⊥ Ht|Et and
(Rt+1:∞, θt−1) ⊥ Ht|Et−1, and (c) from that (θt : t ∈ Z) is stationary.

By (29), for all t ∈ Z++,

∆t ≤ I(Rt+2:∞; θt|Ht)− I(Rt+1:∞; θt−1|Ht)

≤ I(Rt+1:∞; θt−1, Bt, BtXt|Ht)− I(Rt+1:∞; θt−1|Ht)

≤ I(Rt+1:∞;Bt, BtXt|Ht, θt−1)

≤ H(Bt, BtXt|Ht, θt−1)

≤ H(Bt, BtXt)

=
∑
a∈A

(H(Bt+1,a) +H(Bt+1,aXt+1,a|Bt+1,a))

=
∑
a∈A

(H(B1,a) +H(Bt+1,aXt+1,a|Bt+1,a))

=
∑
a∈A

(H(B1,a) + qaH(Xt+1,a))

=
∑
a∈A

(H(qa) + qaH(θ0,a)) .
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L NONNEGATIVITY OF REGRET

It is natural to require that the regret is nonnegative. The following theorem establishes that the regret is nonnegative under
mild conditions.

Theorem 5. Let (Rt+1 : t ∈ Z) be an environment generated by P−∞:∞. If for all t, t′ ∈ Z, and n ∈ Z+, P(Pt:t+n ∈
·) = P(Pt′:t′+n ∈ ·), and P(Pt:t+n ∈ ·) = P(Pt:t−n ∈ ·), then for all policies π, and T ∈ Z+,

Regret(T ;π) ≥ 0.

Proof. We have for all policies π, and T ∈ Z+,

T−1∑
t=0

E
[
Rt+1,Aπ

t

]
=

T−1∑
t=0

E
[
E
[
Rt+1,Aπ

t
|R1:t, A

π
0:t−1

]]
(a)
=

T−1∑
t=0

E

[∑
a∈A

E
[
Rt+1,a|R1:t, A

π
0:t−1

]
P(Aπ

t = a|R1:t, A
π
0:t−1)

]

≤
T−1∑
t=0

E
[
max
a∈A

E
[
Rt+1,a|R1:t, A

π
0:t−1

]]
(b)
=

T−1∑
t=0

E
[
max
a∈A

E [Rt+1,a|R1:t]

]
, (31)

where (a) follows from the fact that Aπ
t is independent of any other random variables conditioning on Hπ

t =
(Aπ

0 , R1,Aπ
0
, ..., Aπ

t−1, Rt,Aπ
t−1

), and (b) follows from recursively applying the same reasoning. By the conditions stated in
the theorem, we have

P(R1:T ∈ ·) = P(RT :2T−1 ∈ ·) = P(RT :1 ∈ ·),

which implies that P(R1:t+1 ∈ ·) = P(RT :T−t ∈ ·) for all t, T ∈ Z+, t < T . Therefore,

P(E [Rt+1|R1:t] ∈ ·) = P(E [RT−t|RT :T−t+1] ∈ ·)

for all t, T ∈ Z+, t < T . Hence,

T−1∑
t=0

E
[
max
a∈A

E [Rt+1,a|R1:t]

]
=

T−1∑
t=0

E
[
max
a∈A

E [RT−t,a|RT :T−t+1]

]
=

T−1∑
t=0

E
[
max
a∈A

E [Rt+1,a|Rt+2:T ]

]
. (32)

By Jensen’s Inequality, we have for all T ∈ Z+, and t ∈ Z+, t < T ,

E
[
max
a∈A

E [Rt+1,a|Rt+2:T ]

]
= E

[
max
a∈A

E [E [Rt+1,a|Rt+2:∞] |Rt+2:T ]

]
≤ E

[
E
[
max
a∈A

E [Rt+1,a|Rt+2:∞]

∣∣∣∣Rt+2:T

]]
= E

[
max
a∈A

E [Rt+1,a|Rt+2:∞]

]
= E [Rt+1,∗] . (33)

Combining (31), (32), and (33), we conclude that for all policies π, and T ∈ Z+,

Regret(T ;π) =

T−1∑
t=0

E [Rt+1,∗]−
T−1∑
t=0

E
[
Rt+1,Aπ

t

]
≥ 0.
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Remark. The conditions stated in the theorem find close analogues in the theory of Markov chains. Indeed, the conditions
on the sequence P−∞:∞ are referred to as “stationarity” and “time-reversibility” in the Markov chain theory.

That said, the conditions hold in all stationary bandit environments and a wide range of nonstationary bandit environments:
in particular, with a Markov bandit (Anantharam et al., 1987; Ortner et al., 2014), Pt transitions following a Markov
process—and thus, the assumptions hold if the Markov process is both stationary and time-reversible. The modulated
Bernoulli bandit environments (Example 4 in Section 4.1; (Mellor and Shapiro, 2013)) and AR(1) bandit environments
(Example 2 in Section 4.1) are two such examples, because Pt is determined by θt, and (θt,a : t ∈ Z) is a time-reversible
and time-homogenous Markov chain in steady-state. The AR(1) logistic bandit environments serves as an additional
example, with which Pt is determined by αt, and (αt,a : t ∈ Z) is a time-reversible and time-homogenous Markov chain
in steady-state.

It is worth noting that the first condition requires that the distribution of a sequence of Pt’s is invariant when the sequence
is shifted in time. Note that although the distribution of Pt is the same for all t ∈ Z+, Pt can be different across time and
the environment can thus be nonstationary.

M MORE ON THE VARIATIONS OF PS AND TS IN AR(1) LOGISTIC BANDITS

M.1 Standard Laplace Approximation and Incremental Laplace Approximation in Stationary Logistic Bandits

This section presents numerical experiments we conduct to show that incremental Laplace approximation is comparable
with standard Laplace approximation in stationary logistic bandits. To compare the incremental Laplace approximation
with the standard Laplace approximation, we conduct experiments on Thompson sampling agents interacting with a sta-
tionary logistic bandit introduced below:
Example 5 (stationary logistic bandit). In a stationary logistic bandit, each reward distribution Pa = P(Rt+1,a ∈ ·|P )
is Bernoulli. Its mean E[Rt+1,a|P ] is determined by a random variable α ∈ Rd, where d ∈ Z++ is known, and ϕa ∈ Rd,

a known feature vector associated with action a ∈ A. In particular, the mean reward E[Rt+1,a|P ] = exp(α⊤ϕa)
1+exp(α⊤ϕa)

. The
variable α has a Gaussian distribution N (µ0,Σ0), where µ0 ∈ Rd and Σ0 ∈ Sd+. Here we use Sd+ to denote the set of all
d× d positive semi-definite matrices.

We compare the performance of the agents in using incremental Laplace approximation and the standard Laplace approxi-
mation, respectively, in approximating the posterior distribution of α at each timestep t. We run three sets of experiments,
in which each coordinate of α is standard Gaussian and independent of the rest of the coordinates, and the number of
actions are 2, 3, and 3, with ϕ ∈ {ϕ1, ϕ2, ϕ3}, where

ϕ1 =

[
1 0
0 1

]
, ϕ2 =

1 0 0
0 1 0
0 0 1

 , and ϕ3 =

0.9 0.1 0
0 0.9 0.1
0.1 0 0.9

 ,

respectively. Here, we use ϕ to denote the matrix where the a-th row corresponds to the row feature vector ϕ⊤
a , for all

a ∈ A.

Figure 3 plots the cumulative regret over 1000 timesteps, averaged over 200 simulations, incurred by Thompson sampling
agents using standard Laplace approximation and incremental Laplace approximation, respectively, in approximating the
posteriors. We observe that the performances of the two methods are comparable across all experiments.

M.2 Incremental Laplace Approximation in Nonstationary Logistic Bandits

Below we present how we can efficiently implement incremental Laplace approximation in approximating P(αt ∈ ·|Hπ
t )

usingN (µt,Σt) in nonstationary AR(1) logistic bandits. At each timestep, the mean µt minimizes the following objective:

µt ← min
α

{
1

2
(α− µt−1)

⊤Σ−1
t−1(α− µt−1)−Rt+1,At

ϕ⊤
At
α+ log

(
1 + exp

(
ϕ⊤
At
α
))}

, (34)

and the variance can be derived as follows:

Σt ←

[
Σ−1

t−1 +
exp(ϕ⊤

At
µt)(

1 + exp
(
ϕ⊤
At
µt

))2ϕAt
ϕ⊤
At

]−1

, (35)
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Figure 3: Cumulative regret incurred by Thompson sampling agents using standard Laplace approximation and incremental
Laplace approximation.

then an additional step is carried out:

µt ← Aµt and Σt ← AΣtA
⊤ + V,

where A is a diagonal matrix whose a-th entry along its diagonal is γa, and V is a diagonal matrix whose a-th entry along
its diagonal is δ2a.

M.3 Detailed Derivation of Predictive Sampling

We provide detailed procedures to execute a variation of predictive sampling in AR(1) logistic bandits. Recall
that Rt+1 ∼ Bernoulli

(
exp(ϕαt)

1+exp(ϕαt)

)
. We instead pretend that the rewards are Gaussian distributed according to:

R̃t+1 ∼ N
(
1
2e+

1
4ϕαt,

1
16I

)
, where e is an all-one vector and ϕ is the matrix whose a-th row is ϕ⊤

a . We present the
following algorithm for nonstationary logistic bandits, that is designed based on incremental Laplace approximation and
Gaussian imagination.

Algorithm 5: predictive sampling (PS)

1 for t = 0, 1, . . . , T − 1 do
2 sample: R̂(t)

t+2:∞ ∼ P(Rt+2:∞ ∈ ·|Ht)

3 estimate: θ̂t = E[Rt+1|Ht, Rt+2:∞ ← R̂
(t)
t+2:∞]

4 select: At ∈ argmaxa∈A θ̂t,a
5 observe: Rt+1,At

Input. ϕ,A, V, µ0,Σ0, n.

Step 1. At each timestep t, derive the mean µt that minimizes the following objective:

µt ← min
α

{
1

2
(α− µt−1)

⊤Σ−1
t−1(α− µt−1)−Rt+1,Atϕ

⊤
At
α+ log

(
1 + exp

(
ϕ⊤
At
α
))}

, (36)

and the variance:

Σt ←

[
Σ−1

t−1 +
exp(ϕ⊤

At
µt)(

1 + exp
(
ϕ⊤
At
µt

))2ϕAtϕ
⊤
At

]−1

. (37)
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Step 2. Update

µt ← Aµt and Σt ← AΣtA
⊤ + V.

Step 3. Sample α̂t from N (µ
′

t,Σ
′

t), where µ
′

t = µt, Σ
′

t = Σ
(t)
12Σ

(t)−1
22 Σ

(t)
21 , and

Σ21 =
1

4


ϕAΣt

ϕA2Σt

...
ϕAnΣt

 ,Σ12 = Σ⊤
21,

Σ22 =
1

16


ϕΣ̃

(t)
t+1ϕ

⊤ + I ϕΣ̃
(t)
t+1A

⊤ϕ⊤ ϕΣ̃
(t)
t+1A

2⊤ϕ⊤ . . . ϕΣ̃
(t)
t+1A

n−1⊤ϕ⊤

ϕAΣ̃
(t)
t+1ϕ

⊤ ϕΣ̃
(t)
t+2ϕ

⊤ + I ϕΣ̃
(t)
t+2A

⊤ϕ⊤ . . . ϕΣ̃
(t)
t+2A

n−2⊤ϕ⊤

ϕA2Σ̃
(t)
t+1ϕ

⊤ ϕAΣ̃
(t)
t+2ϕ

⊤ ϕΣ̃
(t)
t+3ϕ

⊤ + I . . . ϕΣ̃
(t)
t+3A

n−3⊤ϕ⊤

...
...

...
. . .

...
ϕAn−1Σ̃

(t)
t+1ϕ ϕAn−2Σ̃

(t)
t+2ϕ ϕAn−3Σ̃

(t)
t+3ϕ . . . ϕΣ̃

(t)
t+nϕ

⊤ + I

 .

The matrices Σ̃(t)
t , Σ̃

(t)
t+1, ..., Σ̃

(t)
t+n satisfy the following recursion:

Σ̃
(t)
t = Σt,

Σ̃
(t)
t+i+1 = AΣ̃

(t)
t+iA

⊤ + V, i = 0, 1, 2, ..., n− 1.

Step 4. Estimate θ̂t =
1
2e+

1
4ϕα̂t.

Step 5. Select At ∈ argmaxa∈A θ̂t,a.

N COMPARISON WITH STATE-OF-THE-ART ALGORITHMS

This section presents experiments we conduct to compare the performance of predictive sampling with state-of-the-art al-
gorithms designed for nonstationary bandit environments, including Rexp3 (Besbes et al., 2019), discounted UCB (Garivier
and Moulines, 2008; Kocsis and Szepesvári, 2006), and sliding-window UCB (Garivier and Moulines, 2008).

We first introduce the environment in which we conduct the experiments. We design a set of bandit environments that
differ from AR(1) bandits only in that the rewards are truncated to [0, 1]. The set of environments are designed such that
how quickly the information acquired by selecting an action a ∈ A loses relevance is determined by the variable γa. In
addition, they are designed such that the rewards are bounded, the same as most of the experiment settings in frequentist
nonstationary bandit learning literature.

We next introduce a set of state-of-the-art algorithms with which we compare predictive sampling. Similar to Thompson
sampling and its variations, a large segment of state-of-the-art algorithms focus on heuristics on how the nonstationarity of
past rewards affects the inference on current reward distribution and ignores future nonstationarity. Popular examples of
such heuristics include using a fixed-length sliding-window, weighing data by recency, and periodic restarts. We choose
one algorithm focusing on each of the three heuristics. In addition, we use a naive Thompson sampling agent, who pretends
that the environment is stationary, as a baseline. Below we briefly describe each of the aforementioned algorithms:

• Rexp3 uses Exp3 as a subroutine and restarts it periodically;

• discounted UCB uses UCB1 as a subroutine and discounts the effect of past rewards on estimating current reward
distribution by weighing past data according to recency;

• sliding-window UCB maintains a sliding-window of fixed size and uses UCB1 as a subroutine;

• naive TS pretends that the environment is stationary and proceeds with inference.

We run Rexp3, discounted UCB and sliding-window UCB and naive TS as they are, and run predictive sampling pretending
that the environment is the AR(1) bandit before truncation. The parameters of Rexp3 are chosen according to Theorem 2 of
(Besbes et al., 2019), where the “variation budget” is assumed to be known in advance for each simulation; the parameters
in discounted UCB and sliding-window UCB are chosen according to Remark 3 and Remark 9 of (Garivier and Moulines,
2008), respectively, where “the number of breakpoints” is assumed to be known in advance.
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Average reward and action frequency We conduct two sets of experiments. The first environment is a two-armed
bandit with A = {1, 2}, c = [0.5, 0.5], γ = (0.85, 0.85), δa = 0.15(1 − γ2

a) for a ∈ A, and σ = [0.1, 0.1]. The two
actions can be thought of as “changing equally quickly”. Figure 4a and 4b plot the average frequency of selecting action
1, and the average reward collected: although all agents select each action half of the time in the long run, the predictive
sampling agent collects more rewards because it explores less accounting for future nonstationarity of the environment.
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Figure 4: Predictive sampling and state-of-the-art algorithms in a two-armed bandit with c = [0.5, 0.5], γ = (0.85, 0.85),
δa = 0.15(1− γ2

a) for a ∈ {1, 2}, and σ = [0.1, 0.1]

The second environment is a two-armed bandit with A = {1, 2}, c = [0.65, 0.55], γ = (0.1, 0.99), δa = 0.15(1 − γ2
a)

for a ∈ A, and σ = [0.1, 0.1]. The mean reward associated with action 2 can be thought of as “changing more slowly”
compared to that associated with action 1. Figure 5a plots the average action selection frequency. We observe that the
average frequency of selecting action 2 by naive Thompson sampling converges to zero because action 1 is associated
with a smaller ca. The average frequency of selecting action 1 by predictive sampling is smaller compared to all other
algorithms, suggesting that predictive sampling agent deprioritize acquiring information that loses relevance more quickly.
Because of this, a predictive sampling agent is accumulating more rewards compared with other agents, as shown in
Figure 5b.
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Figure 5: Predictive sampling and state-of-the-art algorithms in a two-armed bandit with c = [0.65, 0.55], γ = (0.1, 0.99),
δa = 0.15(1− γ2

a) for a ∈ {1, 2}, and σ = [0.1, 0.1]
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