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Abstract

In contrast to ordinary supervised classification
tasks that require massive data with high-quality
labels, complementary-label learning (CLL) deals
with the weakly-supervised learning scenario
where each instance is equipped with a comple-
mentary label, which specifies a class the instance
does not belong to. However, most of the existing
statistically consistent CLL methods suffer from
overfitting intrinsically due to the negative empir-
ical risk issue. In this paper, we aim to propose
overfitting-resistant and theoretically grounded
methods for CLL. Considering the unique prop-
erty of the distribution of complementarily labeled
samples, we provide a risk estimator via order-
preserving losses, which is naturally non-negative
and thus can avoid overfitting. Moreover, we pro-
vide classifier-consistency analysis and statistical
guarantee for this estimator. Furthermore, we pro-
vide a weighted version of the proposed risk esti-
mator to further enhance its generalization ability
and prove its statistical consistency. Experiments
on benchmark datasets demonstrate the effective-
ness of our proposed methods.

1 Introduction

Ordinary supervised classification tasks require each in-
stance to be equipped with a ground-truth label, while vast
data with high-quality labels is costly to acquire or even
inaccessible. Supervised classification tasks also ignore the
data with inexact, incomplete, or inaccurate supervision,
e.g., partially-labeled, unlabeled, and noisy-labeled data,
which are ubiquitous in reality. In order to efficiently utilize
various types of weak supervision, weakly supervised learn-
ing (WSL) (Zhou, 2018; Sugiyama, 2015) has been widely
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studied in recent years, such as noisy-label learning (Ghosh
et al., 2017; Zhang and Sabuncu, 2018; Ma et al., 2018; Kim
et al., 2019; Liu and Guo, 2020; Han et al., 2020), positive
and unlabeled learning (Du Plessis et al., 2014; Kiryo et al.,
2017; Sakai et al., 2018), partial-label learning (Cour et al.,
2011; Feng and An, 2018; Lv et al., 2020), semi-supervised
learning (Chapelle et al., 2009; Miyato et al., 2018; Niu et al.,
2013), similar-unlabeled learning (Bao et al., 2018), and un-
labeled and uareabeled learning (Lu et al., 2018; Golovnev
et al., 2019). In this paper, we consider complementary-
label learning (CLL) (Ishida et al., 2017, 2019; Yu et al.,
2018; Feng et al., 2020; Cao et al., 2022), which is a weakly
supervised learning problem where the classifier is trained
only from examples equipped with labels that denote a class
they do not belong to.

In Ishida et al. (2017), the risk rewriting technique was
applied to construct the unbiased risk estimators (UREs)
from only data with complementary labels, which enables
consistent learning results via empirical risk minimization
(ERM) in this task. However, unlike classification risks
that are always non-negative, the obtained UREs of them
contain some negative terms and thus may not be lower-
bounded, which can lead to serious overfitting according
to previous studies (Ishida et al., 2017, 2019; Chou et al.,
2020). To mitigate this problem, various corrections (Ishida
et al., 2019; Chou et al., 2020; Gao and Zhang, 2021) on the
UREs are conducted to enforce their non-negativity.

Though non-negative correction methods have been widely
applied in the field of WSL (Kiryo et al., 2017; Lu et al.,
2020), it has been shown in recent works that the risk estima-
tors of CLL can be further improved by utilizing the proper-
ties of complementary labels. Chou et al. (2020) provided
a surrogate complementary loss framework and proposed
several risk estimators based on this framework. Another
non-negative risk estimator for CLL (Gao and Zhang, 2021)
was proposed by modeling the posterior probability of com-
plementary labels from the output of trained classifiers. The
risk estimators above are non-negative, so they can natu-
rally prevent overfitting caused by negative terms in the
risk estimator. However, Chou et al. (2020) did not pro-
vide statistical consistency guarantees for the ERM with its
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proposed estimators. Though Gao and Zhang (2021) gave
theoretical analysis with a statistical consistency guarantee,
strong restriction on loss function was required, i.e., only
softmax cross-entropy loss is allowed. Meanwhile, the im-
proved version of their method via weighting also lacked
statistical consistency guarantees.

To tackle the problems above, we propose non-negative
complementary learning via order-preservation losses. Con-
sidering the unique property of the distribution of com-
plementarily labeled examples, we derive a risk estimator
from order-preserving losses which is non-negative, thereby
avoiding overfitting caused by negative terms in the risk
estimator. Then we provide statistical guarantee for the es-
timator we proposed. Moreover, our method is compatible
with arbitrary models and various losses as long as they
are order-preserving. Furthermore, we introduce weighted
loss based on the estimator we provided and investigate
the statistical consistency of the risk correction method via
weighted loss. The experiment results show that our method
achieves the best performance among all the methods on
various benchmark datasets.

The rest of this paper is organized as follows. Section 2 gives
formal definitions and briefly reviews existing approaches
to CLL. Section 3 presents the proposed non-negative com-
plementary label learning via order-preserving. Section 4
shows the risk correction method via weighted loss. Sec-
tion 5 states the theoretical analysis of our method. Section
6 reports the results of comparative experimental studies.
Finally, Section 7 concludes this paper.

2 Preliminaries

In this section, we first introduce the problem formulations
of ordinary multi-class classification and complementary-
label learning, and then review the (improved) unbiased
estimators of the classification risk.

2.1 Problem Formulations

Here, we introduce notations used in this paper and briefly
review the existing methods for CLL.

Ordinary multi-class classification. In ordinary multi-
class classification, suppose the feature space is X ∈ Rd

and let Y = {1, 2, . . . , K} be the label set with K classes.
The training examples at hand {(xi, yi)}n

i=1 are drawn from
an unknown distribution p(x, y), where each instance xi is
associated with the maximum possible label yi. Ordinary
multi-class classification aims at learning a scoring function
g : X → RK that minimizes the classification risk:

R(g; ℓ01) = Ep(x,y) [ℓ01 (g(x), y)] , (2.1)

where E and ℓ01 denote the expectation and the 0-1 loss:
ℓ01(g(x), y) = Jy ̸= argmaxi gi(x)K, respectively. The

prediction is usually generated by taking argmaxy gy.
Since 0-1 loss is not continuous and its optimization is
NP-hard, ℓ01 is often substituted by some other surrogate
loss functions ℓ : RK × Y → R+. The classifier f is im-
plemented with a scoring function g : X → RK by taking
the argmax function f(x) = argmaxi gi(x), where gi(x)
denotes the i-th coordinate of g(x). The corresponding risk
related to scorig function g and loss ℓ can be defined as:

R(g; ℓ) = Ep(x,y) [ℓ (g(x), y)] . (2.2)

In practice, the classification risk can be approximated by
the empirical risk, which requires to be minimized in the
training stage:

R̂(g; ℓ) = 1
n

n∑
i=1

ℓ (g (xi) , yi) . (2.3)

Complementary-label learning. In this paper, we con-
sider the single complementary-label learning task where
each instance xi has only one complementary label ȳi which
specifies one of the classes that the example does not belong
to. Let {(xi, ȳi)}n

i=1 denote the training examples that are
drawn from an unknown distribution p̄(x, ȳ). Following the
work of Ishida et al. (2017), the complementarily labeled
examples are drawn form the following data distribution:

p̄(x, ȳ) = 1
K − 1

∑
y ̸=ȳ

p(x, y). (2.4)

The assumption (2.4) implies that except the correct label,
all other labels are chosen with uniform probability. The
first attempt towards learning from complementary labels
was Ishida et al. (2017), which can recover the unbiased risk
estimator when the used loss functions are limited to the
one-versus-all (OvA) loss and the pairwise-comparison loss
(Zhang, 2004).

To remove the restrictions on the available loss functions,
Ishida et al. (2019) proposed a more general URE that is
suitable for arbitrary losses and models:

R̄(g; ℓ) = Ep̄(x,ȳ)

[
K∑

y=1
ℓ(g(x), y) − (K − 1)ℓ(g(x), ȳ)

]
.

(2.5)

Though this URE has no constraints on the loss and model,
the empirical risk can go negative or even not lower-bounded
when common losses are used (e.g., the cross-entropy loss)
due to the negative terms in (2.5), which contradicts with the
fact that its expectation is always non-negative. Many previ-
ous works (Ishida et al., 2019; Chou et al., 2020; Feng et al.,
2020) have shown that, in practical implementation, the em-
pirical risk would continue decreasing and go below zero,
leading to the test accuracy dropping significantly. This in-
dicates that UREs tend to have poor empirical performance
and can be further improved.
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Table 1: An overview of the properties of commonly used multi-class loss functions.

Loss ℓ(u, y) Order-Preserving Convexity

Cross-Entropy − log sy(u) ! !

Focal −(1 − sy(u))γ log sy(u) ! !

OvA Logistic log(1 + exp(−uy)) +
∑

y′ ̸=y
log(1 + exp(uy′ )) ! !

Pairwise Logistic
∑

y′ ̸=y
log(1 + exp(uy′ − uy)) ! !

Pairwise Sigmoid
∑

y′ ̸=y
1

1+exp(uy−uy′ ) # #

MAE 1 − sy(u) # #

2.2 Improved Risk Estimators

To alleviate the overfitting issue caused by the negative terms
in the URE (2.5), Ishida et al. (2019) further proposed two
non-negative corrections to the original URE (Ishida et al.,
2019): the non-negative (NN) strategy and the gradient
ascent (GA) strategy by employing the ReLU function and
the absolute value function respectively on the risk estimator
(2.5) to enforce the non-negativity to the risk estimator. The
above correction methods are post-hoc corrections based on
the URE (2.5)fromich can only mitigate overfitting caused
by the negative risk issue instead of avoiding it. Later, Chou
et al. (2020) proposed a naturally non-negative risk estimator
by defining a complemfor entary 0-1 loss as

ℓ̄01(g(x), ȳ) = Jȳ = argmaxi gi(x)K. (2.6)

Based on this complementary 0-1 loss, a URE can be ob-
tained from only complementary labeled data and this URE
can be used in the validation process. They further selected
convex surrogate losses to approximate the complementary
0-1 loss in empirical risk minimization, but their statistical
consistency is not proved.

Gao and Zhang (2021) designed another complementary
loss function that is also naturally non-negative using the pre-
dictive probability of the complementary label and proved
its statistical consistency:

R̄(p̂; ℓ) = Ep̄(x,ȳ)[ℓ(1 − p̂(y|x), ȳ)], (2.7)

where p̂(y|x) is the softmax output of the trained classifier
g(x), i.e., p̂(y = i|x) = egi(x)/

∑K
j=1 egj(x), which can

be interpreted as an approximation of the posterior probabil-
ity p(y|x), and only the cross-entropy loss is allowed in Gao
and Zhang (2021). Meanwhile, they introduced a weighted
complementary loss by associating their proposed comple-
mentary loss function with a weight vector ω. Though the
weighted loss strategy performed better than the unweighted
version (2.7), it is worth noting that their weighting strategy
does not have theoretical supports.

In this paper, considering the unique property of the distri-
bution of complementarily labeled data, we propose a risk
estimator via order-preserving losses. The proposed risk

estimator is non-negative which naturally prevents overfit-
ting caused by negative terms in the risk estimator, and can
work with various losses as long as they satisfy the order-
preserving property. Then, we provide statistical guarantee
for the estimator we proposed. Furthermore, we improve
the risk estimator by weighting, i.e., making more use of
complementary labels when tackling a ranking problem
via ERM, and we analyse the consistency of the weighted
strategy for various losses.

3 Non-Negative Complementary Label
Learning via Order-Preservation

In this section, we introduce the framework of non-negative
complementary-label learning via order-preserving losses
and provide statistical consistency guarantees for the esti-
mator we proposed.

3.1 Risk Formulation and Consistency Analysis

Based on the relationship between the ordinary-label and
complementary-label distribution (2.4), we can deduce
that for any instance x and any label i ∈ {1, 2, . . . , K},
p̄(ȳ = i|x) is inversely proportional to p(y = i|x), which
motivates us to propose the following risk estimator.

Definition 3.1. (Complementary Risk Estimator via Order-
Preserving Classifier) With the scoring function g : X →
RK and the order-preserving loss ℓ : RK × Y → R+, we
define a complementary risk estimator as

R̄(g; ℓ) = Ep̄(x,ȳ) [ℓ(−g(x), ȳ)] , (3.1)

where the order-preserving loss ℓ (Zhang, 2004) satisfies
that for any η ∈ ∆K :

ηy > ηy′ → u∗
y > u∗

y′ ,

where u∗ ∈ RK is the minimizer of the conditional risk
ηT ℓ(u) and ℓ(u) = [ℓ(u, 1), · · · , ℓ(u, K)]T .

We list the commonly used order-preserving and non-order-
preserving losses and their properties in Table 1. Given
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training examples {(xi, ȳ)}n
i=1, we can get the following un-

biased empirical approximation of the risk estimator above.

ˆ̄R(g, ℓ) = 1
n

n∑
i=1

ℓ(−g(xi), ȳi). (3.2)

The derived risk estimator (3.1) includes an expectation over
a non-negative loss ℓ : RK × Y → R+, so the risk and its
empirical form (3.2) are both non-negative, which naturally
avoid the overfitting issue caused by the negative terms in
risk estimators. Meanwhile, our method can work with
various losses as long as they satisfy the order-preserving
property (e.g., cross-entropy, Focal, OvA, and pairwise lo-
gistic losses). Moreover, there are no implicit assumptions
on the used classifiers, hence both linear and non-linear
classifiers are allowed. Based on Definition 3.1, we give
the statistical consistency analysis of the risk estimator we
proposed.

Theorem 3.1. The risk formulation (3.1) is classifier-
consistent, i.e., for any x ∈ X :

argmaxy ḡ∗
y(x) = argmaxy g∗

y(x),

where ḡ∗(x) and g∗(x) are the minimizer of (3.1) and (2.1),
respectively.

Proof. First, we denote the minimizer of R̄(g; ℓ) (3.1) and
R(g; ℓ01) (2.1) as ḡ∗ and g∗ respectively.

For any x, we can learn that:

argmaxy g∗
y(x) = argmaxy p(y|x).

Based on the definition of order-preserving losses, we can
learn that:

argminy −ḡ∗(x) = argminy p̄(y|x),

which indicates argmaxy ḡ∗(x) = argminy p̄(y|x),

From the definition of the generation process of complemen-
tary labels, we can learn that:

p̄(y|x) =
∑

y′ ̸=y p(y′|x)
K − 1 = 1 − p(y|x)

K − 1 .

According to the equation above, we can immediately learn
that:

argminy p̄(y|x) = argmaxy p(y|x),

which indicates that argmaxy ḡ∗(x) = argmaxy g∗(x).
Combining the conclusions above and we can conclude the
proof.

With this theorem, we can learn that our method is sta-
tistically consistent given infinite i.i.d. examples. In the
next section and Section 5, we will further provide conclu-
sions about the non-asymptotic properties of the proposed
method.

3.2 Regret Transfer Bound

Based on Theorem 3.1, we can learn that the minimization
of our risk formulation (3.1) yields a consistent classifier
that can minimize the classification risk (2.1). However, this
guarantee is still limited in two perspectives.

Firstly, since we only have access to the i.i.d. complemen-
tarily labeled examples drawn from the probability density
p̄(x, ȳ), we can only approximate the risk formulation (3.1)
using its unbiased estimation (3.2) and conduct ERM to
obtain an empirically optimal classifier. Generally speak-
ing, there usually exists a gap between the performance of
the empirically optimal and globally optimal classifiers, and
Theorem 3.1 fails to give a guarantee for such an empirically
optimal classifier. Secondly, even if a large number of i.i.d.
examples are provided to make the generated classifier’s risk
(3.1) close enough to its infimum, its classification accuracy
still remains unclear since the decrease of (3.1) does not
immediately yield that of (2.1).

An issue naturally arises from these gaps: to what degree
the decrease of (3.1) leads to that of (2.1)? To answer this
question, we provide the following regret transfer bound that
quantifies the relation between R̄(g, ℓ) and R(g, ℓ01) when
using cross-entropy loss as the surrogate loss ℓ in (3.1):

Theorem 3.2. (Regret transfer bound of the proposed risk)

∆01(g) ≤
√

2(K − 1)
√

∆̄CE(g), (3.3)

where ∆̄CE(g) = R̄(g, ℓCE) − min
g′

R̄(g′, ℓCE) and

∆01(g) = R(g, ℓ01) − min
g′

R(g′, ℓ01).

Proof. We begin with the point-wise regret bound and then
generalize it to the conclusion via Jensen’s inequality.

Suppose η(x) is the class-posterior probability of the ordi-
nary labels and η̄(x) is the class-posterior probability of the
complementary labels. According to Pinsker’s inequality:

∆̄CE(g, x) ≥ 1
2∥η̄(x) − s(−g(x))∥2

1,

where s(−g(x)) is the softmax output. When
argmaxy gy(x) = argmaxy p(y|x), we can learn that
∆̄CE(g, x) ≥ ∆01(g, x) = 0. When the equal-
ity does not hold, suppose argmaxy gy(x) = y1 and
argmaxy p(y|x) = argminȳ p̄(ȳ|x) = y2, we can further
learn that:

1
2∥η̄(x) − s(−g(x))∥2

1

≥ 1
2 (|p̄(y1|x) − sy1(−g(x))| + |p̄(y2|x) − sy2(−g(x))|)2

≥ 1
2 (|p̄(y1|x) − sy1(−g(x)) − p̄(y2|x) + sy2(−g(x))|)2
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Since gy2(x) < gy1(x), we can learn that sy1(−g(x)) <
sy2(−g(x)), then we can continue the proof:

1
2 (|p̄(y1|x) − sy1(−g(x)) − p̄(y2|x) + sy2(−g(x))|)2

= 1
2 (p̄(y1|x) − p̄(y2|x) + sy2(−g(x)) − sy1(−g(x)))2

≥ 1
2 (p̄(y1|x) − p̄(y2|x))2

= 1
2

(
1 − p(y1|x)

K − 1 − 1 − p(y2|x)
K − 1

)2

= (p(y1|x) − p(y2|x))2

2(K − 1)2

= ∆01(g, x)2

2(K − 1)2

Then we can learn that ∆̄CE(g, x) ≥ ∆01(g,x)2

2(K−1)2 , which
concludes the proof.

The proof of this theorem is conducted using the Pinsker’s
inequality and the definition of p̄(x, ȳ). From this theorem,
we can learn that the upper bound of the gap between the
misclassification rate of g and the Bayes optimal classifier
g∗ is guaranteed to be smaller and vanishes as R̄(g, ℓCE)
moves closer to its minimum. Compared with the bound in
the scenario of ordinary classification (Ni et al., 2019)1, the
regret transfer bound above is K − 1 times larger, which
implicates the inherent difficulty of complementary-label
learning.

4 Risk Correction via Weighting

In Section 3, we show that based on the unique property of
the distribution of complementary labels, a naturally non-
negative risk estimator can be constructed by considering
a label ranking problem (Fotakis et al., 2022; Vogel and
Clémençon, 2020; Brinker and Hüllermeier, 2019). In this
section, we first discuss some potential shortcomings of the
classifier-consistent risk estimator proposed in the previous
section, and then give a novel weighting strategy to further
improve its performance. The statistical consistency of the
improved risk estimator is also provided for various loss
functions.

4.1 Adaptive Risk Weighting Strategy

It is worth noting that the performance of our obtained clas-
sifier g is determined by whether ḡ = −g can give a correct
prediction on the complementary label with minimal likeli-
hood for each instance x, i.e., minȳ p̄(ȳ|x). However, such
dependence can be unreliable due to the intrinsic difficulties
of the ranking problem.

1In Ni et al. (2019), the bound for ordinary classification can
be deduced by setting c = 1 in Appendix A.4.

To be detailed, when tackling a ranking problem via ERM,
the algorithm can often achieve better results on predicting
the top items compared with the bottom ones since the top
items are given larger weights (posterior probabilities in the
classification scenario) and incur more losses when sorted
incorrectly. When solving a standard classification problem
via such a ranking approach, the property mentioned above
is not disadvantageous because people are more concerned
about the most likely class label (ranked on the top) and
other labels are of less importance or even dropped simply.
However, the influence of such a property must not be over-
looked in our risk minimization setting (3.1) since we aim
at predicting the least likely complementary label, which is
at the bottom of the ranking list.

To mitigate the dichotomy mentioned above, we improve the
proposed risk estimator (3.1) through a weighting strategy,
which can be combined with any order-preserving loss func-
tions mentioned in Table 1. The improved risk estimator is
defined as follows:

Definition 4.1. (Weighted Order-Preserving Complemen-
tary Risk Formulation) With the classifier g : X → RK and
the order-preserving loss ℓ : RK × Y → R+, the weighted
order-preserving complementary risk is defined as

R̄w(g; ℓ) = Ep̄(x,ȳ) [w(g(x), ȳ) · ℓ(−g(x), ȳ)] , (4.1)

where w(·, ·) is the weight function that for any y ∈ Y , it
is strictly decreasing w.r.t. uy and strictly increasing w.r.t.
uy′ where y′ ̸= y, i.e., for any δ > 0:

w(u + δey, y) > w(u, y),

where ey is the canonical basis for RK with a unique non-
zero entry ey

y = 1.

This correction can be simply implemented by optimizing
the product of the loss function and the weight function
instead. Let us illustrate how this weighting strategy helps
mitigate the problem mentioned in this section. Intuitively,
this weighting strategy can enhance the importance of ex-
amples that receive too much attention to ensure that the
most likely complementary label ȳ∗ is ranked at the top.
For any x ∈ X , when the model increases the score of
its most likely complementary label ȳ∗, −g(x)ȳ∗ , to de-
crease its corresponding loss ℓ(−g(x), ȳ∗), the weight func-
tion w(g(x), ȳ∗) will increase to stop the weighted loss
w(g(x), ȳ∗)ℓ(−g(x), ȳ∗) from further decreasing, which
can prevent the algorithm from paying too much attention
to make −g(x)ȳ∗ larger.

Though intuitively plausible, the statistical consistency of
the proposed weighting strategy is not straightforward. For
example, if we set w(u, y) = exp(uy), we can simply
let uy → −∞ for any y ∈ Y to make the weighted risk
converge to be 0, which can lead to a degenerated solution.
In the following section, we will show the condition under
which the proposed R̄w(g, ℓ) can yield consistent results.
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(a) MNIST, linear (b) Fashion, linear (c) Kuzushiji, linear

(d) MNIST, MLP (e) Fashion, MLP (f) Kuzushiji, MLP

Figure 1: The experimental results on various test datasets with different methods and models for 150 epochs for 5 trails. The dark color
is the mean accuracy and the light corresponds to the std.

4.2 Consistency of the Weighting Strategy

Though the intuitive motivation of our proposed weight-
ing strategy is given in the previous section, its classifier-
consistency (stated in Theorem 3.1) is still unclear, i.e., if we
can obtain a classifier which can generate the most likely or-
dinary label for each instance x by minimizing (4.1)? In the
following theorem, we show that with mild conditions, we
can safely claim the consistency of our weighting strategy:
Theorem 4.1. The weighted order-preserving risk (4.1)
is classifier-consistent when combined with the order-
preserving losses listed in Table 1 if the weight func-
tion w(·, ·) ∈ RK × Y → R+ and w(u) =
[w(u, 1), · · · , w(u, K)]T meet the following three condi-
tions:

• w is differentiable and lower bounded by ϵ > 0,

• w is symmetric, i.e., Pw(u) = w(Pu) for all the
permutation matrix P .

• Function w(u, y) is strictly decreasing w.r.t. uy and
strictly increasing w.r.t.uy′ , y′ ̸= y, i.e., for δ > 0:

w(u + δey, y) > w(u, y),

w(u + δey′
, y) < w(u, y),

where ey is the canonical basis for RK with a unique
non-zero entry ey

y = 1.

The proof is shown in the appendix. After showing that
our weighting strategy is statistically valid, we will further
demonstrate its performance in Section 6.

5 Estimation Error Analysis

In this section, we establish the estimation error bounds
of our proposed methods. The proof of the conclusions
in this section are all provided in the appendix. Let G ⊂
X → RK be the model class and each of its dimension
is constructed by Gy ⊂ X → R. Assume there exists
Cg > 0 that supg∈G ∥g∥∞ ≤ Cg and Cℓ > 0 such that
sup∥z∥∞≤Cg

ℓ(z, y) ≤ Cℓ for any y ∈ Y . We also assume
that ℓ(z, y) is Lℓ-Lipschitz continuous w.r.t. z following
the common practice (Mohri et al., 2018). Suppose Rn(Gy)
is the Rademacher complexity (Bartlett and Mendelson,
2002; Bartlett et al., 2002) of Gy given n i.i.d. samples
drawn from distribution with density p̄(x, ȳ). We show the
definition of Rademacher complexity in the appendix.

Suppose ḡ∗ and ˆ̄g are the minimizers of (3.1) and its em-
pirical version, respectively. Then we can get the following
estimation error bound.

Theorem 5.1. For any δ > 0, the following inequality holds
with probability at least 1 − δ:

R̄(ˆ̄g, ℓ) − R̄(ḡ∗, ℓ) ≤ 4
√

2Lℓ

K∑
y=1

Rn(Gy) + 4Cℓ

√
ln 2

δ

2n
.

Here we also provide the estimation error bound for our
weighted risk formulation. Suppose that the weight function
is upper-bounded by Cw and is Lw-Lipschitz continuous
for any y ∈ Y . Suppose ḡw∗ and ˆ̄gw are the minimizers of
(4.1) and its empirical version, respectively. Then we can
get the following conclusion.
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Table 2: Specification of benchmark datasets and models.

Statistics MNIST Fashion-MNIST Kuzushiji-MNIST SVHN

#Train 60,000 60,000 60,000 73257

#Test 10,000 10,000 10,000 26032

#Feature 784 784 784 3072

Simple Model Linear Model Linear Model Linear Model —-

Deep Model 784-500-10 MLP 784-500-10 MLP 784-500-10 MLP ResNet-18

Table 3: Classification accuracy (mean±std) of each algorithm on three datasets using linear models for 5 trails. The best performance
among all the approaches is highlighted in boldface.

Approach MNIST Fashion-MNIST Kuzushiji-MNIST

PC 82.66±0.81 72.91±0.05 54.96±1.28

Forward 89.73±0.34 80.47±0.10 59.89±0.31

GA 84.18±0.35 74.80±0.17 56.25±0.70

L-UW 89.72±0.24 80.35±0.33 60.65±0.26

L-W 89.56±0.25 80.49±0.03 60.88±0.32

OP (Naive) 81.16±0.46 76.25±0.23 51.96±0.50

OP-W (Ours) 90.51±0.23 81.13±0.38 61.67±0.26

Theorem 5.2. For any δ > 0, the following inequality holds
with probability at least 1 − δ:

R̄w(ˆ̄g, ℓ)−R̄w(ḡ∗, ℓ) ≤ 4
√

2L′
K∑

y=1
Rn(Gy)+4C ′

√
ln 2

δ

2n
,

where L′ = LℓCw + LwCℓ and C ′ = CwCℓ.

Notice that the Rademacher complexity Rn(G) is usually
assumed to be smaller than R/

√
n, which holds for various

models like linear-in-input model and fully-connected neu-
ral network . We make this assumption in the rest analysis
of this paper. Then we can learn that risk minimization
with the empirical version of proposed risks (3.1) and (4.1)
converges in the rate of Op(1/

√
n), which is the optimal

parametric convergence rate without additional assumptions
(Mendelson, 2008).

Furthermore, with cross-entropy loss and the identifiable
condition, which is a common assumption when the model
class is complex (Bao et al., 2020; Lu et al., 2021; Hsu et al.,
2019), we can combine the regret transfer bound in Theorem
3.2 and the estimation error bound in Theorem 5.1 to further
get a high-probability bound for the expected 0-1 risk, i.e.,
misclassification rate, for learning with our method (3.1).

Corollary 5.1. Assume that the identifiable condition holds,
i.e., ming∈X →RK R̄(g, ℓCE) = ming∈G R̄(g, ℓCE). For
any δ > 0, the following inequality holds with probabil-

ity at least 1 − δ:

R(ˆ̄g, ℓ01) − min
g′

R(g′, ℓ01)

≤
√

2(K − 1)

√√√√√√
2Lℓ

K∑
y=1

Rn(Gy) + Cℓ

2

√
ln 2

δ

2n
.

From the corollary above, we can learn that with identifiable
condition and cross-entropy loss, the classification accuracy
of the empirical risk minimizer of (3.1) converges in the
rate of Op(1/n1/4). However, the term K − 1 still indicates
that the naive order-preserving method (3.1) can be quite
inefficient under the multi-class classification scenario. In
the following experiment, we show that this shortcoming
can be effectively mitigated by our consistent weighting
strategy proposed in Section 4.

6 Experiments

In this section, we provide the experimental results, i.e., the
classification accuracy of our proposed methods and base-
line methods with different models on several commonly
used benchmark datasets based on the original data gener-
ation process defined in Ishida et al. (2017, 2019) that is
mentioned in Section 2.1. The specific parameter setting and
description of different datasets and models are provided in
the appendix. We provide an overview of our used models
and datasets in Table 2.
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Table 4: Classification accuracy (mean±std) of each algorithm on three datasets using complex models for 3 trails. The best performance
among all the approaches is highlighted in boldface.

Approach MNIST Fashion-MNIST Kuzushiji-MNIST SVHN

PC 85.03±0.21 78.22±0.44 58.42±0.83 59.33±2.74

Forward 92.66±0.10 83.87±0.19 65.13±0.58 81.54±0.53

GA 88.62±0.26 80.16± 0.17 64.91±0.57 77.12±0.09

L-UW 92.12± 0.08 83.22±0.2 64.62±0.58 73.13±0.49

L-W 91.82±0.39 83.39± 0.15 65.91±2.25 79.54±0.21

OP (Naive) 91.26±0.13 81.90± 0.09 68.47±0.46 63.75±0.94

OP-W (Ours) 94.13±0.29 84.58±0.39 73.13±0.49 83.34±0.63

6.1 Experimental Setup

Baselines. We compare our methods with the state-of-
the-art methods in learning with single complementary la-
bels, including pairwise-comparison (PC) & gradient ascent
(GA) (Ishida et al., 2019), forward correction (Fwd) (Pa-
trini et al., 2017), unweighted loss (L-UW) & weighted loss
(L-W) (Gao and Zhang, 2021). We denote our classifier-
consistent order-preserving method (3.1) and weighted
order-preserving method (4.1) with OR and OR-W, respec-
tively. Cross-entropy loss is used in all the methods. We im-
plemented all the methods by Pytorch (Paszke et al., 2019)
and conducted all the experiments on NVIDIA GeForce
3090 GPUs.

Datasets and models. We conduct experiments with both
a linear-in-parameter model and an MLP with one hidden
layer on three commonly used benchmark datasets: MNIST
(LeCun et al., 1998), Fashion-MNIST (Xiao et al., 2017),
and Kuzushiji-MNIST (Clanuwat et al., 2018). To further
validate the performance of our proposed methods with
complex models, we add an extra experiment on SVHN
(Netzer et al., 2011) with ResNet-18 (He et al., 2016). We
use Adam (Kingma and Ba, 2015) as the optimizer for all
the experiments.

6.2 Experimental Results

We show the experimental results of linear models in Ta-
ble 3 and those of MLP and the result of ResNet-18 on
SVHN in Table 5. The epoch-wise testing accuracy of each
method on MNIST, Fashion-MNIST, and Kuzushiji-MNIST
are provided in Figure 1.

Specifically, we can observe that:

• From Table 3 and 5, it can be seen that our proposed
weighted order-preserving method (4.1), i.e., OP-W,
outperforms other methods on all the datasets with
different models.

• It can also be learned from Figure 1 that OP-W not

only outperforms other methods but also converges
faster, which means that it needs less training epochs to
achieve a satisfying performance than other methods.

• Comparing the experimental results of OP and OP-W,
we can conclude that the weighting strategy boosts
the performance of our naive OP method, which often
suffers from suboptimal performance.

• Though the performance of L-W is close to that of OP-
W when linear model is used, it is far inferior to OP-W
when more complex models, i.e., MLP and ResNet-18
are used, which can be observed in the experimental
results of Kuzushiji-MNIST and SVHN in Table 5.

In conclusion, the experimental results show that our weight-
ing strategy can effectively enhance the performance of the
naive OP method and t weighted order-preserving method
(OP-W) (4.1) can benefit from both outstanding perfor-
mance and fast convergence on both simple linear model
and complex deep models.

6.3 Additional Experiments

We conduct experiments based on the setup in the previous
sections with more weighting strategies and loss functions.
Due to the page limitation, we focus on SVHN and CIFAR-
10. We use ResNet-34 on CIFAR-10 for all the methods and
other settings are the same as those in the previous sections.
Aside from CE loss, we also use Focal and Generalized-
CE (GCE) losses in the experiments, where ℓfoc(u, y) =
−(1 − sy(u))γ log sy(u), ℓGCE(u, y) = (1 − sy(u)α)/α,
and s(·) is the softmax function. We set γ = 2 as the default
value and α = 0.3. We also conduct experiments with a new
simple family of weighting strategies: w̃y(u) = sy(u)q,
where q ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. We set proposed
methods that perform comparable to or better than compared
methods in gray and show the best methods in boldface.

We first analyze the result of CIFAR-10. We can find that
all three losses outperform the compared methods when
combined with the new weighting strategy w̃ under all the
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Table 5: Classification accuracy (mean±std) offewerpared and proposed methods on CIFAR-10 and SVHN.

CIFAR-10-Compared

PC Forward GA L-UW L-W

31.47±0.76 41.78±0.14 37.44± 0.71 38.18±0.81 38.65±0.09

CIFAR-10-Proposed

Weight OP OP-W q = 0.5 q = 0.6 q = 0.7 q = 0.8 q = 0.9 q = 1.0
CE 26.57±1.05 41.75± 0.94 42.96±0.26 43.12±0.17 44.31± 0.47 42.75± 0.27 43.92± 0.23 42.32± 0.36

Focal 27.06±0.66 28.96±0.36 44.50± 0.31 43.31±0.31 44.30±0.13 44.11±0.21 44.37±0.16 44.08±0.40

GCE 23.76±0.34 28.88± 0.29 44.02±0.35 44.35±0.35 45.52±0.27 43.37±0.48 44.56±0.33 44.75±0.39

SVHN-Proposed

Weight OP OP-W q = 0.5 q = 0.6 q = 0.7 q = 0.8 q = 0.9 q = 1.0
CE 63.71±0.94 83.34±0.63 81.20±0.26 81.38±0.31 81.94±0.48 82.30±0.34 82.96±0.17 82.96±0.17

Focal 65.67±0.47 81.52±0.29 81.49± 0.46 81.78±0.66 82.47±0.19 83.21±0.23 83.50±0.33 83.04±0.53

GCE 66.70±0.38 69.72± 0.13 79.83±0.56 80.16±0.21 80.29±0.38 82.37±0.25 82.42±0.41 82.50±0.16

selections of parameter q. Though Forward has the best
performance among all the compared methods, it is still
not comparable to the proposed methods with weighting
strategy w̃. Regarding SVHN, we can find that the new
weighting strategy is still comparable to the compared meth-
ods and outperforms those when Focal loss is used.

According to the experimental results in this section and
Section 6.2, it can also be observed that our proposed meth-
ods outperform compared methods on all the datasets. Fur-
thermore, on the complex dataset CIFAR-10, Focal loss
and GCE loss with weighting strategy w̃ have better per-
formance than the CE loss, which indicates that the access
to various kinds of order-preserving losses and weighting
strategies is a reason for the superiority of our method. With
complex models, the improvement of our methods is 8% on
Kuzushiji-MNIST and 1 − 4% on other datasets. Though
not as remarkable as that on Kuzushiji-MNIST, the 1 − 4%
improvement over compared methods is also common and
significant in CL as shown in the previous studies Ishida
et al. (2019); Feng et al. (2020); Gao and Zhang (2021).

7 Conclusion

In this paper, we focus on the problem of learning from
single complementary labels. We first propose a naturally
non-negative classifier-consistent risk formulation based on
the connection between complementary labels and ordinary
labels with order-preserving loss functions. To enhance
the efficiency of the proposed naive order-preserving (OR)
method, we further propose a weighting strategy (OR-W)
for it and prove its statistical consistency. We also provide
estimation error analyses for both methods we proposed and
discuss the regret transfer bound for the naive OR method
when using cross-entropy loss as the loss function. Exper-

imental results show that our proposed weighting strategy
can boost the performance of the naive OR method and out-
perform the state-of-the-art methods on different benchmark
datasets with both linear and deep models.
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L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. (2019). Pytorch: An imper-
ative style, high-performance deep learning library. In
NeurIPS.

Patrini, G., Rozza, A., Menon, A. K., Nock, R., and Qu,
L. (2017). Making deep neural networks robust to label
noise: A loss correction approach. In CVPR.

Sakai, T., Niu, G., and Sugiyama, M. (2018). Semi-
supervised auc optimization based on positive-unlabeled
learning. Machine Learning.

Sugiyama, M. (2015). Introduction to Statistical Machine
learning. Morgan Kaufmann.
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A Proof of Theorem 4.1

Proof. In this section, we show the classifier-consistency by showing that argmaxy uy = argmaxy p(y|x), where u =
argminu′ r(u′) = argminu′

∑K
y=1 p̄(y|x)w(u′, y))ℓ(−u′, y).

First of all, we show that for any y, y′ ∈ Y , if p(y|x) > p(y′|x), then uy ≥ uy′ . According to the theorem, it is easy to find
that if uy < uy′ , then w(u, y))ℓ(−u, y) < w(u, y′))ℓ(−u, y′). According to the definition of complementary label, we
can learn that p̄(y|x) < p̄(y′|x). Then we can get a new u′ by swapping uy and uy′ to get a r(u′) < r(u).

Then we show that it is necessary for u to fulfill the condition below if it is also a stationary point of r(u):

p(y|x) > p(y′|x) → uy > uy′ .

Since we have proved that p(y|x) > p(y′|x) → uy ≥ uy′ , we only have to show that the equality does not hold. If uy = uy′

but p(y|x) > p(y′|x), we can learn from the monotonicity and symmetricity that ∂r(u)
∂uy

< ∂r(u)
∂uy′

, which indicates that only
one of the partial derivatives can be zero, i.e., u is not the stationary point.

Then we show that the points out of the interior of RK cannot be the minima of r(u), based on the fact that the weighted
function is lower bounded by a positive number.

For OvA Logistic loss, we can easily find that if there exists any uy = +∞ or −∞, r(u) is also +∞.

For Pairwise Logistic loss, we can easily learn that r(u) = +∞ if there exists uy = ∞ and uy′ < ∞. When uy = ∞ for
all the y ∈ Y , we can learn that ℓ(−u, y) = log 2 for any y. Notice that we can set all the uy = a ̸= ∞ to get the same
value. From the derivative analysis, we can learn that the gradient of uy = a is non-zero from the previous analysis, which
indicates that uy = ∞ for all the y ∈ Y cannot be a solution.

For CE loss and Focal loss, we assume that p(y|x) ̸= 0 without loss of generality. If not all the uy = +∞ or −∞, we
can learn that there exists y that sy(−u) = 0 and hence r(u) = +∞. When all the uy = +∞ or −∞, we can learn that
sy(−u) = 1

K for any y. In the same way as in the previous paragraph, we can also learn the suboptimality of this u.

Combining the conclusions above and we can conclude the proof.

B Proofs of Theorem 5.1

Our proof of the estimation error bound is based on Rademacher complexity:
Definition B.1. (Rademacher complexity) Let Z1, . . . , Zn be n i.i.d. random variables drawn from a probability distribution
µ, H = {h : Z → R} be a class of measurable functions. Then the expected Rademacher complexity of H is defined as

Rn(H) = EZ1,...,Zn∼µEσ

[
sup
h∈H

1
n

n∑
i=1

σih (Zi)
]

where σ = {σ1, . . . , σn} are Rademacher variables taking the value from {−1, +1} with even probabilities.

First, let G ⊂ X → RK be the model class and each of its dimension is constructed by Gy ⊂ X → R. Then, we define the
following function space for our order-preserving method

L ◦ G = {h : (x, ȳ) 7→ ℓ(−g(x), ȳ) | g ∈ G}

So the Rademacher complexity of {L ◦ G} given n i.i.d. samples drawn from distribution with density p̄(x, ȳ) can be
defined as

Rn(L ◦ G) = Ep̄(x,ȳ)Eσ

[
sup
g∈G

1
n

n∑
i=1

σih(xi, ȳi)
]

.

Before proving Theorem 5.1, we introduce the following lemmas.

Lemma B.1. Suppose ˆ̄g is the empirical risk minimizer (i.e., ˆ̄g = argming∈G
ˆ̄R(g, ℓ)) and ḡ∗ is the true minimizer (i.e.,

ḡ∗ = argming∈G R̄(g, ℓ)), then the following inequality holds:

R̄(ˆ̄g) − R̄(ḡ∗) ≤ 2 sup
g∈G

| ˆ̄R(g) − R̄(g)|
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Proof. It is intuitive to obtain

R̄(ˆ̄g) − R̄(ḡ∗) = R̄(ˆ̄g) − ˆ̄R(ˆ̄g) + ˆ̄R(ˆ̄g) − R̄(ḡ∗)

≤ R̄(ˆ̄g) − ˆ̄R(ˆ̄g) + ˆ̄R(ḡ∗) − R̄(ḡ∗)

≤ 2 sup
g∈G

∣∣∣ ˆ̄R(g) − R̄(g)
∣∣∣

which completes the proof.

Then we have the following lemma.

Lemma B.2. Assume there exists Cg > 0 that supg∈G ∥g∥∞ ≤ Cg and Cℓ > 0 such that sup∥z∥∞≤Cg
ℓ(z, y) ≤ Cℓ for

any y ∈ Y . We also assume the loss function ℓ(z, y) is Lℓ-Lipschitz continuous w.r.t. z for all y ∈ Y . Then for any δ > 0,
with probability at least 1 − δ,

sup
g∈G

∣∣∣ ˆ̄R(g) − R̄(g)
∣∣∣ ≤ 2

√
2Lℓ

K∑
y=1

Rn(Gy) + 2Cℓ

√
ln(2/δ)

2n

Proof. We will only discuss a one-sided bound on supg∈G

( ˆ̄R(g) − R̄(g)
)

that holds with probability at least 1 − δ
2 . The

other side can be derived in a similar way. To begin with, we bound the change of supg∈G

( ˆ̄R(g) − R̄(g)
)

when a single

entry zi = (xi, yi) of (z1, . . . , zn) is replaced with z′
i = (x′

i, y′
i). Define A(z1, . . . , zn) = supg∈G

( ˆ̄R(g) − R̄(g)
)

. Then
it holds that

A(z1, . . . , zi, . . . , zn) − A(z1, . . . , z′
i, . . . , zn)

= sup
g∈G

 1
n

n∑
j=1

ℓ(−g(xj), ȳj) − Ep̄(x,ȳ)[ℓ(−g(x), ȳ)]


− sup

g′∈G

 1
n

∑
j∈{1,...,n}\{i}

ℓ(−g′(xj), ȳj) + 1
n

ℓ(−g′(x′
i), ȳ′

i) − Ep̄(x,ȳ)[ℓ(−g′(x), ȳ)]


≤ sup

g∈G

 1
n

n∑
j=1

ℓ(−g′(xj), ȳj) − Ep̄(x,ȳ)[ℓ(−g(x), ȳ)]

− 1
n

∑
j∈{1,...,n}\{i}

ℓ(−g(xj), ȳj) − 1
n

ℓ(−g(x′
i), ȳ′

i) + Ep̄(x,ȳ)[ℓ(−g(x), ȳ)]


= sup

g∈G

[
1
n

ℓ(−g(xi), ȳi) − 1
n

ℓ(−g(x′
i), ȳ′

i)
]

= 1
n

sup
g∈G

[ℓ(−g(xi), ȳi) − ℓ(−g(x′
i), ȳ′

i)] ≤ 2Cℓ

n

By applying McDiarmid’s inequality, for any δ > 0, with probability at least 1 − δ/2,

sup
g∈G

R̄(ˆ̄g) − R̄(ḡ) ≤ E
[
sup
g∈G

R̄(ˆ̄g) − R̄(ḡ)
]

+ 2Cℓ

√
ln(2/δ)

2n

Since R̄(g) = E
[ ˆ̄R(g)

]
, by applying the symmetrization (Mohri et al., 2018), we get

E
[
sup
g∈G

( ˆ̄R(g) − R̄(g)
)]

≤ 2Rn(L ◦ G).
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By further taking into account the other side supg∈G

(
R̄(g) − ˆ̄R(g)

)
, we have for any δ > 0, with probability at least 1 − δ,

sup
g∈G

∣∣∣ ˆ̄R(g) − R̄(g)
∣∣∣ ≤ 2Rn(L ◦ G) + 2Cℓ

√
ln(2/δ)

2n
,

Since the loss function ℓ(z, y) is Lℓ-Lipschitz continuous w.r.t. z for all y ∈ Y , by the Rademacher vector contraction
inequality (), we have Rn(L ◦ G) ≤

√
2Lℓ

∑K
y=1 Rn(Gy), which concludes the proof.

Combing Lemma B.1 and Lemma B.2, Theorem 5.1 is proved.

C Proofs of Theorem 5.2

Since this proof is somewhat similar to the proof of Theorem 5.1, we briefly sketch the key points.

We define a function space for our weighting method as

Lw ◦ G = {h : (x, ȳ) 7→ w(g(x), ȳ) · ℓ(−g(x), ȳ) | g ∈ G}

So the Rademacher complexity of {Lw ◦ G} given n i.i.d. samples drawn from distribution with density p̄(x, ȳ) can be
defined as

Rn(Lw ◦ G) = Ep̄(x,ȳ)Eσ

[
sup
g∈G

1
n

n∑
i=1

σih(xi, ȳi)
]

.

Then we have the following lemma.
Lemma C.1. Suppose the weight function is upper bounded by Cw and is Lw-Lipschitz continuous for any y ∈ Y . And
we assume that ˆ̄gw is the empirical risk minimizer (i.e., ˆ̄gw = argming∈G

ˆ̄Rw(g, ℓ)) and ḡ∗w is the true minimizer (i.e.,
ḡ∗ = argming∈G R̄w(g, ℓ)), then for any δ > 0, with probability at least 1 − δ,

sup
g∈G

∣∣R̄w(ˆ̄g) − R̄w(ḡ)
∣∣ ≤ 2

√
2L′

K∑
y=1

Rn(Gy) + 2C ′

√
ln(2/δ)

2n
,

where L′ = LℓCw + LwCℓ and C ′ = CwCℓ.

Proof. In order to prove this lemma, we first show that the one direction supg∈G R̄w(ˆ̄g)−R̄w(ḡ) is bounded with probability
at least 1 − δ/2, and the other direction can be similarly shown. Suppose an example (xi, ȳi) is replaced by another arbitrary
example (x′

i, ȳ′
i), then the change of supg∈G R̄w(ˆ̄g) − R̄w(ḡ) is no greater than 2CwCℓ/n. By applying McDiarmid’s

inequality, for any δ > 0, with probability at least 1 − δ/2,

sup
g∈G

R̄w(ˆ̄g) − R̄w(ḡ) ≤ E
[
sup
g∈G

R̄w(ˆ̄g) − R̄w(ḡ)
]

+ 2CwCℓ

√
ln(2/δ)

2n

Since R̄w(g) = E
[ ˆ̄Rw(g)

]
, by applying the symmetrization (Mohri et al., 2018), we get

E
[
sup
g∈G

( ˆ̄Rw(g) − R̄(g)
)]

≤ 2Rn(Lw ◦ G).

By further taking into account the other side supg∈G

(
R̄w(g) − ˆ̄Rw(g)

)
, we have for any δ > 0, with probability at least

1 − δ,

sup
g∈G

∣∣∣ ˆ̄R(g) − R̄(g)
∣∣∣ ≤ 2Rn(Lw ◦ G) + 2CwCℓ

√
ln(2/δ)

2n
,

Since the loss function ℓ(z, y) is Lℓ-Lipschitz continuous w.r.t. z for all y ∈ Y , and the weight function is Lw-Lipschitz
continuous for any y ∈ Y , by the Rademacher vector contraction inequality (Maurer, 2016), we have Rn(Lw ◦ G) ≤√

2(LℓCw + LwCℓ)
∑K

y=1 Rn(Gy), which concludes the proof.

By taking into account Lemma B.1 and Lemma C.1, Theorem 5.2 is proved.



Shuqi Liu1, Yuzhou Cao2, Qiaozhen Zhang1, Lei Feng2, Bo An2

D Details of Experimental Setup

We generate the complementary labels following the setting in Ishida et al. (2017). In the experiments of MNIST, Fashion-
MNIST and Kuzushiji-MNIST, we use Adam with default momentum and learning rate, batch size and weight decay were
set to 5e-5, 256, and 1e-4, respectively. For SVHN, the learning rate was set to 5e-4 and other parameters remain the
same. The weight function for our OP-W is set to: w(g(x), y) = sy(u(x) + 1) ∗ sy(g(x)) + ϵ, where ϵ = 1e − 6 and
uy(x) = 1/sy(−g(x)). For all the datasets, we split 10% of the training set as the validation set. Besides, the pseudo-code
for the reweighted method is provided below:

1: for epoch = 1, 2, . . . , E do
2: for each mini-batch do
3: Calculating weight vector w.
4: Compute the averaged loss based on this mini-batch and Definition 4.1.
5: Update the model using any predetermined optimizing algorithm A.
6: end for
7: end for

E Limitations and Societal Impact

This framework is used for single complementary label learning, while it is also available to learn from multiple com-
plementary labels (Feng et al., 2020). We believe that extensions to MCL is a promising future direction. The use of
complementary-label learning can improve the ability of privacy protection as stated in Ishida et al. (2019); Feng et al.
(2020), and thus there may not be severe negative societal impact.


