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Abstract

Tree ensembles are powerful models that achieve
excellent predictive performances, but can grow
to unwieldy sizes. These ensembles are often
post-processed (pruned) to reduce memory foot-
print and improve interpretability. We present
FORESTPRUNE, a novel optimization framework
to post-process tree ensembles by pruning depth
layers from individual trees. Since the number of
nodes in a decision tree increases exponentially
with tree depth, pruning deep trees drastically
compactifies ensembles. We develop a special-
ized optimization algorithm to efficiently obtain
high-quality solutions to problems under FOREST-
PRUNE. Our algorithm typically reaches good
solutions in seconds for medium-size datasets
and ensembles, with 10000s of rows and 100s
of trees, resulting in significant speedups over ex-
isting approaches. Our experiments demonstrate
that FORESTPRUNE produces parsimonious mod-
els that outperform models extracted by existing
post-processing algorithms.

1 INTRODUCTION

Tree ensembles are popular in machine learning for their
predictive accuracy and interpretability. These ensembles
combine weak decision trees by either averaging indepen-
dently grown trees in bagging (Breiman, 2001), or by adding
trees grown sequentially in boosting (Friedman, 2001). The
resulting model is more accurate and generalizes better than
any single decision tree, but is much more complex.

The complexity of tree ensembles raises several issues. Tree
ensembles can grow to massive sizes and require substantial
memory to store. Computing the predictions of large ensem-
bles is slow since each observation in a dataset must pass
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through each tree. Ensembles with deep trees are also diffi-
cult to interpret since the structures of deep trees are hard to
visualize (Haddouchi and Berrado, 2019). Finally, complex
tree ensembles can overfit, and tuning large ensembles is
time-consuming. To remedy these issues, tree ensembles
can be post-processed after training to more parsimonious
forms. Post-processing a tree ensemble improves mem-
ory footprint, prediction speed, and interpretability without
retraining the model (Sagi and Rokach, 2018).

We present FORESTPRUNE, a novel optimization framework
for tree ensemble post-processing. Compared to traditional
methods that post-process tree ensembles by selecting sub-
sets of decision trees, FORESTPRUNE trims the depths of
trees in an ensemble. By removing layers, decision trees
can be reduced in depth or eliminated, and as a result, the
framework can prune shallow and sparse subensembles that
perform well. We develop a specialized block coordinate
descent algorithm (Nutini et al., 2017) to obtain high-quality
solutions to problems in FORESTPRUNE by minimizing reg-
ularized loss. Our specialized solver allows computation
for instances that appear to be beyond the capabilities of
off-the-shelf optimization solvers. Finally, we show in our
experiments the advantages of trimming depth layers com-
pared to removing trees across a range of scenarios, in terms
of both improving prediction performance and interpretabil-
ity. Our implementation of FORESTPRUNE is open-source
and publicly available via GitHub 1.

1.1 Background and Related Work

We give a brief overview of tree-based methods for regres-
sion problems. Decision trees form the base learners used
in tree ensembles. A regression tree of depth d partitions
a dataset into at most 2d non-overlapping partitions (leaf
nodes). Within each leaf node, the prediction is the mean
response of the observations in that partition. Decision trees
are not necessarily balanced, but the number of nodes in a
tree generally increases exponentially with tree depth. Bag-
ging averages the predictions of many weakly correlated
decision trees to reduce variance (Breiman, 2001). The
method generally does not overfit with respect to the num-

1https://github.com/brianliu12437/ForestPruneAISTATS2023



ber of features used, the number of trees grown, or the depth
of each tree (Maclin and Opitz, 1997). Typically each tree is
grown to full depth where each leaf node contains a single
observation. Boosting sums the predictions of a sequence of
decision trees, where each tree in the sequence is fit on the
residuals of the prior ensemble. At each boosting iteration,
the predictions of the current tree are dampened (i.e, shrunk)
by the learning rate γ. This parameter controls the effect
that each tree has on the ensemble as well as the similarity
between trees adjacent in the boosting sequence.

We also provide an overview of existing work on post-
processing tree ensembles to improve compactness. Fried-
man et al. (2003) introduces the importance sampled learn-
ing ensemble (ISLE) framework. This framework involves
growing a tree ensemble using various sampling techniques
and post-processing the ensemble in the following manner.
Assign each tree t in the ensemble coefficient βt. Incor-
porate an ℓ1-penalty on the weights,

∑
t |βt|, to encourage

shrinkage and sparsity. The ensemble produced is compact
and often performs comparably to the full model. ISLE reg-
ularizes the number of trees in the ensemble as a proxy for
ensemble size, the framework is unable to trim individual
trees in the ensemble. Friedman and Popescu (2008) ex-
tends this approach by proposing ℓ1-regularization over the
node space. While this approach is interesting, the number
of nodes in a tree increases exponentially with tree depth,
so the total number of nodes in a full depth ensemble is
enormous. As a result, it is often infeasible to minimize
ℓ1-regularized loss over the node space. Pruning nodes also
destroys the tree structures in the ensemble, which hurts
model interpretability. Besides regularization, various selec-
tion heuristics can be used to decide which trees to remove
from an ensemble (Lucchese et al., 2016; Martinez-Munoz
et al., 2008). These heuristics select a compact subset of
trees with respect to some target such as performance, diver-
sity, or interpretability.

2 FORESTPRUNE FRAMEWORK

We detail FORESTPRUNE for regression ensembles and as-
sume without loss of generality that all trees in the ensemble
are grown to the same maximum depth. Our main goal is to
introduce an optimization framework to prune depth layers
from trees in a trained ensemble. Using so-called depth-
difference matrices, we show that this framework can be
expressed as a regularized least-squares criteria, where the
combinatorial penalty controls how many layers to prune.

Notation Given dataset X with m rows and p columns,
X ∈ Rm×p, and response y ∈ Rm, tree Ti maps Ti(X) :
Rm×p → Rm. Let the prediction of Ti(X) = ŷi. A tree
ensemble is a collection of n trees Ti, i ∈ [n] grown via
bagging or boosting, and the prediction of the ensemble
is given by ŷ =

∑n
i=1 γTi(X). In the context of bagging,

γ = 1
n and in the context of boosting γ is the learning rate.

Let d denote the depth of trees in the ensemble.

2.1 Depth-Difference Matrix

For tree Ti, depth-difference matrix Di ∈ Rm×d encodes
the decision path of each observation in X , with respect to
the depth layers that the observations traverse. To initialize
FORESTPRUNE compute Di for each tree in the ensemble.

Algorithm 1 presents the procedure for constructing Di.
Consider a single decision tree Ti of depth d. For each
observation xj ∈ X , find the sequence of nodes in the tree
traversed by xj , N1 � N2 � . . . � Nk. For each node in
this sequence, compute the mean of the observations found
in the node, µ1 � µ2 � . . . � µk. The last element of this
sequence µk is the prediction for observation xj , Ti(xj).
Take the rolling difference of values in this sequence of
means and store these differences in vector vj where,

vj = [µ1, µ2 − µ1, µ3 − µ2, . . . , µk − µk−1].

Pad the tail end of vj with zeros so that vj ∈ Rd. The vector
vj has the property that ⟨vj ,1⟩ = Ti(xj), i.e., the elements
of vj sum to the prediction of tree Ti for observation xj .
Repeat this procedure for j ∈ [m] and store the results vj
as the rows of Di ∈ Rm×d.

Algorithm 1: Computing Depth-Difference Matrices

Input: Tree Ti of depth d, X ∈ Rm×p, y ∈ Rm

1 Di ← {}
2 for xj ∈ X do
3 Find sequence of nodes in Ti traversed by xj , N1 � N2 � . . . � Nk .
4 Compute the mean of y partitioned by each node,

µ1 � µ2 � . . . � µk .
5 Difference the sequence of means and store in vector

vj = [µ1, µ2 − µ1, . . . , µk − µk−1].
6 Pad the tail of vj with zeros, vj ∈ Rd.
7 Append vj as a row to Di.
8 end

Output: Di ∈ Rm×d

Depth-difference matrices are efficient to compute since
the sequence of nodes each observation traverses, along
with the corresponding µ values of each node, are obtained
as a byproduct of the tree training process. Differencing
the sequence of µ values requires d operations, and since
d ≪ m, the cost of computing depth-difference matrices is
linear in the number of training observations, O(m).

Below, we introduce notation and functions for the vectors
of binary decision variables, zi ∈ {0, 1}d, i ∈ [n], that will
appear in our optimization formulation. These variables
work in conjunction with depth-difference matrices to prune
tree ensembles.

Pruning Depth Layers Given depth-difference matrix Di,
the predictions of the full tree for all observations, Ti(X) =
ŷi, can be obtained by summing over all the columns of Di,
ŷi = colsum(Di). This can be equivalently expressed as
ŷi = Di1, where 1 is a d-dimensional vector of all ones.



Consider the case where we want to prune the deepest layer
of tree Ti. The predictions of this new tree, of depth d− 1,
can be obtained by summing over all but the last column of
Di. Let zi be a vector in {0, 1}d with d− 1 ones followed
by a single zero, zi = [1, 1, . . . , 1, 0]. The predictions of the
pruned tree equal Dizi. To prune tree Ti to depth d− k, set
zi ∈ {0, 1}d as a vector of d− k ones followed by k zeros.
Figure 1 visualizes this effect on a depth 4 decision tree.
Note that setting zi = 0 removes tree Ti from the ensemble.

[1,1,1,1] [1,1,1,0] [1,1,0,0] [1,0,0,0]
AveOccup

HouseAge

Latitude

Longitude

MedInc

leaf

Figure 1: Pruning a decision tree with vector zi.

Ensemble Pruning Given tree ensemble Ti, i ∈ [n], com-
pute depth-difference matrices Di, i ∈ [n] for each tree.
The predictions of the original ensemble can be represented
by ŷ =

∑n
i=1 γDizi, where zi = 1 ∀ i ∈ [n]. To prune

the ensemble, modify the zi vectors. For example, setting
z1 = [1, 0, . . . , 0] prunes the first tree in the ensemble to
depth 1 and setting z2 = 0 removes the second tree entirely.

2.2 Ensemble Optimization Problem

Notationally, let (zi)k represent the k-th element of vector
zi. FORESTPRUNE uses the following optimization problem
to prune depth layers from an ensemble:

min
z1, . . . , zn

1

m
∥y − γ

n∑
i

Dizi∥22 +
α

K

n∑
i=1

∥Wizi∥1

(1a)

s.t. (zi)k ∈ {0, 1} ∀ i ∈ [n], k ∈ [d], (1b)
(zi)k1 ≥ (zi)k2 ∀ i ∈ [n], k1 < k2 (1c)

Wi ∈ Rd×d is a diagonal weight matrix assigned to each
tree Ti, of the form Wi = diag(wi,1, . . . , wi,d). These
weights are prespecified, and we discuss weighting schemes
in §2.3. A normalization constant K is computed from
Wi, i ∈ [n], and α is the regularization parameter.

Each decision variable (zi)k is binary (1b) and represents
whether to include the k-th layer of tree Ti in the processed
ensemble. Each tree Ti has a corresponding decision vector
zi ∈ {0, 1}d that contains d decision variables. The goal of
FORESTPRUNE is to minimize regularized loss (1a) with
respect to decision vectors zi, i ∈ [n]. Constraint (1c)
ensures that the pruned trees are contiguous since trees
should not be able to skip depth layers. For example, a
solution zi = [1, 0, 1, . . . , 1, 0] is infeasible since a tree

cannot skip depth layer 2 and proceed to depth layer 3.
Trees can only be pruned from the bottom up.

Consider the regularized loss function in objective (1a). The
first term of the function is least-squares loss and the sec-
ond term is the regularization penalty. The parameter α
controls regularization; larger values of α encourage shal-
lower trees in the processed ensemble. Each entry of Wi,
wi,k for k ∈ [d], is nonnegative and represents the weight
associated with including depth layer k of tree Ti into the
processed ensemble. Since the entries of Wi and zi are both
nonnegative, the term ∥Wizi∥1 is equivalent to summing
the elements of vector Wizi. Finally, K is a normalization
constant set such that K =

∑n
i=1

∑d
k=1 wi,k—this ensures

that α remains within a reasonable range which facilitates
tuning the regularization parameter.

2.3 Weighting Schemes

We specify weight matrices Wi, i ∈ [n] to produce post-
processed ensembles with different parsimony properties.
While various choices of W are possible, we discuss a
couple of choices that we explored in detail. In depth-
weighting, we assign wi,k = 1 if the depth of decision tree
Ti is less than or equal to k, otherwise we assign wi,k = 0.
We set normalization constant K = nd. This directly penal-
izes the total number of layers in the ensemble and produces
ensembles with fewer trees. In node-weighting, we assign
wi,k equal to the number of nodes in layer k of tree i. The
normalization constant K is equal to the total number of
nodes in the ensemble. This directly penalizes ensemble size
and produces the most compact processed ensemble, with
the shallowest trees. Figure 2 compares the effect of depth
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vs. node-weighted FORESTPRUNE. Node-weighting pro-
duces shallower trees compared to depth-weighting. In addi-
tion, the total size of the node-weighted pruned ensemble is
approximately three times smaller than the depth-weighted
one, 7247 vs. 21588 nodes. However, the ensemble pro-
cessed by node-weighted FORESTPRUNE contains more
trees than the depth-weighted one, 95 vs. 62 trees. The
test errors of the post-processed ensembles are comparable
under both weighting schemes. Empirically, we observe
that node-weighting encourages shallower trees and more
compact ensembles, while depth-weighting produces an



ensemble with fewer trees.

2.4 Polishing Schemes

Solving Problem (1) yields solution vectors z∗i , i ∈ [n].
These vectors, combined with depth-difference matrices
Di, i ∈ [n] represent the pruned ensemble, with trees
T ∗i (x) = Diz

∗
i , i ∈ [n]. We can adjust the weights of

trees in this pruned ensemble to better fit the model to y.
This especially helps for boosting, where trees are grown
sequentially, since pruning a tree breaks the boosting se-
quence. We can also select a small subset pruned trees for
further analysis by setting the weights of some trees to 0.
This may be especially useful for bagging, where the pruned
ensemble typically consists of many shallow trees. Reduc-
ing the number of trees improves the interpretability of the
final model.

Motivated by the above discussion, our polishing scheme
reweights the post-processed ensemble via the following
optimization criterion:

min
β1 . . . βn

1

m
∥y − γ

n∑
i=1

βiDiz
∗
i ∥22 + α2∥β∥ρρ (2)

where coefficients βi, i ∈ [n] are the weights assigned to
each tree, ∥β∥ρρ is the regularization penalty, and α2 is the
regularization hyperparameter. We set ρ = 2 for ridge
polishing to reweight the trees. The ridge penalty ensures
a unique estimator in β when n > m and offers stability
when the bases elements Diz

∗
i are correlated; we observe

empirically that small values of α2 ≈ 10−2 work well. We
set ρ = 0 for best subset polishing and vary α2 to select a
small subset of trees for further analysis. To find good solu-
tions for β, we use iterative hard thresholding (Blumensath
and Davies, 2009) or mixed-integer programming solvers
(Bertsimas et al., 2016). In §3.4, we discuss a variant of
FORESTPRUNE combines polishing with pruning by jointly
optimizing β and z.

2.5 Putting Together the Pieces

Algorithm 2: FORESTPRUNE Framework

Input: Ti, i ∈ [n], X ∈ Rm×p, y ∈ Rm, α
1 Compute Di, i ∈ [n].
2 Choose weighting scheme Wi, i ∈ [n].
3 Solve Problem (1) for z∗

i , i ∈ [n].
4 if polish = True then
5 Solve Problem (2) for β∗

i , i ∈ [n].
6 else
7 β∗ = 1.
8 end

Output: z∗, β∗

Algorithm 2 presents the overall framework of FOREST-
PRUNE. We recommend using both node-weighting and the
polishing heuristic to compactify ensembles.

Ensemble optimization Problem (1) can be expressed
as a mixed-integer optimization problem (Wolsey and

Nemhauser, 1999), which can be computationally challeng-
ing for large problems (Bertsimas et al., 2016; Bertsimas
and Van Parys, 2020; Hazimeh et al., 2021). Here we pro-
pose a novel algorithm based on block coordinate descent
to obtain high quality solutions for Problem (1), that appear
to work well for the problem-scales we study.

3 OPTIMIZATION ALGORITHM

Note that Problem (1) can be written as:

min
z1 . . . zn

L(z1 . . . zn) +

n∑
i=1

gi(zi) (3a)

s.t. zi ∈ Ci ∀ i ∈ [n] (3b)

where L(z1 . . . zn) = (1/m)∥y−γ
∑n

i Dizi∥22 is a smooth
function and

∑n
i=1 gi(zi) = (α/K)

∑n
i=1 ∥Wizi∥1 is sep-

arable across blocks zi’s. Constraints (1b) and (1c) can be
represented by constraint (3b), where Ci is the set of vec-
tors in {0, 1}d that satisfy condition (zi)k1 ≥ (zi)k2 ∀ zi ∈
Ci, k1 < k2.

The non-smooth part of the objective in (3a) and constraint
(3b) are both separable across zi’s. Motivated by the suc-
cess of cyclic block coordinate descent methods (CBCD)
for large-scale sparse regression problems (Wright, 2015;
Hazimeh and Mazumder, 2020b), we apply CBCD methods
to Problem (3). CBCD yields a sequence of decreasing ob-
jective values, and since objective (3a) is nonnegative the
sequence will converge.

3.1 Cyclic Block Coordinate Descent (CBCD)

Consider a partition of the decision variables in Problem (3)
into the blocks zi, i ∈ [n] with zi ∈ Ci. CBCD works as
follows. Initialize the algorithm by setting all blocks equal
to the zero vector, zi = 0 ∀ i ∈ [n], and set index ω = 1.
Start with the first block of decision variables zω = z1 and
minimize the objective with respect to zω while holding the
other blocks {z2 . . . zn} constant. Repeat this procedure,
cycling through the blocks by incrementing ω, until the
objective value converges.

Block Update Given fixed index ω, let set δ = {1 . . . n}\ω.
To update block zω , we solve the following problem:

min
zω

1

m
∥ỹδ − γDωzω∥22 +

α

K

d∑
k=1

(Wωzω)k (4a)

s.t. (zω)k ∈ {0, 1} ∀ k ∈ [d], (4b)
(zω)k1

≥ (zω)k2
∀ k1 < k2, (4c)

where ỹδ = y − γ
∑

i∈δ Dizi. This is equivalent to solving
Problem (1) or (3) with respect to zω while holding all the
other blocks constant. As we show below Problem (4),
despite its non-convexity, can be solved to optimality.



In Problem (4), zω is constrained to be a contiguous binary
vector where the zeros occur after the ones. As a result, zω
can only attain d+ 1 unique possible values. For example
if d = 3, the candidates for zω are [1, 1, 1], [1, 1, 0], [1, 0, 0],
and [0, 0, 0]. By enumerating through all possible candidates
for zω , Problem (4) can be solved very quickly.

Each block update requires a single pass through d + 1
candidates, where the objective is evaluated for each candi-
date. Evaluating the objective requires approximately m · d
flops, so each block update requires approximately m · d2
flops. Typically the maximal depth d is below 20, so when
m >> d the per-iteration complexity of CBCD is linear in
the number of training samples, O(m).

Local Search Heuristic Due to the non-convexity of Prob-
lem (3), CBCD can get stuck in local suboptimal solutions.
To improve solution quality, we employ a local combina-
torial search procedure; a similar procedure was used in
L0Learn in the context of sparse high-dimensional regres-
sion (Hazimeh et al., 2021).

After CBCD converges to a local solution ẑi, i ∈ [n], par-
tition the solution into two sets. Let S denote the set of
indices for which ẑi ̸= 0 and let Sc denote its complement.
Select a random index ξ ∈ S and set zξ = 0. Find the
index i∗ ∈ Sc for which Diẑi∗ is the most correlated with
the response y and set zi∗ = 1. Run CBCD with this new
candidate solution till convergence and continue interlacing
CBCD with local search steps, until local search no longer
improves the objective value.

We observe that the local search heuristic discussed above is
effective in guiding CBCD methods from suboptimal local
solutions. A drawback of this procedure is that it can be
expensive to find the best swap-coordinate i∗ ∈ Sc that
would result in the largest improvement in the current objec-
tive. In fact, this would require computing the correlation
coefficient between each block in Sc and y. We present
a heuristic that we found to work quite well for our prob-
lem in the context of boosting: we always select the block
in Sc with the smallest index, let i∗ = min{i | ẑi ∈ Sc}.
In boosting ensembles, trees grown early in the boosting
sequence are generally more correlated with the response.
We can also extend this rule to bagging ensembles by first
sorting the trees in the ensemble by training performance.
The smallest index rule ensures that the local search heuris-
tic always swaps in the earliest-grown tree, for negligible
computational cost.

The complete CBCD algorithm with local search is pre-
sented in Algorithm 3.

3.2 Regularization Paths

We use warm start continuation with Algorithm 3 to effi-
ciently compute the entire regularization path of zi’s, across
tuning parameter α. Start with a value of α sufficiently

Algorithm 3: FORESTPRUNE CBCD

Input: Di, Wi for i ∈ [n], y ∈ Rm, α
1 Initialize zi = 0 ∀ i ∈ [n], ω = 1
2 repeat
3 repeat
4 ω = ω mod n
5 Solve Problem (4) to update zω .
6 ω = ω + 1

7 until converged
8 Local search.
9 until objective no longer improves

Output: zi, i ∈ [n]

large such that z∗i = 0, ∀ i ∈ [n] and decrement α using
the previous solution as a warm start until the full model is
reached (Friedman et al., 2010). This provides a sequence
of solutions with varying ensemble sizes that a practitioner
can use to quickly select a suitable model.
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Figure 3: Warm start continuation with local search reduces
the iterations (# of passes over all features) required to com-
pute the regularization path while avoiding local minima.

When warm start continuation is used without local search,
CBCD tends to get stuck at suboptimal local solutions. This
can be seen in the middle plots of Figure 3. In this example,
CBCD with warm start continuation is used to compute the
entire regularization path of FORESTPRUNE. The scatter
plot shows that the regularization path is nearly piecewise,
and the histogram shows that CBCD often terminates imme-
diately after initialization. Combining warm start continua-
tion with local search resolves this issue, as seen in the right-
most plots of Figure 3. The regularization path for CBCD
with warm starts and local search is very similar to the
regularization path when CBCD is always zero-initialized
(leftmost plots), however, our warm start procedure requires
substantially fewer iterations, i.e., the # of passes over all
features. As a result, this procedure makes α very efficient
to tune

3.3 Computation Time

We now discuss the time required to compute good solutions
to Problem (1) using our FORESTPRUNE CBCD algorithm.
The computation time of CBCD depends on the number of



ForestPrune CBCD Single Solve Linear Relaxation (ECOS) Single Solve
Rows /
Trees 100 500 1000 Rows /

Trees 100 500 1000

1145 0.1 ± 0.01 0.8 ± 0.10 1.5 ± 0.16 1145 9.7 ± 0.20 829.8 ± 26.72 > 1800
15437 0.2 ± 0.03 0.9 ± 0.10 2.2 ± 0.25 15437 184.3 ± 0.60 > 1800 > 1800
50164 3.0 ± 0.02 69.7 ± 2.60 131.0 ± 20.03 50164 > 1800 > 1800 > 1800

ForestPrune CBCD Regularization Path Linear Relaxation (MOSEK) Single Solve
Rows /
Trees 100 500 1000 Rows /

Trees 100 500 1000

1145 0.2 ± 0.01 1.5 ±0.01 4.3 ±0.10 1145 7.0 ± 0.28 21.4 ± 0.27 59.8 ± 1.06
15437 2.3 ±0.08 11.6 ±0.15 24.2 ±0.45 15437 140.5 ± 2.04 874.4 ± 59.93 > 1800
50164 10.2 ±0.10 106.3 ±1.20 206.5 ±1.23 50164 > 1800 > 1800 > 1800

Table 1: Timing results in seconds. The red cells indicate
that the method did not converge within 30 minutes.

observations in the data and the number of trees (blocks)
in the ensemble. We fit tree ensembles with 100, 500, and
1000 trees of depth 6 on datasets with 1145, 15437, and
50164 rows. We set regularization parameter α = 1 and use
FORESTPRUNE CBCD to compute solutions to Problem (1).
Also, we use CBCD with warm start continuation and local
search to compute the entire regularization path.

We compare CBCD against this benchmark. We relax in-
tegrality constraint (1b) in Problem (1); the relaxed prob-
lem is a convex second order conic program. We use the
open-source solver ECOS (Domahidi et al., 2013) and the
proprietary industrial-grade solver MOSEK (Andersen and
Andersen, 2000) to compute solutions to this relaxed prob-
lem. Table 1 shows the results of this experiment conducted
on a personal laptop with a 2.80 GHz Intel Core i7 processor.

FORESTPRUNE CBCD computes solutions to Problem (1)
orders of magnitude faster than the time it takes ECOS or
MOSEK to solve the relaxed problem. Problem (1) is dif-
ficult to solve for larger instances: For an ensemble of 100
trees of depth 6 fit on a dataset with 50164 rows, the corre-
sponding optimization problem has 600 decision variables
and even after relaxing the integrality constraints, it takes
an industrial-grade solver over 30 minutes to reach a solu-
tion. In contrast, our specialized CBCD algorithm can find
a good solution in seconds. FORESTPRUNE CBCD can also
efficiently compute the entire regularization path for α, for
example, for Problem (1) with 1145 rows and 100 trees, it
takes CBCD 0.2 seconds to compute the entire regulariza-
tion path. MOSEK takes over 11 minutes to compute the
same regularization path for the relaxed problem.

3.4 Joint Optimization for Pruning and Polishing

As mentioned in §2.4, we present a variant of FOREST-
PRUNE that combines polishing with pruning by jointly
optimizing z and β. The corresponding optimization prob-
lem considers the following:

min
z, β

1

m
∥y − γ

n∑
i

βiDizi∥22

+
α

K

n∑
i=1

∥Wizi∥1 + α2∥β∥ρρ,
(5)

and inherits the constraints from Problem (1). Variable
β separates across blocks so Problem (5) is again block
separable.

We can apply our CBCD algorithm to this problem with a
slight modification to how we conduct block updates. Each
block update now considers an optimization problem of the
form:

min
zω, βω

1

m
∥ỹδ − (γDωzω)βω∥22

+
α

K

d∑
k=1

(Wωzω)k + α2∥βω∥ρρ,
(6)

where ỹδ = y − γ
∑

i∈δ βiDizi. This new block update
problem also inherits the constraints from Problem (4), and,
as discussed in §3.1, vector zw has d + 1 unique possible
values due to these constraints. Therefore, vector qw =
γDωzω has d+ 1 unique possible values as well. For each
unique value of qω , we solve this problem for scalar βw:

min
zω, βω

1

m
∥ỹδ − βωqω∥22 + α2∥βω∥ρρ. (7)

For ridge polishing (ρ = 2) this univariate ridge problem
has a closed-form solution for βω . For best subset polishing
(ρ = 0) good solutions for βω can be obtained through hard
thresholding (Hazimeh and Mazumder, 2020a). We return
the zω, βω pair that yields the lowest objective value for
Problem (6) to complete the block update. The other steps
of our CBCD algorithm remain the same.

In practice, we observe that the ensembles post-processed
by jointly optimizing β and z in FORESTPRUNE can out-
perform the ensembles extracted by pruning followed by
polishing. However, this improved performance comes at
a computational cost, since our CBCD algorithm requires
more iterations to converge over both sets of variables. We
present this joint optimization method as an additional flexi-
bility in our FORESTPRUNE framework. Users can choose
between joint optimization and pruning then polishing de-
pending on their problem size and desired application.

4 EXPERIMENTS

We evaluate FORESTPRUNE against these competing en-
semble post-processing algorithms.

Baseline A simple but useful baseline is to conduct fewer
bagging/boosting iterations. For bagging, since trees are
grown independently, we start with the full model and repeat-
edly remove randomly selected trees until a sparse model
is obtained. For boosting, we start with the full boosting
sequence and trim trees from the tail of the sequence.

Cost-Complexity Pruning Cost-complexity pruning (CCP)
prunes individual decision trees by recursively removing



weak branches (Breiman, 2017). Each decision tree is
pruned independently of the other trees in the ensemble.
To post-process the entire tree ensemble, we set the cost-
complexity sparsity parameter to be the same for all trees.
By varying this sparsity parameter, we control the trade-off
between the degree of individual tree pruning and ensemble
performance.

LASSO Given a tree ensemble Ti, i ∈ [n], LASSO ensem-
ble pruning solves the following problem:

min
β1 . . . βn

1

m
∥y − γ

n∑
i

βiTi(X)∥22 + λ

n∑
i=1

|βi|, (8)

where tree i has prediction Ti(X) and coefficient βi. The
ℓ1-penalty over the coefficients encourages sparsity.

Best Subset Tree Selection Best subset tree selection
(BSTS) uses mixed integer quadratic programming (MIQP)
to select the optimal subset of trees from an ensemble, sub-
ject to a size constraint. Let ni be the number of nodes used
by tree Ti and let ν be the maximum number of nodes to
include in the pruned ensemble. The optimization problem
can be expressed as follows,

min
β1 . . . βn

1

m
∥y − γ

n∑
i

βiTi(X)∥22 (9a)

s.t. (βi, 1− ζi) SOS-1 ∀ i ∈ [n], (9b)
n∑

i=1

niζi ≤ ν, (9c)

ζi ∈ {0, 1} ∀ i ∈ [n], (9d)

where constraint (9b) is a Type 1 Special Ordered Set (SOS-
1) constraint (Bertsimas et al., 2016) that ensures that ζi = 1
if tree Ti is assigned a nonzero weight. We implement BSTS
in Gurobi (Gurobi Optimization, LLC, 2022) and warm start
the solver using LASSO solutions. For smaller values of ν,
we are able to solve the MIQP to optimality in minutes.

Discussion on the Choice of Competing Methods There
is a large corpus of work on selecting good subsets of trees
from tree ensembles. Notable examples include a forward
step-wise selection algorithm proposed by Caruana et al.
(2004), a ranking algorithm prescribed by Rokach et al.
(2006), and an evolutionary optimization algorithm pro-
posed by Qian et al. (2015). Most of these algorithms are
heuristics to approximate the NP-hard problem of selecting
the best subset of trees from an ensemble.

To simplify comparisons between FORESTPRUNE and this
family of competing algorithms we formulate BSTS, a new
stronger benchmark that selects the optimal subset of trees
using MIQP. Recent advancements in MIQP techniques
(Bertsimas et al., 2016; Bertsimas and Van Parys, 2020) have
made this approach tractable for problems of the sizes that
we are interested in. As such, we omit comparisons between

FORESTPRUNE and various heuristics in favor of evaluating
our algorithm directly against our stronger benchmark. We
include LASSO pruning as a competing algorithm since
both LASSO and FORESTPRUNE use warm start continua-
tion to efficiently compute regularization paths (Friedman
et al., 2007). We also compare FORESTPRUNE against cost-
complexity pruning for pruning bagging ensembles, since
both algorithms can prune deep trees trees individually.

4.1 Compact Bagging Ensembles

Procedure Bagging ensembles are generally robust to over-
fitting so pruning ensembles typically will not improve per-
formance. To evaluate how well FORESTPRUNE performs
at compactifying bagging ensembles, we fix a threshold for
acceptable performance loss and find the smallest pruned
ensemble within this threshold. Repeat this procedure for 25
regression datasets in the OpenML repository (Vanschoren
et al., 2013) using 5-fold cross-validation; the full list of
datasets can be found in the supplement. First, fit a bagging
ensemble of 500 trees where each tree is grown to depth
d = 20, and a subsample of

√
p features is considered at

each split. Next, fix a threshold for acceptable performance
loss, ϕ ∈ {0.01, 0.025, 0.05}, and compute the entire regu-
larization path for FORESTPRUNE. We select α such that
the validation loss of the pruned ensemble is within ϕ of the
loss of the full model. Compare the reduction in ensemble
size and the % difference in test error between the pruned
ensemble and the original. Finally, use the 4 competing
methods described above to find the best model no larger
than the ensemble pruned by FORESTPRUNE, and compare
the test performances of all methods.
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Figure 4: FORESTPRUNE on bagging ensembles. FOREST-
PRUNE can reduce ensemble size 20x for a ~5% increase
in error.

Results Figure 4 presents the results of the compact bagging
experiment. The distributions are obtained across all folds
and datasets in the experiment. The top left plot shows



the % increase in test error between the model pruned by
FORESTPRUNE and the full model; as the threshold for
acceptable performance loss ϕ increases, the % increase in
test error rises correspondingly. The top right plot in Figure
4 presents the compactness ratio, the ratio of the number of
nodes in the pruned model over the number of nodes in the
full model. The compactness ratio decreases as ϕ increases;
if the threshold for acceptable performance loss is increased,
the model can be made much smaller. The bottom left plot in
Figure 4 presents the distribution of tree depths in the pruned
ensemble. Originally all trees in the bagging ensemble are
grown to depth d = 20. Node-weighted FORESTPRUNE
produces much shallower trees, across all levels of ϕ the
average tree depth in the pruned ensemble is around 5.

Across all levels of ϕ, FORESTPRUNE produces substan-
tially smaller ensembles for modest increases in test error.
For example, when ϕ = 0.01, the ensembles post-processed
by FORESTPRUNE perform nearly the same as the full en-
sembles, with only a 1-5% increase in test error, and are
reduced 10-20 fold in size. The average depth of trees in
the pruned ensemble is also reduced by a factor of 4. By
varying the threshold ϕ, FORESTPRUNE can be tuned to
balance performance and compactness.

FORESTPRUNE also outperforms the competing algorithms.
The bottom right plot in Figure 4 shows the % increase in
test error between the model produced by FORESTPRUNE
and the models produced by the competing algorithms. The
competing methods perform worse than FORESTPRUNE if
the % increase in test error is positive. Across all values of
ϕ, the distributions of the % increase in test error between
the competing algorithms and FORESTPRUNE are almost
entirely positive, with medians of {220%, 250%, 250%}
for the baseline, {130%, 190%, 220%} for LASSO, {5%,
40%, 80%} for BSTS, and {78%, 78%, 110%} for CCP.

The baseline, LASSO, and BSTS competing methods are
only capable of excluding or selecting trees, and the size
of a single deep tree may be larger than the shallow en-
semble produced by FORESTPRUNE. As a result, these
post-processing methods are unable to produce a model sim-
ilar in size to FORESTPRUNE with comparable test perfor-
mance. CCP, on the other hand, prunes individual trees, but
prunes each tree independently from the other trees in the
ensemble. FORESTPRUNE outperforms CCP since FOREST-
PRUNE prunes trees with respect to the overall performance
of the ensemble.

4.2 Compact Boosting Ensembles

Procedure To evaluate how well FORESTPRUNE compact-
ifies and regularizes boosting ensembles, we evaluate the
performance of the algorithm across the regularization path
for α. On the same datasets and folds described in §4.1, we
fit stochastic gradient boosting ensembles of 250 depth 5
trees with γ = 0.1, subsampling 25% of the training data

for each tree. We post-process the ensembles and compare
errors along the regularization paths of FORESTPRUNE and
the LASSO and baseline competing methods.

Computing regularization paths for BSTS is infeasible since
the procedure requires repeatedly solving MIQP problems
of increasing difficulty. To evaluate BSTS against FOREST-
PRUNE, we fix an ensemble size budget and find the model
selected by BSTS constrained by this budget. We use the
regularization paths computed above to find the best models
selected by FORESTPRUNE, LASSO, and baseline within
this budget and compare the test performances of all models
(size budget boosting experiment).
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Figure 5: FORESTPRUNE on boosting ensembles.

Results The scatter plots in the top row of Figure 5 show
visualizations of the experiment above. The horizontal axes
show post-processed ensemble size and the vertical axes
show test error; the spread in each scatter plot is due to
the 5-fold CV. We observe that the best models pruned by
each of the 3 methods have similar test errors, however,
FORESTPRUNE produces more compact models compared
to baseline and LASSO post-processing. This result is con-
sistent across all datasets in the experiment. The bottom left
plot in Figure 5 compares the distribution of the sizes of the
best models pruned. On average the best model pruned by
FORESTPRUNE is around 1000 nodes smaller than the best
models pruned by the competing methods.

The bottom right plot in Figure 5 shows the results of our
size budget boosting experiment. The vertical axis shows
the % increase in test error between the competing meth-
ods and FORESTPRUNE, and the horizontal axis shows the
maximum number of nodes allowed in the pruned ensemble.
We observe that for pruning sparse ensembles, with a size
budget of 50 nodes, FORESTPRUNE outperforms the com-
peting algorithms. The sparse ensembles produced by the
strongest competing method, BSTS, perform around 43%
worse than the ensembles pruned by FORESTPRUNE. Given
such a tight node budget, the competing algorithms can only



select a few trees. FORESTPRUNE is more flexible and can
trim and then select multiple shallow trees.

When the budget is increased to 1000 nodes, FORESTPRUNE
still significantly outperforms LASSO and baseline post-
processing but performs similarly to BSTS. Finally, for a
budget of 5000 nodes, LASSO, BSTS, and FORESTPRUNE
all perform comparably. This is expected since nearly the
entire ensemble can be selected for this budget. We conclude
that FORESTPRUNE is the best performing algorithm for
pruning sparse models from boosted tree ensembles, and
matches our strong BSTS benchmark for selecting larger
subensembles.

Code for our experiments, along with a Python implementa-
tion of FORESTPRUNE can be found in our project GitHub
repository.

4.3 Interpretability Case Study

(a) A sample of full depth trees in the original ensemble.
Children-in-Pov
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NH-White-alone
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Pct-ENG-VW-SPAN

Pct-Female-No-HB

Pct-HHD-w-Computer

Pct-NH-Blk-alone
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Pct-NoHealthIns1964

Pct-Not-HS-Grad

Pct-Pop-18-24

Pct-Renter-Occp-HU

leaf

(b) FORESTPRUNE trims and selects 10 shallow trees.

Figure 6: FORESTPRUNE improves the interpretability of a
random forest model used to predict census response rates.

We conclude with a case study to showcase how FOREST-
PRUNE prunes tree ensembles into interpretable models.
Building off of the work by Ibrahim et al. (2021) we use the
Census Planning Database (50,000 rows and 295 features)
to predict decennial census response rates at the tract level.
A modeling competition by the Census Bureau found that
tree ensembles work well for this problem, but are unin-
terpretable and fail to produce actionable insights towards
improving response rates (Erdman and Bates, 2017).

We start with a random forest of 500 depth 6 trees; the test
RMSE of the model is 7.54% and all 295 features are used.
A sample of 6 out of the 500 trees is presented in Figure 6a.
This model is difficult to interpret since the depth of each

tree makes it impossible to track the relationships between
the features. We use FORESTPRUNE with α = 15 to prune
this random forest and use best subset polishing (§2.4) to
select 10 trees for further analysis. Figure 6b presents this
sparse model which uses just 14 out of the 295 features.
The pruned ensemble achieves a test RMSE of 8.47%; for a
small increase in test error, FORESTPRUNE extracts a much
more interpretable model. The model post-processed by
FORESTPRUNE performs much better than a single decision
tree, which achieves a test RMSE of 10.6%.

We can examine the structure of each tree in Figure 6b to
understand the relationships between the features and the
response. The single split, main effect trees with the fea-
tures Pct-College, Pct-Pop-18-24, Pct-Renter-Occup-HU,
and Owner-Occup-HU, reveal that census tracts with many
non-permanent residents (renters and college students) have
lower response rates. The depth 2 trees show pairwise
feature interactions between ethnicity/race, education, and
poverty levels and we can examine these trees to determine
underserved communities have lower census response rates
as well. FORESTPRUNE extracts a compact transparent
model from the full tree ensemble with nominal perfor-
mance loss.

5 CONCLUSION

In this work, we develop FORESTPRUNE, an optimization
framework to prune depth layers from trees in an ensemble.
We propose a CBCD method with local search to compute
high-quality solutions to the optimization problems formu-
lated under this framework. Our specialized optimization
algorithm is computationally efficient; the per-iteration cost
of our method is linear in the number of training samples
and our main algorithm converges in a few seconds for
medium-sized problems. The framework only contains a
single hyperparameter to tune, the regularization parameter
α, and we can leverage warm start continuation to rapidly
compute the entire regularization path. Our results show that
FORESTPRUNE can drastically reduce the size of bagging
and boosting ensembles with nominal performance loss com-
pared to competing algorithms. Finally, FORESTPRUNE can
produce interpretable models by pruning ensembles shallow
enough for practitioners to examine by hand, increasing the
transparency of tree-based models.
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FORESTPRUNE Supplementary Materials

A OpenML Dataset Descriptions

Dataset Name Rows Features
humandevel 130 2
triazines 186 61
tecator 240 125
autoMpg 398 8
no2 500 8
boston 506 14
stock 950 10
socmob 1156 6
Moneyball 1232 15
balloon 2001 2
space ga 3107 7
abalone 4177 9
Mercedes Benz Greener Manufacturing 4209 377
mtp 4450 203
wine quality 6497 12
wind 6574 15
kin8nm 8192 9
cpu small 8192 13
puma32H 8192 33
bank32nh 8192 33
pol 15000 49
elevators 16599 19
houses 20640 9
house 16H 22784 17
2dplanes 40768 11

Table 1: OpenML Datasets used in the experiments along with metadata.

B Code Implementation and Detailed Results

An implementation of FORESTPRUNE in Python, code for our experiments, and detailed experimental results can be found
in this repository: https://github.com/brianliu12437/ForestPruneAISTATS2023.

https://github.com/brianliu12437/ForestPruneAISTATS2023
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