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Abstract

Although deep neural networks achieve tremen-
dous success on various classification tasks, the
generalization ability drops sheer when training
datasets exhibit long-tailed distributions. One of
the reasons is that the learned representations (i.e.
features) from the imbalanced datasets are less ef-
fective than those from balanced datasets. Specif-
ically, the learned representation under class-
balanced distribution will present the Neural Col-
lapse (NC) phenomena. NC indicates the fea-
tures from the same category are close to each
other and from different categories are maximally
distant, showing an optimal linear separable state
of classification. However, the pattern differs on
imbalanced datasets and is partially responsible
for the reduced performance of the model. In this
work, we propose two explicit feature regulariza-
tion terms to learn high-quality representation for
class-imbalanced data. With the proposed reg-
ularization, NC phenomena will appear under
the class-imbalanced distribution, and the gen-
eralization ability can be significantly improved.
Our method is easily implemented, highly effec-
tive, and can be plugged into most existing meth-
ods. The extensive experimental results on widely-
used benchmarks show the effectiveness of our
method.

1 INTRODUCTION

Modern deep neural networks have shown the ability to
outperform humans on many tasks, such as computer vi-
sion, natural language processing, playing games, etc., and
keep refreshing state-of-the-art performance for complex
classification tasks. However, when the training dataset is
class-imbalanced, such as a long-tailed distribution, where
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Figure 1: Illustration of geometry configuration of the zero-
centered class means and classifier weights under (a) bal-
anced dataset, (b) imbalanced dataset, and (c) imbalanced
dataset with our method. The arrows represent classifier
weights and the stars are the class centers. The size of the
circle around the star reflects the variance of the feature
from the same class. In (b) and (c), red and blue represent
the majority and minority classes, respectively. Note that
under imbalanced label distribution, both the centered class
means and classifier weights form an asymmetric structure
and are no longer parallel.

a few majority classes occupy most of the training samples
while a large number of minority classes own very limited
samples, the performance of the model drops off a cliff
(Van Horn & Perona, 2017; Buda et al., 2018). These imbal-
anced distributions are ubiquitous in real-world applications,
e.g., fault diagnosis, face recognition, autonomous driving,
etc. Therefore, how to improve the discriminative ability
of the model trained on the imbalanced dataset has always
been a topic of considerable concern.

Some recent studies focus on learning more effective repre-
sentation to improve the long-tailed recognition ability. Su-
pervised contrastive loss (Khosla et al., 2020) is utilized to
learn compact within-class and maximally distant between-
class representation by introducing uniformly distributed
class centers, which leads to improvement in long-tailed per-
formance (Li et al., 2022; Cui et al., 2021; Zhu et al., 2022).
These characteristics of the feature representation are consis-
tent with those learned from balanced datasets (Graf et al.,
2021), where the classification models can spontaneously
learn tight and discriminative features. However, contrastive
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learning is more computationally expensive and requires
more iterations to converge than the standard Cross-Entropy
(CE) loss.

Meanwhile, the learning behavior of deep classification
models in a balanced setting has been investigated both
empirically and theoretically (Papyan et al., 2020; Galanti
et al., 2021; Han et al., 2022). The Neural Collapse (NC)
phenomenon was uncovered by Papyan et al. (2020) when
investigating the last-layer embedding, i.e. the feature repre-
sentation, and the corresponding classifier weights in deep
classification models during training. NC shows that the
learned features (or embedded vectors) of the same class will
collapse to their class centers. Meanwhile, these class cen-
ters, after globally centered, as well as the classifier weights,
will form a simplex equiangular tight frame (ETF) during
the terminal phase of training (TPT), i.e. when the model
achieves zero training error. The ETF structure maximizes
the between-class variability so as the Fisher discriminant
ratio (Fisher, 1936), resulting in an optimal linear separable
state for classification. Subsequent studies have found more
characteristics of this phenomenon, including the global op-
timal property (Zhu et al., 2021) and generalization ability
(Galanti et al., 2021).

However, on imbalanced datasets, the deep neural networks
will exhibit different geometric structures, and some NC
phenomena will no longer occur (Fang et al., 2021; Thram-
poulidis et al., 2022). The last-layer features of the same
class still converge to their class means, but the class means,
as well as the classifier weights, are not in the form of ETFs
any more. Specifically, compared to majority classes, the
learned features of minority classes will have a larger norm,
and correspondingly the norm of classifier weights will be
smaller (Kang et al., 2019; Fang et al., 2021). Furthermore,
as the imbalance level increases, the phenomenon of Minor-
ity Collapse may arise, in which both the learned represen-
tations and the classifier weights on minority classes will
become indistinguishable (Fang et al., 2021). The absence
of some NC property partially explains the performance
gap between the balanced and imbalanced datasets.

In this paper, we first elaborate that the appearance of NC
can help to minimize the generalization error in the imbal-
anced problem. According to this property, we propose
two simple yet effective regularization terms to explicitly
induce all the NC phenomena in neural networks trained
on imbalanced datasets. The regularization terms can be
added to CE loss directly. Compared with supervised con-
trastive learning, these terms have lower computational cost.
Our proposed method not only helps the NC to occur faster
for models trained on the balanced datasets, but also drives
the NC phenomenon to occur on datasets with imbalanced
categories. The resulting model can also obtain better gen-
eralization ability and robustness without over-training as
in Papyan et al. (2020). Furthermore, our proposed method
is orthogonal to most existing methods dealing with long-

tailed problems. It thus can be easily plugged into the ob-
jective function to obtain further improvements.

In summary, our contributions can be listed below:

• We observe that when training data is imbalanced, the
class centers of minority classes move closer to those
of the majority classes, making their instances difficult
to distinguish.

• We demonstrate that, although some NC phenomena
do not naturally exist in an imbalanced case, we can
achieve lower generalization error when all NC propri-
eties hold. Thus we propose two simple yet effective
regularization terms to manually induce the NC during
imbalanced training.

• We experimentally show that our method can signifi-
cantly improve the performance in various long-tailed
tasks and boost most existing methods.

2 PROBLEM SETUP

2.1 Preliminaries

Let fϕ ◦gθ(·) denote a neural network classifier, where gθ(·)
is a feature extractor and fϕ(·) is a linear classifier. We
define H = [h1, · · · ,hn]

T ∈ Rn×P to be the output of
gθ(·). Here P is the dimension of the latent feature, and n is
the training sample size. The weights of fϕ are denoted by
W = [w1, · · · ,wK ] ∈ RP×K , and the corresponding bias
vector is b = [b1, ..., bK ], where K is the number of classes.
hi ∈ RP and yi ∈ {k}Kk=1 denote the feature and label of
the i-th sample. The label matrix is denoted by Y ∈ Rn×K .
In the training data, we have n =

∑K
k=1 nk, where nk is

the sample size of class k. We use || · ||F and || · || to denote
the Frobenius norm of a matrix and the l2-norm of a vector.
Definition 1 (Simplex ETF). A simplex ETF is a collection
of equal-length and maximally-equiangular vectors. We call
a P ×K matrix M an ETF if it satisfies

MTM = α

(
K

K − 1
I − 1

K − 1
1K1

T
K

)
(1)

for some non-zero scalar α. Where I is the identity matrix,
and 1K is an all-ones vector.

Let µk = 1
nk

∑
yi=k hi be the center of class k and µC =

1
K

∑K
k=1 µk be the arithmetic mean of the class centers.

In the balanced case, where we have nk = n
K for each

class, NC will appear during TPT. The phenomena can be
formally described by four properties:

• (NC1) Variability collapse. Intra-class variances col-
lapse to zero during the terminal phase of training, i.e.,
for any sample i from class k, we have

||hi − µk|| = 0 (2)
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• (NC2) Convergence to simplex ETF. The class cen-
ters (after zero-center normalization) converge to the
vertices of an ETF, i.e.

cos(µk − µC ,µk′ − µC) = − 1

K − 1
, (3)

||µk − µC || = ||µk′ − µC ||. (4)

• (NC3) Convergence to self-duality. The weights of
linear classifiers are parallel to the corresponded zero-
centered class centers, i.e.

wk = α(µk − µC). (5)

• (NC4) Simple decision rule. Given a feature, the last-
layer classifier’s behavior is equivalent to the nearest
class center (NCC) decision rule, i.e.

argmax
k

⟨wk,h⟩ = argmin
k

||h− µk|| (6)

2.2 Neural Collapse and Imbalanced Data

In this section, we first illustrate why NC disappears on
imbalanced datasets using mean squared error (MSE) loss.
Then we demonstrate that the NC properties will lead to a
lower generalization error bound thus we can benefit from
it under imbalanced distribution.

2.2.1 The Optimal Classifier Under Imbalanced
Distribution

Some recent studies have shown that the test performance
of neural networks trained with MSE loss is comparable to
those trained with CE loss in classification tasks (Demirkaya
et al., 2020; Fang et al., 2021; Hu et al., 2021; Han et al.,
2022). Thanks to its tractability, we can use MSE loss to
illustrate the absence of the NC phenomenon on imbalanced
datasets. For linear classifiers, the MSE loss is

L(H,W ) =
1

2n
||Y − (HW + 1nb

T)||2F . (7)

Let h̄ = 1
n

∑n
i=1 hi be the global feature mean, ΣT =

(H − 1nh̄)
T(H − 1nh̄) be the total covariance matrix of

H and Ṁ = [µ1 − h̄, ...,µK − h̄] ∈ RP×K . We can have
the closed form of the optimal W and b under the MSE loss
as follows.

Proposition 1. (Webb & Lowe, 1990). In general, for fixed
features H , the optimal weight matrix and the bias vector
that minimize L(H,W ) are

WLS = Σ†
TṀΛ, (8)

bLS =
1

n
1T
nY − µGWLS , (9)

where † denotes the Moore-Penrose pseudoinverse, and Λ =
diag(n1, · · · , nK) is a diagonal matrix.

From Eq.(9), we can observe that the optimal weight matrix
depends on the features and is strongly affected by Λ, i.e.
the proportions of classes. Specifically, the classifier weights
of the majority classes will have larger norms. The NC
phenomena reflect the intimate connection between the last
layer features and the classifier weights. Thus, skewed
classifiers imply that the features are also biased, and many
studies have empirically investigated that the uneven label
distribution can lead to an imbalanced feature space (Kang
et al., 2020; Fang et al., 2021; Li et al., 2022).

Particularly, Fang et al. (2021) show the Minority Collapse
phenomenon that reveals the skewed classifier weights en-
countering an imbalanced label distribution where majority
classes own much more samples than the minority ones. In
addition, they theoretically prove that unbiased classifiers
can be obtained through over-sampling. However, empirical
results show a limited performance improvement or even
decline due to the over-fitting of the minority classes (Drum-
mond et al., 2003; Weiss et al., 2007). On the other hand, the
classifiers are always better tuned than the learned features
(Thrampoulidis et al., 2022). Therefore, in this work, we
mainly focus on regularizing the embeddings during train-
ing to get non-skewed and representative features. Then we
tune a balanced classifier based on our well-learned features.

2.2.2 Importance of NC on Imbalanced Datasets

As we already know that when the training set is class-
imbalanced, the geometric structure of the classifiers and
centered class means are not symmetric, which may intro-
duce some bias in the model and affect the performance
of the test set (Kang et al., 2019, 2020; Fang et al., 2021).
Recent work indicates that compact within-class represen-
tations along with evenly distributed class centers can help
learn high-quality representations, and substantial practice
confirms this (Li et al., 2022; Zhu et al., 2022; Cui et al.,
2022). These intuitions lead to similar situations with NC.
In this section, we explain why the NC can be considered
favorable representations and can provide reduced general-
ization errors under long-tailed distributions from the per-
spective of domain adaptation.

As a standard evaluation approach in long-tailed learning,
models are usually tested on balanced datasets. Since the
training set is imbalanced, we can regard this scenario as
a label shift domain adaptation problem, where the source
domain is imbalanced, and the target domain is balanced.

First, the following proposition shows that properties of
NC1 and NC2 can be approximately preserved in the target
domain.

Proposition 2. (Galanti et al., 2021) Let µS
k (resp. µT

k ) and
σS
k (resp. σT

k ) be the mean and variance of the representa-
tions of class k on the source domain (resp. target domain).
For any two different classes, k and k′, with probability at
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least 1− δ over DS , we have

σT
k + σT

k′

2∥µT
k − µT

k′∥2
≤ (1 +A2)

(
σS
k + σS

k′

2∥µS
k − µS

k′∥2
+B

)
, (10)

where A =
O(
√

log(1/δ)/nk)

||µT
k −µT

k′ ||
, B =

O(
√

log(1/δ)/nk)

||µS
k−µS

k′ ||2
.

The ETF geometry of {µk}Kk=1 indicates that the distance
∥µS

k − µS
k′∥ achieve maximum value for all k ̸= k′. On the

other hand, ∥µT
k −µT

k′∥ is also lower bounded by ∥µS
k−µS

k′∥
(Galanti et al., 2021). Hence, A and B are upper bounded
and diminish to zero as nk gets larger. Therefore, we can
roughly speak NC1 and NC2 can generalize to the target
domain.

We then illustrate how the existence of NC1 and NC2 help
to reduce the generalization error. According to Ben-David
et al. (2006), for any classifier h, the error on target domain
ϵT (h) will be bound by the empirical error on the source
domain and the divergence between source and target feature
domains plus a constant:

ϵT (h) ≤ ϵ̂S(h) + dH(DZ
S ,DZ

T ) + const, (11)

where dH(DZ
S ,DZ

T )
1 measures some ‘distance’ between

source and target domains over the feature space Z . Al-
though not exactly the same, substituting dH with the
Jensen–Shannon distance dJS (Endres & Schindelin, 2003)
will not significantly change the result. Theoretically, min-
imizing dJS between source and target distributions will
reduce the right-hand side of Eq.(11) as well. Let DZ and
DY be the distributions defined over the latent feature space
and label space, respectively. As DY can be induced from
DZ from a generative perspective, according to Zhao et al.
(2019), we have

dJS(DZ
S ,DZ

T ) ≥ dJS(DY
S ,DY

T ), (12)

i.e., dJS(DZ
S ,DZ

T ) is the lower bounded by dJS(DY
S ,DY

T ),
which is a constant determined by source and target label
distributions.

With NC1 and NC2, the distribution over Z collapses
to a K-component mixture Dirac distribution. More pre-
cisely, we have Pr(Z = h) = Pr(Y = y). In this case,
dJS(DZ

S ,DZ
T ) attains its lower bound dJS(DY

S ,DY
T ), which

is the objective of some classical domain adaptation algo-
rithms (Long et al., 2015; Ganin et al., 2017),

3 LEARNING REPRESENTATION VIA
INDUCING NEURAL COLLAPSE

The previous analysis inspires us to induce NC phenomena
to imbalanced training. We mainly focus on the core proper-
ties, NC1 and NC2, and come up with two corresponding
regularization terms.

1dH(DZ
S ,DZ

T ) denotes the H-divergence between DZ
S and DZ

T ,
a precise definition is provided in Ben-David et al. (2010).

3.1 Feature Regularization

Compact within-class features. NC1 underlines that the
model is seeking to learn compact within-class features by
pushing the last-layer embedding to be close to their class
centers, which seems natural but actually hard to achieve in
practice. Han et al. (2022) decomposed the MSE loss and
discovered that the loss in the late training stages is domi-
nated by the ℓ2-distance between the feature and the corre-
sponding class center. This indicates that although NC1 is
the inevitable trend, it is quite difficult to realize. Therefore,
we add explicit regularization to make NC1 more inclined
to appear. Especially, for the class-imbalanced dataset, we
consider the inverse ratio of class sizes as weights to avoid
excessive force on the majority classes. This indicates the
difference between our NC1 regularization and the center
loss (Wen et al., 2016) that pushes all features equally to
their class center. Formally, we define the NC1 regular-
ization as the within-class feature distance, LW , with the
formula of

LW =

K∑
k=1

∑
yi=k

1

nk
||hi − µk||22. (13)

Distinct between-class features. NC2 shows that with
balanced class distribution, all pairs of centered class means
tend to form equal-sized angles, implying the maximally
separated between-class features. However, under the imbal-
anced distribution, the class centers of the minority classes
are close to the majority ones, leading to indistinguishable
features. Therefore, we propose NC2 regularization to mini-
mize the maximal pairwise cosine similarity between all the
centered class means, equivalent to maximizing the minimal
pairwise angle. Consider the angular version, the objective
of NC2 regularization is:

max min
k ̸=k′

arccos
⟨µ̇k, µ̇k′⟩

||µ̇k|| · ||µ̇k′ ||
, (14)

where µ̇k = µk − µC . As noted in Wang et al. (2020), up-
dating the average of each vector’s maximum cosine is more
efficient than just optimizing the global maximum cosine.
Therefore, we define the formula for the NC2 regularization
as

LB = − 1

K

K∑
k=1

min
k′,k′ ̸=k

arccos
⟨µ̇k, µ̇k′⟩

||µ̇k|| · ||µ̇k′ ||
. (15)

In summary, our proposed feature regularization includes
two terms, LW and LB , corresponding to minimize the
within-class distance and maximize the between-class dis-
crepancy, respectively. They can be easily coupled with
supervised losses with a linear classifier to regularize the
penultimate layer embedding. Finally, we have the follow-
ing loss for training:

L = Lsup + λ1LW + λ2LB . (16)
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where Lsup denotes the supervised loss, e.g. CE loss and
MSE loss. λ1 and λ2 are hyperparameters that control the
impact of LW and LB .

3.2 Occurrence of Neural Collapse

First, we illustrate that LB will lead all pairs of the K class
means to have the same cosine equals to − 1

K−1 , with the
following proposition.
Proposition 3. (Wang et al., 2020) The minimum of the
maximal pair-wise cosine similarity between n vectors is
−1
n−1 , which can be reached when the vectors have an equal-
sized pair-wise angle and zero mean.

Therefore, denote M̂ = [ µ̇1

||µ̇1|| , ...,
µ̇K

||µ̇K || ]. Recall that the
objective of LB is to minimize the maximal pair-wise cosine
similarity of the centered class means, thus with LB , we
have

M̂TM̂ =
K

K − 1
I − 1

K − 1
1K1T

K . (17)

According to Definition 1, M̂ form a simplex ETF. Fur-
thermore, although LW and LB do not explicitly enforce
the centered class means to have an equal norm, we em-
pirically observe this desired result (see the experimental
result in Section 4.2.1). Let ||µ̇1|| = · · · = ||µ̇K || = α and
M̄ = [µ̇1, · · · , µ̇K ], then we have

M̄TM̄ = α

(
K

K − 1
I − 1

K − 1
1K1T

K

)
, (18)

indicating the centered class means indeed from an ETF.
Therefore, with the proposed feature regularization terms
LW and LB , NC1 and NC2 can happen even when the
training set is imbalanced.

In addition, we can prove that with the existence of NC1

and NC2, retrain the classifier with class-balance sampling,
the classifier can become parallel with the centered feature
mean, indicating the self-duality (NC3). Ultimately, the
symmetric structure of the regularized class means brings
about an unbiased linear classifier.
Proposition 4. Proposition 1+NC1+NC2+class-balanced
sampling can lead to NC3.

Proof. With class-balanced sampling, the training label dis-
tribution can be regarded as balanced, and Ṁ = M̄ . Then
the optimal re-trained classifier Wr is

Wr =
n

K
Σ†

TṀ , (19)

with the existence of NC1, we have ΣT = ṀṀT. Thus,

Wr =
n

K
(ṀṀT)†Ṁ

=
n

K
(ṀṀT)†ṀṀT(ṀT)†

=
n

K
(ṀT)†,

with NC2 which implies that Ṁ form a simplex-ETF, thus,
(ṀT)† = cṀ for some constant c (Papyan et al., 2020),
then we can obtain Wr = αṀ , demonstrating the asserted
self-duality (NC3).

In conclusion, with the proposed LW and LB , we can obtain
compact within-class and distinct between-class representa-
tions under imbalanced-class distribution. In line with linear
discriminant analysis (LDA) (Fisher, 1936), this provides
an optimal solution for the linear classifier.

4 EXPERIMENTS

4.1 Classification and long-tailed recognition

In this section, we conduct various experiments on image
classification tasks on both balanced and long-tailed datasets
to validate the effectiveness of our method. We denote
our approach as NC, indicating the occurrence of the NC
phenomena. By default, CE is adopted as Lsup.

4.1.1 Experiment Setup

Datasets. Two balanced datasets (CIFAR10 and CI-
FAR100) and three long-tailed datasets (CIFAR10-LT,
CIFAR100-LT, and ImageNet-LT) are used in our exper-
iments. Following Cao et al. (2019), CIFAR10/100-LT are
created by downsampling each class’s samples to obey an
exponential decay with an imbalance ratio r = 100 and
10. Here r = max{nk}/min{nk}. ImageNet-LT (Liu
et al., 2019), including 115,846 samples and 1,000 cate-
gories with size ranging from 5 to 1,280, is generated from
the ImageNet-2012 (Deng et al., 2009) dataset using a Pareto
distribution with the power value α = 6.

Baselines. In addition to the typical approaches for ad-
dressing imbalanced data, such as re-sampling (RS) and
re-weighting (RW) in inverse proportion to the class size,
the investigation of more conducive methods that decou-
ple representation learning and classifier training, as well
as relevant methods inspired by NC, are also carried out.
To be specific, we compare traditional supervised learning
methods with DRW (Cao et al., 2019), LWS (Kang et al.,
2019), and cRT (Kang et al., 2019), and two recent works,
namely BBN (Zhou et al., 2020) and MiSLAS (Zhong et al.,
2021). Our comparison also includes supervised contrastive
learning approaches, namely FCL (Kang et al., 2020), KCL
(Kang et al., 2020), and TSC (Li et al., 2022). In addition,
the comparison involves NC-inspired methods such as ETF
classifier+DR (Yang et al., 2022) and ARB-Loss (Xie et al.,
2023).

Implementation details. We mainly follow the common
training protocol. In all experiments, we adopt SGD opti-
mizer with the momentum of 0.9, weight decay of 0.005,
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and train the model for 200 epochs following Alshammari
et al. (2022). We utilize mix-up (Zhang et al., 2018) dur-
ing the representation learning stage for all datasets. For
CIFAR10/100(-LT), we use ResNet-32 (He et al., 2016)
as the backbone and a multi-step schedule that decays the
learning rate as its 0.1 at the 160-th and 180-th epochs with
initialization of 0.1. We use 4 GeForce GTX 2080Ti GPUs
with a batch size of 128. For ImageNet-LT, we use ResNeXt-
50 (Xie et al., 2017) as the backbone and cosine schedule
that gradually decays the learning rate from 0.05 to 0. We
use 4 Tesla V100 GPUs to train the models with a batch
size of 256. We also adopt Randaugment (Cubuk et al.,
2020) for ImageNet-LT. We report the average results of
three independent trials with different random seeds. Our
code is available at https://github.com/Pepper-lll/NCfeature.

The hyperparameters λ1 and λ2 need to be adjusted ac-
cording to the complexity of the datasets. In general, sim-
ple datasets with few categories require a small magnitude
of feature regularization, while for complex datasets with
plenty of categories, we need larger λ1 and λ2. Besides,
similar to Li et al. (2022), we also find that it is better to reg-
ularize the feature learning from half of the training process
for large-scale datasets, i.e., CIFAR100 and ImageNet-LT.
Our hyperparameter settings and the epoch number to start
feature regularization are summarized in Table 1.

The class centers {µk}Kk=1 are updated in each mini-batch,
instead of in the entire training set, which has been proved
not efficient in large-scale datasets (Wen et al., 2016). Be-
sides, our regularization terms are better to combine with
re-balancing strategies to ensure the matching between clas-
sifier weights and class centers. The combination can lead to
a remarkable improvement. In our experiments, we choose
DRW and cRT as the re-balancing strategies.

Table 1: Hyperparameter setting.

Dateset λ1 λ2 start epoch

CIFAR10(-LT) 0.01 0.1 0
CIFAR100(-LT) 0.01 0.5 100

ImageNet-LT 0.05 1.0 100

4.1.2 Results

Balanced data. As we mentioned before, our method is
applicable to both balanced and imbalanced datasets. First,
we conduct experiments to validate our model on balanced
CIFAR10 and CIFAR100 datasets. Table 2 shows that our
method can reduce the generalization error with both CE
and MSE loss.

Imbalanced data. Table 3 and 4 present our results on
CIFAR10-LT, CIFAR100-LT, and ImageNet-LT. We can
find that our method surpasses existing methods on all three
datasets. For ImageNet-LT, we further test the accuracy
on three groups of classes according to the sample size, in-

cluding Many-shot (>100 samples), Medium-shot (20∼100
samples), and Few-shot (<20 samples). The results show
that our method can substantially improve the accuracy of
the Medium- and Few-shot categories with almost no impact
on the accuracy of the Many-shot categories compared to
the plain training with CE.

Table 2: Top-1 test accuracy (%) on the balanced datasets.

Method CIFAR10 CIFAR100

CE 93.4 71.8
+NC 93.3 72.1

MSE 91.1 70.7
+NC 91.7 71.9

Table 3: Top-1 test accuracy (%) on CIFAR10-LT and
CIFAR100-LT. The results of the compared methods are
obtained from their respective original papers. The best and
second-best results are marked in bold and underlined.

Method CIFAR10-LT CIFAR100-LT

imbalance ratio 100 10 100 10

CE 70.4 86.4 38.4 55.7
CE-RS 72.8 87.8 36.7 57.7
CE-RW 74.4 87.9 32.5 58.2

CE-DRW 75.1 86.4 42.5 56.2
LDAM-DRW 77.0 88.2 43.5 58.7

BBNm 79.9 88.4 42.6 59.2
MiSLAS 82.1 90.0 47.0 63.2

KCL 77.6 88.0 42.8 57.6
TSC 79.7 88.7 43.8 59.0

ETF classifier+ DR 76.5 87.7 45.3 -
ARB-Loss 83.3 90.2 47.2 62.1

NC-DRW 81.9 89.8 48.6 63.1
NC-DRW-cRT 82.6 90.2 48.7 63.6

Combine with existing approaches. Our regularization
terms can be easily plugged into most of the existing algo-
rithms. To validate the effectiveness, in Table 5, we add
the proposed regularization terms to three different types
of algorithms. We follow their original experiment set-
tings to compare the performance differences before and
after adding regularization terms. The results show that our
regularization terms can increase the accuracy in all three
algorithms.

4.2 Discussions

In this section, to verify the correctness and further explore
the properties of our method, we show the learned repre-
sentations, performance robustness, and ablation study on
various combinations of loss and regularizations.

4.2.1 Representation Analysis

We extensively analyze the representations learned with our
method to explain the advantages relative to the baseline.

https://github.com/Pepper-lll/NCfeature
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Table 4: Top-1 test accuracy (%) on ImageNet-LT.

Methods Many Medium Few All

CE 68.2 38.1 5.82 45.3
CE-RS 64.6 42.6 17.8 47.8
CE-RW 52.0 41.4 19.8 42.5

CE-DRW 52.6 45.7 31.5 46.4
CE-cRT 58.8 33.0 26.1 47.3
CE-LWS 57.1 45.2 29.3 47.7
MiSLAS 61.7 51.3 35.8 52.7

FCL 61.4 47.0 28.2 49.8
KCL 62.4 49.0 29.5 51.5
TSC 63.5 49.7 30.4 52.4

ETF classifier+ DR - - - 44.7
ARB-Loss 60.2 51.8 38.3 52.8

NC-DRW 67.1 49.7 29.0 53.6
NC-DRW-cRT 65.6 51.2 35.4 54.2

Table 5: Top-1 test accuracy (%) on real-world long-tail
datasets of our methods combined with others. Note that
we replicated experiments of RIDE with data distributed
parallel training and got results with slight differences from
Wang et al. (2021). c10, c100 and iNet are short for CI-
FAR10, CIFAR100 and ImageNet respectively.

Method c10-LT c100-LT iNet-LT

LDAM-DRW 77.0 42.0 48.8
+NC 77.1(0.1↑) 43.2(1.2↑) 49.5(0.7↑)

Logit Adjust 77.4 43.9 51.1
+NC 78.8(1.4↑) 44.6(0.7↑) 53.2(2.1↑)

RIDE (2 experts) - 46.5 51.9
RIDE (3 experts) - 47.5 54.2
RIDE (4 experts) - 48.8 55.2
+NC (2 experts) - 46.8(0.3↑) 52.2(0.3↑)
+NC (3 experts) - 48.1(0.6↑) 54.8(0.6↑)
+NC (4 experts) - 49.1(0.3↑) 56.0(0.8↑)

As for the corresponding analysis of classifiers, we obtained
consistent findings with previous studies (Kang et al., 2019)
and therefore do not repeat them here.

Maximally separated class centers. We compare the
pair-wise angles of the centered class means learned on
CIFAR10-LT with vanilla training, re-sampling (RS), re-
weighting (RW), and the proposed regularization terms in
Figure 2. We arrange the class indexes in descending order
based on their sizes. Under a long-tailed distribution, the
minority class centers move closer to the majority with plain
model. In Figure 2(a), the angles between class 8 and 0,
class 9 and 1, and class 5 and 3 are around 50◦ which is
far lower than the optimal angle of 96◦. RS and RW can
assist in the acquisition of more distinguishable features,
as demonstrated Figure 2(b) and 2(c)). However, with our
regularization terms (Figure 2(d)), we can observe that the
pair-wise angles between all the class centers remain consis-
tently close to the optimum value. In addition, the significant
improvement on the experimental results indicates that the

features learned by our method are more generalizable.

Zero-centered class means with the equal norm. Al-
though neither LW nor LB forces the class center to be
of equal norm, we can observe it in our experiments, as
shown in Figure 3. This result strongly indicates that we
can successfully induce NC in imbalanced data.

4.2.2 Robustness

We test the robustness of our method against random noise
with different neural networks on CIFAR10/100 and their
long-tailed version where the imbalance ratio r = 100.
Here Resnet-32 and ResNet-18 are employed. ResNet-18
is a wider network with the last-layer feature dimension of
512, while ResNet-32 is 64. The models are all trained with
DRW. The results are reported in Table 6. We can observe
that our regularization terms can improve the robustness for
different model capacities.

4.2.3 Ablation Study

We conduct experiments to examine the effectiveness of
two regularization terms separately over CE loss and the
comparison with center loss. The results, presented in Ta-
ble 7, demonstrate that each term can significantly improve
accuracy individually, and that their combination produces
the best results. Meanwhile, LW consistently produces bet-
ter results than center loss, suggesting that modifying the
coefficient is crucial. We can also find that NC2 property is
more useful, implying the importance of sufficiently distant
class centers for the long-tail recognition task.

5 RELATED WORK

5.1 Long-tailed recognition

Long-tailed distribution is ubiquitous in the real world,
which brings big challenges for most deep learning mod-
els. Classical methods dealing with this problem include
data re-sampling and loss re-weighting. The former refers
to re-sampling the instances to achieve relatively balanced
training data, basically including over-sampling (Ando &
Huang, 2017; Shelke et al., 2017), under-sampling (Shelke
et al., 2017), and class-balanced sampling (Cui et al., 2019).
Instead of changing the original data distribution, loss re-
weighting uses cost-sensitive re-weighting strategies and as-
signs different weights to instances from different classes ac-
cording to the sample sizes (Lin et al., 2017; Cui et al., 2019).
However, although the re-sampling and re-weighting ap-
proaches can improve the performance of minority classes,
they may lead to overfitting (Li et al., 2022) and hurt the
representation learning (Kang et al., 2019).

Recent works also focus on representation learning under
long-tailed data distribution. This stream of study mainly
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Table 6: Random Noise Robustness Results. CE‡ denotes Cross-Entropy loss with the feature regularization LW + LB .

Gaussian noise std 0.00 0.10 0.20 0.30 0.40 0.00 0.10 0.20 0.30 0.40

Dataset Loss ResNet-32 ResNet-18

CIFAR10 CE 93.3 89.4 76.6 54.7 35.7 94.9 91.5 79.2 56.9 35.9
CE‡ 93.1 89.6 76.6 57.5 39.0 95.1 91.8 78.9 57.1 37.4

CIFAR10-LT CE 77.0 75.0 62.3 45.3 32.5 79.2 75.7 63.5 47.2 33.8
CE‡ 79.2 75.5 63.2 47.8 35.5 81.0 77.5 66.5 51.4 37.9

CIFAR100 CE 71.8 60.2 40.0 23.9 14.1 78.2 65.9 44.2 25.0 14.3
CE‡ 72.3 59.0 39.7 23.9 15.1 78.6 67.8 46.9 28.2 16.6

CIFAR100-LT CE 42.5 37.2 25.4 16.3 10.2 46.8 41.1 31.6 23.6 17.6
CE‡ 45.7 39.0 27.2 16.8 11.1 47.2 41.6 31.6 23.3 16.3

(a) vanilla (b) w/ RS (c) w/ RW (d) w/ LW and LB

Figure 2: Pair-wise angle degree between centered class means trained on CIFAR10-LT. Note that the optimal pair-wise
angle for 10 classes is arccos −1

10−1 ≈ 96.4◦.

Table 7: Ablation studies on the effectiveness of each reg-
ularization term on CIFAR10/100-LT. Note that we apply
DRW for all experiments here.

Method CIFAR10-LT CIFAR100-LT

imbalance ratio 100 10 100 10

CE 75.1 86.4 42.4 56.2
+Centor Loss 78.7 89.1 46.3 61.2

+LW 79.1 88.1 46.9 61.3
+LB 80.1 88.6 47.6 61.7

+Centor Loss &LB 77.5 89.2 46.5 61.4
+LW &LB 81.9 89.8 48.6 63.1

follows a two-stage training scheme that decouples the rep-
resentation and classifier learning (Kang et al., 2019; Zhong
et al., 2021; Li et al., 2022; Kang et al., 2020; Zhu et al.,
2022). Kang et al. (2019) observed that a high-quality rep-
resentation requires fully utilizing the training instances
equally, while a re-balancing technique is crucial for an
unbiased classifier. On the other hand, some works take
advantage of the superior representation learning ability of
contrastive loss to extract the feature for deep long-tailed
learning; then train a classifier upon the feature extractor
with cost-sensitive loss or class-balanced sampling (Kang
et al., 2020; Li et al., 2022; Zhu et al., 2022). Supervised con-
trastive learning shows superiority in representation learning
under imbalanced distribution and achieves SOTA for long-
tailed recognition tasks (Li et al., 2022; Zhu et al., 2022;
Cui et al., 2022). However, these methods usually converge

(a) CIFAR10(-LT) (b) CIFAR100(-LT)

Figure 3: The norm of centered class means on a balanced
dataset, long-tailed dataset w/ and w/o inducing NC is rep-
resented in different colors. Note that the class index is
inversely sorted by the sample size.

slowly and require complex network structures compared to
traditional supervised learning.

Researchers also explored methods based on the ensemble.
They usually utilize multiple models over different data
distributions (Wang et al., 2021) or perform representation
learning and classifier training with separate branches (Zhou
et al., 2020; Zhu et al., 2022). This kind of approach is
generally considered to be orthogonal to the single-model
approach described above.

5.2 Neural collapse

A recent study (Papyan et al., 2020) discovered the phe-
nomenon named Neural Collapse (NC), stating that the
last-layer embedding and classifiers will converge to a sym-
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metric geometry named simplex Equiangular Tight Frame
(ETF) for deep classifiers trained on balanced data. A more
precise description of the NC phenomena is delivered in
Section 2.1. Subsequent studies indicate that NC will even-
tually occur, independent of the loss function, the optimizer,
batch-normalization, and regularization, as long as the train-
ing data exhibits a balanced distribution (Zhu et al., 2021;
Han et al., 2022; Kothapalli et al., 2022). Meanwhile, the
intrinsic merit of NC has also been revealed, including
ensuring global optimality, stronger generalization and ro-
bustness, and transferability (Papyan et al., 2020; Zhu et al.,
2021; Galanti et al., 2021).

The investigation of NC has also been carried over to the
imbalanced data case, where different phenomena are un-
covered. Fang et al. (2021) demonstrated that the minority
classifiers have smaller pair-wise angles than the majority
ones and will even merge together as the imbalance level
increases, named Minority Collapse. This phenomenon pro-
vides some reason of the performance drop. Thrampoulidis
et al. (2022) provides a general frame that is equivalent to
ETF for balanced data, and reveals an asymmetric geometry
of the last-layer feature and classifiers for imbalanced dis-
tribution. Furthermore, the perfect alignment between the
class feature means and classifiers vanished under the im-
balanced distribution. However, Thrampoulidis et al. (2022)
illustrates the general geometry with a special encoding
framework and does not discuss whether this geometry with
an imbalanced dataset has merit or defect.

Inspired by the NC phenomenon, some researchers have
attempted to improve the model’s classification ability en-
countering imbalanced distribution by eliminating Minority
Collapse, including fixing the classifier as an ETF (Yang
et al., 2022) and adjusting the CE loss (Xie et al., 2023).
Distinct from these works, our work analyzes that obtaining
high-quality features is the key to the improvement and thus
proposes regularization to guide learning representations.

6 CONCLUSIONS

In this paper, we argue that the existence of NC is crucial
for long-tailed recognition and propose two simple but ef-
fective regularization terms to induce the appearance of NC.
We empirically show that under the imbalanced data distri-
bution, the class centers of minority classes are close to the
majority ones, leading to the overlap among different classes
over the feature space and confusion of the classifier. With
our method, the deep classification models are able to learn
compact within-class and maximally distinct between-class
features. Extensive experiments confirm that our method
can enhance the generalization power of the deep classifica-
tion model, especially when the training set is imbalanced.
Our method is more efficient than contrastive loss based
methods, and we set new state-of-the-art performance for
single model based methods on widely used benchmarks.

Our proposed regularization guides the representation learn-
ing to be of ‘optimal’ geometry for classification, which
is particularly beneficial for training sets with imbalanced
labels. However, the learned geometry is validated empiri-
cally and lacks complete theoretical guarantees, leading to
manually tuning the related hyperparameters. In the future,
we plan to formally analyze the geometry obtained with our
regularization and provide some theoretical justification for
the choice of hyperparameters.
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