
Improved Rate of First Order Algorithms for Entropic Optimal Transport

Yiling Luo Yiling Xie Xiaoming Huo
Georgia Institute of Technology Georgia Institute of Technology Georgia Institute of Technology

Abstract

This paper improves the state-of-the-art rate of a
first-order algorithm for solving entropy regular-
ized optimal transport. The resulting rate for ap-
proximating the optimal transport (OT) has been
improved from Õ(n2.5/ϵ) to Õ(n2/ϵ), where n
is the problem size and ϵ is the accuracy level. In
particular, we propose an accelerated primal-dual
stochastic mirror descent algorithm with variance
reduction. Such special design helps us improve
the rate compared to other accelerated primal-dual
algorithms. We further propose a batch version of
our stochastic algorithm, which improves the com-
putational performance through parallel comput-
ing. To compare, we prove that the computational
complexity of the Stochastic Sinkhorn algorithm
is Õ(n2/ϵ2), which is slower than our accelerated
primal-dual stochastic mirror algorithm. Experi-
ments are done using synthetic and real data, and
the results match our theoretical rates. Our al-
gorithm may inspire more research to develop
accelerated primal-dual algorithms that have rate
Õ(n2/ϵ) for solving OT.

1 INTRODUCTION

The Optimal Transport (OT) (Monge, 1781; Kantorovich,
1942; Villani, 2009) is an optimization problem that has
been actively studied. In this section, we review the OT
problem. In Section 1.1, we review the OT formulation and
its related concepts. In Section 1.2, we survey the existing
algorithms for solving OT and summarize our contribution
given the literature background.

1.1 Optimal Transport

We review the definition of OT. Given a cost matrix C ∈
Rn×n

+ and two vectors p, q ∈ ∆n, where ∆n := {a ∈ Rn
+ :

Proceedings of the 26th International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2023, Valencia, Spain. PMLR:
Volume 206. Copyright 2023 by the author(s).

aT1 = 1} is the standard simplex, OT is defined as follows:

min
X∈U(p,q)

⟨C,X⟩, (1)

where U(p, q) :=
{
X ∈ Rn×n

+

∣∣X1 = p, XT1 = q
}

, and
⟨C,X⟩ :=

∑n
i,j=1 Ci,jXi,j .

The ϵ-solution is always used when evaluating algorithm
efficiency for solving OT, so we review its definition as
follows. Denote the optimal solution of problem (1) as X∗,
an ϵ−solution X̂ is such that:

X̂ ∈ U(p, q);

⟨C, X̂⟩ ≤ ⟨C,X∗⟩+ ϵ.

Note that for a stochastic algorithm, the second condition is
replaced by E⟨C, X̂⟩ ≤ ⟨C,X∗⟩+ ϵ.

Our paper adopts a two-step approach (Altschuler et al.,
2017) for finding an ϵ-solution to problem (1). In the first
step, one finds an approximate solution X̃ to the entropic
OT problem (2).

min
X∈U(p′,q′)

⟨C,X⟩ − ηH(X), (2)

where H(X) = −
∑

i,j Xi,j log(Xi,j) is the entropy,

η = ϵ
4 log(n) , and

(
p′

q′

)
=

(
1− ϵ

64∥C∥∞

)(p
q

)
+

ϵ
64n∥C∥∞

(
1n

1n

)
. In the second step, one rounds X̃ to the

original feasible region U(p, q). Once a certain accuracy
level is achieved in the first step, Altschuler et al. (2017)
guarantees the final solution to be an ϵ-solution to problem
(1).

1.2 Literature Review

We review the state-of-the-art algorithms that solve OT and
summarize their computational complexity (measured by
the number of numerical operations) for giving an ϵ-solution
to OT in Table 1. We list the year of the relevant publication,
the names of the methods, the computational complexities,
and whether (a

√
sign) or not (an× sign) the method solves

entropic OT as an intermediate step for approximating OT
in columns. In particular, the computational complexities

Improved Rate of First Order Algorithms for Entropic Optimal Transport

Table 1: Order of Complexity of OT Algorithms.

YEAR ALGORITHM ORDER OF COMPLEXITY SOLVES EN-
TROPIC OT

2013 SINKHORN (CUTURI, 2013) n2/ϵ2 (DVURECHENSKY ET AL.,
2018)

√

2017 GREENKHORN (ALTSCHULER ET AL., 2017) n2/ϵ3 (ALTSCHULER ET AL.,
2017); n2/ϵ2 (LIN ET AL., 2019)

√

2018 STOCHASTIC SINKHORN (ABID AND GOWER, 2018) n2/ϵ3; n2/ϵ2 (THIS PAPER)
√

2018 APDAGD (DVURECHENSKY ET AL., 2018) n2.5/ϵ
√

2018 PACKING LP (BLANCHET ET AL., 2018; QUANRUD,
2018)

n2/ϵ ×

2018 BOX CONSTRAINED NEWTON (BLANCHET ET AL.,
2018)

n2/ϵ
√

2019 APDAMD (LIN ET AL., 2019) n2.5/ϵ
√

2019 DUAL EXTRAPOLATION (JAMBULAPATI ET AL.,
2019)

n2/ϵ ×

2019 ACCELERATED SINKHORN (LIN ET AL., 2022) n7/3/ϵ4/3
√

2019 DIJKSTRA’S SEARCH + DFS (LAHN ET AL., 2019) n2/ϵ+ n/ϵ2 ×
2020 APDRCD (GUO ET AL., 2020) n2.5/ϵ

√

2021 AAM (GUMINOV ET AL., 2021) n2.5/ϵ
√

2022 HYBRID PRIMAL-DUAL (CHAMBOLLE AND CONTR-
ERAS, 2022)

n2.5/ϵ
√

2022 PDASGD (XIE ET AL., 2022) n2.5/ϵ
√

2022 PDASMD n2/ϵ (THIS PAPER)
√

are shown in their order of n and ϵ, where the log(n) term is
omitted. The mark of “(This Paper)” indicates a rate derived
in this paper. It is clear that among the methods that solve
entropic OT, our PDASMD algorithm achieves the lowest
rate.

There are four main techniques to solve problem (2) in
current literature:

• The first technique solves the dual problem of prob-
lem (2) by the Bregman projection technique. Specif-
ically, this technique partitions the dual variables into
blocks and iteratively updates each block. Algorithms
that use this technique include Sinkhorn algorithm (Cuturi,
2013), Greenkhorn algorithm (Altschuler et al., 2017) and
Stochastic Sinkhorn algorithm (Abid and Gower, 2018).

• The second technique also solves the dual problem of
problem (2) but uses accelerated first-order methods. Al-
gorithms that use this technique include accelerated gra-
dient descent (APDAGD) (Dvurechensky et al., 2018),
accelerated mirror descent (APDAMD) (Lin et al., 2019),
accelerated alternating minimization (AAM) (Guminov
et al., 2021), accelerated randomized coordinate descent
(APDRCD) (Guo et al., 2020) and accelerated stochastic
gradient descent (PDASGD) (Xie et al., 2022). This tech-
nique can also be combined with the first technique. See,
for example, the accelerated Sinkhorn algorithm in Lin
et al. (2022).

• The third technique solves the dual problem of problem
(2) by second-order algorithms. An instance that uses
this technique is the box-constrained Newton algorithm

(Blanchet et al., 2018).
• The fourth technique minimizes the primal-dual gap of

problem (2). An instance that uses this technique is the
hybrid primal-dual algorithm (Chambolle and Contreras,
2022).

Besides works that use the two-step approach to solve the
entropic OT first, some works directly solve the unpenal-
ized OT problem (1) by linear programming (Blanchet
et al., 2018; Quanrud, 2018), dual-extrapolation (Jambu-
lapati et al., 2019), or graph-based search algorithm (Lahn
et al., 2019).

We compare the computational complexity in Table 1 of our
algorithm with other state-of-the-art algorithms as follows.

First, our PDASMD algorithm belongs to the second class
of algorithms to solve the entropic OT problem (2). All
other algorithms in this class reported a rate of Õ(n2.5/ϵ)
for approximating OT, while our algorithm has a better rate
of Õ(n2/ϵ). Thus our algorithm improves the rate for this
class. The advantage of our algorithm mainly comes from
the special technique that we use: though all the algorithms
in this class use the acceleration technique, no accelerated
variance reduction version of stochastic mirror descent has
been tried in the previous algorithms. We apply those tech-
niques to entropic OT and find that they lead to a better
theoretical rate.

Second, among all algorithms for solving entropic OT, our
PDASMD algorithm still reports the best rate. There is
only one algorithm on entropic OT that achieved the same

Yiling Luo, Yiling Xie, Xiaoming Huo

rate: the box-constrained Newton algorithm. However, we
note that the Newton algorithm is a second-order algorithm,
which requires computing the Hessian of the objective func-
tion. By its second-order nature, each step of the Newton
algorithm will be expensive in terms of computation and
memory. On the other hand, our PDASMD algorithm is
based on mirror descent, which is a first-order algorithm.
Our PDASMD algorithm is thus easier to implement.

Finally, the algorithms that directly solve the original OT
problem also report the same optimal rate as our PDASMD
algorithm, including the packing LP algorithm, the dual
extrapolation algorithm, and the graph-based Dijkstra DFS
algorithm (when ϵ ≳ 1/n). Compared with those algo-
rithms, we have the extra advantage that our algorithm can
not only approximate the OT problem but also solve the
entropic OT. Thus, when one wants to solve the entropic OT,
our algorithm is still preferred.

Our Contribution We summarize two main contributions
in this work as follows.

• We propose an accelerated primal-dual stochastic algo-
rithm that has computational complexity Õ(n2/ϵ) for
solving OT. Every step of our algorithm is defined by sim-
ple arithmetic operations and is counted in the complexity
calculation. Thus our algorithm is practical. Moreover,
compared with other algorithms that achieve the same
rate for solving OT: our algorithm has the extra advantage
that it can also be applied to entropic OT; it is a first-order
algorithm, so it can be easily implemented without com-
puting the Hessian. We also propose a batch version of
our algorithm to increase the computational power.

• We prove that the computational complexity of the
Stochastic Sinkhorn algorithm is Õ(n2/ϵ2), instead of
the Õ(n2/ϵ3) rate in the literature. Our proved rate for
Stochastic Sinkhorn matches the state-of-the-art rate of
Sinkhorn and Greenkhorn. Moreover, the provable rate
by our accelerated primal-dual stochastic algorithm is
better than that of the Stochastic Sinkhorn, which again
illustrates the advantage of our algorithm.

Paper Organization The rest of the paper is organized
as follows. In Section 2, we present our main algorithm of
Primal-Dual Accelerated Stochastic Proximal Mirror De-
scent (PDASMD), show its convergence, and analyze its
complexity for solving OT; as a comparison, we also prove
the rate of Stochastic Sinkhorn, which is improved over the
existing result. In Section 3, we develop a batch version
of PDASMD and show its convergence and computational
complexity. In Section 4, we run numerical examples to
support our theorems. In Section 5, we discuss the findings
in this work and some future research.

2 PRIMAL-DUAL ACCELERATED
STOCHASTIC PROXIMAL MIRROR
DESCENT (PDASMD)

In this section, we present our PDASMD algorithm for solv-
ing a linear constrained convex problem, which includes the
entropic OT as a special case. We analyze the convergence
rate of the PDASMD algorithm, then apply it to OT and
derive the computational complexity. As a comparison, we
also analyze the computational complexity of the Stochastic
Sinkhorn. Since our algorithm uses the Proximal Mirror
Descent technique, we review the background of such a tech-
nique in Appendix A and briefly explain why it is suitable
for entropic OT.

2.1 Definition and Notation

We first introduce some notations that we will use through-
out the rest of this paper.

Notations: For a vector a: let sign(a) be such that
(sign(a))i = 1 if ai > 0 and −1 otherwise. Let 1n be the
n-dimensional vector where each element is 1. For matrices
X ∈ Rn×o, Y ∈ Rp×q: let X ⊗ Y denote the standard
Kronecker product; let exp(X) and log(X) be the element-
wise exponential and logarithm of X; let ∥X∥2 be the
operator norm ofX and ∥X∥∞ be maxi,j |Xi,j |; denote the
matrix norm induced by two arbitrary vector norms ∥ · ∥H
and ∥ · ∥E as ∥X∥E→H := maxa:∥a∥E≤1 ∥Xa∥H ;
denote the vectorization of X as Vec(X) =
(X11, ..., Xn1, X12, ..., Xn2, ..., X1o, ..., Xno)

T . For
two non-negative real values s(κ) and t(κ), denote
s(κ) = Θ(t(κ)) if ∃k > 0 and K > 0 such that
kt(κ) ≤ s(κ) ≤ Kt(κ); denote s(κ) = O(t(κ)) if
∃K > 0 such that s(κ) ≤ Kt(κ); denote s(κ) = Õ(t(κ))
to indicate the previous inequality where K depends on
some logarithmic function of κ.

Next, we review some key definitions that will be useful. 1

Definition 1 (Strong convexity). f : Q → R is α-strongly
convex w.r.t. ∥ · ∥H if ∀x,y ∈ Q:

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ α

2
∥x− y∥2H .

Definition 2 (Smoothness). A convex function f : Q → R
is β-smooth w.r.t. ∥ · ∥H if ∀x,y ∈ Q:

∥∇f(x)−∇f(y)∥H,∗ ≤ β∥x− y∥H ,

where ∥u∥H,∗ := maxv{⟨u,v⟩ : ∥v∥H ≤ 1} is the dual
norm of ∥ · ∥H . Or equivalently,

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ β

2
∥x− y∥2H .

1Our definitions follow those in Allen-Zhu (2017).

Improved Rate of First Order Algorithms for Entropic Optimal Transport

Definition 3 (Bregman divergence). For a mirror function
w(·) that is 1-strongly convex w.r.t. ∥ · ∥H , we denote by
Vx(y) the Bregman divergence w.r.t. ∥ · ∥H generated by
w(·), where

Vx(y) := w(y)− w(x)− ⟨∇w(x),y − x⟩.

One can conclude from the definition that

Vx(y) ≥
1

2
∥x− y∥2H .

If we further assume that the mirror function w(·) is γ-
smooth w.r.t. ∥ · ∥H , we then have

Vx(y) ≤
γ

2
∥x− y∥2H .

2.2 General Formulation and PDASMD Algorithm

In this section, we first state a general linear constrained
problem and explain how it includes entropic OT as a special
case. We then propose our algorithm to solve this general
problem. Finally, we show the convergence rate of our
algorithm.

We consider a linear constrained problem as follows:

min
x∈Rm

f(x) s.t. Ax = b ∈ Rl, (3)

where f is strongly convex. One observes that the entropic
OT (2) is a special case of problem (3) with x = Vec(X),
f(x) = ⟨Vec(C),x⟩ + η

∑n−1
i=0

∑n
j=1 xin+j log(xin+j),

b = (pT , qT)T , A =

[
1T ⊗ In
In ⊗ 1T

]
.

A standard approach for solving the constrained problem
(3) is to optimize its Lagrange dual problem (4):

min
λ
{ϕ(λ) :=⟨λ, b⟩+max

x
(−f(x)− ⟨ATλ,x⟩)

=⟨λ, b⟩ − f(x(λ))− ⟨ATλ,x(λ)⟩}, (4)

where by first-order condition x(λ) is such that

∇xf(x(λ)) = −ATλ. (5)

Since problem (3) is a linear constrained convex problem,
the strong duality holds. Thus solving problem (3) is equiva-
lent to solving its dual problem (4). In particular, we develop
a stochastic algorithm for the case that the dual is of finite
sum form. We further assume that all terms in the finite sum
are smooth for convergence analysis. The conditions on the
dual are formalized as follows:

Assumption 1 (Finite-sum dual). Assume that the dual can
be written as ϕ(λ) = 1

m

∑m
i=1 ϕi(λ), where ϕi is convex

and Li−Lipchitz smooth w.r.t. an arbitrary ∥ · ∥H norm.

Note that the assumption on the dual is reasonable and can
be satisfied by some problems, including entropic OT. We

now give a concrete example that the assumption holds.
Consider a primal objective f(x) =

∑m
i=1 fi(xi) where

each fi is ν−strongly convex w.r.t. another arbitrary norm
∥ · ∥E (note that it can be different from the ∥ · ∥H norm).
In this case, we can solve the primal-dual relationship in
equation (5) to get:

xi(λ) = (∇fi)−1(−aT
i λ), i = 1, . . . ,m,

where ai is the ith column of A. As a consequence, the dual
problem (4) can be written as a finite sum:

ϕ(λ) =
1

m

m∑
i=1

(⟨λ, bi⟩ −mfi(xi(λ))−maT
i λxi(λ))

:=
1

m

m∑
i=1

ϕi(λ),

where bi’s are arbitrarily chosen vectors satisfying the con-
straint

∑m
i=1 bi = mb. One can check that ∇ϕi(λ) =

bi − mxi(λ)ai. By Nesterov (2005), ϕi is convex and
Li−Lipchitz smooth w.r.t. ∥ · ∥H norm, where Li ≤
m
ν ∥ai∥E→H,∗.

With the finite sum representation of ϕ, we propose a
PDASMD algorithm (Algorithm 1) to solve problem (3).
We add a few remarks to explain the algorithm as follows.

Remark 1. One should choose a specific ∥ · ∥H norm and
a mirror function w(·) to run the algorithm. Those choices
have a direct impact on the mirror descent step 10 and
proximal gradient descent step 11: if we let ∥ · ∥H = ∥ ·
∥2 and w(·) = 1

2∥ · ∥
2
2, both steps reduce to stochastic

gradient descent, then the algorithm essentially reduces to
the PDASGD algorithm in Xie et al. (2022).

Remark 2. The primal variables x’s in Algorithm 1 are up-
dated by Steps 14 through 16, and we explain those steps as
follows: The iterates in Steps 14 through 16 essentially leads

to xS−1 =

(
S−1∑
s=0

x(ỹs)/τ1,s

)/(
S−1∑
s=0

(1/τ1,s)

)
. We ex-

press such updates in xs in an iterative way to avoid storing
all updates of ỹs’s. In this way, our algorithm is memory
efficient.

Remark 3. The dual variables v, z,y’s are updated by
Steps 2 through 13. The update consists of outer loops
indexed by s and inner loops indexed by j, which uses the
variance reduction and acceleration technique in Allen-Zhu
(2017) (Algorithm 5 in that paper). We now summarize the
variance reduction and acceleration technique for a better
understanding of our algorithm.

The variance reduction in Algorithm 1 is step 9, which
works as follows: For the finite-sum dual ϕ(v) =
1
m

∑m
i=1 ϕi(v), a stochastic algorithm without variance re-

duction updates the parameter estimation using ∇ϕi(v),
which in general has V ar[∇ϕi(v)] ̸= 0,∀v and thus
needs the step size → 0 for convergence. A variance re-
duced algorithm replaces ∇ϕi(v) by Ak = ∇ϕi(v) −

Yiling Luo, Yiling Xie, Xiaoming Huo

Algorithm 1: Primal-Dual Accelerated Stochastic Prox-
imal Mirror Descent (PDASMD)

1: Initialize l the number of inner iterations; τ2 = 1
2 ,

y0 = z0 = ṽ0 = v0 = 0, C0 = D0 = 0; choose a
mirror function w(·) that is 1-strongly convex and
γ-smooth w.r.t. ∥ · ∥H , and denote by Vx(y) the
Bregman divergence generated by w(·); take
L̄ = (

∑m
i=1 Li)/m, where Li is the smoothness (w.r.t.

∥ · ∥H) for each component ϕi of the dual function ϕ(·)
in Assumption 1.

2: for s = 0,. . . ,S-1 do
3: τ1,s ← 2/(s+ 4); αs ← 1/(9τ1,sL̄);
4: µs ← ∇ϕ(ṽs).
5: for j = 0 to l − 1 do
6: k ← (sl) + j;
7: vk+1 ← τ1,szk + τ2ṽ

s + (1− τ1,s − τ2)yk;
8: Pick i randomly from {1, 2, . . . ,m}, each with

probability pi := Li/mL̄;
9: ∇̃k+1 ← µs + 1

mpi
(∇ϕi(vk+1)−∇ϕi(ṽs));

10: zk+1 = argminz{ 1
αs
Vzk

(z) + ⟨∇̃k+1, z⟩};
11: yk+1 =

argminy{ 9L̄2 ∥y − vk+1∥2H + ⟨∇̃k+1,y⟩}.
12: end for

13: ṽs+1 ← 1
l

l∑
j=1

ysl+j ;

14: Cs ← Cs +
1

τ1,s
;

15: Pick ỹs uniform randomly from {ysl+j}lj=1, update
Ds ← Ds +

1
τ1,s

x(ỹs), where x(·) is given by
equation (5);

16: xs = Ds/Cs.
17: end for
18: Output: x̃ = xS−1.

Bk + E[Bk]. When Bt and ∇ϕi(v) have correlation
r > 0.5 and V ar[Bt] ≈ V ar[∇ϕi(v)], one can check
that V ar[At] = V ar[∇ϕi(v) − Bk] = V ar[∇ϕi(v)] −
2r
√
V ar[∇ϕi(v)]V ar[Bk] + V ar[Bk] < V ar[∇ϕi(v)]

(so the variance is reduced). Step 9 in Algorithm 1 uses
this variance reduction technique by taking Bk = ∇ϕi(ṽs).

The acceleration in Algorithm 1 are steps 7, 10, 11, namely
the Katyusha acceleration in Allen-Zhu (2017). We summa-
rize this technique and compare it with a classical method
in Allen-Zhu and Orecchia (2014) that uses Nesterov’s mo-
mentum. To simplify explanation, consider the special case
∥ · ∥H = ∥ · ∥2, w(·) = 1

2∥ · ∥
2
2, steps 7, 10, 11 of Algorithm

1 are:
vk+1 = τ1zk + τ2ṽ + (1 − τ1 − τ2)yk; yk+1 =

vk+1 − 1
3L∇̃k+1; zk+1 = zk − α∇̃k+1,

whereE∇̃k+1 = ∇ϕ(vk+1). On the other hand, the method
in Allen-Zhu and Orecchia (2014) updates as

vk+1 = τ1zk + (1 − τ1)yk; yk+1 = vk+1 −
1
L∇ϕ(vk+1); zk+1 = zk − α∇ϕ(vk+1).

The two updating schemes both have a “gradient descent”
step in yk+1 and “momentum” term zk+1 that accumulates
the gradient history; the difference is in vk+1: the classical
method takes a weighted average of zk and yk (that is, Nes-
terov’s momentum), while Katyusha acceleration has one
more term ṽ (which is called Katyusha momentum (Allen-
Zhu, 2017)). Such Katyusha momentum serves as a “magnet”
to retract the estimation to ṽ, which is the average of past
l estimates. Since our algorithm is a stochastic algorithm,
such a “magnet” helps the algorithm to stabilize. Thus, the
Katyusha acceleration works well.

We prove the convergence rate of the PDASMD algorithm
as follows:

Theorem 1. Under Assumption 1, we apply Algorithm 1 to
solve problem (3). Choose a mirror function w(·) that is 1-
strongly convex and γ-smooth w.r.t. ∥ ·∥H norm. Denote the
primal and dual optimal solution as x∗ and λ∗, respectively.
Assume that ∥λ∗∥H ≤ R. We have the convergence of the
algorithm as follows:

∥E[b−AxS−1]∥H,∗ ≤
2

S2l

[
lL̄R+ 18L̄Rγ

]
, (6)

f(E(xS−1))− f(x∗) ≤ 2

S2l

[
lL̄R2 + 18L̄R2γ

]
. (7)

The proof of the theorem is deferred to Appendix B.

2.3 Applying to Optimal Transport

In this section, we give the detailed procedure of applying
PDASMD to get an approximation solution to the OT. Es-
pecially, we consider two cases: in the first case, we use
∥ · ∥H = ∥ · ∥2 and PDASMD reduce to PDASGD; in the
second case, we use ∥ · ∥H = ∥ · ∥∞ and prove an improved
computational complexity over the first case. For the latter
case, our algorithm achieves the best possible rate in the
current literature. Our algorithm improves the rate of the
first-order algorithms for solving entropic OT.

We apply the PDASMD algorithm to solve the entropic OT
(2) as follows. Since problem (2) a special case of problem
(3), we plug A, b, f(·) into the general dual formula (4) to
get the dual problem of problem (2). With a little abuse
of notation, we split the dual variables as (τT ,λT)T for
τ ,λ ∈ Rn. The dual problem of problem (2) is:

ϕ(τ ,λ) = η⟨1n2 ,x(τ ,λ)⟩ − ⟨p′, τ ⟩ − ⟨q′,λ⟩, (8)

where the relationship between primal-dual variables is

x(τ ,λ) = exp

(
AT (τT ,λT)T −Vec(C)− η1n2

η

)
.

(9)
Moreover, to get a dual with the finite-sum structure, we
follow Genevay et al. (2016) to transfer the dual objective to
semi-dual by fixing λ and solving the first-order condition

Improved Rate of First Order Algorithms for Entropic Optimal Transport

w.r.t. τ in objective (8). This gives us the relationship
between the dual variables:

τi(λ) = η log p′i − η log

 n∑
j=1

exp((λj − Ci,j − η)/η)

 .

Plugging the relationship above into the dual objective (8)
gives us the semi-dual objective. With a little abuse of
notation, we denote the semi-dual objective function as
ϕ(λ), which is:

ϕ(λ) = −⟨q′,λ⟩ − η
n∑

i=1

p′i log p
′
i

+ η

n∑
i=1

log

 n∑
j=1

exp((λj − Ci,j − η)/η)

+ η

=
1

n

n∑
i=1

np′i

[
− ⟨q′,λ⟩ − η log p′i

+ η log

 n∑
j=1

exp((λj − Ci,j − η)/η)

+ η

]

:=
1

n

n∑
i=1

ϕi(λ). (10)

It is easy to check that each ϕi(λ) is convex. To apply our
algorithm, we further check the smoothness of ϕi(λ) in the
following lemma:

Lemma 1. ϕi(·) in the semi-dual objective (10) is np′
i

η

smooth w.r.t. ∥ · ∥2 norm, and is 5np′
i

η smooth w.r.t. ∥ · ∥∞
norm.

Lemma 1 is proved in Appendix C. By Lemma 1, we can
calculate the parameter in PDASMD Algorithm 1 as L̄ =
1/η for ∥·∥H = ∥·∥2, and L̄ = 5/η for ∥·∥H = ∥·∥∞. For
these two cases, we can apply Algorithm 1 to approximate
problem (2). We further round the approximating solution
of problem (2) to feasible region of problem (1). In this way,
we get an ϵ−solution to problem (1). The full procedure
is deferred to Appendix D due to page limit. We state
the computational complexity of the full procedure in the
following theorem:

Theorem 2. Set l = Θ(n) in the PDASMD algorithm, the
overall number of arithmetic operations for finding a solu-
tion X̂ such that E⟨C, X̂⟩ ≤ ⟨C,X∗⟩+ ϵ is

• Õ
(

n2.5∥C∥∞(1+
√

γ/n)

ϵ

)
for ∥ · ∥H = ∥ · ∥2;

• Õ
(

n2∥C∥∞(1+
√

γ/n)

ϵ

)
for ∥ · ∥H = ∥ · ∥∞.

The proof of Theorem 2 is in Appendix D.

Remark 4. The complexities still depend on γ, the smooth-
ness of w(·) w.r.t. ∥ · ∥H . For example, when taking
w(·) = 1

2∥·∥
2
2, we have γ = 1 for ∥·∥H = ∥·∥2, and γ = n

for ∥ · ∥H = ∥ · ∥∞. The corresponding computational com-

plexity is then Õ
(

n2.5∥C∥∞
ϵ

)
and Õ

(
n2∥C∥∞

ϵ

)
. Now for

∥ · ∥H = ∥ · ∥∞, as long as we choose a proper w(·) such

that γ = O(n), the rate Õ
(

n2∥C∥∞
ϵ

)
is achieved. One

may further improve the rate by a constant by improving
the dependency of γ on n. Such improvement is an open
question in optimization; though we make no effort to do it
in this paper, we still note this opportunity.

Remark 5. If we choose w(·) = 1
2∥ · ∥

2
2, we have closed-

form solutions for each step of PDASMD.

• For both settings, step 10 of PDASMD algorithm becomes
zk+1 = zk − αs∇̃k+1;

• For ∥ · ∥H = ∥ · ∥2, step 11 of PDASMD is yk+1 =

vk+1 − 1
9L̄

∇̃k+1;
• For ∥·∥H = ∥·∥∞, step 11 of PDASMD becomes yk+1 =

vk+1 − ∥∇̃k+1∥1

9L̄
sign(∇̃k+1).

It is clear that in both settings, each step of PDASMD is
defined by simple arithmetic operations and thus is easy
to implement. There is no gap between our theory and
practice.

2.4 Computational Complexity of the Stochastic
Sinkhorn

In this section, we prove that the computational complexity
of the Stochastic Sinkhorn for finding an ϵ-solution to OT
is Õ(n

2

ϵ2), which is improved over the known rate of Õ(n
2

ϵ3)
(Abid and Gower, 2018) and matches the state-of-the-art rate
of Sinkhorn and Greenkhorn (Dvurechensky et al., 2018;
Lin et al., 2019). Moreover, our PDASMD algorithm beats
the provable rate of Stochastic Sinkhorn. This illustrates the
advantage of our PDASMD algorithm.

The Stochastic Sinkhorn algorithm is proposed by Abid and
Gower (2018). One can check Appendix E for a full algo-
rithm description. We show the computational complexity
of Stochastic Sinkhorn as follows:

Theorem 3. Stochastic Sinkhorn finds a solution X̂ such
that E⟨C, X̂⟩ ≤ ⟨C,X∗⟩+ ϵ in

O
(
n2∥C∥2∞ log n

ϵ2

)

arithmetic operations.

The proof of Theorem 3 is in Appendix E.

Yiling Luo, Yiling Xie, Xiaoming Huo

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1: Computational complexity comparison of different algorithms for finding an ϵ-solution of OT. The logarithmic of
the total number of numerical operations to achieve a given ϵ approximation error is plotted against either the logarithmic
transform of the sample size n in the PDASMD algorithm (rows 1 and 3) or the batch size in the PDASMD-B algorithm
(rows 2 and 4). The first two rows use synthetic data, and the last two are for the MNIST data. The relevant discussion can
be seen in Section 4 Numerical Studies. The error bars in all the plots come from repeating the experiment using 5 pairs of
randomly generated/chosen marginals.

Improved Rate of First Order Algorithms for Entropic Optimal Transport

3 PDASMD WITH BATCH
IMPLEMENTATION (PDASMD-B)

In this section, we propose a batch version of PDASMD,
namely the PDASMD-B algorithm. The batch implemen-
tation of the stochastic step in PDASMD-B allows parallel
computing. This further improves the computational power
of our algorithm.

Algorithm 2: Batch PDASMD (PDVRASMD-B)
1: Initialize l the number of inner iterations, B the batch

size; set τ2 ← 1
2B , C0 = D0 = 0,

y0 = z0 = ṽ0 = v0 = 0; choose a mirror function
w(·) that is 1-strongly convex and γ-smooth w.r.t.
∥ · ∥H , and denote by Vx(y) the Bregman divergence
generated by w(·); take L̄ = (

∑m
i=1 Li)/m, where Li

is the smoothness (w.r.t. ∥ · ∥H) for each component ϕi
of the dual function ϕ(·) in Assumption 1.

2: for s = 0,. . . ,S-1 do
3: τ1,s ← 2/(s+ 4); αs ← 1/(9τ1,sL̄);
4: µs ← ∇ϕ(ṽs).
5: for j = 0 to l − 1 do
6: k ← (sl) + j;
7: vk+1 ← τ1,szk + τ2ṽ

s + (1− τ1,s − τ2)yk;
8: Pick B samples independently from

{1, 2, . . . ,m} with replacement, where sample i
is picked with probability pi = Li/mL̄; denote
the sampled index set as I;

9: ∇̃k+1 ←
µs + 1

B

∑
i∈I

1
mpi

(∇ϕi(vk+1)−∇ϕi(ṽs));

10: zk+1 = argminz{ 1
αs
Vzk

(z) + ⟨∇̃k+1, z⟩};
11: yk+1 =

argminy{ 9L̄2 ∥y − vk+1∥2H + ⟨∇̃k+1,y⟩}.
12: end for

13: ṽs+1 ← 1
l

l∑
j=1

ysl+j ;

14: Cs ← Cs +
1

τ1,s
;

15: Pick ỹs uniform randomly from {ysl+j}lj=1, update
Ds ← Ds +

1
τ1,s

x(ỹs), where x(·) is given by
equation (5);

16: xs = Ds/Cs.
17: end for
18: Output: x̃ = xS−1.

We give PDASMD-B in Algorithm 2 and briefly explain it
as follows. As compared to the non-batch version PDASMD
in Algorithm 1, Step 8 of PDASMD-B now samples a small
batch of samples and calculates ∇̃k+1 based on the gradient
of this small batch. Other hyper-parameters in the algorithm
are changed accordingly to ensure convergence.

We apply PDASMD-B to solve OT. The main steps are
the same as those in Subsection 2.3; thus, we omit the
details. To compute the computational complexity for giving

an ϵ-solution to OT, one needs the convergence result of
PDASMD-B, which we include in Appendix F. And the
computational complexity for solving OT is stated in the
following corollary.

Corollary 1. Run PDASMD-B with batch size B, ∥ · ∥H =
∥ · ∥∞ and inner loop size l = n/B (assume w.l.o.g. that l
is an integer), the overall number of arithmetic operations
to find a solution X̂ such that E⟨C, X̂⟩ ≤ ⟨C,X∗⟩+ ϵ is

Õ

(
n2∥C∥∞

√
1/B +Bγ/n

ϵ

)
.

Remark 6. Corollary 1 shows the speed-up of PDASMD-B
from parallel computing. We analyzed the speed-up for two
cases of γ as follows. The first case is similar to the one in
Remark 4: taking w(·) = 1

2∥ · ∥
2
2, then we have γ = n. This

gives us the total computation of Õ
(

n2∥C∥∞
√
B

ϵ

)
, which is

√
B times that of non-batch version. There are B batches

of parallel computation, so if we ignore the communication
time, our batch algorithm enjoys a sublinear speed-up of
O(
√
B). The second case assumes one can further improve

the rate γ ∼ O(n) to γ ∼ O(
√
n). Then for B ≤

√
n,

the number of total computations does not increase with B,
which indicates a linear speed-up of O(B) using parallel
computing. Though such an improvement in γ is still an
open question in optimization, this implies a potentially
huge advantage of the batch algorithm.

4 NUMERICAL STUDIES

In this section, we discuss the result of our numerical stud-
ies. The goals of our experiment are to check our theoretical
computational complexity of the PDASMD algorithm w.r.t.
the marginal size n in Theorem 2, and to check the theoreti-
cal computational complexity of the PDASMD-B algorithm
w.r.t. the batch size B in Corollary 1. We use both synthetic
and real grey-scale images 2 as the marginal distribution for
our experiment. Due to the page limit, our data description
and algorithm implementation are deferred to Appendix
G. We have more applications of our algorithm, including
domain adaptation and color transfer, in Appendix H.

Our experiment results are given in Figure 1. We now
explain the plots and summarize the results from the plots
as follows.

Figures 1(a), 1(b), 1(e) and 1(f) check the computational
complexity of PDASMD on the marginal size n. In our
experiment, we run PDASMD with w(·) = 1

2∥ · ∥
2
2 and

∥ · ∥H = ∥ · ∥∞. By Theorem 2, for this case, when fixing
the accuracy level ϵ, we should have the computational
complexity ∼ O(n2). That is, fixing a ϵ and plotting the
logarithm of computation count versus the logarithm of n,
we expect to see a line with slope 2. Figures 1(a), 1(b)

2The MNIST dataset (LeCun, 1998).

Yiling Luo, Yiling Xie, Xiaoming Huo

(using synthetic data as marginals) and Figures 1(e) and 1(f)
(using real data as marginals) have the lines corresponding
to the PDASMD algorithm have slopes that are close to 2,
which supports our theoretical rate.

In Figures 1(a), 1(b), 1(e) and 1(f) we also include lines that
correspond to other state-of-the-art algorithms. The goal
is to compare the practical performance of the PDASMD
algorithm with deterministic algorithms (Figures 1(a) and
1(e)) and other stochastic algorithms (Figure 1(b) and 1(f)).
We conclude from the plots that the total computation num-
bers of the AAM, Sinkhorn and Stochastic Sinkhorn are less
than that of the PDASMD, which illustrates the practical
advantage of those algorithms. However, such an observa-
tion does not disqualify our PDASMD algorithm since we
still have a provable complexity that is better than those al-
gorithms. Inspired by such an observation, one may further
improve the PDASMD in practice. One possible way is to
combine the PDASMD algorithm with the Sinkhorn to take
advantage of the better theoretical rate of PDASMD and the
good empirical performance of the Sinkhorn.

Figures 1(c) and 1(g) check the computational complexity of
PDASMD-B on the batch size B. We fix the accuracy level
ϵ and run PDASMD-B with w(·) = 1

2∥ · ∥
2
2. By Corollary

1, for a given marginal size n, we have the number of total
computation ∼ O(

√
B). Thus, when plotting the logarithm

of computation count versus the logarithm of B, we should
get a line with slope 0.5. In Figures 1(c) (using synthetic
data as marginals) and 1(g) (using real data as marginals),
we see that for different marginal size n, the slopes are all
close to .5. Such an observation matches our theory.

With such computational complexity of PDASMD-B on the
batch size B, if we can fully parallelize, the running time
of PDASMD-B should be ∼ O(B−0.5). To check this, we
plot the logarithm of running time versus the logarithm of
B in Figures 1(d) and 1(h). The lines fail to have slope
−0.5. This is not surprising to see in practice because
of the commutation time and limit in the computational
resource. But from the plots, we can still benefit from
the batch algorithm: when the batch size is not too large
(<= exp(2.5)), the running time decreases as the batch size
increases. This illustrates the usefulness of the batch version
algorithm in practice.

To summarize, our computational complexity of PDASMD
on n and PDASMD-B on B are supported by numerical
studies.

5 DISCUSSION AND FUTURE STUDIES

This paper proposes a new first-order algorithm for solving
entropic OT. We call our algorithm the PDASMD algorithm.
We prove that our algorithm finds an ϵ-solution to OT us-
ing Õ(n2/ϵ) arithmetic operations. Such a rate improves
the previously state-of-the-art rate of Õ(n2.5/ϵ) among the

first-order algorithms applied to entropic OT. We perform
numerical studies, and the results match our theory.

We discuss some future directions for improving the com-
putational efficiency of OT.

One direction is to revisit other first-order algorithms that are
proved to have Õ(n2.5/ϵ) computational complexity, and
see if they can be improved to Õ(n2/ϵ). Some algorithms
show the Õ(n2/ϵ) rate in practice, but there is no proof for
such a rate. The techniques in our paper may inspire proper
modifications to those algorithms to get a better provable
rate. In this way, one may further prove a computational
complexity better than that of the PDASMD algorithm by a
constant.

Another direction is to combine our algorithm with iterative
projection-based algorithms such as the Sinkhorn. This di-
rection is motivated by the Accelerated Sinkhorn algorithm
in Lin et al. (2022), which updates the dual variables of
entropic OT by Nesterov’s estimate sequence (for accelera-
tion) and two Sinkhorn steps. Now our PDASMD algorithm
also uses an acceleration technique (Katyusha momentum),
it would be interesting to analyze a stochastic Accelerated
Sinkhorn by replacing its Nesterov’s estimate sequence with
the Katyusha momentum.

The third direction is to improve the batch version of our
PDASMD algorithm. Our batch-version algorithm has a
sub-linear speed-up when fully parallelized and ignores the
communication time. In such a setting, one may expect
an optimally designed batch algorithm to speed up linearly.
That is, the total number of computations does not scale
up with the batch size, and the computing time is 1/B that
of the non-batch version when the batch size is B. If one
can improve our batch version algorithm to achieve a linear
speed-up, the computational advantage will be huge.

Besides computing for OT, the broader applications of our
PDASMD algorithm are also interesting. Our PDASMD
algorithm can be applied to a linear constrained strongly
convex problem as long as its dual is of a finite-sum form.
This motivates one to apply our algorithm to solve other
problems such as the unbalanced OT (Pham et al., 2020)
and the Wasserstein barycenter (Cuturi and Doucet, 2014)
for better computational complexity.

Acknowledgements

This research is supported by the National Science Founda-
tion under Grant No.CCF-1740776 and No.DMS-2015363.

References

Abid, B. K. and Gower, R. (2018). Stochastic Algorithms
for Entropy-Regularized Optimal Transport Problems. In
International Conference on Artificial Intelligence and
Statistics, pages 1505–1512. PMLR.

Improved Rate of First Order Algorithms for Entropic Optimal Transport

Allen-Zhu, Z. (2017). Katyusha: The First Direct Accel-
eration of Stochastic Gradient Methods. The Journal of
Machine Learning Research, 18(1):8194–8244.

Allen-Zhu, Z. and Orecchia, L. (2014). Linear coupling: An
ultimate unification of gradient and mirror descent. arXiv
preprint arXiv:1407.1537.

Altschuler, J., Weed, J., and Rigollet, P. (2017). Near-Linear
Time Approximation Algorithms for Optimal Transport
via Sinkhorn Iteration. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing
Systems, pages 1961–1971.

Blanchet, J., Jambulapati, A., Kent, C., and Sidford, A.
(2018). Towards Optimal Running Times for Optimal
Transport. arXiv preprint arXiv:1810.07717.

Chambolle, A. and Contreras, J. P. (2022). Accelerated
Bregman Primal-Dual methods applied to Optimal Trans-
port and Wasserstein Barycenter problems. arXiv preprint
arXiv:2203.00802.

Courty, N., Flamary, R., Tuia, D., and Rakotomamonjy, A.
(2015). Optimal transport for domain adaptation. arXiv
preprint arXiv:1507.00504.

Cuturi, M. (2013). Sinkhorn Distances: Lightspeed Compu-
tation of Optimal Transport. In Burges, C. J. C., Bottou,
L., Welling, M., Ghahramani, Z., and Weinberger, K. Q.,
editors, Advances in Neural Information Processing Sys-
tems, volume 26. Curran Associates, Inc.

Cuturi, M. and Doucet, A. (2014). Fast computation of
Wasserstein barycenters. In International conference on
machine learning, pages 685–693. PMLR.

Dvurechensky, P., Gasnikov, A., and Kroshnin, A. (2018).
Computational Optimal Transport: Complexity by Ac-
celerated Gradient Descent Is Better Than by Sinkhorn’s
Algorithm. In 35th International Conference on Machine
Learning, ICML 2018, pages 2196–2220.

Ferradans, S., Papadakis, N., Peyré, G., and Aujol, J.-F.
(2014). Regularized discrete optimal transport. SIAM
Journal on Imaging Sciences, 7(3):1853–1882.

Genevay, A., Cuturi, M., Peyré, G., and Bach, F. (2016).
Stochastic Optimization for Large-Scale Optimal Trans-
port. In NIPS 2016-Thirtieth Annual Conference on Neu-
ral Information Processing System.

Guminov, S., Dvurechensky, P., Tupitsa, N., and Gasnikov,
A. (2021). On a Combination of Alternating Minimiza-
tion and Nesterov’s Momentum. In Meila, M. and Zhang,
T., editors, Proceedings of the 38th International Confer-
ence on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pages 3886–3898. PMLR.

Guo, W., Ho, N., and Jordan, M. (2020). Fast Algorithms
for Computational Optimal Transport and Wasserstein
Barycenter. In Chiappa, S. and Calandra, R., editors,
Proceedings of the Twenty Third International Conference
on Artificial Intelligence and Statistics, volume 108 of

Proceedings of Machine Learning Research, pages 2088–
2097. PMLR.

Jambulapati, A., Sidford, A., and Tian, K. (2019). A Direct
Õ(1/ϵ) Iteration Parallel Algorithm for Optimal Trans-
port. In Wallach, H., Larochelle, H., Beygelzimer, A.,
d'Alché-Buc, F., Fox, E., and Garnett, R., editors, Ad-
vances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc.

Kantorovich, L. V. (1942). On the Translocation of Masses.
In Dokl. Akad. Nauk. USSR (NS), volume 37, pages 199–
201.

Lahn, N., Mulchandani, D., and Raghvendra, S. (2019). A
graph theoretic additive approximation of optimal trans-
port. Advances in Neural Information Processing Systems,
32.

LeCun, Y. (1998). The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/.

Lin, T., Ho, N., and Jordan, M. (2019). On Efficient Optimal
Transport: An Analysis of Greedy and Accelerated Mirror
Descent Algorithms. In International Conference on
Machine Learning, pages 3982–3991. PMLR.

Lin, T., Ho, N., and Jordan, M. I. (2022). On the efficiency
of entropic regularized algorithms for optimal transport.
Journal of Machine Learning Research, 23(137):1–42.

Mishchenko, K. (2019). Sinkhorn Algorithm as a Spe-
cial Case of Stochastic Mirror Descent. arXiv preprint
arXiv:1909.06918.

Monge, G. (1781). Mémoire sur la Théorie des Déblais
et des Remblais. Histoire de l’Académie Royale des
Sciences de Paris.

Nemirovskii, A. and Yudin, D. (1983). Problem Complex-
ity and Method Efficiency in Optimization. A Wiley-
Interscience publication. Wiley.

Nesterov, Y. (2003). Introductory Lectures on Convex Opti-
mization: A Basic Course, volume 87. Springer Science
& Business Media.

Nesterov, Y. (2005). Smooth Minimization of Non-Smooth
Functions. Mathematical programming, 103(1):127–152.

Pham, K., Le, K., Ho, N., Pham, T., and Bui, H. (2020). On
unbalanced optimal transport: An analysis of sinkhorn al-
gorithm. In International Conference on Machine Learn-
ing, pages 7673–7682. PMLR.

Quanrud, K. (2018). Approximating Optimal Transport
With Linear Programs. In Fineman, J. T. and Mitzen-
macher, M., editors, 2nd Symposium on Simplicity in
Algorithms (SOSA 2019), volume 69 of OpenAccess Se-
ries in Informatics (OASIcs), pages 6:1–6:9, Dagstuhl,
Germany. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik.

Rabin, J., Ferradans, S., and Papadakis, N. (2014). Adap-
tive color transfer with relaxed optimal transport. In

Yiling Luo, Yiling Xie, Xiaoming Huo

2014 IEEE international conference on image processing
(ICIP), pages 4852–4856. IEEE.

Villani, C. (2009). Optimal Transport: Old and New, vol-
ume 338. Springer.

Xie, Y., Luo, Y., and Huo, X. (2022). An Accelerated
Stochastic Algorithm for Solving the Optimal Transport
Problem. arXiv preprint arXiv:2203.00813.

Improved Rate of First Order Algorithms for Entropic Optimal Transport

Improved Rate of First Order Algorithms for Entropic Optimal Transport:
Supplementary Materials

A Proximal Mirror Descent

In this section, we review the technique of stochastic proximal mirror descent.

Let us start with the objective function:

min
x
F (x) :=

1

n

n∑
i=1

fi(x). (11)

A popular way to minimize problem (11) is the Stochastic Gradient Descent (SGD). At time t, the SGD algorithm randomly
samples it from {1, . . . , n} and updates as:

xt+1 = xt − bt∇fit(xt), (12)

where bt is the step size. Note that formula (12) is essentially the solution to the following ℓ2 penalized problem:

xt+1 = argmin
x

{
⟨x,∇fit(xt)⟩+

1

2bt
∥x− xt∥22

}
. (13)

The proximal/mirror descent is proposed by Nemirovskii and Yudin (1983), where they generalize the SGD by replacing the
∥ · ∥22 term in problem (13) by some proximity function. There are two popular choices of proximity functions, and they
lead to stochastic proximal and mirror descent, respectively. In this paper, we use stochastic proximal mirror descent to
represent both cases.

The choice of proximity function that leads to stochastic proximal gradient descent is the square of an arbitrary norm ∥ · ∥H
(as compared to the ∥ · ∥2 norm in problem (13)). This results in the update

xt+1 = argmin
x

{
⟨x,∇fit(xt)⟩+

1

2bt
∥x− xt∥2H

}
. (14)

The choice of proximity function that gives stochastic mirror descent is the Bregman divergence. Recall that for a mirror
map w(·), the Bregman divergence is

Vx(y) := w(y)− w(x)− ⟨∇w(x),y − x⟩.

The stochastic mirror descent then updates as:

xt+1 = argmin
x

{
⟨x,∇fit(xt)⟩+

1

2bt
Vxt(x)

}
. (15)

Note that the popular KL-divergence KL(x||x′) :=
∑

i xi log(xi/x
′
i) −

∑
i xi +

∑
i x

′
i is a special case of Bregman

divergence by choosing w to be the negative entropy w(x) =
∑

i xi log xi.

Recall that the objective is to solve the (entropic) OT, so we explain why the proximal mirror algorithm might be suitable for
optimizing the entropic OT compared with the SGD.

First, the objective function of entropic OT coincides with the proximal mirror descent formulation in that each step of
proximal mirror descent minimizes an inner product term plus a divergence term other than the ℓ2 norm. In this way, the
proximal mirror descent may help to prove a faster convergence when solving OT.

Yiling Luo, Yiling Xie, Xiaoming Huo

Second, it is pointed out that the popular Sinkhorn algorithm to solve entropic OT can be interpreted as a special case of the
stochastic proximal mirror descent algorithm (Mishchenko, 2019). We briefly summarize their statement as follows. The
Sinkhorn algorithm iteratively updates the dual variables u,v of problem (2) by:

uk+1 = uk + logp′ − log(X(uk,vk)1),vk+1 = vk, (16)

and
uk+1 = uk,vk+1 = vk + logq′ − log(X(uk,vk)T1), (17)

where the relationship between the primal-dual variables is

X(u,v) = diag(exp(u)) exp(−C/η)diag(exp(v)).

Notice that the dual variables u,v are equivalent to the dual variables λ, τ we use in formulation (9) plus constants.

To interpret Sinkhorn as a Stochastic Mirror Descent, one considers the objective function:

min
X∈Rn×n

f(X) :=
1

2
(f1(X) + f2(X)) (18)

f1(X) = KL(X1||p′), f2(X) = KL(XT1||q′). (19)

Now the objective function is a finite-sum of two functions: f1(·) and f2(·), then we can run SMD on it. Suppose that the
SMD is initialized at X0 = exp(−C/η), choose the step size η = 1 and mirror map w(X) =

∑
i,j Xi,j(logXi,j − 1).

When the first sample is used (i.e. the sub-gradient of f1 is used), SMD updates as

∇w(Xk+1) = ∇w(Xk)−∇f1(Xk).

One can check that it is exactly equivalent to one step Sinkhorn update in u as step (16). Similarly, SMD using f2 is
equivalent to one step Sinkhorn update in v as step (17).

From the above, the Sinkhorn is a special case of SMD, which suggests that mirror-based algorithms may be proper for
solving the entropic OT. Given the success of the Sinkhorn algorithm, it would be interesting to discover more general
stochastic proximal mirror descent algorithms and study their performance for solving OT.

B Proof for Theorem 1

To prove Theorem 1, the following lemmas are established:

Lemma 2 (Coupling step 1). Consider one inner loop of Algorithm 1, where the randomness only comes from the choice of
i. It satisfies that for ∀u:

αs⟨∇ϕ(vk+1), zk − u⟩

≤ αs

τ1,s
{ϕ(vk+1)− E[ϕ(yk+1)] + τ2ϕ(ṽ

s)− τ2ϕ(vk+1)− τ2⟨∇ϕ(vk+1), ṽ
s − vk−1⟩}

+ Vzk(u)− E[Vzk+1
(u)].

Proof. Note that the inner loop of Algorithm 1 is the same as Algorithm 5 in Allen-Zhu (2017). We can take F (·) = f(·) =
ϕ(·), ψ(·) = 0 and σ = 0 in Lemma E.4. of Allen-Zhu (2017) to get:

αs⟨∇ϕ(vk+1), zk − u⟩

≤ αs

τ1,s
{ϕ(vk+1)− E[ϕ(yk+1)] + τ2ϕ(ṽ

s)− τ2ϕ(vk+1)− τ2⟨∇ϕ(vk+1), ṽ
s − vk−1⟩}

+ Vzk(u)− E[Vzk+1
(u)].

We also provide full proof as follows for a better understanding of the algorithm. Abbreviate ṽ = ṽs, α = αs, τ1 = τ1,s,
and denote σ2

k+1 = ∥∇ϕ(vk+1)− ∇̃k+1∥H,∗, Prog(vk+1) := −miny{ 9L̄2 ∥y − vk+1∥2H + ⟨∇̃k+1, y − vk+1⟩}. We claim
the following bounds hold, which we will prove later:

ϕ(vk+1)− E[ϕ(yk+1)] ≥ E[Prog(vk+1)]−
1

16L̄
E[σ2

k+1], (20)

Improved Rate of First Order Algorithms for Entropic Optimal Transport

E[∥∇̃k+1 −∇ϕ(vk+1)∥2H,∗] ≤ 8L̄(ϕ(ṽ)− ϕ(vk+1)− ⟨∇ϕ(vk+1), ṽ − vk+1⟩), (21)

α⟨∇̃k+1, zk+1 − u⟩ ≤ −
1

2
∥zk − zk+1∥2H + Vzk(u)− Vzk+1

(u),∀u. (22)

Then we have:

α⟨∇̃k+1, zk − u⟩

= α⟨∇̃k+1, zk − zk+1⟩+ α⟨∇̃k+1, zk+1 − u⟩
(22)
≤ α⟨∇̃k+1, zk − zk+1⟩ −

1

2
∥zk − zk+1∥2H + Vzk(u)− Vzk+1

(u). (23)

Let w = τ1zk+1 + τ2ṽ + (1− τ1 − τ2)yk, then vk+1 − w = τ1(zk − zk+1), and

E

[
α⟨∇̃k+1, zk − zk+1⟩ −

1

2
∥zk − zk+1∥2H

]
=E

[
α

τ1

(
⟨∇̃k+1, vk+1 − w⟩ −

1

2ατ1
∥vk+1 − w∥2H

)]
=E

[
α

τ1

(
⟨∇̃k+1, vk+1 − w⟩ −

9L̄

2
∥vk+1 − w∥2H

)]
(20)
≤E

[
α

τ1

(
ϕ(vk+1)− ϕ(yk+1) +

1

16L̄
σ2
k+1

)]
(21)
≤E

[
α

τ1

(
ϕ(vk+1)− ϕ(yk+1) +

1

2
(ϕ(ṽ)− ϕ(vk+1)− ⟨∇ϕ(vk+1), ṽ − vk+1⟩)

)]
. (24)

Take expectation on both sides of inequality (23) and plug in (24), we have the lemma claim.

It remains to check inequalities (20), (21) and (22), which we do as follows.

For inequality (20):

Prog(vk+1)

= −min
y
{9L̄
2
∥y − vk+1∥2H + ⟨∇̃k+1, y − vk+1⟩}

= −
(
9L̄

2
∥yk+1 − vk+1∥2H + ⟨∇̃k+1, yk+1 − vk+1⟩

)
= −

(
L̄

2
∥yk+1 − vk+1∥2H + ⟨∇ϕ(vk+1), yk+1 − vk+1⟩

)
+
(
⟨∇ϕ(vk+1)− ∇̃k+1, yk+1 − vk+1⟩ − 4L̄∥yk+1 − vk+1∥2H

)
≤ −(ϕ(yk+1)− ϕ(vk+1)) +

(
⟨∇ϕ(vk+1)− ∇̃k+1, yk+1 − vk+1⟩ − 4L̄∥yk+1 − vk+1∥2H

)
(25)

≤ −(ϕ(yk+1)− ϕ(vk+1)) +
1

16L̄
∥∇ϕ(vk+1)− ∇̃k+1∥2H,∗, (26)

where inequality (25) comes from the smoothness of ϕ, and inequality (26) uses the Young’s inequality ⟨a, b⟩ − 1
2∥b∥

2
H ≤

1
2∥a∥

2
H,∗. Take expectation on both sides and rearrange the terms we have inequality (20).

For inequality (21): Since each ϕi(·) is convex and Li- smooth, by Theorem 2.1.5 in Nesterov (2003), we have

∥∇ϕi(vk+1)−∇ϕi(ṽ)∥2H,∗ ≤ 2Li[ϕi(ṽ)− ϕi(vk+1)− ⟨∇ϕi(vk+1), ṽ − vk+1⟩]. (27)

Yiling Luo, Yiling Xie, Xiaoming Huo

Thus

E[∥∇̃k+1 −∇ϕ(vk+1)∥2H,∗]

=Ei

[∥∥∥∥ 1

mpi
(∇ϕi(vk+1)−∇ϕi(ṽ))− (∇ϕ(vk+1)−∇ϕ(ṽ))

∥∥∥∥2
H,∗

]

≤2Ei

[
1

m2p2i
∥(∇ϕi(vk+1)−∇ϕi(ṽ)∥2H,∗

]
+ 2∥∇ϕ(vk+1)−∇ϕ(ṽ))∥2H,∗

(27)
≤ 4Ei

[
Li

m2p2i
(ϕi(ṽ)− ϕi(vk+1)− ⟨∇ϕi(vk+1), ṽ − vk+1⟩)

]
+ 2∥∇ϕ(vk+1)−∇ϕ(ṽ))∥2H,∗

=4L̄ (ϕ(ṽ)− ϕ(vk+1)− ⟨∇ϕ(vk+1), ṽ − vk+1⟩) + 2∥∇ϕ(vk+1)−∇ϕ(ṽ))∥2H,∗
(27)
≤ 8L̄ (ϕ(ṽ)− ϕ(vk+1)− ⟨∇ϕ(vk+1), ṽ − vk+1⟩) . (28)

For inequality (22): By definition of zk+1, we have

∇Vzk(zk+1) + α∇̃k+1 = 0,

then

⟨∇Vzk(zk+1) + α∇̃k+1, zk+1 − u⟩ = 0,∀u. (29)

One has the “three-point equality of Bregman divergence" that

⟨∇Vzk(zk+1), zk+1 − u⟩ = Vzk(zk+1)− Vzk(u) + Vzk+1
(u). (30)

We can check

α⟨∇̃k+1, zk+1 − u⟩
(29)
= − ⟨∇Vzk(zk+1), zk+1 − u⟩

(30)
= − Vzk(zk+1) + Vzk(u)− Vzk+1

(u)

≤− 1

2
∥zk − zk+1∥2H + Vzk(u)− Vzk+1

(u), (31)

where the inequality comes from the strong convexity of the mirror function w(·).

Lemma 3 (Coupling step 2). Using the Lemma 2, we further have

αs⟨∇ϕ(vk+1), vk+1 − u⟩

≤αsϕ(vk+1) +
αs(1− τ1,s − τ2)

τ1,s
ϕ(yk) +

αs

τ1,s
(τ2ϕ(ṽ

s)− E[ϕ(yk+1)]) + Vzk(u)− E[Vzk+1
(u)].

Proof. First compute that

αs⟨∇ϕ(vk+1), vk+1 − u⟩ = αs⟨∇ϕ(vk+1), vk+1 − zk⟩+ αs⟨∇ϕ(vk+1), zk − u⟩

=
αsτ2
τ1,s
⟨∇ϕ(vk+1), ṽ

s − vk+1⟩+
αs(1− τ1,s − τ2)

τ1,s
⟨∇ϕ(vk+1), yk − vk+1⟩

+ αs⟨∇ϕ(vk+1), zk − u⟩

≤αsτ2
τ1,s
⟨∇ϕ(vk+1), ṽ

s − vk+1⟩+
αs(1− τ1,s − τ2)

τ1,s
(ϕ(yk)− ϕ(vk+1)) + αs⟨∇ϕ(vk+1), zk − u⟩,

where the second equality by the updating rule vk+1 = τ1,szk + τ2ṽ
s + (1− τ1,s − τ2)yk, and the inequality by convexity

Improved Rate of First Order Algorithms for Entropic Optimal Transport

of ϕ. Next, we apply Lemma 2 to get

αs⟨∇ϕ(vk+1), vk+1 − u⟩

≤αsτ2
τ1,s
⟨∇ϕ(vk+1), ṽ

s − vk+1⟩+
αs(1− τ1,s − τ2)

τ1,s
(ϕ(yk)− ϕ(vk+1))

+
αs

τ1,s
(ϕ(vk+1)− E[ϕ(yk+1)] + τ2ϕ(ṽ

s)− τ2ϕ(vk+1)− τ2⟨∇ϕ(vk+1), ṽ
s − vk+1⟩)

+ Vzk(u)− E[Vzk+1
(u)]

=αsϕ(vk+1) +
αs(1− τ1,s − τ2)

τ1,s
ϕ(yk) +

αs

τ1,s
(τ2ϕ(ṽ

s)− E[ϕ(yk+1)]) + Vzk(u)− E[Vzk+1
(u)].

Lemma 4 (One outer loop). Consider the sth epoch, assume that all randomness in the first s− 1 epochs are fixed, we have

1

τ1,s

sl+l−1∑
k=sl

E⟨∇ϕ(vk+1), vk+1 − u⟩+
τ2

τ21,s+1

sl+l−2∑
k=sl

E(ϕ(yk+1)− ϕ∗)

+
1− τ1,s+1

τ21,s+1

E(ϕ(y(s+1)l)− ϕ∗)

≤ 1

τ1,s

sl+l−1∑
k=sl

E(ϕ(vk+1)− ϕ∗) +
1− τ1,s
τ21,s

E(ϕ(ysl)− ϕ∗) +
τ2
τ21,s

sl−2∑
k=sl−l

(ϕ(yk+1)− ϕ∗)

+ 9L̄(EVzsl(u)− EVz(s+1)l
(u)),

where ϕ∗ = minϕ(·).

Proof. Sum up the inequality in Lemma 3 for k = sl + j, j = 0, . . . , l − 1, we have:

αs

sl+l−1∑
k=sl

E⟨∇ϕ(vk+1), vk+1 − u⟩

≤
sl+l−1∑
k=sl

{
αsEϕ(vk+1) +

αs(1− τ1,s − τ2)
τ1,s

Eϕ(yk) +
αs

τ1,s
(τ2ϕ(ṽ

s)− E[ϕ(yk+1)])

+ EVzk(u)− E[Vzk+1
(u)]

}
=

sl+l−1∑
k=sl

{
αsEϕ(vk+1)−

αs(τ1,s + τ2)

τ1,s
Eϕ(yk+1)

}
+
αs(1− τ1,s − τ2)

τ1,s
[Eϕ(ysl)− Eϕ(y(s+1)l)] +

αsτ2l

τ1,s
ϕ(ṽs) + EVzsl(u)− E[Vz(s+1)l

(u)].

(32)

By convexity of ϕ, using Jensen’s inequality, we have 1
l

∑sl−1
k=sl−l ϕ(yk+1) ≥ ϕ(1l

∑sl−1
k=sl−l yk+1) = ϕ(ṽs). Thus

αs

sl+l−1∑
k=sl

E⟨∇ϕ(vk+1), vk+1 − u⟩+
αs(τ1,s + τ2)

τ1,s

sl+l−1∑
k=sl

Eϕ(yk+1)

≤αs

sl+l−1∑
k=sl

Eϕ(vk+1) +
αs(1− τ1,s − τ2)

τ1,s
[Eϕ(ysl)− Eϕ(y(s+1)l)] +

αsτ2
τ1,s

sl−1∑
k=sl−l

ϕ(yk+1)

+ EVzsl(u)− EVz(s+1)l
(u).

Yiling Luo, Yiling Xie, Xiaoming Huo

Recall that αs = 1/(9L̄τ1,s), we have

1

τ1,s

sl+l−1∑
k=sl

E⟨∇ϕ(vk+1), vk+1 − u⟩+
τ1,s + τ2
τ21,s

sl+l−1∑
k=sl

Eϕ(yk+1)

≤ 1

τ1,s

sl+l−1∑
k=sl

Eϕ(vk+1) +
1− τ1,s − τ2

τ21,s
[Eϕ(ysl)− Eϕ(y(s+1)l)] +

τ2
τ21,s

sl−1∑
k=sl−l

ϕ(yk+1)

+ 9L̄(EVzsl(u)− EVz(s+1)l
(u)).

Deducting ϕ∗ = minϕ(·) from both sides and rearranging terms, we get

1

τ1,s

sl+l−1∑
k=sl

E⟨∇ϕ(vk+1), vk+1 − u⟩+
τ1,s + τ2
τ21,s

sl+l−2∑
k=sl

E(ϕ(yk+1)− ϕ∗)

+
1

τ21,s
E(ϕ(y(s+1)l)− ϕ∗)

≤ 1

τ1,s

sl+l−1∑
k=sl

E(ϕ(vk+1)− ϕ∗) +
1− τ1,s
τ21,s

E(ϕ(ysl)− ϕ∗) +
τ2
τ21,s

sl−2∑
k=sl−l

(ϕ(yk+1)− ϕ∗)

+ 9L̄(EVzsl(u)− EVz(s+1)l
(u)).

By our choice of τ1,s and τ2, one can check

1− τ1,s+1

τ21,s+1

≤ 1

τ21,s
,

τ2
τ21,s+1

≤ τ1,s + τ2
τ21,s

.

So we further have

1

τ1,s

sl+l−1∑
k=sl

E⟨∇ϕ(vk+1), vk+1 − u⟩+
τ2

τ21,s+1

sl+l−2∑
k=sl

E(ϕ(yk+1)− ϕ∗)

+
1− τ1,s+1

τ21,s+1

E(ϕ(y(s+1)l)− ϕ∗)

≤ 1

τ1,s

sl+l−1∑
k=sl

E(ϕ(vk+1)− ϕ∗) +
1− τ1,s
τ21,s

E(ϕ(ysl)− ϕ∗) +
τ2
τ21,s

sl−2∑
k=sl−l

(ϕ(yk+1)− ϕ∗)

+ 9L̄(EVzsl(u)− EVz(s+1)l
(u)).

Finally, we can prove our main Theorem 1 as follows.

Proof. By Lemma 4, for s = 1, . . . , S − 1, denote δ(·) := ϕ(·)− ϕ∗ we have:

1

τ1,s

sl+l−1∑
k=sl

E⟨∇ϕ(vk+1), vk+1 − u⟩+
τ2

τ21,s+1

sl+l−2∑
k=sl

Eδ(yk+1) +
1− τ1,s+1

τ21,s+1

Eδ(y(s+1)l)

≤ 1

τ1,s

sl+l−1∑
k=sl

Eδ(vk+1) +
1− τ1,s
τ21,s

Eδ(ysl) +
τ2
τ21,s

sl−2∑
k=sl−l

Eδ(yk+1)

+ 9L̄(EVzsl(u)− EVz(s+1)l
(u)).

(33)

For s = 0, apply similar proof as Lemma 4 on inequality (32), we have:

1

τ1,0

l−1∑
k=0

E⟨∇ϕ(vk+1), vk+1 − u⟩+
τ2
τ21,1

l−2∑
k=0

Eδ(yk+1) +
1− τ1,1
τ21,1

Eδ(yl)

≤ 1

τ1,0

l−1∑
k=0

Eδ(vk+1) +
1− τ1,0 − τ2

τ21,0
δ(y0) +

τ2l

τ21,0
δ(ṽ0) + 9L̄(Vz0(u)− EVzl(u)).

(34)

Improved Rate of First Order Algorithms for Entropic Optimal Transport

Telescope inequality (33) for s = 1, . . . , S − 1 and add inequality (34), we have following bound:

S−1∑
s=0

1

τ1,s

sl+l−1∑
k=sl

E(⟨∇ϕ(vk+1), vk+1 − u⟩ − δ(vk+1)) +
τ2
τ21,S

Sl−2∑
k=(S−1)l

Eδ(yk+1)

≤1− τ1,0 − τ2
τ21,0

δ(y0) +
τ2l

τ21,0
δ(ṽ0) + 9L̄(Vz0(u)− EVzSl

(u))− 1− τ1,S
τ21,S

Eδ(ySl).

(35)

Now for the term ⟨∇ϕ(v), v − u⟩ − ϕ(v), we note that

⟨∇ϕ(v), v − u⟩ − ϕ(v) = ⟨∇ϕ(v), v − u⟩ − (⟨v, b⟩ − f(x(v))− ⟨AT v, x(v)⟩)
= ⟨b−Ax(v), v − u⟩ − (⟨v, b−Ax(v)⟩ − f(x(v)))
= ⟨b−Ax(v),−u⟩+ f(x(v)).

(36)

Thus

S−1∑
s=0

1

τ1,s

sl+l−1∑
k=sl

E(⟨∇ϕ(vk+1), vk+1 − u⟩ − δ(vk+1))

=

S−1∑
s=0

1

τ1,s

sl+l−1∑
k=sl

E [⟨b−Ax(vk+1),−u⟩+ f(x(vk+1))− f(x(λ∗))]

=

〈
S−1∑
s=0

l

τ1,s
b−AE

[
S−1∑
s=0

1

τ1,s

sl+l−1∑
k=sl

x(vk+1)

]
,−u

〉

+

S−1∑
s=0

1

τ1,s

sl+l−1∑
k=sl

Ef(x(vk+1))−
S−1∑
s=0

l

τ1,s
f(x(λ∗))

≥

〈
S−1∑
s=0

l

τ1,s
b−AE

[
S−1∑
s=0

1

τ1,s

sl+l−1∑
k=sl

x(vk+1)

]
,−u

〉

+

S−1∑
s=0

l

τ1,s
f

(
E

[
S−1∑
s=0

1

τ1,s

sl+l−1∑
k=sl

x(vk+1)

]
/

S−1∑
s=0

l

τ1,s

)
−

S−1∑
s=0

l

τ1,s
f(x(λ∗))

=

S−1∑
s=0

l

τ1,s

[
f(E(xS−1))− f(x(λ∗)) + ⟨b−AE(xS−1),−u⟩

]
,

(37)

where the inequality applies Jensen’s inequality on convex function f . Plugging inequality (37) into inequality (35) and
using the fact that 0 < τ2

τ2
1,S
≤ 1−τ1,S

τ2
1,S

, we have(
S−1∑
s=0

l

τ1,s

)
(f(E(xS−1))− f(x(λ∗)))

≤1− τ1,0 − τ2
τ21,0

δ(y0) +
τ2l

τ21,0
δ(ṽ0) + 9L̄(Vz0(u)− EVzSl

(u))− τ2
τ21,S

Sl−1∑
k=(S−1)l

Eδ(yk+1)

+

(
S−1∑
s=0

l

τ1,s

)
(⟨b−AE(xS−1), u⟩)

≤1− τ1,0 − τ2
τ21,0

δ(y0) +
τ2l

τ21,0
δ(ṽ0) + 9L̄Vz0(u)−

τ2l

τ21,S
Eδ(ṽS)

+

(
S−1∑
s=0

l

τ1,s

)
(⟨b−AE(xS−1), u⟩),

(38)

where the second inequality comes from the definition of ṽS and Jensen’s inequality. Recall that inequality (38) holds for any
u, including the one that minimizes the R.H.S.. We can further upper bound minuR.H.S. by restricting u ∈ BH(2R) :=

Yiling Luo, Yiling Xie, Xiaoming Huo

{u : ∥u∥H ≤ 2R}:

min
u∈BH(2R)

9L̄V0(u) +

S−1∑
s=0

l

τ1,s
⟨b−AE(xS−1), u⟩

≤ min
u∈BH(2R)

9L̄γ∥u∥2H/2 +
S−1∑
s=0

l

τ1,s
⟨b−AE(xS−1), u⟩

≤ min
u∈BH(2R)

⟨
S−1∑
s=0

l

τ1,s
(b−AE(xS−1)), u⟩+ 18L̄R2γ

=− 2R

(
S−1∑
s=0

l

τ1,s

)
∥b−AE(xS−1)∥H,∗ + 18L̄R2γ.

(39)

Plugging the bound (39) into inequality (38), we have(
S−1∑
s=0

l

τ1,s

)
(f(E(xS−1))− f(x(λ∗))) + τ2l

τ21,S
Eδ(ṽS) + 2R

(
S−1∑
s=0

l

τ1,s

)
∥b−AE(xS−1)∥H,∗

≤1− τ1,0 − τ2
τ21,0

δ(y0) +
τ2l

τ21,0
δ(ṽ0) + 18L̄R2γ

=2lδ(0) + 18L̄R2γ.

(40)

Calculate
∑S−1

s=0
1

τ1,s
=
∑S−1

s=0 (s+ 4)/2 = (2S + 3)S/4 ≥ S2/2, then

f(E(xS−1))− f(x∗) ≤ 4

S2l

[
lδ(0) + 9L̄R2γ

]
. (41)

On the other hand, notice that f(x(λ∗)) = −ϕ(λ∗) := ϕ∗ and

f(E(xS−1))− f(x(λ∗))
=f(E(xS−1)) + ϕ∗

=f(E(xS−1)) + ⟨λ∗, b⟩+max
x

(−f(x)− ⟨ATλ∗, x⟩)

≥f(E(xS−1)) + ⟨λ∗, b⟩ − f(E(xS−1))− ⟨ATλ∗,E(xS−1)⟩
=⟨λ∗, b−AE(xS−1)⟩ ≥ −R∥E[b−AxS−1]∥H,∗.

(42)

Plugging inequality (42) into inequality (40), we have

R

(
S−1∑
s=0

l

τ1,s

)
∥E[b−AxS−1]∥H,∗ ≤ 2lδ(0) + 18L̄R2γ. (43)

Thus

∥E[b−AxS−1]∥H,∗ ≤
4
[
lδ(0) + 9L̄R2γ

]
S2lR

. (44)

Further check that

δ(0) = ϕ(0)− ϕ∗ ≤ ⟨∇ϕ(λ∗), 0− λ∗⟩+ L̄

2
∥0− λ∗∥2H =

L̄

2
∥λ∗∥2H ≤

L̄

2
R2. (45)

Plugging the bound (45) into inequalities (41) and (44), we get the theorem claim.

C Proof for Lemma 1

Proof. By Proposition 2 of Xie et al. (2022), ϕi(·) is np′
i

η smooth w.r.t. ∥ · ∥2. So here we only show the second part of the
statement. That is, prove the smoothness w.r.t. ∥ · ∥∞.

Improved Rate of First Order Algorithms for Entropic Optimal Transport

By

ϕi(λ) = np′i

−⟨q′, λ⟩ − η log p′i + η log

 n∑
j=1

exp((λj − ci,j − η)/η)

+ η

 ,

we calculate that

∇ϕi(λ) = np′i

−q′ + (exp((λk − ci,k)/η))k=1,...,n(∑n
j=1 exp((λj − ci,j)/η)

)
 .

The goal is ∀λ, λ′, bound the ∥ · ∥∞,∗ = ∥ · ∥1 of following difference in the gradient:

∇ϕi(λ)−∇ϕi(λ′) = np′i

 (exp((λk − ci,k)/η))k=1,...,n(∑n
j=1 exp((λj − ci,j)/η)

) − (exp((λ′k − ci,k)/η))k=1,...,n(∑n
j=1 exp((λ

′
j − ci,j)/η)

)
 .

Further denote ∆λ = λ′ − λ, then

∥∇ϕi(λ)−∇ϕi(λ′)∥1

=np′i

∥∥∥∥∥∥ (exp((λk − ci,k)/η))k=1,...,n(∑n
j=1 exp((λj − ci,j)/η)

) − (exp((λk + (∆λ)k − ci,k)/η))k=1,...,n(∑n
j=1 exp((λj + (∆λ)j − ci,j)/η)

)
∥∥∥∥∥∥
1

=np′i

∥∥∥∥∥∥ (exp((λk − ci,k)/η))k=1,...,n(∑n
j=1 exp((λj − ci,j)/η)

) − (exp((λk − ci,k)/η) ∗ exp((∆λ/η)k))k=1,...,n(∑n
j=1 exp((λj − ci,j)/η) exp((∆λ/η)j)

)
∥∥∥∥∥∥
1

.

Taking a = (exp((λk − ci,k)/η))k=1,...,n and b = ∆λ/η in Lemma 5, we immediately have

∥∇ϕi(λ)−∇ϕi(λ′)∥1 ≤ np′i5∥∆λ/η∥∞ =
5np′i
η
∥λ− λ′∥∞. (46)

Thus, ϕi(·) is 5np′
i

η smooth w.r.t. ∥ · ∥∞ norm.

The following lemma is used in the proof of Lemma 1.

Lemma 5. Consider two vectors a, b ∈ Rd, and let exp(b) be the element-wise exponential of b. When a > 0, we have

∥∥∥∥ a

∥a∥1
− a ◦ exp(b)
∥a ◦ exp(b)∥1

∥∥∥∥
1

≤ 5∥b∥∞.

Proof. Consider two cases:

First, when ∥b∥∞ > 0.5:

∥∥∥∥ a

∥a∥1
− a ◦ exp(b)
∥a ◦ exp(b)∥1

∥∥∥∥
1

≤
∥∥∥∥ a

∥a∥1

∥∥∥∥
1

+

∥∥∥∥ a ◦ exp(b)
∥a ◦ exp(b)∥1

∥∥∥∥
1

= 2 < 5 ∗ 0.5 < 5∥b∥∞.

Yiling Luo, Yiling Xie, Xiaoming Huo

Second, when ∥b∥∞ ≤ 0.5: ∥∥∥∥ a

∥a∥1
− a ◦ exp(b)
∥a ◦ exp(b)∥1

∥∥∥∥
1

=

d∑
i=1

|
∑d

j=1 aiaj exp(bj)−
∑d

j=1 ai exp(bi)aj |
∥a∥1∥a ◦ exp(b)∥1

≤
d∑

i=1

∑d
j=1 aiaj | exp(bj)− exp(bi)|
∥a∥1∥a ◦ exp(b)∥1

≤
d∑

i=1

∑d
j=1 aiaj(| exp(bj)− 1|+ | exp(bi)− 1|)

∥a∥1∥a∥1 exp(−0.5)

≤2 exp(0.5)(exp(0.5)− 1)

d∑
i=1

∑d
j=1 aiaj(|bj |+ |bi|)
∥a∥1∥a∥1

≤4 exp(0.5)(exp(0.5)− 1)

d∑
i=1

∑d
j=1 aiaj∥b∥∞
∥a∥1∥a∥1

=4 exp(0.5)(exp(0.5)− 1)∥b∥∞ < 5∥b∥∞.

Combine two cases we have the lemma holds.

D Proof for Theorem 2

The full procedure for finding an ϵ-solution to OT using PDASMD is given in the following algorithm:

Algorithm 3: Approximating OT by PDASMD
Input: Accuracy ϵ > 0, η = ϵ

4 log(n) and ϵ′ = ϵ
8∥C∥∞

.
Step 1: Let p′ ∈ ∆n and q′ ∈ ∆n be (

p′

q′

)
=

(
1− ϵ′

8

)(
p
q

)
+

ϵ′

8n

(
1n
1n

)
.

Step 2: Compute X̃ by PDASMD on objective (2) long enough such that f(Ex̃)− f(x∗) ≤ ϵ
4 and ∥AEx̃− b∥1 ≤ ϵ′

2 .
Step 3: Round X̃ to X̂ by Algorithm 2 in Altschuler et al. (2017) such that X̂1n = p, X̂T 1n = q.
Output: X̂

The total computational cost of Algorithm 3 is given in Theorem 2, and we prove it as follows:

Proof. We have the convergence result in Theorem 1 holds for the dual formulation. To extend the proof of Theorem 1 to
the semi-dual formulation for the OT problem, we just need the following equality to hold:

[Ax(v)− b] =
[

0n

∇ϕ(v)

]
.

One can easily check it is true for the semi-dual of OT. Moreover, Xie et al. (2022) shows that the stopping criteria in step 2
of Algorithm 3 guarantees

E⟨C, X̂⟩ ≤ ⟨C,X∗⟩+ ϵ.

That is, the output of Algorithm 3 is an ϵ−solution. We now focus on the computational complexity of Algorithm 3.

Case 1: ∥ · ∥H = ∥ · ∥2. By Theorem 1 we have

∥E[b−Ax̃]∥2 ≤
2
[
lL̄R+ 18L̄Rγ

]
S2l

, (47)

f(E(x̃))− f(x∗) ≤ 2

S2l

[
lL̄R2 + 18L̄R2γ

]
, (48)

Improved Rate of First Order Algorithms for Entropic Optimal Transport

where L̄ = 1
n

∑n
i=1

np′
i

η = 1
η , and R is an upper bound for ∥λ∗∥2. By Lemma 3.2 in Lin et al. (2019), R = η

√
n(R′ + .5)

for R′ = ∥C∥∞/η + log(n)− 2 log(min1≤i,j≤n{p′i, q′j}) ≤ 4∥C∥∞ log(n)/ϵ+ log(n)− 2 log(ϵ) + 2 log(64n∥C∥∞) =
O(∥C∥∞ log(n)/ϵ).

Using the bound ∥AEx̃− b∥1 ≤
√
2n∥AEx̃− b∥2 we have the stopping criteria in step 2 satisfied for

S =max

{
O

(√
L̄R
√
n

ϵ′

)
,O

(√
L̄γR

√
n

lϵ′

)
,O

(√
L̄R2

ϵ

)
,O

(√
L̄R2γ

lϵ

)}

=max

{
O

(√
n log(n)∥C∥2∞

ϵ2

)
,O

(√
log(n)γn∥C∥2∞

lϵ2

)
,

O
(
n.5∥C∥∞

√
log n

ϵ

)
,O

(√
n log(n)∥C∥2∞γ

lϵ2

)}

=O
(
n.5

ϵ
max

(
∥C∥∞

√
log n,

√
log(n)∥C∥2∞γ/l

))
=O

(
n.5∥C∥∞

ϵ

(√
log n+

√
log(n)γ/l

))
.

In Algorithm 3, step 1 and step 3 has total number of O(n2) operations, and the algorithm complexity is dominated by
step 2. Now each outer loop of PDASMD has O(n2 + nl) operations, thus the total number of arithmetic operations of
Algorithm 3 is

O
(
n1.5∥C∥∞

ϵ
(n+ l)

(√
log n+

√
log(n)γ/l

))
= Õ

(
n2.5∥C∥∞(1 +

√
γ/n)

ϵ

)
.

Case 2: ∥ · ∥H = ∥ · ∥∞. Then ∥ · ∥H,∗ = ∥ · ∥1, and Theorem 1 implies that

∥E[b−Ax̃]∥1 ≤
2
[
lL̄R+ 18L̄Rγ

]
S2l

, (49)

f(E(x̃))− f(x∗) ≤ 2

S2l

[
lL̄R2 + 18L̄R2γ

]
, (50)

where L̄ = 5
η . Now R is an upper bound for ∥λ∗∥∞, and again by Lemma 3.2 in Lin et al. (2019), R = η(R′ + .5) for

R′ = O(∥C∥∞ log(n)/ϵ).

Thus the stopping criteria in step 2 of Algorithm 3 is satisfied for

S =max

{
O

(√
L̄R

ϵ′

)
,O

(√
L̄Rγ

lϵ′

)
,O

(√
L̄R2

ϵ

)
,O

(√
L̄R2γ

lϵ

)}

=max

{
O

(√
log(n)∥C∥2∞

ϵ2

)
,O

(√
log(n)γ∥C∥2∞

lϵ2

)
,

O

(√
∥C∥2∞ log n

ϵ2

)
,O

(√
log(n)∥C∥2∞γ

lϵ2

)}

=O
(
∥C∥∞
ϵ

max
(√

log n,
√
log(n)γ/n

))
=O

(
∥C∥∞
ϵ

(√
log n+

√
log(n)γ/n

))
.

Now each outer loop of PDASMD has O(n2 + nl) = O(n2) operations, thus the total number of arithmetic operations of
Algorithm 3 is

O
(
n2∥C∥∞

ϵ

(√
log n+

√
log(n)γ/n

))
= Õ

(
n2∥C∥∞(1 +

√
γ/n)

ϵ

)
.

Yiling Luo, Yiling Xie, Xiaoming Huo

E Stochastic Sinkhorn Algorithm and Proof of Computational Complexity

We first describe the Stochastic Sinkhorn algorithm. In the Stochastic Sinkhorn algorithm, the following definitions are used:

Definition 4 (Increasing probability function). An increasing probability function Ψ : Rp
+ → ∆p is such that

Ψ(h) =

(
g(hi)∑
i g(hi)

)
i

,

where g : R+ → R+ is an increasing positive function.

Definition 5 (KL violation). For a matrix M ∈ Rp×p
+ and two vectors p, q ∈ ∆p, define the KL violation

ρ(M ;p, q) =

[
(KL(pi∥(M1)i))i=1,...,p

(KL(qj∥(MT1)j))j=1,...,p

]
. (51)

The Stochastic Sinkhorn algorithm for solving problem (2) is as following:

Algorithm 4: Stochastic Sinkhorn
Input: C,p′, q′,Ψ,η
Calculate A = exp(−C/η) where all the operations are element-wise;
Initialize: u0 = v0 = 1;
for k=0,. . . ,K-1 do

Calculate h = Ψ(ρ(X(uk,vk);p′, q′)), where X(uk,vk) = diag(uk)Adiag(vk);
Sample index I with

P (I = i) = hi,∀i ∈ {1, 2, ..., 2n}.

if I ≤ n then
uk+1 = (uk1 , . . . , u

k
I−1, p

′
I/(Av

k)I , u
k
I+1, . . . , u

k
n)

T , vk+1 = vk;
else
uk+1 = uk, vk+1 = (vk1 , . . . , v

k
I−n−1, q

′
I−n/(A

Tuk)I−n, v
k
I−n+1, . . . , v

k
n)

T .
end if

end for
Output: X̃ = diag(uK)Adiag(vK).

To find a ϵ-solution to OT, an extra rounding step is required. The full procedure is given in Algorithm 5.

Algorithm 5: Approximating OT by Stochastic Sinkhorn
Input: Accuracy ϵ > 0, η = ϵ

4 log(n) and ϵ′ = ϵ
8∥C∥∞

.
Step 1: Let p′ ∈ ∆n and q′ ∈ ∆n be (

p′

q′

)
=

(
1− ϵ′

8

)(
p
q

)
+

ϵ′

8n

(
1n
1n

)
.

Step 2: Compute X̃ by Stochastic Sinkhorn until ∥X̃1− p′∥1 + ∥X̃T1− q′∥1 ≤ ϵ′

2 .
Step 3: Round X̃ to X̂ by Algorithm 2 in Altschuler et al. (2017) such that X̂1n = p, X̂T 1n = q.
Output: X̂ .

We now prove the computational complexity of Stochastic Sinkhorn in Theorem 3. To prove it, we first need the convergence
of Algorithm 4, which we show in following Lemma.

Lemma 6. For a given ϵ > 0, we have that Algorithm 4 returns a matrix X̃ such that

E[∥X̃1− p′∥1 + ∥X̃T1− q′∥1] ≤ ϵ

in the number of iterations
k ≤ 2 + 112nR/ϵ.

Improved Rate of First Order Algorithms for Entropic Optimal Transport

Proof. Denote (xk, yk) := (log uk, log vk) and the dual function f(x, y) =
∑

i,j Ai,j exp(xi + yj) − ⟨p′, x⟩ − ⟨q′, y⟩.
Denote Ek = E[∥X(uk, vk)1− p′∥1 + ∥X(uk, vk)T1− q′∥1]. By (21) in Abid and Gower (2018), Algorithm 4 has

E[f(xk, yk)− f(xk+1, yk+1)] >
E2

k

28n
. (52)

Since Algorithm 4 only updates one element in u or v, and the updating rule for that element is the same as Greenkhorn, we
have that Corollary 3.3 in Lin et al. (2019) holds. Adding expectations to both sides, we get:

E[f(xk, yk)− f(x∗, y∗)] ≤ 4REk. (53)

Let δk = E[f(xk, yk)− f(x∗, y∗)], then by inequalities (52) and (53) we have

δk − δk+1

(52)
≥ E2

k

28n

(53)
≥ δ2k

448nR2
. (54)

That is,

δk − δk+1 ≥ max

{
ϵ2

28n
,

δ2k
448nR2

}
. (55)

We adopt the strategy in Dvurechensky et al. (2018) to split the process of {δk} into two halves:

First, consider the process from δ1 to δt:

δt
448nR2

≤ δt−1

448nR2
−
(

δt−1

448nR2

)2

≤ 1

t− 1 + 448nR2/δ1
⇒ t ≤ 1 +

448nR2

δt
− 448nR2

δ1
.

Second, consider the process from δt to δt+m:

δt+m ≤ δt −
ϵ2m

28n
⇒ m ≤ 28n(δt − δt+m)

ϵ2
.

So the total number of iterations k = t+m can be optimized over δt, i.e.

k ≤ min
δt∈(0,δ1]

(
2 +

448nR2

δt
− 448nR2

δ1
+

28nδt
ϵ2

)
≤ 2 +

112nR

ϵ
.

Then we can prove Theorem 3 as follows:

Proof. By Lemma 6, we have E[∥X̃1 − p′∥1 + ∥X̃T1 − q′∥1] ≤ ϵ′/2 for the number of iterations k = 2 + 224nR/ϵ′.
Thus for this k, we also have

E[∥X̃1− p∥1 + ∥X̃T1− q∥1] ≤ E[∥X̃1− p′∥1 + ∥X̃T1− q′∥1] + ∥p− p′∥1 + ∥q − q′∥2 ≤ ϵ′.

By Theorem 1 in Altschuler et al. (2017),

E⟨C, X̂⟩ − ⟨C,X∗⟩ ≤ ϵ/2 + 4(E[∥X̃1− p∥1 + ∥X̃T1− q∥1])∥C∥∞ ≤ ϵ,

which is an ϵ−solution.

Now calculate the number of arithmetic operations, step 1 requires O(n); step 2 requires k iterations of Algorithm 4, each
iteration requires O(n) operation (Abid and Gower, 2018); step 3 requires O(n2) operations (Altschuler et al., 2017). Thus
the total number of operations is

O(n2R/ϵ′) = O(n2∥C∥2∞ log n/ϵ2).

Yiling Luo, Yiling Xie, Xiaoming Huo

F PDASMD-B Algorithm and the Convergence Rate

In this Section, we prove the convergence of PDASMD-B. The convergence rate of PDASMD-B is in the following theorem:

Theorem 4 (Convergence of PDASMD-B). In Algorithm 2, assume that the dual optimal solution has ∥λ∗∥H ≤ R. Then
we have the convergence of Algorithm 2 as:

∥E[b−AxS−1]∥H,∗ ≤
2
[
(1 + (l − 1)/B)L̄R+ 18L̄Rγ

]
S2l

, (56)

f(E(xS−1))− f(x∗) ≤ 2

S2l

[
(1 + (l − 1)/B)L̄R2 + 18L̄R2γ

]
. (57)

The key to prove Theorem 4 is to find an analogue to Lemma 2, which we do in following steps.

Lemma 7 (Variance upper bound).

E[∥∇̃k+1 −∇ϕ(vk+1)∥2H,∗] ≤
8L̄

B
(ϕ(ṽs)− ϕ(vk+1)− ⟨∇ϕ(vk+1), ṽ

s − vk+1⟩). (58)

Proof. Each ϕi is convex and Li-smooth, then by Theorem 2.1.5. in Nesterov (2003) we have

∥∇ϕi(vk+1)−∇ϕi(ṽs)∥2H,∗ ≤ 2Li(ϕi(ṽ
s)− ϕi(vk+1)− ⟨∇ϕi(vk+1), ṽ

s − vk+1⟩). (59)

Take expectation with respect to the randomness of index set I , note that all indexes in I are independently selected, we have

E[∥∇̃k+1 −∇ϕ(vk+1)∥2H,∗]

=
1

B
E

[∥∥∥∥∇ϕ(ṽs) + 1

mpi
(∇ϕi(vk+1)−∇ϕi(ṽs))−∇ϕ(vk+1)

∥∥∥∥2
H,∗

]

≤ 1

B
E

[
2

∥∥∥∥ 1

mpi
(∇ϕi(ṽs)−∇ϕi(vk+1))

∥∥∥∥2
H,∗

+ 2∥∇ϕ(ṽs)−∇ϕ(vk+1)∥2H,∗

]
(59)
≤ 1

B
E

[
4
Li

m2p2i
(ϕi(ṽ

s)− ϕi(vk+1)− ⟨∇ϕi(vk+1), ṽ
s − vk+1⟩) + 2∥∇ϕ(ṽs)−∇ϕ(vk+1)∥2H,∗

]
=

1

B
[4L̄(ϕ(ṽs)− ϕ(vk+1)− ⟨∇ϕ(vk+1), ṽ

s − vk+1⟩) + 2∥∇ϕ(ṽs)−∇ϕ(vk+1)∥2H,∗]

(59)
≤ 8L̄

B
(ϕ(ṽs)− ϕ(vk+1)− ⟨∇ϕ(vk+1), ṽ

s − vk+1⟩)

Lemma 8 (Coupling step 1, batch version). Consider one inner loop of Algorithm 2, where the randomness only comes
from the choice of I . It satisfies that for ∀u:

αs⟨∇ϕ(vk+1), zk − u⟩

≤ αs

τ1,s
{ϕ(vk+1)− E[ϕ(yk+1)] + τ2ϕ(ṽ

s)− τ2ϕ(vk+1)− τ2⟨∇ϕ(vk+1), ṽ
s − vk−1⟩}

+ Vzk(u)− E[Vzk+1
(u)].

Proof. One can easily check that the Lemma E.1. and Lemma E.3. in Allen-Zhu (2017) holds for the batch version of
PDASMD, where ψ(·) = 0 in these two lemmas for our case. Then we have

ϕ(vk+1)− E[ϕ(yk+1)] ≥E
[
−min

y

{
9L̄

2
∥y − vk+1∥2H + ⟨∇̃k+1, y − vk+1⟩

}]
− 1

16L̄
E[∥∇̃k+1 −∇ϕ(vk+1)∥2H,∗].

(60)

αs⟨∇̃k+1, zk+1 − u⟩ ≤ −
1

2
∥zk − zk+1∥2H + Vzk(u)− Vzk+1

(u). (61)

Improved Rate of First Order Algorithms for Entropic Optimal Transport

Then

αs⟨∇̃k+1, zk − u⟩ = αs⟨∇̃k+1, zk − zk+1⟩+ αs⟨∇̃k+1, zk+1 − u⟩
(61)
≤ αs⟨∇̃k+1, zk − zk+1⟩ −

1

2
∥zk − zk+1∥2H + Vzk(u)− Vzk+1

(u). (62)

To bound αs⟨∇̃k+1, zk − zk+1⟩ − 1
2∥zk − zk+1∥2H , consider the variable v := τ1,szk+1 + τ2ṽ

s + (1− τ1,s − τ2)yk, then
vk+1 − v = τ1,s(zk − zk+1). We have that

E

[
αs⟨∇̃k+1, zk − zk+1⟩ −

1

2
∥zk − zk+1∥2H

]
=E

[
αs

τ1,s
⟨∇̃k+1, vk+1 − v⟩ −

1

2τ21,s
∥vk+1 − v∥2H

]

=E

[
αs

τ1,s

(
⟨∇̃k+1, vk+1 − v⟩ −

9L̄

2
∥vk+1 − v∥2H

)]
(60)
≤ αs

τ1,s

(
ϕ(vk+1)− E[ϕ(yk+1)] +

1

16L̄
E[∥∇̃k+1 −∇ϕ(vk+1)∥2H,∗]

)
(58)
≤ αs

τ1,s

(
ϕ(vk+1)− E[ϕ(yk+1)] +

1

2B
(ϕ(ṽs)− ϕ(vk+1)− ⟨∇ϕ(vk+1), ṽ

s − vk+1⟩)
)
. (63)

Take expectation on both sides of inequality (62), plug in inequality (63) and notice that E[⟨∇̃k+1, zk − u⟩] =
⟨∇ϕ(vk+1), zk − u⟩ and τ2 = 1

2B , we get the desired bound.

The rest of the proof for Theorem 4 is simply repeating the steps in Appendix B, except that we replace Lemma 2 with
Lemma 8. So we omit the details of the proof.

G Details of Numerical Study

Data description. We use both synthetic and real grey-scale images as the marginal distribution. For the simulated
data, we follow the data generation mechanism in Altschuler et al. (2017); Xie et al. (2022). The images are generated by
randomly positioning a square foreground on a background, with the foreground occupying about 20% of the space. The
foreground has each pixel value randomly drawn from uniform [0, 3], and the background has each pixel value randomly
drawn from uniform [0, 1]. Figure 2 shows some examples of the generated images.

Figure 2: Synthetic image example.

For the real data, we randomly sample from the hand-written MNIST data set.
Then we downscale the images to adjust the size of the marginal distribution.
We also add a background with relatively small intensity to the down-scaled
images to avoid numerical issue. With the marginal distribution determined,
the cost matrix has each element calculated as the l1 distance between the
pixel locations on the image.

Algorithm implementation. We compare the computational efficiency of
the algorithms by measuring the number of arithmetic operations they use
for finding an ϵ-solution of the OT between two marginal distributions for a
fixed ϵ. To achieve this, all the algorithms are run with a rounding step. Thus
for PDASMD, we run Algorithm 3. In particular, for step 2 of Algorithm
3, the PDASMD algorithm is run with the number of inner loops set to the
problem size, w(·) = 1

2∥ · ∥
2
2 and ∥ · ∥H = ∥ · ∥∞. We run the PDASGD

algorithm by changing ∥ · ∥H to ∥ · ∥2 compared to the PDASMD. Note that
the PDASGD algorithm is essentially equivalent to that of Xie et al. (2022).
We also run APDAGD (Dvurechensky et al., 2018), AAM (Guminov et al.,
2021), Sinkhorn (Dvurechensky et al., 2018), APDRCD (Guo et al., 2020)
and Stochastic Sinkhorn (Algorithm 5) for comparison. The implementation
of all the algorithms above follows their standard definitions; there is no
hyper-parameter to tune.

Yiling Luo, Yiling Xie, Xiaoming Huo

We also implement experiment for PDASMD-B on both synthetic and real
data. For a fixed pair of marginals, PDASMD-B is implemented for a sequence of batch sizes. The number of inner loops is
set to be the problem size divided by the batch size, which matches the setting in Corollary 1, and we take w(·) = 1

2∥ · ∥
2
2 and

∥ · ∥H = ∥ · ∥∞, which are the same as the experiment of PDASMD. For each batch size, the total number of computations
and the running time are recorded.

All our experiments are run on Google Colab using NO GPU or TPU accelerator. We attach the full code and data to
reproduce our results in the Supplemental Material.

H Application of the PDASMD Algorithm to Machine Learning Tasks

The Optimal Transport can be applied to some modern machine learning tasks such as domain adaptation and color transfer.
In this section, we illustrate that our PDASMD algorithm, when applied to OT, can solve those problems.

Domain Adaptation. This experiment aims to show that our PDASMD algorithm, when applied to OT, can successfully
perform domain adaptation. In short, domain adaptation means transferring knowledge from a source domain to a target
domain for which data have different probability density functions. For more details on the domain adaptation problem
description and its OT formulation, see Courty et al. (2015).

We use the two-moons example to illustrate the application of our PDASMD algorithm on domain adaptation. The two
moons example uses simulated data. The source domain consists of two entangled moons, where each moon represents one
class. The target domain is built by applying a rotation to the two moons. We sample 150 labeled data points from each
moon as our source domain. The target domain consists of the same number of samples, where the samples are independent
of the source domain and are unlabeled. We use the labeled source domain data, transfer them to the target domain by OT
using our PDASMD algorithm, and learn an SVM classifier with the Gaussian kernel using the transferred source data on
the target domain. We test the generalization performance on 2,000 samples that follow the same distribution as the target
domain.

Figure 3 shows the domain adaptation result. In Figure 3, we plot the source domain, target domain (for different rotation
angles), the transformed density, and decision boundaries. From the plots, we see that the transformed density reasonably
fits the major parts of the target domain when the rotation angle is not too large (≤ 50◦). This shows that the PDASMD
algorithm successfully performs the domain adaptation.

We report the generalization performance of the domain adaptation in Table 2. We have three columns: the rotation degree
of the target domain in the two moons example, the mean classification error when the domain adaptation is performed
using our PDASMD algorithm, and the mean classification error of OT-IT in Courty et al. (2015) (where they solve entropic
OT by the Sinkhorn algorithm). From Table 2, we see that our PDASMD algorithm performs better than the Sinkhorn when
the rotation degree is large (> 50◦).

Table 2: Mean Classification Error over 10 Repetitions of the Two Moons Example.

ROTATION DEGREE PDASMD - CLASSIFICATION ERROR OT-IT (COURTY ET AL., 2015) CLASSIFICATION ERROR

10◦ 0.022 0
20◦ 0.054 0.007
30◦ 0.043 0.054
40◦ 0.169 0.102
50◦ 0.221 0.221
70◦ 0.317 0.398
90◦ 0.488 0.508

Improved Rate of First Order Algorithms for Entropic Optimal Transport

(a) rotation = 20◦ (b) rotation = 40◦ (c) rotation = 50◦ (d) rotation = 90◦

Figure 3: Two Moons Example

Figure 4: Color Transfer Example

Color Transfer. This experiment shows that our PDASMD algorithm successfully performs the color transfer task. The
color transfer takes two input images and imposes the color palette of the first image onto a second one. Color transfer can
be formulated as an OT problem. For more details see references Ferradans et al. (2014); Rabin et al. (2014).

For an example of the color transfer problem, we apply our PDASMD algorithm to solve the corresponding OT problem.
We show the color transfer result in Figure 4. Though we cannot evaluate the color transfer result quantitatively, one can tell
from Figure 4 that the color of the target image has been successfully transferred to the source image. This shows that our
PDASMD algorithm successfully performs the color transfer task.

	INTRODUCTION
	Optimal Transport
	Literature Review

	PRIMAL-DUAL ACCELERATED STOCHASTIC PROXIMAL MIRROR DESCENT (PDASMD)
	Definition and Notation
	General Formulation and PDASMD Algorithm
	Applying to Optimal Transport
	Computational Complexity of the Stochastic Sinkhorn

	PDASMD WITH BATCH IMPLEMENTATION (PDASMD-B)
	NUMERICAL STUDIES
	DISCUSSION AND FUTURE STUDIES
	Proximal Mirror Descent
	Proof for Theorem 1
	Proof for Lemma 1
	Proof for Theorem 2
	Stochastic Sinkhorn Algorithm and Proof of Computational Complexity
	PDASMD-B Algorithm and the Convergence Rate
	Details of Numerical Study
	Application of the PDASMD Algorithm to Machine Learning Tasks

