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Abstract

We study oblivious sketching for k-sparse linear
regression under various loss functions. In par-
ticular, we are interested in a distribution over
sketching matrices S ∈ Rm×n that does not de-
pend on the inputs A ∈ Rn×d and b ∈ Rn,
such that, given access to SA and Sb, we can
recover a k-sparse x̃ ∈ Rd with ∥Ax̃ − b∥f ≤
(1 + ε)mink-sparse x∈Rd ∥Ax− b∥f . Here ∥ · ∥f :
Rn → R is some loss function – such as an
ℓp norm, or from a broad class of hinge-like
loss functions, which includes the logistic and
ReLU losses. We show that for sparse ℓ2 norm
regression, there is a distribution over oblivi-
ous sketches with m = Θ(k log(d/k)/ε2) rows,
which is tight up to a constant factor. This
extends to ℓp loss with an additional additive
O(k log(k/ε)/ε2) term in the upper bound. This
establishes a surprising separation from the re-
lated sparse recovery problem, which is an im-
portant special case of sparse regression, where
A is the identity matrix. For this problem, un-
der the ℓ2 norm, we observe an upper bound of
m = O(k log(d)/ε + k log(k/ε)/ε2), showing
that sparse recovery is strictly easier to sketch
than sparse regression. For sparse regression un-
der hinge-like loss functions including sparse lo-
gistic and sparse ReLU regression, we give the
first known sketching bounds that achieve m =
o(d) showing that m = O(µ2k log(µnd/ε)/ε2)
rows suffice, where µ is a natural complexity pa-
rameter needed to obtain relative error bounds
for these loss functions. We again show that
this dimension is tight, up to lower order terms
and the dependence on µ. Finally, we show
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that similar sketching bounds can be achieved for
LASSO regression, a popular convex relaxation
of sparse regression, where one aims to minimize
∥Ax− b∥22 + λ∥x∥1 over x ∈ Rd. We show that
sketching dimension m = O(log(d)/(λε)2) suf-
fices and that the dependence on d and λ is tight.

1 INTRODUCTION

We study oblivious sketching for k-sparse regression.
Given a data matrix A ∈ Rn×d, and a target vector b ∈ Rn,
linear regression problems aim at finding a vector x ∈ Rd

such that Ax ≈ b. The deviation from Ax to b is quan-
tified via a loss function f(Ax, b), where popular exam-
ples include the loss in terms of an ℓp norm, logistic loss,
and ReLU. Sketching techniques for these problems have
been widely and successfully applied. Here, one samples
a sketching matrix S ∈ Rm×n from some distribution and
attempts to solve the problem on SA and Sb. If S can be
sampled from a distribution that does not depend on either
A or b, we call the sketch oblivious. Our aim is to minimize
the target dimension m, called the sketching complexity or
sketching dimension, while retaining the ability to extract a
(1 + ε)-approximate solution x̃ by only using the smaller
sketch rather than the original data. A particularly desir-
able property for the model parameter x is sparsity, i.e.,
where x is restricted to have at most k non-zero elements.
Sparse linear regression is an important technique for han-
dling very high dimensional data sets, such as those arising
in biostatistics (Mbatchou et al., 2021). It produces a lin-
ear model that depends on just a small number of parame-
ters, and thus is more interpretable and can be learned accu-
rately from a relatively small data sample. From a compu-
tational point of view, imposing sparsity constraints makes
the problem significantly harder. Most unconstrained re-
gression problems are convex and thus we can draw on a
wide array of gradient-based methods, but sparse linear re-
gression is NP -hard (Natarajan, 1995). Many heuristics
and relaxations have been developed to solve the problem
in practice, (see Tibshirani, 1996; Miller, 2002; Das and
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Kempe, 2008, 2018). Their running time typically depends
at least polynomially on the number n of observations. It
is thus natural to study methods for reducing the number
of rows in the data so that computations become more effi-
cient and an approximately optimal solution is retained.

While computational savings are immediate from our re-
sults for most of the mentioned heuristics and approxi-
mation algorithms covered in the related work (see Sec-
tion 1.1), potential speed-ups need to be verified on a
case-wise basis and contrasted with the cost of applying
the sketch to the data. Additionally, sketching has other
motivations such as saving memory, processing (turnstile)
data streams (Clarkson and Woodruff, 2009), and aggre-
gating distributed data (Kannan et al., 2014). We refer to
(Munteanu, 2023) for a brief introduction. We stress that
our bounds refer only to the reduced sketching dimension
m, not to other complexity measures.

While the performance of sketching techniques is well un-
derstood for unconstrained regression problems, we know
little about the complexity for sparse regression problems.
It is clear that a guarantee for unconstrained regression
also applies to sparse regression, but it is not at all clear
that these bounds are tight. In particular, the special case
of sparse recovery has many celebrated results exploiting
sparsity to reconstruct a target signal from a few measure-
ments. Thus we ask the following question:

Can oblivious sketching techniques benefit from
model-sparsity for various regression problems?

To our knowledge, the above question has not been inves-
tigated previously. In this paper we answer this question
in the affirmative for a large class of loss functions, in-
cluding the ℓp loss ∥Ax − b∥p = p

√∑n
i=1 |Aix− bi|p for

p ∈ [1, 2], logistic loss
∑n

i=1 ln(1+exp(−bi ·Aix)), ReLU∑n
i=1 max(0,−bi · Aix) and further hinge-like loss func-

tions f , where we define ∥Ax− b∥f =
∑n

i=1 f(Aix− bi).
We also investigate the sketching complexity for popular
heuristics used to impose sparsity, such as LASSO regres-
sion (Tibshirani, 1996), where instead of strictly forcing x
to be k-sparse, we use the ℓ1 penalized objective function
minx∈Rd ∥Ax− b∥22 + λ∥x∥1 to find a sparse solution. For
all of these problems, we obtain optimal or nearly optimal
sketching bounds. Crucially, the dependence on d is at least
linear for unconstrained regression, but it appears only log-
arithmically for sparse regression. Thus our paper makes
significant steps towards exploiting the power of sparsity
for sketching regression problems.

Let Ψk = {x ∈ Rd | ∥x∥0 ≤ k} denote the set of k-
sparse vectors in Rd. We also study the related problem
of k-sparse affine embeddings, where given the sketch and
an estimator E(SA, Sb, x) we require that ∀x ∈ Ψk :
(1− ε)∥Ax− b∥f ≤ E(SA, Sb, x) ≤ (1 + ε)∥Ax− b∥f .
A k-sparse affine embedding is stronger than a sketch for
sparse linear regression since it implies the latter. It is

a generalization of the restricted isometry property (RIP)
studied in the context of compressed sensing. The RIP is a
special case where A = I is the identity matrix, b = 0, and
we seek to preserve the norm of any k-sparse x ∈ Ψk up to
1± ε distortion.

The problem of ℓ2 sparse recovery can also be seen as a
special case of sparse ℓ2 regression, where A = I , and we
are given access only to a sketch Sb of the vector b. The
goal is to recover a k-sparse vector x̃ that is within (1 + ε)
error to the minimizing x, i.e., it satisfies ∥x̃− b∥2 ≤ (1 +
ε)minx∈Ψk

∥x − b∥2. Sketching sparse regression seems
very similar to sparse recovery, since similar methods are
available that yield similar upper bounds for both problems.
However, our studies imply a surprising separation result.
Namely, the sparse regression problem is strictly harder to
sketch than sparse recovery.

One might wonder why we do not consider data depen-
dent sampling algorithms in addition to oblivious linear
sketches, since sampling techniques are important tools for
approximating regression problems in the non-sparse set-
ting. This is because it can be observed (see Theorems 5
and 6) that sampling does not help in the case of sparse re-
gression; sampling roughly the entire input is necessary to
achieve any non-trivial bound.

The crucial advantage of sketching over sampling seems to
be the property of obliviousness to the subspaces that need
to be embedded, which allows us to take a union bound
over all k-subsets of coordinates. Sampling algorithms,
however, would need a different measure for each possibil-
ity. While data dependent importance sampling techniques
are widely successful for the unconstrained non-sparse re-
gression problems, they do not give any non-trivial bounds
in the sparse setting. This underlines the importance of
oblivious sketching techniques in the sparse context.

1.1 Related work

An important special case of the k-sparse regression prob-
lem is compressed sensing (Candes et al., 2006; Donoho,
2006; Baraniuk et al., 2008) where the matrix A is the
n× n identity matrix and one seeks to find a sparse vector
x that represents the non-sparse signal b well using a lin-
ear sketching (or sensing) matrix. It is well known that
a matrix for that problem requires m = Ω(k log(d/k))
rows (Ba et al., 2010), which was improved to m =
Ω(k log(d/k)/ε + k/ε2) by Price and Woodruff (2011).
As for upper bounds, it is known that a (Gaussian) RIP
matrix can be constructed with m = O(k log(d/k)) rows,
which suffices to solve the problem for constant ε. Re-
cently, new and tighter proofs for the Gaussian construc-
tion appeared (Li et al., 2020) which implicitly yield m =
Θ(k log(d/k)/ε2). However, to solve sparse recovery, nei-
ther the Gaussian matrix nor the RIP are necessary. For
instance, when sparsity 2k is allowed, the problem can
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be solved, with constant probability for any particular in-
put, using CountSketch (Charikar et al., 2004) with m =
O(k log(d/k)/ε) rows (Price and Woodruff, 2011).

To our knowledge the generalization of oblivious linear
sketching for sparse linear regression has not been inves-
tigated before. However, there is a body of work on the
column selection problem for sparse linear ℓ2 regression.
The sparse regression problem, i.e., minimizing the regres-
sion cost over all k-sparse vectors, is NP -hard (Natarajan,
1995), and under reasonable complexity-theoretic assump-
tions it is even hard to approximate within a significantly
stronger bound than the trivial ∥b∥2 in quasipolynomial
time (Foster et al., 2015). In light of this, some authors have
identified and characterized instances for which widely
applied heuristics have performance guarantees (Das and
Kempe, 2008, 2018; Gilbert et al., 2003; Tropp, 2006a,b;
Tropp et al., 2006). Another direction that is closer to the
used heuristics, is the online version of the column selec-
tion problem. It was shown by Foster et al. (2015) that an
online algorithm whose iterations run in polynomial time
would imply NP ⊆ BPP , even if it is allowed to in-
crease the number of columns by an O(log d) factor. In
light of these impossibility results, research has focused
on inefficient algorithms. The online algorithm of Foster
et al. (2015) runs in roughly O(k

(
d
k

)
) time per iteration.

This was improved by Har-Peled et al. (2018) to roughly
Õ(dk−1) by giving a data structure that approximates, to
within a (1 + ε) factor, the geometric distance query to the
closest (k−1)-dimensional flat spanned by the input points,
leveraging the geometric interpretation of sparse linear re-
gression. The same reference gives an impossibility result
of roughly Ω̃(dk/2/ek) for any multiplicative error approx-
imation by reducing from the k-SUM problem. Assuming
the RIP property, Kale et al. (2017) give an efficient online
algorithm with guarantees.

The heuristic that is arguably most used in practice for solv-
ing sparse regression is the least absolute shrinkage and se-
lection operator (LASSO) by Tibshirani (1996). It intro-
duces a convex relaxation of the ℓ0 constraint, replacing it
by an ℓ1 constraint. It was shown for well-behaved matrices
A, that the LASSO algorithm recovers a (nearly optimal)
sparse solution (Candes et al., 2006; Donoho, 2006). The
resulting Lagrangian form is minx∈Rd ∥Ax−b∥22+λ∥x∥1.
Since the λ∥x∥1 regularization term is non-negative, it is
immediate that an ℓ2-subspace embedding is sufficient for
preserving the cost of any x ∈ Rd within (1±ε) multiplica-
tive error with m = Θ(d/ε2) rows (Sarlós, 2006; Nelson
and Nguyên, 2014). To our knowledge there are no results
on sketching this objective with fewer rows by exploiting
the sparsity induced by the regularizer.

For dense linear ℓp regression there are numerous sketch-
ing results. Starting with ℓ2, Sarlós (2006) showed that
m = O(d/ε) rows suffice to preserve the minimizer up to
1 + ε error. This was complemented by a matching lower

bound by Clarkson and Woodruff (2009). Extensions to
ℓp regression via oblivious ℓp subspace embeddings and
sampling were given in (Clarkson, 2005; Dasgupta et al.,
2009; Sohler and Woodruff, 2011; Woodruff and Zhang,
2013; Clarkson and Woodruff, 2015; Wang and Woodruff,
2019; Li et al., 2021). Recent works (Munteanu et al.,
2021, 2023) gave the first oblivious linear sketches for lo-
gistic regression and (implicitly) for the ReLU function.
Importance sampling algorithms for those generalized lin-
ear regression problems were developed by Munteanu et al.
(2018) and further improved and generalized (Mai et al.,
2021; Munteanu et al., 2022; Woodruff and Yasuda, 2023).

2 OUR TECHNIQUES AND RESULTS

Our results are summarized in Table 1 and cover bounds on
the reduced sketching dimension m, not on other complex-
ity measures such as computational cost. Our upper bounds
are for affine embeddings, so an algorithm using our sketch
enjoys approximation bounds over the entire search space.
This straightforwardly implies matching minimization up-
per bounds. Our lower bounds are for the more challeng-
ing minimization variants, except for the hinge-like losses.
Our bounds are tight for sparse ℓ2 regression. The gener-
alization to ℓp is tight up to an additive O(k log(k/ε)/ε2)
term; specifically, this means our result is tight for reason-
ably small k = O(

√
εd). The ReLU upper bound has an-

other Õ(µ2) factor, in addition to the gap reported for ℓ1.
Here µ is a natural parameter that is needed to parameterize
the complexity of compressing data below Ω(n) for those
losses (Munteanu et al., 2018). This also holds for hinge-
like loss functions (including logistic loss) which adds an-
other additive log n, and the complementing lower bound is
slightly weaker in the sense that it holds for k-sparse affine
embeddings instead of the minimization problem.

Any subsampling approach has a matching Θ(n) bound
for any loss function. The lower bound is given in the
minimization setting and for subspace embeddings with
different levels of obliviousness to the data. For LASSO
with regularization parameter λ, our upper bound is m =
O(log(d)/(λε)2), which we complement by a lower bound
of m = Ω(log(λd)/λ2). Finally, our upper bound for
ℓ2 sparse recovery leaves only a small additive gap of
O(k log(k/ε)) to the best known lower bound. More inter-
estingly, the bound is sufficient to yield a separation from
the strictly harder sparse regression problem. In summary,
our bounds are tight up to lower order (additive) terms with
general parameterizations, and they are tight for reasonably
small values of k/ε.

In the remainder we present our main results and the main
ideas and technical challenges behind their proofs. The for-
mal proofs and details are moved to their respective appen-
dices for a concise presentation.
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Table 1: Summary of results. Here µ is a data dependent complexity parameter (Munteanu et al., 2018), and λ is the
regularization parameter for LASSO, see the main text for details.

Loss function / type Bound Reference
ℓ2 Θ(k log(d/k)/ε2) Theorems 1 and 7
ℓp, p ∈ [1, 2)
Lower bound Ω(k log(d/k)/ε2) Theorem 2
Upper bound O(k log(d/k)/ε2 + k log(k/ε)/ε2) Theorem 8
ReLU & hinge-like
Lower bound Ω(k log(d/k)/ε2) Corollaries 3 and 4
Upper bound for ReLU O(µ2k log(µd/ε)/ε2) Theorem 9
Upper bound for hinge-like O(µ2k log(µnd/ε)/ε2) Theorem 10
Any loss via sampling Θ(n) Theorems 5 and 6
LASSO with λ∥x∥1
Lower bound Ω(log(λd)/λ2) Theorem 13
Upper bound O(log(d)/(λε)2) Theorem 12
ℓ2 sparse recovery
Lower bound Ω(k log(d/k)/ε+ k/ε2) (Price and Woodruff, 2011)
Upper bound O(k log(d)/ε+ k log(k/ε)/ε2) Theorem 14

2.1 Lower bounds

We obtain our lower bounds by giving a sequence of reduc-
tions. Our main lower bound for sparse ℓ2 regression (from
which the further bounds will be derived) is obtained by
a reduction from approximate (constant fraction) support
recovery for sparse PCA (sPCA).

We note that a related reduction was given in (Bresler et al.,
2018), whereas the hardness of the approximate sPCA was
covered in (Cai et al., 2013). However, the combination of
these prior works does not give the desired hardness result
for our problem for the following reasons. Their reduc-
tion requires d exact sparse regression solves, where each
column is regressed on all remaining columns. The deci-
sion if the column in iteration i is included in the sparse
support is done by comparing the projected norm onto the
optimal sparse subspace to a certain fixed threshold. The
main issue with this is that they get only a k2 dependence
in the reduction from sPCA to sparse regression rather than
k, which is necessary in their analysis to separate between
columns being in the support or not. It is unclear how to
replace those steps with randomized decisions without in-
flating the dependence on k or other parameters even more.
Further, introducing randomization in each iteration would
yield only a lower bound against 1/d error probability as
opposed to our lower bound against constant probability.

To prove our optimal lower bound against constant error,
we give a reduction by solving only one single regres-
sion problem. The arguments and support set construc-
tions from prior work (Amini and Wainwright, 2009; Cai
et al., 2013) are not directly applicable for the following
reasons: we plant the information on the unknown support
onto an additional column which we regress onto the stan-

dard columns. This additional information is weighted suf-
ficiently high such that it allows us to recover (a constant
fraction of) the support.

Crucially, the weight is also sufficiently low, such that the
support recovery problem remains hard to solve. But this
needs to be reproven using our techniques, which then im-
plies the hardness of the sparse regression problem. We
note that full recovery has an Ω(k log(d− k)) lower bound
(Amini and Wainwright, 2009), which is larger than our
upper bound on the sparse regression problem. We thus
rely on a relaxation to approximate constant fraction sup-
port recovery using error correcting codes, which requires
us to prove a novel lower bound for the simplified prob-
lem, where the additional planted information is given to
the algorithm.

We build on (Amini and Wainwright, 2009) as our starting
point. The authors studied sPCA for a spiked covariance
model, where we take measurements from a Gaussian with
a covariance matrix (Id + vvT ) and v is a k-sparse vec-
tor. Here, to find the largest eigenvector means that based
on vectors drawn from the Gaussian distribution, we need
to find the vector v. Since all non-zero entries have the
same value, this reduces to finding the k-sparse support of
v. The authors show that based on a small number of mea-
surements, this problem is impossible to solve with good
probability by information-theoretic arguments. Here we
adapt their high level intuition and prove novel hardness
bounds for our adapted variant of sPCA.

Sparse ℓ2 regression We sketch the proof of our main the-
orem. Several technical details are omitted for brevity of
presentation. The detailed technical derivations are in the
appendix.
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Theorem 1. Let A ∈ Rn×d, b ∈ Rn. Suppose S ∈
Rm×n is an oblivious linear sketch for k-sparse ℓ2 regres-
sion with an arbitrary estimator E(SA, Sb, x), such that
x̃ ∈ argminx∈Ψk

E(SA, Sb, x) satisfies ∥Ax̃ − b∥2 ≤
(1+ε)minx∈Ψk

∥Ax−b∥2 with constant probability. Then
m = Ω(k log(d/k)/ε2).

Our proof is structured as follows: First, we construct a
suitable (hard) distribution over k-sparse supports, which
is used to define our input distribution. Second, we prove
the impossibility of recovering a constant fraction of the
support with a small number of measurements (rows) from
the input distribution below an information-theoretic lower
bound. Third, we construct an ℓ2-regression instance for
which any 1 + Θ(ε) approximation derived from an obliv-
ious sketch, paired with an arbitrary estimator, reveals a
constant fraction of the support. The hardness result thus
turns over to the regression problem.

For constructing the hard distribution (first proof step),
we construct an error correcting code C of roughly size
|C| = ( dk )

k consisting of k-sparse binary vectors that over-
lap in at most ck indexes. The code is also exactly balanced
in the following sense. Every single index i appears in ex-
actly the same number of codewords as any other index i′,
i.e., roughly ( dk )

k−1 = k
d |C| times, and each pair (i, j), for

i ̸= j, appears exactly the same number of times as any
other pair (i′, j′), for i′ ̸= j′, i.e., roughly ( dk )

k−2 = k2

d2 |C|
times. We augment each codeword by another (w.l.o.g.
first) coordinate, which is fixed to 1.

We pick a codeword c ∈ C uniformly at random and we
let our distribution over n × d inputs be Z = [b, A] =
G(Id + vvT )1/2, where G is a random Gaussian matrix,
i.e., each Gij

i.i.d.∼ N(0, 1), and for all j ∈ [d] \ {1} we set
vj =

ε√
k
cj whereas for the first, augmented coordinate, we

set v1 = c1 = 1. This concludes the description of the hard
input distribution and the situation before sketching.

Now, since we prove a lower bound against arbitrary es-
timators, which could for example change the basis and
rescale in an arbitrary but appropriate way, we can assume
w.l.o.g. that the sketching matrix S ∈ Rm×n has orthonor-
mal rows. The sketch thus takes the form

SZ = SG(Id + vvT )1/2 = H(Id + vvT )1/2,

where H is again a Gaussian matrix. SZ thus has the same
Gaussian distribution as the input matrix Z but the number
of rows is reduced from n to m < n.

We move to the second proof step, i.e., the impossibility of
recovering a constant fraction of the support with a small
number of measurements (rows) from the above input dis-
tribution. To this end, we let X be a random variable that
has the distribution of one row of our sketch. We use Fano’s
inequality to bound the failure probability in terms of the
size of the code C and the mutual information that quanti-

fies how much information the rows of the sketch, denoted
by Xm, reveal about the unknown support U of c ∈ C:

P[error] ≥ 1− I(U ;Xm) + log 2

log(|C| − 1)
.

In order to bound the mutual information, we observe by
the chain rule for entropy and the maximum entropy prop-
erty of the Gaussian distribution (Cover and Thomas, 2006)
that the mutual information can be bounded in terms of log
determinants:

I(U,Xm) = H(Xm)−H(Xm|U)

≤ m

2
log detE[xxT ]− m

2
log detE[xxT |U ]

Leveraging the balanced structure of our code construction,
the matrices involved have a nice block structure which we
exploit to bound the mutual information by O(ε2m). Fur-
ther note that the logarithmic code size satisfies log(|C|) =
O(k log(d/k)). Plugging this back into Fano’s inequality
we obtain a lower bound m = Ω(k log(d/k)/ε2) against
any constant error probability support recovery algorithm,
which concludes the second step of our proof. We refer to
the appendix for formal details.

Finally, we describe the reduction to the sparse ℓ2 regres-
sion problem, i.e., the third and last step of our proof. Given
Z = [b, A] as described above, we consider the following
instance:

min
x∈Ψk

∥∥∥∥[ M M . . . M
A

]
x−

[ √
kM
b

]∥∥∥∥
2

,

where M is sufficiently large such as to enforce
∑

i xi to
be close to

√
k. In particular this is needed to prevent

the trivial solution x = 0, and more precisely to impose
∥x∥2 ≥ 1√

k
∥x∥1 ≥ 1√

k

∑
i xi ≈ 1. Since we prove

a lower bound against an arbitrary estimator, we can as-
sume that it is given the first column of any sketching ma-
trix S′ = [s1, S] and the structure of the additional row
r1 = [M,M, . . . ,

√
kM ] including the value of M . This

enables the estimator to remove the influence of the tensor
product s1 · r1, such that it can proceed with the estimation
on SZ = S[b, A] only. Finally, we show that if we solve the
above problem (on the sketch) up to a factor of 1 + Θ(ε),
then the resulting solution x̃ shares a constant fraction of
its support with the actual support U of the random code-
word c ∈ C. Due to the error correcting code construction,
this uniquely identifies the full unknown support U , which
concludes the third step of our proof. We hereby obtain our
m = Ω(k log(d/k)/ε2) lower bound against constant error
probability oblivious sketching for sparse ℓ2 regression.

Sparse ℓp regression Our next aim is to extend the m =
Ω(k log(d/k)/ε2) result to the minimization version of ℓp
norm regression for arbitrary p ≥ 1.
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Theorem 2. Let A ∈ Rn×d, b ∈ Rn. Suppose S ∈ Rm×n

is an oblivious linear sketch for k-sparse ℓp regression
for any p ≥ 1 with an estimator Ep(SA, Sb, x), such
that the minimizer x̃ ∈ argminx∈Ψk

Ep(SA, Sb, x) sat-
isfies ∥Ax̃ − b∥p ≤ (1 + ε)minx∈Ψk

∥Ax − b∥p. Then
m = Ω(k log(d/k)/ε2).

We start with ℓ1 and discuss the general case p ∈ [1,∞)
below. By Dvoretzky’s theorem, we can embed ℓ2 into ℓ1
with distortion 1± ε using a random Gaussian mapping G.
More precisely, ∥Ax−b∥2 = (1±ε)∥GAx−Gb∥1 for all k-
sparse x, where G has O(n log(1/ε)/ε2) rows and consists
of i.i.d. Gaussians. In particular it is an oblivious embed-
ding. Now suppose we had a sketch S for the k-sparse ℓ1
regression problem. Then we can show that the minimizer
x̃ for ∥SGAx − SGb∥1 is also a 1 + O(ε) approximation
for ∥Ax− b∥2. This implies that SG is an oblivious sketch
for the ℓ2-norm problem (with an ℓ1-norm estimator), and
thus S requires m = Ω(k log(d/k)/ε2) rows.

Similarly, ℓ2 embeds obliviously and up to 1± ε into ℓp for
all p ≥ 1 using a random Gaussian matrix G with a number
of rows depending on O(n) for 1 ≤ p ≤ 2 and on nO(p)

for p > 2, (see Matoušek, 2013, p. 30), but the number of
rows of G does not matter in our context since it is reduced
by the sketch S. It follows that the m = Ω(k log(d/k)/ε2)
lower bound holds for ℓp, for every p ≥ 1.

Sparse ReLU and hinge-like loss regression We further
extend the lower bound to the ReLU loss function. This
time we reduce from the sparse ℓ1 regression problem by
designing an exact embedding of ℓ1 into ∥ · ∥ReLU.

Corollary 3. Let A ∈ Rn×d, b ∈ Rn. Suppose
S ∈ Rm×n is an oblivious linear sketch for k-sparse
ReLU regression with an estimator EReLU(SA, Sb, x),
such that x̃ ∈ argminx∈Ψk

EReLU(SA, Sb, x) satisfies
∥Ax̃ − b∥ReLU ≤ (1 + ε)minx∈Ψk

∥Ax − b∥ReLU. Then
m = Ω(k log(d/k)/ε2).

More precisely, it holds for all x ∈ Rd that ∥x∥1 =
∥x∥ReLU + ∥ − x∥ReLU. A similar argument as in the
case of the Gaussian ℓ2 → ℓp embedding yields the lower
bound for sketching ∥ · ∥ReLU, when we replace G by the
embedding matrix P = [I,−I]T , which duplicates and
negates the input vector. It follows that SP is an obliv-
ious sketch for ℓ1 and thus has the same lower bound of
m = Ω(k log(d/k)/ε2).

Finally, in this line of reductions, we deduce a lower bound
for a k-sparse affine embedding for the class of hinge-like
loss functions (Mai et al., 2021), which are close to the
ReLU function up to an additive deviation a (e.g., logistic
loss with a ≤ ln(2)), see Definition 1.

Definition 1. We say f(·) is an (L, a1, a2) hinge-like loss
function if f is L Lipschitz, ∀x ≥ 0: f(x) ≥ a2 > 0, and
∀x : |f(x)− ReLU(x)| ≤ a1.

Corollary 4. Let A ∈ Rn×d, b ∈ Rn. Suppose S ∈ Rm×n

is an oblivious subspace embedding for some hinge-like
loss function f with an estimator Ef (SA, Sb, x), such that
we have ∀x ∈ Ψk : (1− ε)∥Ax− b∥f ≤ Ef (SA, Sb, x) ≤
(1 + ε)∥Ax− b∥f . Then m = Ω(k log(d/k)/ε2).

Since our minimization lower bound for ReLU implies an
affine embedding lower bound as a direct consequence, it
is sufficient to show that any k-sparse affine embedding for
f yields a k-sparse affine embedding for ReLU. The diffi-
culty is that we have an approximate multiplicative embed-
ding of ReLU into f only for the positive part. Hence, the
remaining part where ReLU evaluates to zero needs to be
taken care of separately, and the minimization lower bound
does not follow directly as in our previous arguments.

Sampling fails for sparse regression Sampling based al-
gorithms are important tools in sketching for non-sparse
regression (Drineas et al., 2006; Dasgupta et al., 2009;
Munteanu et al., 2018; Mai et al., 2021). However, they
do not give any non-trivial results in the sparse setting.

To corroborate why our upper bounds all build on oblivi-
ous linear sketches, rather than sampling, we prove lower
bounds for matrices S that subsample (and reweight) rows
of the input. Here we show that if A is the identity and b is
a random standard basis vector, then any algorithm that has
access only to SA and Sb, must fail with probability > 1/2
already in the case k = 1.

Theorem 5. Consider any bounded approximation factor
α ≥ 1 and any ∥ · ∥ : Rn → R≥0 which evaluates to 0
on the all zeros vector and to some positive number on any
other vector. For any n > 9, there is some input matrix
A ∈ Rn×n and distribution over vectors b ∈ Rn such that
for any sampling matrix S ∈ Rm×n with m < n/3, no
algorithm that accesses just SA and Sb can output a k-
sparse x̃ ∈ Ψk with ∥Ax̃ − b∥ ≤ α · minx∈Ψk

∥Ax − b∥
with probability at least 1/2 (over the choice of b and any
possible randomness in the algorithm).

The reason is that by the random choice of b, if m < n/3
then the sketch contains only rows where b = 0, but to
obtain a bounded approximation error, it is crucial to retain
the non-zero row. By construction, A cannot help to find
this coordinate and thus all possibilities that are not in the
sample have equal probability of roughly 1/n to succeed.
A bound of m = Ω(n) thus follows.

It is crucial for this bound that the algorithm has no access
to b when S is being constructed, supporting the fact that
it is the property of obliviousness that separates sketching
from sampling for sparse regression. However, if our aim
is to obtain a k-sparse affine embedding via sampling then
an m = Ω(n) bound follows even if the algorithm has full
access to the data and even if k = 1, A = I and b = 0,
which also means that the RIP property cannot be obtained
via sampling.
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Theorem 6. Consider any bounded approximation factor
α ≥ 1 and any ∥ · ∥ : Rn → R≥0 which evaluates to
0 on the all zeros vector and to some positive number on
any other vector. For any n > 9, there is some input
matrix A ∈ Rn×n such that there is no sampling matrix
S ∈ Rm×n with m < n, which satisfies for all k-sparse
x ∈ Ψk, α−1∥Ax∥ ≤ ∥SAx∥ ≤ α∥Ax∥.

We note that in contrast to the impossibility results on sam-
pling, sketching succeeds by relatively simple union bound
arguments, e.g., (Baraniuk et al., 2008) for the ℓ2 case, as
we will see in the next section.

2.2 Upper Bounds

Sparse ℓ2 regression Again we start with ℓ2. The upper
bound is similar to the known constructions (Candes et al.,
2006; Donoho, 2006; Baraniuk et al., 2008) of RIP matri-
ces via Johnson-Lindenstrauss embeddings (Johnson and
Lindenstrauss, 1984), i.e., Gaussian matrices. The main
difference to these works is that the subspaces formed by
any fixed k-sparse solution space need not be orthogonal or
aligned with the standard basis vectors.

Theorem 7. Let A ∈ Rn×d, b ∈ Rn. There exists a dis-
tribution over random matrices S ∈ Rm×n with m =
O(k log(d/k)/ε2) such that it holds with constant proba-
bility that ∀x ∈ Ψk : (1−ε)∥Ax−b∥2 ≤ ∥S(Ax−b)∥2 ≤
(1 + ε)∥Ax− b∥2.

The idea is that there are at most
(
d
k

)
≤ (ed/k)k dif-

ferent k-sparse supports and each of them corresponds to
one choice of k columns of A. Every such choice spans
a k-dimensional linear subspace of Rn. By the subspace
embedding construction of Sarlós (2006), each subspace
formed by one choice of k columns can be handled by em-
bedding the points in a net of size (3/ε)k covering the unit
ball within the subspace. The remaining vectors can be
related to the net points by the triangle inequality and the
embedding extends to vectors of arbitrary norm outside the
unit sphere by linearity. Indeed, by a more sophisticated
argument (see, e.g., (Woodruff, 2014)) the net can be con-
structed with an absolute constant ε0 := 1/2 instead of ε.
So the total number of points to embed up to (1 ± ε) dis-
tortion is bounded by |N | ≤ (d/k)k · ck for an absolute
constant c. The embedding can be accomplished via the
Johnson-Lindenstrauss lemma followed by a union bound,
by using a Gaussian matrix with m = O(log(|N |)/ε2) =
O(k log(d/k)/ε2) rows, matching the lower bound.

Sparse ℓp regression Towards an extension to ℓp we focus
on p = 1 first. Unlike the ℓ2 case, it is known that a di-
rect embedding of ℓn1 into ℓm1 is, even for a fixed constant
ε, either exponential, i.e., m ∈ Ω(2

√
d) or must incur a dis-

tortion of Ω(d/polylog(d)) (Wang and Woodruff, 2019; Li
et al., 2021), and so (1 ± ε)-approximation seems out of
reach. Another alternative is the non-linear median estima-

tor of Indyk (2006) which is usually avoided since it leads
to a non-convex and usually hard optimization problem in
the sketch space. However, we note that k-sparse regres-
sion is already non-convex and NP -hard. So this is a suit-
able choice in our setting. The sketching matrix of Indyk
(2006) is a linear sketch C ∈ Rm×n whose entries are i.i.d.
Cauchy random variables. Those are known to be 1-stable,
meaning that their dot product with a vector x is again a
Cauchy random variable with scale ∥x∥1 so that each row
yields a reasonable estimator. However, to achieve concen-
tration, the overall estimator is the median of all row esti-
mators instead of their ℓ1-norm. This sketch has been com-
bined with a net argument for ℓ1 in (Backurs et al., 2016)
to obtain a sketching dimension of O(k log(k/εδ)/ε2) for
a k-dimensional subspace. However, simply taking a union
bound over the

(
d
k

)
choices of k columns would result in

m = O((k2 log(d/k)+k log(k/ε))/ε2), which is far from
the lower bound. We open up the proof to improve this
to m = O((k log(d/k) + k log(k/ε))/ε2), which matches
our lower bound unless k is relatively large (in the order of
k = ω(

√
εd)).

Theorem 8. Let A ∈ Rn×d, b ∈ Rn, p ∈ [1, 2). There
exists a distribution over random matrices S ∈ Rm×n with
m = O(k(log(d/k) + log(k/(εδ)))/ε2) such that it holds
with probability at least 1−δ that ∀x ∈ Ψk : (1−ε)∥Ax−
b∥p ≤ ∥S(Ax − b)∥med ≤ (1 + ε)∥Ax − b∥p, where for
arbitrary y ∈ Rd, ∥y∥med := median{|yi| | i ∈ [d]}.

We obtain similar upper bounds by generalizing this result
to ℓp, p ∈ [1, 2). The sketching matrix is again a linear
sketch C ∈ Rm×n whose entries are i.i.d. random vari-
ables drawn from a p-stable distribution, generalizing the
1-stable Cauchy distribution. Such an extension has been
proposed by Indyk (2006) for sketching single vectors but
to our knowledge has never been worked out due to the lack
of closed form expressions for the cumulative density func-
tion (cdf) and probability density function (pdf), except for
p ∈ {1, 2}. Here we show how to obtain directly a sub-
space embedding for all k-sparse vectors. To this end we
leverage bounds on the tails of p-stable distributions (Bed-
norz et al., 2018). We note that p-stable distributions are
leptokurtic. More specifically, they are heavy-tailed with
decay Pr[|X| > τ ] ≤ 1/τp except for p = 2. There-
fore we need to rely on a non-linear quantile estimator to
achieve concentration for any p ∈ [1, 2) to construct and
apply the net argument, as in the case p = 1 described
above. A more intriguing question is how to analyze the cdf
of p-stables without closed form expressions. Our solution
to this problem comes from the fact that the characteris-
tic function of any p-stable distribution is known in closed
form and equals the pdf of a p-generalized normal distribu-
tion up to a normalizing constant (Dytso et al., 2018). I.e.,
it is given by ϕ(t) = exp(−|γpt|p), where γp is a constant
scale parameter that depends on p. Using an inversion the-
orem of Lévy, we can analyze the cdf and its derivative via
an integral involving the characteristic function. As a side
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result we affirm a conjecture by Indyk (2006) that a (1± ε)
approximation can be obtained via the median estimator for
all p ∈ [1, 2]1.

ReLU and hinge-like loss functions It is well-known
(Munteanu et al., 2018) that without any assumptions, these
types of functions do not admit relative error sketches
with o(n) rows. To address this issue, Munteanu et al.
(2018) introduce a natural notion for the complexity of
sketching the matrix A, which we also use to param-
eterize our results. Intuitively, the parameter µ :=
supx∈Rd\{0}∥(Ax)+∥1/∥(Ax)−∥1 is large when there is
some x that produces a significant imbalance between the
ℓ1-norm of all positive and the ℓ1-norm of all negative en-
tries. This can occur, e.g., when the data admits perfect
linear separability. However, as Munteanu et al. (2018) ar-
gued, we typically expect µ to be small. These assumptions
were recently leveraged to develop the first oblivious lin-
ear sketches for logistic regression (Munteanu et al., 2021,
2023), which led to an efficient algorithm for the minimiza-
tion problem in the non-sparse regime. Another recent con-
tribution of Mai et al. (2021) led to small dependencies on
d, µ and ε in the regime of sampling and coreset algorithms.
However, we already argued that sampling would not work
in our setting of sparse regression.

We therefore combine and extend those results to sketching
a wider class of loss functions and with better dependen-
cies on the approximation parameters, based on the median
sketch for ℓ1. We note that this sacrifices the efficiency of
optimization in the sketch space, but as we have argued be-
fore, in the context of sparse regression, finding the right
support is already a hard problem, which motivates us to
focus on the best possible parameterization.

Theorem 9. Let A ∈ Rn×d, b ∈ Rn. There exists an obliv-
ious sketch S with O(µ

2k
ε2 log(µdεδ )) rows and an estima-

tor gReLU(SA, Sb, x), such that with probability at least
1 − δ, we have ∀x ∈ Ψk : (1 − ε)∥Ax − b∥ReLU ≤
gReLU(SA, Sb, x) ≤ (1 + ε)∥Ax− b∥ReLU.

Our k-sparse affine embedding sketch leverages the fact
that ReLU(x) = (

∑
i xi + ∥x∥1)/2, since the negative en-

tries are contained negatively in the sum and again pos-
itively in the norm, so they cancel. The positive values
are positive in both parts and thus counted twice, so di-
viding by 2 yields the exact value of ReLU(x). The sum
of entries can be sketched exactly using only one row vec-
tor and the ℓ1 norm is sketched via the (1-stable) Cauchy
sketch with median estimator, as detailed above in the pre-
vious paragraph. Now, the error of this estimate is ε∥x∥1
but by the µ-complexity assumption, the ℓ1 norm is within
roughly a µ-factor of the positive entries, so folding µ into
ε yields an error of εReLU(x). We extend this result to

1The reference (Indyk, 2006) gives a non-constructive proof
showing that there exists some (unknown) quantile, possibly de-
pending on p and ε, that yields a good estimator.

an even richer class of hinge-like loss functions, including
logistic regression. Those functions are additively close to
the ReLU function, see Definition 1. The logistic regres-
sion loss ζ(x) = ln(1 + exp(x)), for instance, has asymp-
totes equal to ReLU in the limit of ±∞. However, close to
zero, the two functions differ more significantly, attaining a
bounded maximum deviation of ζ(0)−ReLU(0) = ln(2).

Theorem 10. Let A ∈ Rn×d, b ∈ Rn, and let f be an
(L, a1, a2) hinge-like loss function. There exists an oblivi-
ous sketch S with m = O( c

10µ2k
ε2 log( cnµdεδ )) rows, where

c = max(1, L, a1, 1/a2), and an estimator gf (SA, Sb, x),
such that, with probability at least 1−δ, we have ∀x ∈ Ψk :
(1− ε)∥Ax− b∥f ≤ gf (SA, Sb, x) ≤ (1 + ε)∥Ax− b∥f .

The idea is now to split the loss function into two com-
ponents

∑
i(ζ(xi) − ReLU(xi)) +

∑
i ReLU(xi). The

ReLU function can be dealt with as described in the para-
graph above and the remainder is a sum over bounded
terms. This again enables us to achieve concentration and
union bound over the net of k-sparse vectors up to an ad-
ditive error of roughly εn

µ . This error can be charged by a
complementing lower bound which follows from leverag-
ing the µ-complexity assumption, akin to (Mai et al., 2021;
Munteanu et al., 2021), and finally yields a relative error
guarantee.

For completeness, we have the following simple result that
yields a connection between minimizing in the sketch space
of a k-sparse affine embedding, as in all upper bounds
above, and the original minimization problem.
Corollary 11. Let A ∈ Rn×d, b ∈ Rn. Let ∥ · ∥ : Rn →
R≥0 be any loss function. Let S be an oblivious linear
sketch of [A, b], and let E(SA, Sb, x) be an estimator that
satisfies ∀x ∈ Ψk : (1 − ε)∥Ax − b∥ ≤ E(SA, Sb, x) ≤
(1 + ε)∥Ax − b∥. Then x̃ ∈ argminx∈Ψk

E(SA, Sb, x)
satisfies ∥Ax̃− b∥ ≤ (1 +O(ε))minx∈Ψk

∥Ax− b∥.

2.3 LASSO Regression

LASSO regression (Tibshirani, 1996) is a convex relax-
ation of k-sparse ℓ2 regression and enjoys large popularity
as a heuristic for inducing sparsity and feature selection.
LASSO regression is a special subject of our investigation,
since here we do not assume that any solution is k-sparse.
In this case, a subspace embedding for the dense ℓ2 prob-
lem is possible for sketching down to m = Θ(d/ε2) di-
mensions (Sarlós, 2006; Nelson and Nguyên, 2014). Also
in cases where the regularization parameter is very small
and thus the norm of the solution is actually unconstrained,
the problem becomes equivalent to least squares regression,
in which case Θ(d/ε) is necessary and sufficient (Sarlós,
2006; Clarkson and Woodruff, 2009). Usually, however,
the ℓ1 regularization is imposed to yield a sparse mini-
mizer, for which we can again hope to be able to take
advantage of the induced sparsity, parameterized by the



Tung Mai, Alexander Munteanu, Cameron Musco, Anup B. Rao, Chris Schwiegelshohn, David P. Woodruff

value of the regularization parameter λ such as to reduce
to poly(1/λ, log d) rows. Here we give an upper bound for
sketching that depends on an ℓ1 regularization parameter λ.

Theorem 12. Consider A ∈ Rn×d, b ∈ Rn, and λ ∈
(0, 1). Assume that ∥A∥2 ≤ 1 and ∥b∥2 ≤ 1, If S ∈ Rm×n

is a random Gaussian matrix (i.e., each entry is sam-
pled i.i.d. from N(0, 1/m)) then for any ε, δ ∈ (0, 1)

and m = O( log d/δ
λ2·ε2 ), with probability at least 1 − δ, if

x̃ = argminx∈Rd ∥SAx−Sb∥22+λ∥x∥1 then ∥Ax̃−b∥22+
λ∥x̃∥1 ≤ (1 + ε) ·minx∈Rd ∥Ax− b∥22 + λ∥x∥1.

Observe that our constraints on ∥A∥2, ∥b∥2 are necessary,
since LASSO regression is not scale invariant. The re-
sult follows by first showing that the optimizer must have
a bounded norm in terms of the optimal objective value
∥x∥1 ≤ 2·OPT

λ . This allows us to focus on the set T =

{y = Ax − b : ∥x∥1 ≤ 2·OPT
λ }, which by the bounded

norm, can be expressed as the convex hull of 2d+ 1 points
in the unit ball. For this set, we can use an embedding re-
sult of Narayanan and Nelson (2019) to obtain an additive
error of ελ for all vectors in the set T , which allows us to
relate the sketching error to O(ε ·OPT ), and which finally
yields our 1 + ε relative error approximation result.

We complement the upper bound by the following lower
bound that matches the dependence on d and λ. The proof
builds on our new techniques developed for sparse ℓ2 re-
gression. The condition of bounded norm inputs A, b, how-
ever, does not allow us to plant the additional row gadget.
Thus, we need to choose a smaller λ by a factor of ε, which
unfortunately cancels the ε dependence in the previous ℓ2
lower bound. Still, our result shows that log(λd)/λ2 rows
are necessary for any sketch with an estimator that allows
to solve LASSO to within a 1 + ε approximation.
Theorem 13. Let A ∈ Rn×d, b ∈ Rn with bounded
∥A∥2 ≤ 1 and ∥b∥2 ≤ 1, and let λ ∈ (0, 1). Suppose
S ∈ Rm×n is an oblivious linear sketch for LASSO regres-
sion with an estimator Eλ(SA, Sb, x), such that with con-
stant probability x̃ ∈ argminx∈Ψk

Eλ(SA, Sb, x) satisfies
∥Ax̃−b∥22+λ∥x̃∥1 ≤ (1+ε)·minx∈Rd ∥Ax−b∥22+λ∥x∥1.
Then m = Ω( log(λd)λ2 ).

2.4 Separation of Sparse Recovery from Sparse
Regression

Here we give an upper bound of m = O(k log(d)/ε +
k log(k/ε))/ε2) that gets very close to the lower bound
m = Ω(k log(d/k)/ε + k/ε2) of Price and Woodruff
(2011). Surprisingly, this provides a separation between
the k-sparse recovery problem and the k-sparse regres-
sion problem. Combined with our main Ω(k log(d/k)/ε2)
lower bound, it shows that k-sparse regression is strictly
harder to sketch than sparse recovery. To obtain the new
upper bound, the issue is that we need to figure out which
subset to use, but cannot afford to estimate every subset’s

cost, even though for each subset we can get a good esti-
mate. To cope with this problem we run in parallel a two-
stage estimation procedure: one CountSketch that gives
a rough estimate of the entries, which yields a superset
I of the k coordinates of interest, i.e., I ⊆ [d] of size
|I| = O(k/ε); and another CountSketch that has a higher
precision, but is required only to recover estimates for the
relatively small number of k-subsets of the set I . Now, if
we output the vector that is supported on the top k entries
in I together with their estimates of the entries obtained
from the high precision sketch, this gives the desired 1 + ε
approximation for k-sparse recovery with fewer rows than
necessary to solve the k-sparse regression problem.

Theorem 14. On input x ∈ Rd, the above sparse re-
covery scheme uses O(k log(k/ε)/ε2 + k log(d)/ε) mea-
surements and, with probability at least 1 − 1/poly(d) −
1/ poly(k/ε), returns a k-sparse vector x̂ ∈ Ψk satisfying
∥x− x̂∥22 ≤ (1 + ε)minxk∈Ψk

∥x− xk∥22.

3 Conclusion

In this paper we study the complexity of oblivious linear
sketching for sparse regression problems under various re-
gression loss functions such as ℓp regression, logistic re-
gression, ReLU loss, and hinge-like loss functions. Our re-
sults are essentially2 tight bounds of Θ(k log(d/k)/ε2) for
all those problems. We further study the sketching com-
plexity of LASSO, a popular convex relaxation often used
as a heuristic for solving sparse linear regression. We give
the first bound of O(log(d)/(λε)2) going below the lin-
ear dependence on d, where λ is the regularization parame-
ter. Furthermore we provide a separation result from the
sparse recovery problem studied in compressed sensing.
Surprisingly, we find that the sparse regression problem re-
quires m = Ω(k log(d/k)/ε2) and is thus strictly harder
to sketch than sparse recovery, for which we show a new
m = O(k log(d)/ε+k log(k/ε)/ε2) upper bound. We also
show that while data dependent importance sampling tech-
niques are widely successful for the unconstrained non-
sparse regression problems, they do not give any non-trivial
bounds in the sparse setting. This underlines the impor-
tance of oblivious sketching techniques in the sparse con-
text. For future directions we aim at closing remaining
gaps, especially for hinge-like loss functions. It will also be
an interesting avenue to develop more scalable and faster
heuristics by incorporating our sketching techniques and
evaluate their performance in practice. Finally, since our
sketches are optimized for a smallest possible target dimen-
sion, it will be interesting to study the trade-off between the
speed of applying them to data and an increase in their tar-
get dimension.

2up to minor polylogarithmic terms and problem specific pa-
rameters such as µ; see Table 1 for the exact terms.
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A LOWER BOUNDS FOR k-SPARSE REGRESSION

A.1 Lower Bounds for the ℓp-norm Loss Function for p ≥ 1

In this section we prove our main Theorem 1 on ℓ2 followed by our extension to ℓp, p ≥ 1, see Theorem 2 below.

Theorem 1. Let A ∈ Rn×d, b ∈ Rn. Suppose S ∈ Rm×n is an oblivious linear sketch for k-sparse ℓ2 regression with an
arbitrary estimator E(SA, Sb, x), such that x̃ ∈ argminx∈Ψk

E(SA, Sb, x) satisfies ∥Ax̃−b∥2 ≤ (1+ε)minx∈Ψk
∥Ax−

b∥2 with constant probability. Then m = Ω(k log(d/k)/ε2).

The outline is as follows:

1. We construct a suitable (hard) distribution over k-sparse supports, which is used to define our input distribution.

2. We prove the impossibility of recovering a constant fraction of the support with a small number of measurements
(rows) from the input distribution below an information-theoretic lower bound.

3. We construct an ℓ2-regression instance for which any 1 + Θ(ε) approximation derived from an oblivious sketch,
paired with an arbitrary estimator, reveals a constant fraction of the support. The hardness result thus turns over to the
regression problem.

For the first proof step, we begin with the construction of an error correcting code, which will be used in the main argument
to construct a hard input distribution.

Definition 2 (Balanced and Correctable Support Set). Consider a set U ⊂ [d]k+1 of sets of k + 1 indices, such that for all
U ∈ U , 1 ∈ U . U is said to be balanced if, letting ci = |{U ∈ U : i ∈ U}|, we have ci = cj for all i, j ∈ [d] \ {1}, and
further, letting cij = |{U ∈ U : i, j ∈ U}|, cij = ckl for all i ̸= j and k ̸= l with i, j, k, l ∈ [d] \ {1}. The set is said to be
correctable if for all U1, U2 ∈ U , |U1 ∩ U2| ≤ 9/10 · k.

We prove the existence of a suitably large balanced and correctable support set as follows. Suppose we choose t sets
S1, . . . , St, each of size k, uniformly at random, and each from [n] = {1, 2, . . . , n}. Let H be a pairwise independent
family of n · (n− 1) hash functions h : [n] → [n]; it is well-known that such a family exists when n is prime (Carter and
Wegman, 1979), which we can assume without loss of generality. For each Si and h ∈ H, let h(Si) denote the image of
Si under h.

Lemma 1. For any constant 0 < c < 1, there exists a constant C > 0 and t = exp(Ck log(n/k)) subsets S1, . . . , St,
each of size k, such that |h(Si) ∩ h′(Sj)| < ck for all 1 ≤ i < j ≤ t and all h ̸= h′ ∈ H.

Proof. Note that for i < j, h(Si) and h′(Sj) are each random and independent subsets of size k. To calculate their
intersection size, we can fix h(Si). Then the probability that |h(Si) ∩ h′(Sj)| is at least ck is at most the probability that
some subset of h(Si) of size ck is also a subset of h′(Sj). This probability is in turn bounded by(

k

ck

)
·
(
n−ck
k−ck

)(
n
k

) ≤
(
k

ck

)
· (n− ck)! · k!
(k − ck)! · n!

≤ 2k ·
(
k

n

)ck

≤ exp(−Ck log(n/k)),

where C > 0 is a suitable constant. Consequently, by a union bound over all pairs 1 ≤ i < j ≤ t and all choices of
h ̸= h′ ∈ H, we conclude there exists a choice of t = exp(Ck log(n/k)) such sets, for a different choice of constant
C > 0.

The lemma above implies that if we have a set T of size k which intersects some h(Si) in at least ck positions, then Si is
uniquely determined.

Moreover, by pairwise independence of H, for any a ̸= b ∈ [n], the number of sets in ∪h∈H,1≤i≤th(Si) for which a and
b occur together is the same. Also, the number of sets in ∪h∈H,1≤i≤th(Si) containing any particular value a ∈ [n] is the
same as for any other particular value b ∈ [n]. Using this argument we construct the desired set by simply applying Lemma
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1 with k and n = d for indexing a family of sets over {2, . . . , d + 1} and append the element 1 to each of the sets. The
hard instance will later be constructed from a uniform element of this set. This concludes the first part of our proof.

As a second step, we prove the impossibility of recovering a constant fraction of the support with a small number of
measurements (rows) from the input distribution below an information-theoretic lower bound. To this end, we need to
bound the mutual information first and then plug it into Fano’s inequality.

Lemma 2 (Mutual Information Bound). Let U be selected uniformly at random from a balanced and correctable support
set U (Def. 2) and for some ε > 0, let z ∈ Rd have z(1) = 1, z(i) = ε/

√
k for all i ∈ U \ {1} and z(i) = 0 for

all i /∈ U . Let X ∈ Rn×d have rows drawn independently from a mean zero multivariate Gaussian distribution with
covariance I + zzT . Then:

I(U ;X) ≤ 7n · ε2. (1)

Proof. Starting from the high level outline of Amini and Wainwright (2009), since the rows of X are independent, we can
write:

I(U ;X) = H(X)−H(X|U)

≤ n · [H(x)−H(x|U)] =
n

2
·
[
log det(E[xxT ])− log det(E[xxT |U ])

]
. (2)

We now compute the needed log determinants. First observe that E[xxT |U ] = E[I + zzT |U ] = I + E[zzT |U ]. We can
observe that E[zzT |U ] = DMD where Mij = ε2/k for i, j ∈ U and Mij = 0 otherwise, and where D is diagonal all
with D11 =

√
k/ε and Dii = 1 for all i ̸= 1. Observe that M is rank-1 and positive semidefinite. Thus, so is DMD. Thus

DMD has one non-zero eigenvalue, equal to its trace, which is 1 + ε2/k · k = 1+ ε2. Thus, E[xxT |U ] = I +DMD has
one eigenvalue equal to 2 + ε2 and n− 1 eigenvalues equal to 1, so

log det(E[xxT |U ]) = log(2 + ε2) ≥ log(2). (3)

Next consider E[xxT ]. Again we have E[xxT ] = E[I + zzT ] = I + E[zzT ]. Since U is balanced, for all i ∈ [d] \ {1},
z(i) = ε/

√
k with probability k/(d − 1) and for i, j ∈ [d] \ {1} with i ̸= j, z(i) = z(j) = ε/

√
k with probability

k(k−1)
(d−1)(d−2) . We can write E[zzT ] = D + E. Here, E11 = 0, Eij = ε2

k · k(k−1)
(d−1)(d−2) = ε2(k−1)

(d−1)(d−2) for i, j ̸= 1, and

Ei1 = E1i =
ε√
k
· k
d−1 = ε

√
k

d−1 for i ̸= 1. D11 = 1, Dii =
ε2

d−1 − ε2

k · k(k−1)
(d−1)(d−2) ≤

ε2

d−1 .

Observe that ∥E∥F ≤
√

2(d− 1) · ε2k
(d−1)2 + (d− 1)2 · ε4(k−1)2

(d−1)2(d−2)2 ≤
√
3 · ε2. Further, E is rank-3 and thus has just 3

non-zero eigenvalues. By Weyl’s inequality,

λ1(E[zzT ]) = λ1(D + E) ≤ λ1(D) + λ1(E) ≤ 1 +
√
3ε2.

For i = 2, 3, 4, 5,

λi(E[zzT ]) = λi(D + E) ≤ λ2(D) + λ1(E) ≤ ε2

d− 1
+

√
3ε2 ≤ (

√
3 + 1)ε2.

Finally, for i ≥ 5,

λi(E[zzT ]) = λi(D + E) ≤ λ2(D) + λ4(E) =
ε2

d− 1
+ 0 =

ε2

d− 1
.

Thus,

log det(E[xxT ]) = log det(I + E[zzT ])

≤ log(2 +
√
3ε2) + 4 log(1 + (

√
3 + 1)ε2) + (d− 5) log

(
1 +

ε2

d− 1

)
≤ log(2) + (5

√
3 + 4 + 1)ε2

≤ log(2) + 14ε2. (4)

Combined with (3) we have log det(E[xxT ])−log det(E[xxT |U ]) ≤ 14ε2, and plugging back into (2), we have I(U ;X) ≤
7n · ε2 as desired.
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Our mutual information bound can be plugged into Fano’s inequality to obtain a lower bound on the sample complexity
needed for an approximate, i.e., partial, recovery of the support set. This will later translate into the number of rows of our
sketch.

Corollary 15 (Sample Complexity Lower Bound). Let U,X be distributed as in Lemma 2 with n ≤ ck log(d/k)
ε2 for

sufficiently small constant c. Then no algorithm that takes just X as input can output a set Ũ with |Ũ | = k and |Ũ ∩ U | >
19k/20 with probability ≥ 2/3.

Proof. Suppose such an algorithm existed. Since all U,U ′ ∈ U have |U ∩ U ′| ≤ k · 9/10, if |Ũ ∩ U | > 19k/20, then Ũ
must contain > k/20 elements not in U ′ for any U ′ ∈ U with U ′ ̸= U . Thus, we must have |Ũ ∩U ′| < 19k/20. So Ũ can
be used to uniquely identify U . That is, the algorithm identifies U with probability ≥ 2/3. However, by Fano’s inequality
(Lemma 6), the algorithm fails with probability at least

1− I(U ;X) + log 2

log |U|
≥ 1− 7ε2n+ log 2

log |U|
,

where the bound on I(U ;X) follows from Lemma 2. Since log |U| = Θ(k log(d/k)) this failure probability is > 1/3

if n = ck log(d/k)
ε2 for small enough c and d, k are bigger than large enough constants. This gives a contradiction to the

assumption that the algorithm succeeds with probability ≥ 2/3, and hence the corollary.

This concludes the second part of our proof regarding the hardness of support recovery. For the third part, i.e., the reduc-
tion of this hard problem to sparse linear regression, we first need a few technical lemmas, before we can finally prove
Theorem 1.

The first technical result establishes a connection between approximating a loss function L to within (1 +O(ε)) error and
revealing a constant fraction of the support. We note that L will represent the regression cost in our subsequent reduction.

Lemma 3. Let v ∈ Rd be a k-sparse vector with k non-zero entries equal to 1/
√
k. Let x be another k-sparse vector. Let

M >
√
n/(εk), α = | supp(v) ∩ supp(x)|, and

L = 1 + ∥x∥22 + (1− εxT v)2 +
M2

n

(∑
i

x(i)−
√
k

)2

.

There exists a constant c such that any x with α < 19k/20 is not a 1 + cε approximation solution of L.

Proof. Let S = supp(x) ∩ supp(v) and M ′ = M/
√
n. Let β =

∑
i x(i) and γ be such that

∑
i∈S x(i) = γβ. We will

optimize L over all possible values of β and γ in R. Note that any x minimizing L must have the form

x(i) =

{
γβ
α for i ∈ S,
(1−γ)β
k−α for i ∈ supp(x) \ S.

This is because for fixed S, β, γ, making x have the above form minimizes ∥x∥ without affecting xT v. Therefore,

L = 1 +
γ2β2

α
+

(1− γ)2β2

k − α
+

(
1− εα

1√
k

γβ

α

)2

+M ′2
(
β −

√
k
)2

= γ2

(
β2

α
+

β2

k − α
+ ε2

β2

k

)
− 2γ

(
β2

k − α
+ ε

β√
k

)
+ 2 +

β2

k − α
+M ′2(β −

√
k)2.

Minimizing over all γ ∈ R gives

min
γ

L = 2 +
β2

k − α
+M ′2(β −

√
k)2 −

(
β2

k−α + ε β√
k

)2
β2

α + β2

k−α + ε2 β2

k

= 2 +
β2

k − α
+M ′2(β −

√
k)2 −

β2

(k−α)2 + 2βε

(k−α)
√
k
+ ε2

k

k
α(k−α) +

ε2

k
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= 2 +M ′2(β −
√
k)2 −

β2

(k−α)2

(
1− k

α

)
+ β2ε2

k(k−α) +
2βε

(k−α)
√
k
+ ε2

k

k
α(k−α) +

ε2

k

= 2 +M ′2(β −
√
k)2 +

β2k − β2ε2α− 2β
√
kαε− ε2(k − α)α

k2 + ε2(k − α)α

≈ε 2 +M ′2(β −
√
k)2 +

β2k − 2β
√
kαε

k2

= β2

(
M ′2 +

1

k

)
− β

(
2M ′2

√
k +

2αε

k
√
k

)
+ 2 +M ′2k.

Minimizing over β gives

min
β

min
γ

L ≈ε 2 +M ′2k −

(
M ′2

√
k + αε

k
√
k

)2
M ′2 + 1

k

= 2 +
M ′2 − 2M ′2αε

k − α2ε2

k3

M ′2 + 1
k

≈ε 2 +
M ′2 − 2M ′2αε

k

M ′2 + 1
k

.

Since M ′ = M/
√
n > 1/

√
εk, we have

min
β

min
γ

L ≈ε 3− 2
α

k
ε.

We can observe that the RHS is minimized when α = k at 3− 2ε. Moreover, if α < c1k for c1 < 1, it is at least

3− 2c1ε ≥ (3− 2ε)

(
1 +

2(1− c1)

3
ε

)
.

Therefore, there exists a small enough constant c such that if α < 19k/20, it is not possible to minimize L within 1 + cε
factor.

The next ingredient will help us analyze the regression cost up to 1±ε error deterministically by removing the influence of
a random Gaussian matrix in our input distribution. By a standard tail bound for Gaussian matrices (for example, Exercise
4.7.3 in Vershynin (2018)) we have the following lemma.

Lemma 4. Suppose X is a n × d Gaussian matrix with covariance Σ. Then there exists a constant C such that we have
with probability ≥ 1− δ

(1− ε)Σ ⪯ 1

n
XTX ⪯ (1 + ε)Σ,

when n ≥ C d+log(1/δ)
ε2 .

By invoking the above lemma to a fixed k-dimensional subspace and applying a union bound over
(
d
k

)
k-dimensional

subspaces, we have with probability at least 1− δ

∀k-sparse vectors v ∈ Ψk : (1− ε)vTΣv ⪯ 1

n
vTXTXv ⪯ (1 + ε)vTΣv,

when n ≥ C ′ k log(d/(kδ))
ε2 for some C ′ > C.

Using the previous results, we are now we are ready to give the main proof of Theorem 1, and hereby conclude the third
and final part of our proof outline.

We construct an ℓ2-regression instance for which any 1 + Θ(ε) approximation derived from an oblivious sketch, paired
with an arbitrary estimator, reveals a constant fraction of the support. The hardness result thus turns over to the regression
problem.
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Proof. (of Theorem 1) Let X = [b A] be distributed as G(I+zzT )1/2, where z is distributed as described in Lemma 2. We
will construct a k-sparse ℓ2 regression problem based on X such that an 1 + ε approximation of the constructed problem
allows us to recover a large enough fraction, i.e., greater than 19/20, of the support of z. We can assume without loss of
generality that the sketching matrix has orthonormal rows, and since X is a Gaussian matrix, the sketch has rows sampled
from the same distribution as the rows of X . This is so because we are proving lower bounds against any estimator on the
sketch.

By Corollary 15, if the number of samples is smaller than ck log(k/d)/ε2, no algorithm can recover more than a 19/20
fraction of the support of z with probability larger than 2/3. Therefore, we have a lower bound of Ω(k log(d/k)/ε2)
against a 1 + ε approximation of k-sparse ℓ2 regression.

Consider the following ℓ2 sparse regression problem

min
x∈Ψk

∥∥∥∥[ M M . . . M
A

]
x−

[ √
kM
b

]∥∥∥∥
2

.

We will let M be a very large number, which enforces
∑

i x(i) to be close to
√
k. The squared loss of the above regression

problem is

L = ∥Ax− b∥22 +M2

(∑
i

x(i)−
√
k

)2

= ∥Xx̃∥22 +M2

(∑
i

x(i)−
√
k

)2

,

where x̃ = (−1, x). By matrix concentration in Lemma 4, for n = Ω(k log(d/(kδ))/ε2), with probability at least 1− δ,

XTX ≈ε n(I + zzT ).

Recall that z has z(1) = 1, z(i) = ε/
√
k for all i ∈ U \ {1} and z(i) = 0 for all i /∈ U . We have

1

n
∥Xx̃∥22 ≈ε ∥x̃∥22 + (x̃T z)2 = (1 + ∥x∥22) + (1− εxT v)2,

where v is such that z = (1, v). Therefore,

L

n
≈ε 1 + ∥x∥22 + (1− εxT v)2 +

M2

n

(∑
i

x(i)−
√
k

)2

.

Note that x is a 1 + ε approximation of the ℓ2 loss iff x is an 1 + Θ(ε) approximation of the ℓ22 loss.

Let α = | supp(x)∩ supp(v)|. By Lemma 3, there exists a constant c such that if we can approximate L within a factor of
1 + cε, we must have α > 19k/20. Rescaling ε and combining with Corollary 15 and a union bound (with δ set to a small
constant) proves the theorem.

Next, we extend our ℓ2 lower bound to ℓp for all p ≥ 1.

Theorem 2. Let A ∈ Rn×d, b ∈ Rn. Suppose S ∈ Rm×n is an oblivious linear sketch for k-sparse ℓp regression for any
p ≥ 1 with an estimator Ep(SA, Sb, x), such that the minimizer x̃ ∈ argminx∈Ψk

Ep(SA, Sb, x) satisfies ∥Ax̃ − b∥p ≤
(1 + ε)minx∈Ψk

∥Ax− b∥p. Then m = Ω(k log(d/k)/ε2).

Proof. (of Theorem 2) We reduce from the ℓ2 case by leveraging the fact that ℓ2 embeds obliviously up to (1±ε) distortion
into ℓp for all p ≥ 1 by Dvoretzky’s theorem. Indeed, such an embedding can be constructed using a random mapping
G ∈ Rr×n whose entries are appropriately rescaled i.i.d. Gaussians. In particular G is an oblivious linear map. The
number of rows is r = O(n log(1/ε)/ε2) for 1 ≤ p ≤ 2 and r = nO(p) for p > 2; (see Matoušek, 2013, p. 30). We note,
however, that the number of rows of G does not matter in our context since it is reduced by an application of S in what
follows.

More precisely, we have for all x ∈ Rd that (1 − ε)∥Ax − b∥2 ≤ ∥GAx − Gb∥p ≤ (1 + ε)∥Ax − b∥2.
Now suppose that S is an oblivious sketching matrix for the k-sparse regression problem in ℓp. Then we can find
x̃ ∈ argminx∈Ψk

Ep(SGA,SGb, x). By definition it holds that ∥G(Ax̃ − b)∥p ≤ (1 + ε)∥G(Ax∗
G − b)∥p where
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x∗
G ∈ argminx∈Ψk

∥G(Ax − b)∥p. Also let x∗ ∈ argminx∈Ψk
∥Ax − b∥2 be the minimizer for the ℓ2 problem. Now

it follows that

∥Ax̃− b∥2 ≤ ∥G(Ax̃− b)∥p/(1− ε) ≤ ∥G(Ax∗
G − b)∥p(1 + ε)/(1− ε)

≤ ∥G(Ax∗ − b)∥p(1 + ε)/(1− ε) ≤ ∥Ax∗ − b∥2(1 + ε)2/(1− ε)

≤ (1 + 7ε)∥Ax∗ − b∥2,

which by rescaling ε means that SG is an oblivious linear sketch for the ℓ2-norm problem with an ℓp-norm minimization
estimator and at most 1 + ε error. Using the ℓ2 lower bound given in Theorem 1, it follows that SG and thus also S has
m = Ω(k log(d/k)/ε2) rows.

A.2 Lower bounds for ReLU and hinge-like loss functions

Here we give further reductions similar to Theorem 2 in order to extend our main result to ReLU and hinge-like loss
functions.

Corollary 3. Let A ∈ Rn×d, b ∈ Rn. Suppose S ∈ Rm×n is an oblivious linear sketch for k-sparse ReLU regression
with an estimator EReLU(SA, Sb, x), such that x̃ ∈ argminx∈Ψk

EReLU(SA, Sb, x) satisfies ∥Ax̃ − b∥ReLU ≤ (1 +
ε)minx∈Ψk

∥Ax− b∥ReLU. Then m = Ω(k log(d/k)/ε2).

Proof. Note that ∥Ax − b∥1 = ∥Ax − b∥ReLU + ∥ − (Ax − b)∥ReLU, ∀x. Therefore, given A, b we have ∥Ax − b∥1 =
∥PAx− Pb∥ReLU, where

P =

[
In
−In

]
is a 2n × n matrix. Suppose S ∈ Rm×2n is an oblivious linear sketch for k-sparse ReLU regression with an estimator
EReLU(SA, Sb, x). This implies that x̃ ∈ argminx∈Ψk

EReLU(SPA, SPb, x) satisfies

∥Ax̃− b∥1 = ∥P (Ax̃− b)∥ReLU ≤ (1 + ε) min
x∈Ψk

∥P (Ax− b)∥ReLU = (1 + ε) min
x∈Ψk

∥Ax− b∥1.

Therefore, S · P is an oblivious linear sketch for ℓ1 regression. By Theorem 2, we have that m = Ω(k log(d/k)/ε2).

Definition 1. We say f(·) is an (L, a1, a2) hinge-like loss function if f is L Lipschitz, ∀x ≥ 0: f(x) ≥ a2 > 0, and
∀x : |f(x)− ReLU(x)| ≤ a1.

The logistic loss function log(1 + e−x) and the hinge loss function max(0, 1− x) are (1, ln(2), ln(2)) and (1, 1, 1) hinge-
like loss functions, respectively.

We will use the notation a = (1 ± ε)b to denote (1 − ε)b ≤ a ≤ (1 + ε)b. We note that for ε > 0 if ∥x∥ReLU > 0, then
there is a constant c > 0 such that

c∥x∥ReLU = ∥cx∥ReLU = (1± ε)∥cx∥f .

Corollary 4. Let A ∈ Rn×d, b ∈ Rn. Suppose S ∈ Rm×n is an oblivious subspace embedding for some hinge-like
loss function f with an estimator Ef (SA, Sb, x), such that we have ∀x ∈ Ψk : (1 − ε)∥Ax − b∥f ≤ Ef (SA, Sb, x) ≤
(1 + ε)∥Ax− b∥f . Then m = Ω(k log(d/k)/ε2).

Proof. Suppose S ∈ Rm×n is an oblivious subspace embedding for f with an estimator Ef (SA, Sb, x). Let x ∈ Ψk be
some k-sparse vector. We will show that S ∈ Rm×n is an oblivious subspace embedding for ReLU with the estimator

EReLU(SA, Sb, x) = lim
c→∞

Ef (ScA, Scb, x)

c
.

First, consider the case where ∥Ax− b∥ReLU > 0. For c large enough, we have

∥Ax− b∥ReLU =
∥c(Ax− b)∥ReLU

c

= (1± ε)
∥c(Ax− b)∥f

c
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= (1± 3ε)
Ef (ScA, Scb, x)

c
.

Here, we assumed that ε is small enough so that (1 + ε)2 ≤ 1 + 3ε.

Next we consider the case where ∥Ax− b∥ReLU = 0. We have

Ef (ScA, Scb, x) ≤ (1 + ε)∥c(Ax− b)∥f
≤ (1 + ε)na1.

Therefore,

lim
c→∞

Ef (ScA, Scb, x)

c
≤ lim

c→∞

2na1
c

= 0

as desired.

A.3 Sampling fails for sparse regression

In this section we argue that sampling based algorithms, which are important tools in sketching for non-sparse regression
(Drineas et al., 2006; Dasgupta et al., 2009; Munteanu et al., 2018; Mai et al., 2021), do not give any non-trivial results in
the sparse setting. Specifically, these algorithms cannot compress beyond what is possible in the non-sparse case – roughly
beyond the rank of the input matrix. This is the reason that our upper bounds all build on general linear sketches, rather
than sampling.

Theorem 5. Consider any bounded approximation factor α ≥ 1 and any ∥ · ∥ : Rn → R≥0 which evaluates to 0 on the all
zeros vector and to some positive number on any other vector. For any n > 9, there is some input matrix A ∈ Rn×n and
distribution over vectors b ∈ Rn such that for any sampling matrix S ∈ Rm×n with m < n/3, no algorithm that accesses
just SA and Sb can output a k-sparse x̃ ∈ Ψk with ∥Ax̃− b∥ ≤ α ·minx∈Ψk

∥Ax− b∥ with probability at least 1/2 (over
the choice of b and any possible randomness in the algorithm).

Proof. Let k = 1 and A be the n × n identity matrix. Let b be set to the ith standard basis vector with probability 1/n.
Note that min1-sparse x∈Rn ∥Ax − b∥ = 0, so to achieve any bounded approximation factor, the algorithm must output x
with 0 cost – i.e., x = b. Any algorithm that accesses any m < n/3 rows of A and b will see only zero entries in Sb with
probability at least 2/3. Let X0 be the distribution over outputs of the algorithm given that Sb = 0. The algorithm achieves
a bounded approximation factor only if x ∼ X0 satisfies x = b. This occurs with probability at most 3

2n since after seeing
Sb = 0, any of the remaining 2/3 · n possibilities for b are equally likely. Thus, the algorithm succeeds with probability at
most 1/3 + 3/(2n) < 1/2 for n > 9.

Note that the sampling matrix S in Theorem 5 may depend on A but not on b. This is necessary. If the sampling matrix
can depend on b, then, without bounded computation, a sampling algorithm can in theory compress the problem to O(k/ε)
rows. In particular, it can simply solve for the optimal x∗ = argmink-sparse x∈Ψk

∥Ax− b∥ and only consider the k columns
of A within the support of x∗. In e.g., the ℓ2 case, by simply applying variants of standard leverage score sampling,
(Woodruff, 2014; Chen and Price, 2019) to these columns, it can output a sampling matrix S ∈ Rm×n for m = O(k/ε)
with x̃ = argmink-sparse x∈Ψk

∥SAx− Sb∥ satisfying ∥Ax̃− b∥ ≤ (1 + ε)mink-sparse x∈Ψk
∥Ax− b∥.

If the sampling matrix is required to preserve ∥Ax− b∥ for every k-sparse x ∈ Ψk, then even if a sampling algorithm can
read b, it is easy to see that it must sample at least n rows. This is true even in the case that b = 0.

Theorem 6. Consider any bounded approximation factor α ≥ 1 and any ∥ · ∥ : Rn → R≥0 which evaluates to 0
on the all zeros vector and to some positive number on any other vector. For any n > 9, there is some input matrix
A ∈ Rn×n such that there is no sampling matrix S ∈ Rm×n with m < n, which satisfies for all k-sparse x ∈ Ψk,
α−1∥Ax∥ ≤ ∥SAx∥ ≤ α∥Ax∥.

Proof. Let A be the n × n identity matrix. Then if we sample m < n rows, we will have ∥SAx∥ = 0 when x is at least
one of the standard basis vectors. This violates the approximation bound.
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B UPPER BOUNDS FOR k-SPARSE REGRESSION

B.1 Upper bounds for the ℓp-norm loss function for p ∈ [1, 2]

We prove k-sparse affine embedding upper bounds and note that as a corollary we obtain the same bounds for minimization.
We begin with ℓ2.

Theorem 7. Let A ∈ Rn×d, b ∈ Rn. There exists a distribution over random matrices S ∈ Rm×n with m =
O(k log(d/k)/ε2) such that it holds with constant probability that ∀x ∈ Ψk : (1 − ε)∥Ax − b∥2 ≤ ∥S(Ax − b)∥2 ≤
(1 + ε)∥Ax− b∥2.

Proof. (of Theorem 7) The upper bound is similar to the known constructions (Baraniuk et al., 2008) of RIP matrices
via Johnson-Lindenstrauss embeddings (Johnson and Lindenstrauss, 1984), i.e., appropriately rescaled Gaussian matrices.
The main difference is that the subspaces formed by any fixed k-sparse support of x need not be orthogonal or aligned with
the standard basis vectors. The first idea is that there are at most

(
d
k

)
≤ (ed/k)k different k-sparse supports and each of

them corresponds to one choice of k columns of A. Every such choice spans a k-dimensional linear subspace of dimension
≤ k. By the subspace embedding construction in (Sarlós, 2006), every subspace formed by one choice of k columns can
be handled by embedding the points in a net of size (3/ε)k covering the unit ball in the subspace. The remaining vectors
can be related to the net points by triangle inequality and the embedding extends to vectors of arbitrary norm outside the
unit sphere by linearity. A slightly more sophisticated argument in (Woodruff, 2014, pp. 13) states that the net can be
constructed with ε replaced by an absolute constant ε0 := 1/2. So the total number of points to embed up to (1 ± ε)
distortion is bounded by |N | ≤ (d/k)k · ck for an absolute constant c = 3e/ε0. The embedding can be accomplished via
the Johnson-Lindenstrauss lemma followed by a union bound over N , which yields a matrix S = 1√

m
G whose entries are

scaled i.i.d. standard Gaussians Gij ∼ N(0, 1) with m = O(log(|N |)/ε2) = O(k log(d/k)/ε2) rows.3

We continue with ℓp, p ∈ [1, 2). We note that the outline is similar to (Backurs et al., 2016, appendix F.1) but our result is
non-trivially adapted to the sparse setting and generalized to ℓp.

Theorem 8. Let A ∈ Rn×d, b ∈ Rn, p ∈ [1, 2). There exists a distribution over random matrices S ∈ Rm×n with
m = O(k(log(d/k)+log(k/(εδ)))/ε2) such that it holds with probability at least 1−δ that ∀x ∈ Ψk : (1−ε)∥Ax−b∥p ≤
∥S(Ax− b)∥med ≤ (1 + ε)∥Ax− b∥p, where for arbitrary y ∈ Rd, ∥y∥med := median{|yi| | i ∈ [d]}.

Proof. (of Theorem 8) We choose S ∈ Rm×n to be a matrix whose entries are i.i.d. p-stable random variables with scale
parameter γp = c1−1/p, where c ≈ 1.099055; see below. We show that this matrix has the desired property. First note that
Ax− b = [A, b][xT ,−1]T , so we can simply assume that the input consist only of A′ = [A, b] and it suffices to show that
∥SA′x∥med = (1± ε)∥A′x∥p for all x ∈ Ψk′ ⊆ Rd+1 for k′ = k+1. In what follows we re-substitute A for A′ and k for
k′ for the sake of presentation.

Fix any k-sparse support indexed by I ⊆ [d] with |I| = k. Let AI be the matrix whose k columns are the columns A∗i
of A such that i ∈ I . From a classic result of Auerbach (cf. Auerbach, 1930; Dasgupta et al., 2009) it follows that there
exists a basis L ∈ Rn×k for the p-normed subspace spanned by those columns (Wang and Woodruff, 2022, Lemma 2.22)
that satisfies the following properties: the ℓp norm of each column i ∈ [k] is exactly ∥L∗i∥p = k1/q , and for all x ∈ Rk it
holds that ∥Lx∥p ≥ ∥x∥q , where q = ∞ for p = 1 and q = p

p−1 for p ∈ (1, 2) denotes the dual norm of p.

Further, by a property of the p-stable random variables we have that any entry

(SL)ij =

n∑
h=1

SihLhj ∼ C · ∥L∗j∥p = C · k1/q

is again a scaled p-stable random variable; (cf. Indyk, 2006; Dytso et al., 2018). It follows that for any threshold τ the
probability that any entry of SL has absolute value larger than τ is bounded by O((k1/q/τ)p) = O(k/τp), (cf. Bednorz
et al., 2018).

Setting τ = O((mk2/δ)1/p) = Õ((k3 log(d)/δ)1/p), we have that all entries of SL are simultaneously bounded by τ
with probability 1 − δ/2. Suppose this event is true. Then for all x ∈ Ψk with the fixed support indexed by I , we have

3We note that the same result can be achieved by random sign (Rademacher) matrices (Clarkson and Woodruff, 2009) which is more
convenient in streaming and other space constrained settings.
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by Hoelder’s inequality (applied only to the k-sparse support, since other terms are zero) and by the properties discussed
above, that

∥SLx∥∞ = max
i∈[m]

|Si∗Lx| ≤ max
i∈[m]

∥(SL)i∗∥∞∥x∥1 ≤ τk1−
1
q ∥x∥q ≤ τk

1
p ∥Lx∥p

≤ Õ((k4 log(d)/δ)1/p)∥Lx∥p.

Let τ ′ = Õ((k4 log(d)/δ)1/p) = Õ(k4 log(d)/δ). We construct an ε
τ ′ -net N k

I in the ℓp norm for the unit ℓp ball intersect
the subspace spanned by L. By linearity, the restriction to the unit ball is w.l.o.g. We repeat this construction for each
k-sparse support and define our net to be the union over all supports, i.e., N =

⋃
I⊆[d],|I|=k N k

I . There are at most
(
d
k

)
≤

(ed/k)k different subspaces, each of which is covered by a net of size at most |N k
I | ≤ (3τ ′/ε)k by the standard volume

argument. Consequently for an absolute constant c1 we have |N | ≤ (ed/k)k · (c1k4 log(d)/(εδ))k = exp(O(k log(d/k)+
k log(k/(εδ)))).

Next, we investigate the cdf Fp(x) of the random variable |X|, where X follows a p-stable distribution. Except for the
cases p ∈ {1, 2}, which correspond to the Cauchy and Normal distribution, no analytic/closed form expression is known
for the cdfs and pdfs. We thus take a detour and leverage the inversion theorem of Lévy (Lévy, 1925; Masani, 1977)
based on the characteristic function, for which a closed form expression is known (Borak et al., 2005; Dytso et al., 2018):
ϕp(t) = exp−|γpt|p, where γp is the constant scale parameter defined above. More precisely, it holds that

Fp(x) = P (|X| ≤ x) = P (X ≤ x)− P (X ≤ −x)

=
1

2π
lim

T→∞

∫ T

−T

eitx − e−itx

it
ϕp(t) dt

=
1

2π
lim

T→∞

∫ T

−T

eitx − e−itx

it
e−|γpt|p dt

=
1

2π
lim

T→∞

∫ T

−T

2i sin(tx)

it
e−|γpt|p dt

=
1

π
lim

T→∞

∫ T

−T

sin(tx)

t
e−|γpt|p dt.

It follows that

Fp(1) =
1

π
lim

T→∞

∫ T

−T

sin t

t
e−|γpt|p dt =

1

2
(5)

It remains to show that the derivative of F is bounded at F (1) = 1
2 . To this end we observe that

F ′
p(x) =

1

π
lim

T→∞

∫ T

−T

cos(tx) · t
t

e−|γpt|p dt

=
1

π
lim

T→∞

∫ T

−T

cos(tx) e−|γpt|p dt.

Consequently,

F ′
p(1) =

1

π
lim

T→∞

∫ T

−T

cos(t) e−|γpt|p dt.

Now by the symmetry of the integrand and monotonicity of the characteristic function w.r.t. the exponent p we have

1

π
=

1

π
lim

T→∞

∫ T

−T

cos(t) e−|γ1t| dt ≤ F ′
p(1) ≤

1

π
lim

T→∞

∫ T

−T

cos(t) e−|γ2t|2 dt

≤ 1

π
lim

T→∞

∫ T

−T

cos(t) e−|t|2 dt =
1

π1/2e1/4
(6)

where in particular we note that γ1 = 1, which is used in the lower bound, and γ2 ≥ 1 is used for the upper bound.
Generalizing (Indyk, 2006, Lemma 2), it follows from Equations (5) and (6) that if Fp(z) ∈ [1/2− cε, 1/2 + cε] for some
absolute constant c then z ∈ [1− ε, 1 + ε], which we will use in what follows.
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For any x ∈ Ψk, we say SAx is good if only a 1
2 − c2ε fraction of coordinates in the sketch space are too large or too

small, i.e.

|{i : |(SAx)i| < (1− ε)∥Ax∥p}| ≤
(
1

2
− c2ε

)
m

|{i : |(SAx)i| > (1 + ε)∥Ax∥p}| ≤
(
1

2
− c2ε

)
m

for some small constant c2. If SAx is good, then for any y with at most c2εm coordinates larger than ε∥Ax∥p, we have

(1− 2ε)∥Ax∥p ≤ ∥SAx+ y∥med ≤ (1 + 2ε)∥Ax∥p. (7)

By the p-stability property, (SAx)i is a p-stable random variable with scale ∥Ax∥p, we have that

Pr[|(SAx)i| < (1− ε)∥Ax∥p] < 1/2− Ω(ε)

Pr[|(SAx)i| > (1 + ε)∥Ax∥p] < 1/2− Ω(ε).

By a Chernoff bound, for sufficiently small c2 we have that SAx is good with probability at least 1 − exp(−Ω(ε2m)).
For our choice of m, we can union bound to get that SAx is good simultaneously for all x ∈ N with probability at least
1− exp(−Ω(ε2m)) · |N | ≥ 1− δΩ(k). Suppose this event is true.

Then every y = Ax for x ∈ Ψk with ∥y∥p = 1 can be expressed as y = z + η where z ∈ N and ∥η∥p ≤ ε/τ ′. We have
that Sz is good and that ∥Sη∥∞ ≤ τ ′∥η∥p ≤ ε. Hence by (7),

(1− 2ε)∥z∥p ≤ ∥S(z + η)∥med ≤ (1 + 2ε)∥z∥p.

which implies
(1− 3ε)∥y∥p ≤ ∥Sy∥med ≤ (1 + 3ε)∥y∥p.

Since S is linear, the restriction to ∥y∥p = 1 is not necessary. Rescaling ε concludes the proof.

B.2 Upper bounds for the ReLU loss function

Notation For a function f : R → R and a vector y ∈ Rn, we let f(y) ∈ Rn denote the entry-wise application of f to y.
Let yi denote the ith entry of y. So f(y)i = f(yi). Moreover, let ∥y∥f =

∑n
i=1 f(yi). Let y+ and y− denote y restricted

to the set of positive and negative entries respectively. Finally, for A ∈ Rn×d and x ∈ Rd, let µ(A) = supx ̸=0
(Ax)+

(Ax)− .
When A is clear from the context, we drop A from the notation of µ.

Theorem 9. Let A ∈ Rn×d, b ∈ Rn. There exists an oblivious sketch S with O(µ
2k
ε2 log(µdεδ )) rows and an esti-

mator gReLU(SA, Sb, x), such that with probability at least 1 − δ, we have ∀x ∈ Ψk : (1 − ε)∥Ax − b∥ReLU ≤
gReLU(SA, Sb, x) ≤ (1 + ε)∥Ax− b∥ReLU.

Proof. By appending b to A and increasing k by 1, if suffices to prove the statement of the theorem for the case b = 0.
Note that

∥Ax∥ReLU = ∥(Ax)+∥1 =
∥Ax∥1 + 1TAx

2

since ∥Ax∥1 = ∥(Ax)+∥1 + ∥(Ax)−∥1 and 1TAx = ∥(Ax)+∥1 −∥(Ax)−∥1. From Theorem 8, there exists a sketch Sℓ1

with O
(
(k/ε2) log(d/εδ)

)
rows and an estimator gℓ1(Sℓ1A, x) = ∥Sℓ1Ax∥med such that, with probability at least 1− δ,

∀x ∈ Ψk : (1− ε)∥Ax∥1 ≤ gℓ1(Sℓ1A, x) ≤ (1 + ε)∥Ax∥1. (8)

Moreover, 1TA can be computed exactly using a single row. Let S be the sketch obtained by combining Sℓ1 and the single
row 1T , and let

gReLU(SA, x)
def
=

gℓ1(Sℓ1A, x) + 1TAx

2
=

∥Sℓ1Ax∥med + 1TAx

2
.

Now, (8) implies ∣∣gReLU(SA, x)− ∥Ax∥ReLU

∣∣ = ∣∣∣∣gℓ1(Sℓ1A, x) + 1TAx

2
− ∥Ax∥1 + 1TAx

2

∣∣∣∣
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=

∣∣∣∣gℓ1(Sℓ1A, x)− ∥Ax∥1
2

∣∣∣∣
≤ ε

2
∥Ax∥1. (9)

By the definition of µ,

µ+ 1 ≥ ∥(Ax)−∥1
∥(Ax)+∥1

+ 1 =
∥Ax∥1

∥Ax∥ReLU
. (10)

From (9) and (10), we have∣∣gReLU(SA, x)− ∥Ax∥ReLU

∣∣ ≤ ε(µ+ 1)

2
∥Ax∥ReLU ≤ εµ∥Ax∥ReLU,

where the last inequality holds because µ ≥ 1. The theorem follows by scaling ε by a factor of 1/µ.

B.3 Upper bounds for hinge-like loss functions

First we give a lemma on hinge-like functions, which has a similar role to (10) for the ReLU function, and was proven in
Corollary 9 of Mai et al. (2021).

Lemma 5. Let f be an (L, a1, a2) hinge-like loss function, and let C = 16max(1, L, a1, 1/a2)
4. Let A ∈ Rn×d. Then

for any x ∈ Rd,

∥Ax∥f ≥ n+ ∥Ax∥1
Cµ

.

Proof. We have

∥Ax∥f ≥
∑

i:[Ax]i∈[0,2a1]

f(Ax)i +
∑

i:[Ax]i≥2a1

f(Ax)i

≥
∑

i:[Ax]i∈[0,2a1]

a2 +
∑

i:[Ax]i≥2a1

ReLU(Ax)i − a1

≥ min

(
a2
2a1

,
1

2

)
· ∥(Ax)+∥1

≥ min

(
a2
2a1

,
1

2

)
· ∥Ax∥1
µ+ 1

, (11)

where the second inequality holds because f is (L, a1, a2) hinge-like and last inequality follows from (10) in Theorem 9.

Let γ def
= min

(
a2

2a1
, 1
2

)
. Now we claim that

∥Ax∥f =

n∑
i=1

f(Ax)i ≥
na2γ

4µ ·max(1, L)
.

If
∑n

i=1 f(Ax)i ≥
na2

4 then this holds immediately since µ(X) ≥ 1, max(1, L) ≥ 1 and γ ≤ 1. Otherwise, assume that∑n
i=1 f(Ax)i ≤

na2

4 . Since f(z) ≥ a2 for all z ≥ 0 and since f is L-Lipschitz, f (z) ≥ a2

2 for all z ≥ − a2

2L . This implies
that Ax has at most na2/4

a2/2
= n

2 entries ≥ − a2

2L . Thus, Ax has at least n
2 entries ≤ − a2

2L and so ∥(Ax)−∥1 ≥ na2

4L . Thus,
by the definition of µ along with (11),

∥Ax∥f ≥ γ · ∥(Ax)+∥1 ≥ na2γ

4µL
≥ na2γ

4µ ·max(1, L)
. (12)

Combining (11) with (12) gives that

∥Ax∥f ≥ γ · ∥Ax∥1
2µ+ 2

+
na2γ

8µ ·max(1, L)
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≥ (∥Ax∥1 + n) · γ ·min(1, a2)

8µ ·max(1, L)

≥ (∥Ax∥1 + n)
1

8µ ·max(1, L) ·max(1, 1/a2) ·max(2, 2a1/a2)

≥ (∥Ax∥1 + n)
1

16µ ·max(1, L, a1, 1/a2)4
.

Substituting C = 16max(1, L, a1, 1/a2)
4 completes the proof.

From Lemma 5, it suffices to approximate ∥Ax∥f within O((ε/µ)(n + ∥Ax∥1)) to obtain a relative error guarantee.
Theorem 9 provides a method to approximate ∥Ax∥ReLU within O((ε/µ)∥Ax∥1). In Theorem 10, we will show that
uniform sampling can approximate the difference between ∥Ax∥f and ∥Ax∥ReLU within O((ε/µ)n).

Theorem 10. Let A ∈ Rn×d, b ∈ Rn, and let f be an (L, a1, a2) hinge-like loss function. There exists an oblivious sketch
S with m = O( c

10µ2k
ε2 log( cnµdεδ )) rows, where c = max(1, L, a1, 1/a2), and an estimator gf (SA, Sb, x), such that, with

probability at least 1− δ, we have ∀x ∈ Ψk : (1− ε)∥Ax− b∥f ≤ gf (SA, Sb, x) ≤ (1 + ε)∥Ax− b∥f .

Proof. Again, we may assume that b = 0. We have

∥Ax∥f =

n∑
i=1

f(Ax)i =

n∑
i=1

(f(Ax)i − ReLU(Ax)i) + ∥Ax∥ReLU.

By (9) in the proof of Theorem 9, there exists a sketch SReLU with m1 = O
(
k log(d/εδ)/ε2

)
rows and a function gReLU

such that with probability at least 1− δ,∣∣gReLU(SReLUA, x)− ∥Ax∥ReLU

∣∣ ≤ ε∥Ax∥1. (13)

We give a sketch with m2 rows to approximate R(Ax) =
∑n

i=1 (f(Ax)i − ReLU(Ax)i). Consider uniformly sampling
the rows of A with replacement. Let Su ∈ Rm2×n be the sketching matrix corresponding to uniformly sampling m2 rows.
We will show that

R(SuAx) =
n

m2

m2∑
i=1

(f(SuAx)i − ReLU(SuAx)i)

can approximate R(Ax) within error O(ε(n+ ∥Ax∥1)) for a suitable value of m2, i.e.,

|R(SuAx)−R(Ax)| ≤ O(ε(n+ ∥Ax∥1)). (14)

Fix any k-sparse support indexed by I ⊆ [d] with |I| = k. We will show (14) for all x in this fixed support and then
union bound over all

(
d
k

)
supports. Let AI be the matrix whose k columns are the columns A∗i of A such that i ∈ I . We

may assume w.l.o.g. that the columns of AI are orthonormal, since the set of vectors {AIx | x has support I} remains
unchanged by making them orthonormal. With the assumption, ∥Ax∥2 = ∥AIx∥2 = ∥x∥2 for all x having support I . We
consider two cases.

Large Norm In this case, we consider x such that ∥Ax∥1 ≥ na1/ε. Since f is an (L, a1, a2) hinge-like loss function,
|f(Ax)i − ReLU(Ax)i| ≤ a1 for all 1 ≤ i ≤ n. Therefore, it holds that |f(SuAx)i − ReLU(SuAx)i| ≤ a1 for all
1 ≤ i ≤ m2 as well. We have

∣∣R(SuAx)−R(Ax)
∣∣ = ∣∣∣∣∣ nm2

m2∑
i=1

(f(SuAx)i − ReLU(SuAx)i)−
n∑

i=1

(f(Ax)i − ReLU(Ax)i)

∣∣∣∣∣
≤ n

m2
m2a1 + na1 = 2na1 ≤ 2ε∥Ax∥1. (15)

Small Norm Now we consider x such that ∥Ax∥1 < na1/ε. This implies ∥x∥2 = ∥Ax∥2 ≤ ∥Ax∥1 < na1/ε. We
construct an ε

L+1 -net N k
I in the ℓ2 norm for all x in the ℓ2 ball BI = {x has support I | ∥x∥2 ≤ na1/ε}. By a standard

volume argument,
∣∣N k

I

∣∣ < (3(L+ 1)na1/ε
2)k. We next consider a fixed vector x with support I and then union bound

over all vectors in the net N k
I .
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Let X1, X2, . . . , Xm2 be random variables such that Xi = f(SuAx)i−ReLU(SuAx)i. Since f is an (L, a1, a2) hinge-like
loss function, |Xi| ≤ a1 for all i. By Hoeffding’s inequality,

P
(∣∣∣∣n∑m2

i=1 Xi

m2
−R(Ax)

∣∣∣∣ ≥ εn

)
= P

(∣∣∣∣∑m2

i=1 Xi

m2
− R(Ax)

n

∣∣∣∣ ≥ ε

)
≤ 2 exp

(
−m2ε

2

4a21

)
. (16)

Note that (16) holds for a fixed vector x. Letting

m2 = O

(
a21
ε2

(
k log

d(L+ 1)na1
εk

+ log
1

δ

))
and union bounding over at most (3(L+ 1)na1/ε

2)k points in N k
I , we have the probability that (16) holds for all points

in N k
I is 1− δ′, where

δ′ =

(
3(L+ 1)na1

ε2

)k

exp

(
−m2ε

2

4a21

)
≤ δ

(
k

ed

)k

.

Next we will show that,
∣∣R(SuAx′)−R(Ax′)

∣∣ ≤ εn for all x′ in N k
I implies∣∣R(SuAx)−R(Ax)
∣∣ ≤ 3εn (17)

for all x ∈ BI . Let x′ ∈ N k
I such that ∥x− x′∥2 ≤ ε

L+1 . By the triangle inequality,∣∣R(SuAx)−R(Ax)
∣∣ ≤ ∣∣R(Ax)−R(Ax′)

∣∣+ ∣∣R(SuAx)−R(SuAx′)
∣∣+ ∣∣R(SuAx′)−R(Ax′)

∣∣.
Since x′ is in N , the last term is at most εn. We will bound the other two terms using the fact that f is L-Lipschitz and
∥x− x′∥2 ≤ ε

L+1 . Applying the triangle inequality again, we have

∣∣R(Ax)−R(Ax′)
∣∣ ≤ ∣∣∣∣∣

n∑
i=1

(
ReLU(Ax)i − ReLU(Ax′)i

)∣∣∣∣∣+
∣∣∣∣∣

n∑
i=1

(
f(Ax)i − f(Ax′)i

)∣∣∣∣∣
≤ ∥A(x− x′)∥1 + L∥A(x− x′)∥1
≤ (1 + L)

√
n∥x− x′∥2

≤ ε
√
n.

Similarly, ∣∣R(SuAx)−R(SuAx′)
∣∣

≤

∣∣∣∣∣ nm2

m2∑
i=1

(
ReLU(SuAx)i − ReLU(SuAx′)i

)∣∣∣∣∣+
∣∣∣∣∣ nm2

m2∑
i=1

(
f(SuAx)i − f(SuAx′)i

)∣∣∣∣∣
≤ n

m2
∥SuA(x− x′)∥1 +

n

m2
L∥SuA(x− x′)∥1

≤ (L+ 1)
n

√
m2

∥SuA(x− x′)∥2

≤ (L+ 1)
n

√
m2

∥A(x− x′)∥2

≤ (L+ 1)
n

√
m2

∥x− x′∥2

≤ ε
n

√
m2

.

This completes the proof of (17) and our argument for the small norm case. Combining (15) and (17), we have that for a
fixed support I , with probability at least 1− δ

(
k
ed

)k
,∣∣R(SuAx)−R(Ax)

∣∣ ≤ 3εn+ 2ε∥Ax∥1.



Optimal Sketching Bounds for Sparse Linear Regression

Union bounding over
(
d
k

)
< (ed/k)k k-sparse supports gives a success probability of at least 1− δ.

Let S =

[
SReLU

Su

]
. Define

gf (SA, x)
def
= R(SuAx) + gReLU(SReLUA, x).

From (13), with probability at least 1− 2δ,∣∣gf (SA, x)− ∥Ax∥f
∣∣ ≤ ∣∣R(SuAx)−R(Ax)

∣∣+ ∣∣gReLU(SReLUA, x)− ∥Ax∥ReLU

∣∣
≤ 3ε (n+ ∥Ax∥1) (18)

By Lemma 5, ∥Ax∥f ≥ (n+ ∥Ax∥1)/(Cµ), where C = 16max(1, L, a1, 1/a2)
4. Combining this with (18) gives∣∣gf (SA, x)− ∥Ax∥f

∣∣ ≤ 3Cµε∥Ax∥f .

Finally, scaling ε by O(1/(Cµ)), the number of rows in S is

m1 +m2 = O

(
C2µ2k(1 + a21)

ε2
· log

(
Cna1(L+ 1)µd

εδ

))
= O

(
c10µ2k

ε2
· log

(
cnµd

εδ

))
with c = max(1, L, a1, 1/a2).

For completeness we have the following simple result that yields a connection between minimizing in the sketch space
using a k-sparse affine embedding – as in all upper bounds above – and the original problem.

Corollary 11. Let A ∈ Rn×d, b ∈ Rn. Let ∥ · ∥ : Rn → R≥0 be any loss function. Let S be an oblivious linear sketch of
[A, b], and let E(SA, Sb, x) be an estimator that satisfies ∀x ∈ Ψk : (1−ε)∥Ax−b∥ ≤ E(SA, Sb, x) ≤ (1+ε)∥Ax−b∥.
Then x̃ ∈ argminx∈Ψk

E(SA, Sb, x) satisfies ∥Ax̃− b∥ ≤ (1 +O(ε))minx∈Ψk
∥Ax− b∥.

Proof. (of Corollary 11) Let x∗ ∈ argminx∈Ψk
∥Ax− b∥. Then

∥Ax̃− b∥ ≤ E(SA, Sb, x̃)/(1− ε) ≤ E(SA, Sb, x∗)/(1− ε)

≤ ∥Ax∗ − b∥(1− ε)/(1− ε) ≤ (1 + 4ε)∥Ax∗ − b∥.

C OBLIVIOUS SKETCHING FOR LASSO REGRESSION

LASSO regression is a convex relaxation of k-sparse ℓ2 regression and enjoys large popularity as a heuristic for inducing
sparsity and feature selection (Tibshirani, 1996). Here we give an upper bound for sketching that depends on an ℓ1
regularization parameter λ, and log(d).

C.1 Upper bound

Theorem 12. Consider A ∈ Rn×d, b ∈ Rn, and λ ∈ (0, 1). Assume that ∥A∥2 ≤ 1 and ∥b∥2 ≤ 1, If S ∈ Rm×n is a
random Gaussian matrix (i.e., each entry is sampled i.i.d. from N(0, 1/m)) then for any ε, δ ∈ (0, 1) and m = O( log d/δ

λ2·ε2 ),
with probability at least 1−δ, if x̃ = argminx∈Rd ∥SAx−Sb∥22+λ∥x∥1 then ∥Ax̃−b∥22+λ∥x̃∥1 ≤ (1+ε)·minx∈Rd ∥Ax−
b∥22 + λ∥x∥1.

Observe that our constraints on ∥A∥2, ∥b∥2 are necessary, since classic LASSO regression is not scale invariant. If, for
an arbitrarily large factor α, we scale A up by a factor of α then we can keep the same error ∥Ax − b∥22 while scaling x
down by a factor of 1/α. Thus, the λ · ∥x∥1 term becomes negligible, and the problem reduces to ordinary least squares
regression. Similarly, if we scale b up by a factor α, then the minimal achievable ∥Ax − b∥22 scales by a factor α2, while
the x achieving this minimum has λ∥x∥1 scaled by just a factor α. So again, as α grows arbitrarily large, the problem
becomes ordinary least squares regression. It is known that sketching dimension Θ(d/ε) is necessary and sufficient for
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ordinary least squares regression (Sarlós, 2006; Clarkson and Woodruff, 2009). Thus, going beyond this requires bounding
∥A∥2, ∥b∥2 to ensure that the regularization λ∥x∥1 has a non-negligible effect.

Also note that we cannot hope to achieve an o(d/ε2) bound for preserving the LASSO cost for all x ∈ Rd, since for x with
large enough ∥x∥22, and for b = 0, the problem becomes equivalent to preserving ∥Ax∥22, which requires Θ(d/ε2) sketch
size (Nelson and Nguyên, 2014).

Proof of Theorem 12. Let OPT = minx∈Rd ∥Ax−b∥22+λ∥x∥1. Observe that since ∥b∥2 ≤ 1, OPT ≤ ∥b∥22+λ∥0∥1 ≤ 1.
Via the standard Johnson-Lindenstrauss lemma, we have that with high probability, for x∗ = argminx∈Rd ∥Ax − b∥22 +
λ∥x∥1, ∥SAx∗ − Sb∥22 + λ∥x∗∥1 ≤ (1 + ε) ·OPT .

Thus, we must have ∥x̃∥1 ≤ (1+ε)·OPT
λ ≤ 2·OPT

λ , as otherwise we would have ∥SAx̃ − Sb∥22 + λ∥x̃∥1 ≥ ∥SAx∗ −
Sb∥22 + λ∥x∗∥1, contradicting the fact that x̃ is a minimizer for the sketched problem. For the same reason, we must have
∥SAx̃− Sb∥2 ≤ ∥Sb∥2 ≤ 2.

Let T = {y = Ax − b : ∥x∥1 ≤ 2·OPT
λ }. Let T ′ = {y = Ax − b : ∥x∥1 = 1}. Observe that by our assump-

tion that ∥A∥2 ≤ 1, each column ai of A has ∥ai∥2 ≤ 1. Thus, T ′ is the convex hull of 2d + 1 points in the unit
ball: a1,−a1, a2,−a2, . . . ad,−ad, b. By Corollary 3.2 of Narayanan and Nelson (2019), for m = O

(
log(d/δ)
λ2·ε2

)
, with

probability at least 1− δ, for all y′ ∈ T ′,

|∥Sy∥2 − ∥y∥2| ≤ ελ.

Note that any y ∈ T can be written as α · y′ for y′ ∈ T ′, for some α ≤ 2·OPT
λ . Thus, we have that with probability at least

1− δ, for all y ∈ T ,

|∥Sy∥2 − ∥y∥2| ≤ 2ε ·OPT.

In particular, for x̃ = argminx∈Rd ∥SAx− Sb∥22 + λ∥x∥1, we have Ax̃− b ∈ T so this gives∣∣∥SAx− Sb∥22 − ∥Ax− b∥22
∣∣ ≤ |∥SAx− Sb∥2 − ∥Ax− b∥2| · |∥SAx− Sb∥2 + ∥Ax− b∥2|
≤ 12ε ·OPT, (19)

where the second inequality uses that ∥SAx̃− Sb∥2 ≤ 2 ·OPT ≤ 2 and thus ∥Ax̃− b∥2 ≤ (2 + 2ε) ·OPT ≤ 4. Finally,
using (19) we have:

∥Ax̃− b∥22 + λ∥x̃∥1 ≤ ∥SAx̃− Sb∥22 + λ∥x̃∥1 + 5ε ·OPT

≤ ∥SAx̃∗ − Sb∥22 + λ∥x∗∥1 + 12ε ·OPT

≤ (1 + 13ε) · [∥SAx̃∗ − Sb∥22 + λ∥x∗∥1].

This completes the theorem after adjusting ε by a constant factor.

C.2 Lower bound

Theorem 13. Let A ∈ Rn×d, b ∈ Rn with bounded ∥A∥2 ≤ 1 and ∥b∥2 ≤ 1, and let λ ∈ (0, 1). Suppose S ∈ Rm×n

is an oblivious linear sketch for LASSO regression with an estimator Eλ(SA, Sb, x), such that with constant probability
x̃ ∈ argminx∈Ψk

Eλ(SA, Sb, x) satisfies ∥Ax̃−b∥22+λ∥x̃∥1 ≤ (1+ε)·minx∈Rd ∥Ax−b∥22+λ∥x∥1. Then m = Ω( log(λd)λ2 ).

Proof of Theorem 13. We will prove this similar to the lower bound in Theorem 1. We will take [b A] = X ∼ 1√
n
G(I +

zzT )1/2, where z is as in Corollary 15 with ε = 1/2. Without loss of generality, we can assume that S has orthonormal
rows and so SG(I + zzT )1/2 has the same distribution as G(I + zzT )1/2 with fewer rows. We also let λ = 1/(2

√
k). The

normalization factor 1√
n

ensures that norm condition ∥A∥2, ∥b∥2 ≤ 1 holds with high probability. We then have with high
probability

∥Ax− b∥22 + λ∥x∥1 ≈ 1 + ∥x∥22 + (1− εvTx)2 + λ∥x∥1 =: L(x).

The approximation error (and the probability) above can be made arbitrarily small by taking n to be sufficiently large.
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We note that L(x) is a 1-strongly convex function, and so

L(x̂) ≥ L(x∗) + ∥x̂− x∗∥22.

for any x̂, where x∗ is the minimizer of L(x). By a straightforward computation, we also get that x∗ = v/5 and L(x∗) =
1.95. Suppose that L(x̂) ≤ (1 + c1)L(x

∗) for a sufficiently small c1. Then we have

(1 + c1)L(x
∗) ≥ L(x∗) + ∥x̂− x∗∥22.

This implies that ∥x̂ − x∗∥22 ≤ c1L(x
∗) ≤ 1.95 · c1. Therefore, by choosing c1 to be a small enough constant, we can

recover a 19/20 fraction of supp(x∗) = supp(v). Corollary 15 then gives the required lower bound of Ω(k log(d/k)) on
the size of the sketch, where k is set to 1/(4λ2) corresponding to our choice of λ.

D SEPARATING SPARSE RECOVERY AND SPARSE REGRESSION

We now give a separation between the k-sparse recovery problem and k-sparse regression problems. Combined with our
lower bounds for k-sparse regression, this shows that the k-sparse recovery problem is a strictly easier problem. Our
upper bound below matches the lower bound for k-sparse outputs of Price and Woodruff (2011) up to a log(k/ε) factor,
improving the naı̈ve bound of O(k(log d)/ε2).

In the k-sparse recovery problem, one seeks to sketch a vector x ∈ Rd so as to output a k-sparse x̂ ∈ Rd so that

∥x− x̂∥22 ≤ (1 + ε)∥x− xk∥22, (20)

where xk consists of the top k entries in magnitude of x, breaking ties arbitrarily. We need the following theorem about
CountSketch.

Theorem 16. (Charikar et al. (2004)) There is a distribution on sketching matrices S ∈ Rbt×d, called CountSketch
matrices, which is parameterized by the number b of buckets and the number t of tables. For a vector x, there is a
procedure which, given S · x and a coordinate i ∈ [d], returns an estimate x̂i for which

|x̂i − xi| ≤ C · ∥x− xk∥2/
√
b,

with failure probability at most 2−C′t, where C,C ′ > 0 are absolute constants.

Consider the following procedure:

1. Run CountSketch with b = O(k/ε) buckets and t = O(log d) tables, and let A be the set of indices i ∈ {1, 2, . . . , d}
for which the corresponding estimates x̂′

i are among the largest O(k/ε) in magnitude. Here we use x̂′
i to denote the

estimates returned by Theorem 16 to distinguish them from the estimates returned in the next step.

2. In parallel, run CountSketch with b = O(k/ε2) buckets and t = O(log(k/ε)) tables, and compute estimates x̂i for
each i ∈ A. Let B be the set of the top k magnitude estimates x̂i, restricted to i ∈ A.

3. Return the vector x̂ supported on B with corresponding estimates x̂i for each i ∈ B.

Theorem 14. On input x ∈ Rd, the above sparse recovery scheme uses O(k log(k/ε)/ε2 + k log(d)/ε) measurements
and, with probability at least 1 − 1/ poly(d) − 1/poly(k/ε), returns a k-sparse vector x̂ ∈ Ψk satisfying ∥x − x̂∥22 ≤
(1 + ε)minxk∈Ψk

∥x− xk∥22.

Proof. Since the sketch S is linear, we can assume, w.l.o.g., that ∥x − xk∥22 = k. Then by Theorem 16, with probability
1− 1/ poly(d), the CountSketch in Step 1 returns estimates x̂′

i satisfying

|x̂′
i − xi| ≤

√
ε

simultaneously for all i = 1, 2, . . . , d. It follows that for every i for which |xi| ≥ 3
√
ε, we have that i ∈ A. To see this,

note that if |xi| ≥ 3
√
ε, then |x̂′

i| ≥ 2
√
ε. On the other hand, if |x̂′

j | ≥ 2
√
ε for some j ∈ [d], then |xj | ≥

√
ε. The number

of j for which |xj | ≥
√
ε is at most k + k/ε, given that ∥x − xk∥22 = k. Also, the number of i for which |x̂i| ≥ 2

√
ε is

at most k + k/(4ε). So if |A| = O(k/ε) for a sufficiently large constant in the big-Oh, we have that if |xi| ≥ 3
√
ε, then

i ∈ A.
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In Step 2, and by a union bound over all i ∈ A, we have that with probability 1− 1/ poly(k/ε), simultaneously for every
i ∈ A, |x̂i − xi| ≤ ε. Letting H be the set of the top k magnitude coordinates of x, we have ∥xH\A − x̂H\A∥22 ≤ k · 9 · ε,
since any i ∈ H \A necessarily satisfies |xi| < 3

√
ε and x̂i = 0.

We also have ∥xH∩B − x̂H∩B∥22 ≤ k · ε2, since for each i ∈ H ∩B, we have |x̂i − xi| ≤ ε.

Finally, consider those i ∈ H ∩ (A \ B). For each such i, there necessarily exists a j = j(i) ∈ A \ H for which
|x̂j(i)| ≥ |x̂i| and since |x̂j(i) − xj(i)| ≤ ε and |x̂i − xi| ≤ ε, this implies |xj(i)| ≥ |xi| − 2ε. Note also by definition of H
that |xj(i)| ≤ |xi|. Consequently, the sketch solution x̂ pays at most

(xj(i) − x̂j(i))
2 + x2

i ≤ ε2 + (xj(i) + 2ε)2 = O(ε2 + x2
j(i) + |xj(i)|ε),

on this coordinate, whereas the optimal non-sketched solution xk pays x2
j(i). As |A \ B| ≤ k, the total additional cost the

sketched solution pays over the optimal solution is at most

O(kε2 + ε
∑

i∈H∩(A\B)

|xj(i)|). (21)

Finally, note that
∑

i∈H∩(A\B) |xj(i)| is at most the ℓ1-norm of the largest k coordinates in magnitude not in H . Since the

ℓ2-norm of such coordinates is at most
√
k, the ℓ1-norm of such coordinates is at most k. Combining with (21), the total

additional error the sketched solution pays is O(εk).

It follows that

∥x− x̂∥22 ≤ ∥xH\A − x̂H\A∥22 + ∥xH∩B − x̂H∩B∥22 + ∥x− xk∥22 +O(εk) ≤ (1 +O(ε))∥x− xk∥22,

and (20) follows by rescaling ε by a constant factor. The total number of measurements and overall failure probability
follow by Theorem 16.

E INFORMATION THEORETIC BASICS

We require the following notions from information theory.

Definition 3 (Entropy and Mutual Information). The entropy of a random variable X over some support S is

H(X) =
∑
i∈S

pi log2
1

pi
.

Given two random variables X and Y , the conditional entropy is

H(X|Y ) =
∑
y

H(X|Y = y) · P[Y = y]

and their joint entropy is

H(X,Y ) =
∑
x,y

P[X = x
∧

Y = y] log2
1

P[X = x ∧ Y = y]
.

The mutual information of two random variables is

I(X;Y ) = H(X)−H(X|Y )

Finally, we require Fano’s inequality.

Lemma 6 (Fano’s Inequality). Let X be a random variable chosen from domain X according to distribution µX and
let Y be a random variable chosen from domain Y according to distribution µY . T hen for any reconstruction function
g : Y → X with error εg , it holds that

H(X|Y ) ≤ H(εg) + εg log(|X | − 1).
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