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Abstract

ML models take on a new life after deploy-
ment and raise a host of new challenges: data
drift, model recalibration and monitoring. If per-
formance erodes over time, engineers in charge
may ask what changed – did the data distribution
change, did the model get worse after retraining?
We propose a flexible paradigm for answering a
variety of model diagnosis questions by finding
heaviest-weight interpretable regions, which we
call heavy sets. We associate a local weight de-
scribing model mismatch at each datapoint, and
find a simple region maximizing the sum (or
average) of these weights. Specific choices of
weights can find regions where two models differ
the most, where a single model makes unusually
many errors, or where two datasets have large
differences in densities. The premise is that a re-
gion with overall elevated errors (weights) may
discover statistically significant effects despite
individual errors not standing out in the noise.

We focus on interpretable regions defined by
sparse AND-rules (conjunctive rules using a
small subset of available features). We first de-
scribe an exact integer programming (IP) formu-
lation applicable to smaller datasets. As the exact
IP is NP-hard, we develop a greedy coordinate-
wise dynamic-programming based formulation.
For smaller datasets the heuristic often comes
close to the IP in objective, but it can scale to
datasets with millions of examples and thousands
of features. We also address statistical signifi-
cance of the detected regions, taking care of mul-
tiple hypothesis testing and spatial dependence
challenges that arise in model diagnostics. We
evaluate our proposed approach both on synthetic
data (with known ground-truth), and on well-
known public ML datasets.
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1 INTRODUCTION

Developing the best-performing model on a fixed dataset is
the focus of much of academic ML research, but in practice
it is only the first step in the life-cycle of an ML model. In
this work we focus on model monitoring after the model
is deployed or used on a new domain, and develop tools to
help analysts gain interpretable insight into what changed
(NMD+21; DB18; PWKC19). Our goal is to find simple
interpretable regions in the feature space where either the
data or the model changed the most. Finding a single dat-
apoint with the largest error or prediction most different
from a baseline is not difficult, but it may not carry much
information, especially in noisy settings common with tab-
ular or time-series data. Finding a larger region with overall
elevated differences is often far more informative. In order
to make such analysis insightful and actionable (and to help
control overfitting), we need regions that are simple and in-
terpretable – so in this work we focus on simple AND-rule
regions using a small subset of features.

We model a variety of model-diagnostic problems using the
same mathematical primitive: finding a simple region in
feature space which has the highest weight. By appropri-
ately defining weights at each datapoint we can address a
variety of questions: finding regions where two models (re-
gression or classification) disagree the most, regions where
one model makes unusually many errors or where it is es-
pecially uncertain, regions with the largest changes in data-
density or with pockets of strong correlation. The same
framework could also be used to diagnose causal treat-
ment effect models or model fairness. We allow arbitrary
weights, including real-valued weights with mixed signs,
positive weights, or binary weights. Finally, to identify the
most salient region, we find the one with the highest sum
(or average) of weights, optionally subject to cardinality
constraints 1.

We first describe an integer programming (IP) formula-
tion to find maximum-weight sets, applicable to smaller
datasets. As the problem is NP-hard (BDT16), in order
to address larger datasets we propose a greedy coordi-

1The formulation can be extended to more general knapsack-
style settings, where one would like to optimize “reward-weights”
subject to constraints on “resource-weights”.
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nate descent (CD) heuristic that optimally solves 1D (or
2D) subproblems for individual features via dynamic pro-
gramming (DP). We use the 1-dimensional setting to illus-
trate interesting statistical challenges with heavy sets. A
naive formulation is ineffective in accurate region localiza-
tion due to long expected run-lengths of sums of iid ran-
dom variables. We address this via cardinality constraints
(equivalently, instance-wise penalties), and describe con-
nections to classical cumulative-sum (CUSUM) statistics
for change-point detection (Pag54).

Furthermore, we consider statistical significance of the de-
tected region. In the context of model diagnostics, there
are two major challenges. First, we face a severe case of
multiple-hypothesis testing, as we are optimizing over a
large family of regions. Second, ML models for natural
phenomena tend to be slowly-varying and have strong spa-
tial correlation in their errors or differences. A simple iid
errors assumption would grossly overstate the number of
independent observations and statistical significance. To
mitigate these issues, we adapt permutation tests and a pro-
cedure motivated by classical clustered standard errors. We
use clustered standard errors in a novel way: traditionally
they are used with hand-picked categorical variables, i.e.,
the clusters are known a-priori, whereas we leverage recent
research allowing unknown data-driven clusters (BCL20).

In terms of applicability, we do not expect to always be
able to describe differences between two flexible com-
plex models using simple interpretable regions. For ex-
ample, differences between two powerful black-box mod-
els trained on the same dataset will likely be scattered and
non-interpretable. In contrast, practical dataset shift can in-
deed often be interpretable (for example, a population age-
ing over time, or growing income levels), and these shifts
will be apparent even after training complex classifiers on
the data. We pursue this latter class of problems, where
we believe and see evidence that rule-based interpretable
regions can indeed be helpful in explaining model changes.

Related work. Our work has connections to several
threads in the ML literature. In group anomaly detec-
tion, scan statistics, and spatio-temporal hot-spot detection
(Nei09; SSMIN16), the goal is to find a group of datapoints
that looks unusual compared to the background. Much of
this work is spatio-temporal, but some look at higher di-
mensions with arbitrary categorical features. A growing
body of work on ML model diagnostics (ZN16; PWKC19;
PdAB21) finds poor performing regions in ML models but
is predominantly focused on categorical features as well
(and (PWKC19) is limited to single slices of features). In
contrast, we focus on continuous features, and develop both
exact and approximate solutions. Furthermore, some pa-
pers in group-anomaly detection discuss statistical signif-
icance of the detected regions (KHF18) but under the iid
errors assumption. We address this limitation.

In (DB18; NMD+21) the authors use different techniques
(variable importance and distillation into rule sets, respec-
tively) to find differences between two models. (TCHL18)
distills using generalized additive models (GAMs) to ex-
plain differences between a model and ground truth out-
comes. Our formulation encompasses both of these prob-
lems as well as others described in Section 2. We also focus
on finding the region with the greatest differences.

The interpretable rule-learning literature (ALSA+18;
GR14; MVED17; EKG19; WDGG19; YHY+21) has con-
sidered IP formulations or relaxations for classification and
regression problems. In particular, our maximum-sum-of-
weights problem (but not the maximum-average) is simi-
lar to the rectangular maximum agreement subproblem of
(EKG19), who also use a dynamic-programming relaxation
to solve it but for the task of learning boosted regressors.
Here we focus on a different problem with its own chal-
lenges, notably the statistical aspects of localization and
significance that were not considered by (EKG19).

Outline. We introduce the heavy set formulation for
model diagnostics in Section 2. We describe the exact
IP in Section 3. We present the exact 1-dimensional DP-
formulation and use it to develop approximate solutions for
multi-dimensional problems in Section 4. Finally, we dis-
cuss statistical significance of detected regions in Section 5
and present experimental results in Section 6.

2 HEAVY SET PROBLEM FOR ML
DIAGNOSTICS

We first motivate the abstract heavy set problem, the basic
computational primitive that we use to address a variety of
ML diagnostic applications. Heavy sets with sparse-rule
regions are presented in Section 2.1.

Suppose that we have a collection of datapoints xt ∈ RN ,
t ∈ T = {1, ..., T}, that are associated with weights wt.
We consider general real-valued weights with mixed signs,
but special cases of non-negative or binary weights are also
of interest. These weights will encode various local met-
rics of fit / error / density that one may want to optimize, as
we explain below. We also define a family R of simple re-
gions R ⊂ RN : in the paper we focus on sparse AND-rule
regions, see Section 2.1, but one could also imagine us-
ing alternative families such as k-nearest neighborhoods or
radius-r balls. The goal is to find the heaviest-weight sim-
ple region from R, optionally subject to region-size con-
straints (i.e., restricting the number of datapoints falling
into R):

R∗ = argmax
R∈R

∑
t|xt∈R

wt , such that |R| ≤ K, (1)

where we define |R| = |{t | xt ∈ R}|, i.e. the number of
points xt that fall inside the region R. In addition to sum-
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of-weights, we also consider the more challenging average-
of-weights with upper and lower bounds on region size:

argmax
R∈R

1

|R|
∑

t|xt∈R

wt , Kmin ≤ |R| ≤ Kmax. (2)

Before delving into specific families of simple regions, we
motivate applications of heavy sets. Suppose that we have
datasets DA = {xA

t , y
A
t }

TA
t=1 and DB = {xB

t , y
B
t }

TB
t=1

where x’s are the features and y’s are (binary / multi-
class / real-valued) labels. For example, dataset DA could
be collected pre-deployment, and DB a few months post-
deployment, over the same feature space. Suppose we also
have models mA trained on dataset DA, and mB on DB .
One may be interested in a variety of model diagnostic
problems (we list a few here):

Model diagnostics using heavy sets:

• Model changes. Regions of DB where predictions
of model mB deviate the most from mA. For ex-
ample, for regression problems, we could use wt =
|mB(xt) − mA(xt)|p, p = 1, 2. For binary or mul-
ticlass classification we could sum the differences in
class-probabilities. Signed weights wt = mB(xt) −
mA(xt) can show where model B exceeds A.

• High-error regions. For example, wt = |mA(xt) −
yt|p, p = 1, 2 for regression, or a suitable loss for
classification.

• High-variance regions. wt = mA(xt)
2, using the

max-avg formulation in (2) and de-meaning. Simi-
larly, in lieu of a fitted model, weights could capture
high-variance regions of the target variable in the data.

• High/Low-correlation regions. wt = mA(xt) ∗
mB(xt), with max-avg formulation in (2). This is
really a high inner product region, but, assuming
both models were normalized, this could approximate
inter-model correlations.

• Density drift. wt =

{
− 1

TA
for t in DA

1
TB

for t in DB .
Here we

combine the two data-sets D = DA ∪DB .

• Applications in causal inference, e.g. a region with el-
evated individual treatment effects (or model differ-
ences), applications to fairness / bias.

2.1 Heavy-weight sparse AND-rules

Now we focus on heavy sets with simple regions defined
in terms of sparse AND rules. We consider continuous
(and ordinal) features first, and leave categorical features
to Section 4.5. Suppose that we have N features x =

[x[1], ...x[N ]]. The region is defined based on a small sub-
set of features I ⊂ [1, ..., N ], and a pair of lower and upper
bounds for each variable: AND-rule ≜ {(i,mi,Mi)} for
i ∈ I. We allow the lower bound mi to be a real number
or −∞, and the upper bound Mi a real or +∞, i.e., the
regions could be one or two-sided.

AND-rule-region = {x |mi ≤ x[i] ≤Mi , i ∈ I} (3)

As a motivating example, a region of this form in a med-
ical context might look like: BodyMassIndex ≥ 30 and
SystolicBloodPressure ≥ 120 and 20 ≤ age ≤ 40, where
the three features are a subset of all available features. Such
rule-based regions are considered highly interpretable2.
The number of possible bounds for a single continuous fea-
ture can be assumed to be O(T ), as both mi and Mi can be
limited to distinct values of x[i] seen in the dataset. One can
further limit the set of bounds or thresholds by partitioning
the range of x[i] into disjoint intervals (e.g. based on 5%-
quantile intervals). We assume that Bi = (m1, . . . ,m|Bi|)
is the ordered set of thresholds (or bin boundaries) for fea-
ture x[i] with −∞ < m1 < m2 < · · · < m|Bi| < ∞.
Having defined the regions, we’d like to find a sparse AND-
rule region which includes datapoints with the most weight.
Next, in Section 3, we define an exact integer programming
formulation appropriate for small datasets and present a
greedy scalable heuristic in Section 4.4.

3 HEAVY AND-RULES: INTEGER
PROGRAMMING FORMULATION

We start off with a basic mixed-integer program (MIP) to
obtain a max-weight sparse AND-rule. This MIP has bi-
nary variables zl that specify the AND-rule, and other bi-
nary variables αt specifying which points satisfy the AND-
rule. We assume that the upper and lower bounds in the
AND-rule in (3) come from the list Bi. We will create
a model with 2|Bi| variables per feature x[i]. Half of the
variables (call this set of variables Ui) indicate whether the
condition x[i] < mk for some mk ∈ Bi is a part of the
AND-rule. The other half indicate whether x[i] > mk for
some mk ∈ Bi (call this set of variables Li). Let J stand
for the set of indices of feature-threshold pairs. Suppose
l ∈ J , and let zl = 1 correspond to a condition of the
form x[i] < mk or x[i] > mk. Let atl be a 0-1 constant
indicating whether the tth data point satisfies the condition
encoded by zl. Binary variables αt indicate whether point

2While we don’t pursue it here, more complex interpretable re-
gions can be constructed by combining such AND-regions (i.e. a
DNF formula, a rule-list or a weighted combination (MVED17)).
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t satisfies the AND-rule. The basic model is as follows:

max
∑
t∈T

wtαt (4)

s.t. αt + zj ≤ 1, ∀t ∈ T , j ∈ J : atj = 0 (5)

αt +
∑

j:atj=0

zj ≥ 1 ∀t ∈ T (6)

∑
j∈J

zj ≥ 1 (7)

αt ∈ {0, 1} ∀t ∈ T (8)
zj ∈ {0, 1} ∀j ∈ J (9)

Solving this basic model gives the maximum weight AND-
rule that is non-empty (i.e., the rule is defined by at least
one bound constraint). To see this consider an optimal so-
lution z̄ of this model. By constraint (5) all points xt that
do not satisfy a selected condition indicated by z̄j = 1
(i.e., points for which atj = 0) must have αt = 0. On
the other hand, constraints (6) ensure that if all the condi-
tions violated by a point xt are not present in the AND-
rule (so xt satisfies the resulting AND-rule), then αt = 1
(and the weight of the point is added in the objective). The
model above can be strengthened by introducing additional
constraints. We use this strengthened model in our experi-
ments, and discuss it in Appendix A.

We now give a formulation to compute the maximum aver-
age weight AND-rule, assuming the average is positive and
at least σT points satisfy the AND-rule where 0 < σ < 1.
It consists of all constraints from the previous model, but
has a different objective and some additional constraints
that enable the computation of the average. Let wmax be
the maximum weight of a data point (it is an upper bound
on the maximum average weight). We use a variable β that
represents the average weight of the chosen points. In that
case β =

∑
t∈T wtαt/

∑
t∈T αt. This is a nonlinear con-

straint but can be linearized as follows. Assume we have a
variable βt to represent the product βαt. Then the formu-
lation we use is:

max β (10)
βt ≤ β ∀t (11)
βt ≤ wmaxαt ∀t (12)
β + wmaxαt ≤ βt + wmax ∀t (13)
βt ≥ 0 ∀t (14)
β ≥ 0 (15)∑
t∈T

wtαt =
∑
t∈T

βt (16)∑
t∈T

αt ≥ σT (17)

Constraints(5)− (9)

When αt = 0, the constraints (12) and (14) force βt to
be 0; the constraints (11) and (13) are redundant in this

case. On the other hand, when αt = 1, (11) and (13)
together force βt to equal β, and the constraints (12) and
(14) are redundant. Thus βt is constrained to equal βαt

when αt is 0 or 1. Equation (16) enforces the condition
β
∑

i∈T αt =
∑

i∈T wtαt when all αt variables are set to
0/1 values. Finally, constraint (17) enforces the condition
that at least a fraction σ of all points are required to satisfy
the AND-rule. Without this constraint, an AND-rule that
only includes a highest-weight point may be chosen. This
model can be strengthened by constraints (27)-(33) as in
the case of the max-sum model described earlier.

4 EFFICIENT SOLUTION VIA
DP-HEURISTIC

The exact IP formulations in Section 3 can be used to find
heavy sets in smaller datasets (with at most a few thou-
sand datapoints and dozens of features, and coarse quanti-
zation). We now pursue an efficient approximate solution
that scales to millions of datapoints and thousands of fea-
tures and does not require quantization. First, in Section 4.1
we focus on the 1-dimensional setting, and describe an ex-
act efficient dynamic-programming formulation. We point
out and address statistical issues in using it for heavy sets in
Sections 4.2 and 4.3. Finally we propose a heuristic based
on exactly solving 1D subproblems in Section 4.4.

4.1 Optimal heavy set solution in 1D

In 1D, the heavy set problems in (1) and (2) can be effi-
ciently solved in O(T ).3 Consider the unconstrained 1D
max-sum heavy set problem first:

w∗ = max
tm,tM

tM∑
t=tm

wt (P1) (18)

Here, we assume without loss of generality that points are
indexed (i.e., ordered) on t = [1, .., T ], and have weights
wt. This version of the problem is known as maximum
(contiguous) sub-array sum, and can be solved in O(T ) by
an elegant dynamic-programming formulation proposed by
Jay Kadane (Ben84). A simplified algorithm is listed below
for convenience, with array with elements A[i]:

max_sofar=0; max_here = 0;
for i in [0,..,T-1]:

max_here = max(max_here + A[i], 0)
max_sofar = max(max_sofar, max_here)

As we describe in Section 4.2, the unconstrained formula-
tion in (P1) has undesirable statistical properties (poor lo-
calization), and in particular, it becomes meaningless when
the weights are non-negative: the trivial full-array solution

3Or O(TU ), the number of unique points (after binning).
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Figure 1: Max-subarray localization of planted regions.
Green vertical lines show the true planted region, and
dashed red lines the estimated region. (top) no-penalty
(bottom) mean/2 penalty.

always achieves the maximal weight. Instead we consider
(P1) subject to region-size constraints |R| ≤ K:

w∗(K) = max
tm,tM

tM∑
t=tm

wt, tM − tm+1 ≤ K (P2) (19)

There exists an O(T ) efficient algorithm for length-
constrained max subarray sum, (CL05), but in order to gen-
eralize it to higher-dimensions we instead use a Lagrangean
formulation. Adding a Lagrangean penalty on the region-
size constraint and simplifying, we have:

w∗(δ) = max
tm,tM

tM∑
t=tm

(wt − δ) (P3) (20)

To find a solution with desired cardinality, we use bisec-
tion search to find min δ that satisfies tM − tm + 1 ≤ K.
Within each bisection iteration we have to solve the uncon-
strained problem (P1) with modified weights w̃t = wt − δ.
We note that unlike convex-optimization problems (where
under some technical conditions strong duality holds), for
this discrete optimization, the set of solutions {w∗(K)} is
not equivalent to {w∗(δ)}. We discuss in Appendix C that
{w∗(δ)} includes those solutions from {w∗(K)} that lie at
the corner points of the convex-hull of all solutions in the
(weight, cardinality) space. Despite this ”loss of resolu-
tion” we rely on formulation (P3), as it can be conveniently
extended to the multi-dimensional setting in Section 4.4.
One could argue that the points on the convex hull have a
particularly good trade-off of region-weight vs cardinality,
but ideally we would like to be able to reach all the solu-
tions. This is the subject of ongoing research on strength-
ening heavy set approximations.

Max-average (max-density) version in 1D An efficient
O(T ) solution is also available for the 1D max-average
problem in (2) with lower and upper bounds on region size,

Figure 2: Run-lengths of max subarray-sum regions un-
der null-hypothesis (0-mean), T = 1000. (top) 0-penalty
(middle) std/10 penalty (bottom) std/2 penalty.

and allowing more general knapsack constraints. It was
proposed under the name “maximum-density segments” in
the biological sequence analysis literature (CL05).

4.2 Run-lengths of 1D heavy sets without penalties

To gain intuition into max-subarray-sum for detecting
planted heavy sets, we consider the 1D case and take wt

initially to be an i.i.d. zero-mean Gaussian N (0, 1) vector,
and plant a small region where we increase the mean by
µ > 0. Naively, one can attempt to recover the region by
solving the maximum-weight subarray problem. However,
even with µ visibly standing out in the noise, the recov-
ered regions are off, see Figure 1 (top). The reason is that
even under the null hypothesis of zero-mean, the estimated
heavy sets have expected length of O(T ), as we can see in
Figure 2(top). Hence, accurate localization of the planted
region is essentially impossible, as errors are of the order
of the length of the array! By adding an appropriate small
penalty δ, with weights wt − δ in (P3), these run-lengths
dramatically shrink, and now allow accurate localization of
the planted region, Figure 1(bottom) and 2(middle,bottom).
We describe a statistical interpretation of this penalty next.

4.3 Statistical interpretation

We show that problem (20) can be alternatively derived
from a statistical localization perspective in the Gaussian
setting of the preceding example. This provides the statis-
tical interpretation of the penalty δ mentioned above.

We assume that w1, . . . , wT are independent Gaussian ran-
dom variables. For an unknown interval tm, . . . , tM , the
mean is µ > 0, and elsewhere the mean is zero. The vari-
ance is the same σ2 throughout. The joint probability den-
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sity of w1, . . . , wT is therefore

f(w1, . . . , wT ) =

tM∏
t=tm

1√
2πσ2

exp

(
− (wt − µ)2

2σ2

)
×

∏
t/∈{tm,...,tM}

1√
2πσ2

exp

(
− w2

t

2σ2

)
. (21)

Given a realization of (w1, . . . , wT ) = w, we localize the
interval by estimating tm, tM via maximum likelihood.
From (21), the log-likelihood can be written as

ℓ(tm, tM |w) =
µ

σ2

tM∑
t=tm

(
wt −

µ

2

)

− T

2
log(2πσ2)− 1

2σ2

T∑
t=1

w2
t . (22)

We observe that the second line in (22) does not depend
on tm, tM and can thus be dropped from the maximization.
The remaining quantity in the first line is then proportional
to the objective function in (20), if we identify δ with µ/2.

We can now interpret problems (P2) (19) and (P3) (20) as
representing different forms of prior knowledge. If we have
prior knowledge that the interval has mean µ or greater, or
approximately so, then this provides a setting of δ as µ/2 in
(20). Note that knowledge of σ2 is not necessary because
it appears only in the constant of proportionality and in the
second line in (22). If instead we have prior knowledge
(or desire) to have the detected region be of size K, then
we can search for δ using bisection search to get a solution
with cardinality close to the desired K in (19).

The above derivation has close parallels to CUSUM statis-
tics for online change-point detection in process control
(Pag54) (tutorial (Gra14) is helpful in seeing this). The
problems are different however: CUSUM is used for online
detection (i.e., from observations arriving sequentially) of
a single4 change-point, and if a change is detected, it is also
localized. In contrast, our problem is offline, only addresses
localization, and is two-sided with two boundaries.

4.4 Greedy approach for N-dim heaviest AND-rule

As the exact IP formulation in N dimensions in Section
3 is limited to small problems, we pursue an approximate
coordinate descent solution. We use Kadane’s 1D dynamic-
programming algorithm as a subroutine.

The high level idea is to build up our subset I of active
features (recall (3)) one at a time, where we compute the
marginal gain γi of including each feature i, and add the
feature that maximizes the marginal gain. Marginal gain is
defined as the increase in the weight of the region after we

4Multiple changes can be detected by resetting the algorithm.

add the feature. This can be viewed as a Gauss-Southwell
version of coordinate descent (picking coordinate with the
largest gain). At each step, we decide whether including the
new feature substantially improves the weight, and if not
we stop. Similar to what we have done in the 1D version,
we use the Lagrangean formulation of the heavy set prob-
lem with a Lagrange multiplier λ to convert the inequality
constraint: R∗ = argmaxR∈R

∑
t|xt∈R wt − λ|R|. This

is equivalent to maximizing:

R∗ = argmax
R∈R

∑
t|xt∈R

(wt − λ). (23)

For a fixed λ, we run Algorithm 1, with weights wt−λ. Let
J(λ) be the max value corresponding to (23). To enforce
cardinality constraints we use a binary search over λ to find

max
λ

J(λ) s.t. |R| ≤ K. (24)

We distinguish two versions of the algorithm: (i) pure-
greedy never re-visits a coordinate after selecting it once.
(ii) Coordinate-descent (CD), allows revisiting already-
selected coordinates and updating their bounds (mi,Mi).
If we impose a budget on the number of active coordinates,
CD is only allowed to revisit already selected coordinates
after reaching the budget. Pure-greedy (non-revisit) has fi-
nite termination, while the CD solution (revisit) tends to
furnish better approximations to the IP.

Algorithm 1: Unconstrained multi-dim heavy set.

// λ set outside (bisection search)
1 function CoordDescHeavySet(X, wt)
2 INIT. Active set I = {}.
3 for i← 0 to max steps do
4 marg. gain γi← solve (P3) w. xt

[i], wts wt−λ.
5 i∗ = argmax γi. I = I ∪ i∗, update mi∗ ,Mi∗

Stopping criteria. To keep regions interpretable, we may
decide to stop adding new features to the AND-rule after
reaching a predefined budget (say 3 or 4) of active features.
Alternatively, one could use the t-test to check if the weight
increase due to the recent update is statistically significant.
A naive definition of region-weight t-statistics based on an
i.i.d assumption is easy to use, but may be overly crude for
ML diagnostics. We discuss a refined solution in Section 5.

4.5 AND-rules with categorical features

Our focus in the paper is on continuous (or ordinal) fea-
tures. However, unordered categorical features (with small
number of categories) can be incorporated using a simple
extension: using an arbitrary subset instead of the contigu-
ous sub-array. There is an extensive literature on group
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anomaly detection with categorical variables, especially the
subset-scanning literature (SSMIN16; ZN16) which allows
fast scanning with a general class of linear-time-subset-
scan (LTSS) objective functions. Also, more complex
schemes that include graph or topological category priors
are possible, or regularization that prefers “simple” subsets
of categories, but we do not pursue them in this paper. In
the context of the Lagrangean formulation in (20), our sim-
ple solution selects exactly those categories with positive
aggregate weights wt − λ. We treat ordinal variables (e.g.
binned age) as continuous.

5 REGION STATISTICAL
SIGNIFICANCE

We now discuss statistical significance of regions found us-
ing heavy sets (either IP in Section 3 or DP-heuristic in
Section 4.4). In the case of a fixed region with i.i.d. points,
the classical t-test can decide if the region mean is higher
than the background. However, since our regions are the re-
sult of optimization, their weights will generally be higher
than background, and we face a multiple-hypothesis testing
bias. Furthermore, the i.i.d. assumption is generally a poor
model for weights arising from ML diagnostics: ignoring
spatial correlation leads to over-counting the effective num-
ber of independent observations and hence significance.

We suggest the permutation test for the first bias. We ran-
domly permute weights wt (dispersing the alleged high-
weight region), find an optimal region with permuted
weights, and repeat. The distribution of permuted region
weights captures the null-hypothesis. If the weight of the
detected region (w.o. permutation) is indeed anomalous it
should stand well outside the null-hypothesis distribution.

For the spatial-correlation bias we suggest applying a ver-
sion of clustered standard errors. Classical clustered stan-
dard errors (AAIW17) assume known clusters, where the
errors are correlated within the cluster, but independent
across clusters. More recent research addresses the case of
unknown clusters (BCL20). We simply use a generic clus-
tering algorithm (e.g. k-means or spectral clustering) to de-
fine local clusters whose average size roughly matches the
spatial auto-correlation length of the data5, and apply clus-
tered standard errors. This provides a reasonable first-order
correction to the iid assumption. We illustrate the approach
for statistical significance in experiments in Section 6.

6 EXPERIMENTAL RESULTS

We now evaluate the proposed heavy set approach exper-
imentally on both simulated examples with ground-truth,
and well-known ML datasets.

5For multi-dimensional data we can measure empirical auto-
correlation as a function of the number k of nearest neighbors.

Figure 3: IP vs DP-heuristic. (top) weight of planted and
recovered regions (y-axis) vs. the planted mean µ (x-axis).
Below some noise floor the planted region becomes sub-
merged in noise, and suboptimal in terms of weight. DP-
heuristic comes close to IP, and matches it at higher levels
of planted mean. (bottom) Relative error of DP-heuristic
w.r.t. IP vs planted mean µ. Averaged over 5 trials.

6.1 Simulated data: planted heavy sets

Efficacy of the DP-heuristic vs IP First, we compare the
DP-heuristic solution in Section 4.4 to the exact IP from
Section 3. We use simulated data with known ground-truth:
we generate a 10-dimensional iid GaussianN (0, 1) dataset
with 1500 datapoints, and plant a heavy set region R∗ with
mean µ > 0 that uses 3 of the features and covers around
10% of the data. We compare weights of estimated regions
R̂ found by IP and DP-heuristic (we use the CD version
for experiments) as a function of the planted mean. Results
appear in Figure 3(top). We see that IP recovers the planted
region at higher levels of µ, while for small µ, the planted
region is submerged in noise, and IP finds a higher-weight
solution. Also, the DP-heuristic provides a reasonable ap-
proximation to the IP over the entire range of planted means
and is able to match it exactly for larger means. In Figure
3(bottom) we plot average relative error (IP-DP)/IP over 5
trials.

Regression tree baseline A simple natural baseline to
find interpretable rule-based heavy-sets is to use a regres-
sion tree to predict the weights, and then to find a leaf (or
a sub-tree) that has the heaviest aggregate weight. Note,
however, that the tree is trained with the goal of accurately
predicting the weights, and not optimizing the weight of the
subset. The latter is done simply as a post-processing step.
In contrast, our DP-based solution does attempt to go after
the correct objective function. To evaluate the tree heuris-
tic we train tree regressors with various depths, and find the



Heavy Sets with Applications to Interpretable Machine Learning Diagnostics

Table 1: Max-sum vs max-avg IPs

planted µ: 0.2 0.3 0.4 0.5 0.6

mx-sum #pts 139 139 163 163 163
mx-avg #pts 75 78 78 79 79
mx-sum: avg-wt 0.378 0.400 0.423 0.523 0.623
mx-avg: avg-wt 0.523 0.545 0.569 0.647 0.747

leaf that maximizes the sum of the weights over all depths.
While this approach does provide a useful solution, its av-
erage relative error is significantly higher, at 21%, whereas
our DP-heuristic is more accurate with an 8% error. The
average is over trials and planted means as in Figure 3(bot-
tom). The under-performance of the regression tree can
likely be attributed to the mismatch of its objective func-
tions and the heavy-set problems.

Max-sum vs max-average IPs Next, we briefly compare
max-sum vs max-average IP formulations for a planted re-
gion over a range of planted means µ. We use |R| ≤ 163
(size of the ground-truth planted region) for max-sum and
|R| ≥ 75 (i.e., ≥ 5% of points) for max-average (recall
that max-avg needs a lower bound to avoid a trivial solu-
tion). R∗ with size 163 is feasible for both. The results
appear in Table 1. We report the average-weight for the
regions found by both formulations (it is not optimized by
max-sum IP). Max-sum tends to find solutions with size
close to the upper bound, while max-average is closer to
the lower bound. While the planted heavy set is a feasible
solution, max-average instead selects a smaller region with
higher average weight.

Region and feature detection results. Next, we leave IP
behind to focus on larger problems, and study the perfor-
mance of the DP-heuristic in recovering planted regions
and identifying the active features. We generate T i.i.d.
datapoints xt uniformly over RN , and generate weights wt

as i.i.d. Gaussians. We then pick an AND-rule involving
K features, and assign lower and upper bounds at random,
making sure that the bounds cover between 25 and 75 % of
the range of the feature. We consider how well we are able
to identify these planted regions in terms of feature recov-
ery (fraction of true active features identified) and region
overlap, i.e. R̂∩R∗

R̂∪R∗ . In Figure 4 we plot these two metrics
as a function of number of samples T , the planted mean µ
and the number of active variables K. With higher T and µ
the problem becomes easier, but with more active variables
it gets harder. The variables that are not varying are fixed at
T = 5000, N = 10, µ = 1.25, K = 3 and planted regions
include roughly 5% of points (250 points).

Figure 4: Planted region recovery: feature recovery and
region overlap. (a) vs T (b) vs mean µ (c) vs # active vars.

6.2 Model diagnostics examples

Folktables. We use the folktables dataset (DHMS21), a
newer version of the widely-used Adult census dataset re-
freshed with data from years 2014 and 2018, split by state,
and extended with additional targets. It is particularly
well-suited for studying data drift and model fairness ques-
tions. Pre-processing details are in Appendix D. First we
use heavy sets to identify an interpretable sub-population
which has unusually high levels of the target variable (IN-
COME ≥ 50000$). Here we use heavy sets directly on
data without a trained model. Our weights are simply de-
fined as the binary target values. Out of 1.7M observations
across all the states for 2018 we identify a sub-population
of roughly 10% in size, where over 84.2% of target values
are positive vs 39% in the baseline. The 3-feature AND-
rule identifying this sub-population is:6

SCHL : Bach. degree <= x <= Doct. degree
WKHP : 40-50 <= x <= 80-90
AGE : 30-50 <= x <= 70+

Next we train separate logistic-regression models for MA
6SCHL=education level, WKHP=weekly work hours.
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Figure 5: T-stat of discovered region (dashed red line)
vs. histogram of permutation-test t-stats. (top) Raw (bot-
tom) spatially corrected.

and TX, and compare them on withheld data from TX. We
use a 50-50 train / test split. We take the weights to be the
differences in predicted probabilities of the positive class
between the two models. We find a region with 13.7% of
datapoints where the average predicted probability differ-
ence between the two models is 17.2 %, whereas the base-
line is 10.2%. The AND-region identifying this set is:

COW: [Loc. gov empl., NO-pay, family biz,
State gov empl., private for-profit,
private non-profit]

WKHP: 40-50 <= x <= 70-80
SCHL: <=8 Grades <= x <= Assoc. degree

We see that the differences found between the two models
are still readily interpretable, although a bit more complex
than that of high-target-value regions for a single data-set.

In Appendix E, we present examples of heavy AND-
regions on two additional datasets.

Region statistical significance. Next we consider the
UCI electricity dataset, with 38.4k observations, 8 features,
and a binary target. We train logistic and RF models on
a training set (50%) and compare them on the test set.
We define weights wt as differences in predicted class-1
probabilities. Using heavy sets we find a region (AND-
rule with 3 variables) covering 2760 out of 19237 test dat-
apoints, where the mean difference exceeds the baseline
by 0.22 (0.524 for R̂ vs. 0.306 for the full test-set). The
baseline is positive since RF performs better than logis-
tic. Naive t-stat calculation shows overwhelming statisti-
cal significance, with t-stat 32.67 for the region. However,
this is largely due to ignoring spatial correlation, which in-
flates the number of independent observations. We plot in
Figure 5 the naive and spatially corrected t-stats for the
estimated region superimposed on a null-hypothesis his-
togram of t-stats of regions found after randomly permuting
the weights. After spatial correction (see Section 5) with

avg. cluster-size 50 roughly equal to the correlation length,
the region is still statistically significant but with a more
modest t-stat= 9.87. The [1,99]%-percentile range of the
permutation test t-stats is [3.04, 5.96]. Note that the per-
mutation test t-stats are little impacted by spatial correction
since by design their weights lack spatial correlation.

7 CONCLUSIONS AND FUTURE WORK

We presented a flexible framework to investigate model
change and other ML model diagnostic questions based on
finding heaviest-weight interpretable regions in the data,
which we call heavy sets. The weights at each datapoint
characterize model error or mismatch, and we aim to find
interpretable regions in the data (characterized by AND-
rules) with the heaviest sum or average of these weights.
We propose both exact (integer programming) and approx-
imate (dynamic-programming) approaches to search for the
maximal AND-rule regions, and discuss the evaluation of
statistical significance of the discovered regions.

Future work. In the paper we focused on interpretable
heavy-sets described by sparse AND-rules. Alternative
definitions of heavy-sets are also of interest: for example
heavy-sets based on K-nearest-neighbors or radius-r balls
around datapoints, or heavy sets based on decision trees can
also be readily interpreted. Furthermore, one could look
for heavy-weight neighborhoods in a neighborhood graph
(perhaps using graph neural nets). We are also interested in
theoretical guarantees for the proposed approach. For ex-
ample, in the rule-learning context, (YHY+21) developed
performance guarantees using results from submodular op-
timization. Related analysis may offer guarantees on per-
formance of greedy heuristics to find heavy-sets when all
the weights are non-negative.
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Heavy Sets with Applications to Interpretable Machine Learning Diagnostics:
Supplementary Materials

In the supplementary material we describe how to
strengthen the heavy set IP formulations in Section A, show
timing experiments for larger-scale problems in Section
B, and illustrate the observation we made regarding the
Lagrangean relaxation and the convex-hull of optimal IP-
solutions in 1D in Section C. In Section D we summarize
the pre-processing of the folktables dataset used in the pa-
per, and in Section E we examine two additional datasets.

A STRENGTHENING HEAVY SET IP

We described basic IP formulations for max-sum and max-
average heavy sets in Section 3. Here we explain how to
improve (strengthen) these formulations to help IP-solvers
reach the optimal solution faster (the optimal solution itself
is not changed). We use CPLEX for this project, but the
techniques are applicable across solvers.

The basic max-sum and max-average models in Section 3
can be strengthened in a number of ways. First, note that in
a max-sum AND-rule that has as few conditions as possi-
ble, one cannot have two upper bound conditions for the
same feature (as one of them will be redundant) or two
lower bound conditions. This leads to the following in-
equalities.

∑
k∈Li

zk ≤ 1, ∀i ∈ {1, . . . , N}, (25)

∑
k∈Ui

zk ≤ 1 ∀i ∈ {1, . . . , N}. (26)

Using the above costraints, we can strengthen (5):

αt +
∑

k∈Li:atk=0

zk ≤ 1, ∀t ∈ T , i ∈ {1, . . . , N} (27)

αt +
∑

k∈Ui:atk=0

zk ≤ 1, ∀t ∈ T , i ∈ {1, . . . , N} (28)

We can strengthen (25) and (26) by noticing that the con-
ditions x[i] < mk and x[i] > ml cannot be simultaneously
active when k ≤ l and the AND-rule has at least one point
satisfying the rule. if k ∈ Li, then zk = 1 implies that the
condition x[i] < ml for some ml ∈ Bi is part of the output
AND-rule; we define a function th(k)→ ml. Thus the fol-
lowing set of constraints is valid for a nonempty AND-rule

Figure 6: Timing of the DP-heuristic vs number of obser-
vations T , log-log scale. N = 100 features.

with fewest possible conditions.

∑
k∈Li,th(k)≤ν

zk +
∑

l∈Ui,th(l)≥ν

zl ≤ 1, ∀i ∈ {1, . . . , N}, ν ∈ Bi

(29)

Finally, to constrain the number of features, we add the
following constraints:

∑
k∈Li

zk ≤ yi, ∀i ∈ {1, . . . , N} (30)

∑
k∈Ui

zk ≤ yi, ∀i ∈ {1, . . . , N} (31)

∑
i=1,...,N

yi ≤ F (32)

yi ∈ {0, 1} ∀i ∈ {1, . . . , N} (33)

Here each variable yi represents whether feature i is active
or not. The constraints (30) and (31) force yi to be one, if
any upper or lower bound condition associated with feature
i is active in the solution. Finally, inequality (32) bounds
the number of active features in the AND-rule to F . We
note that inequalities (30) and (31) imply, respectively, the
inequalities (25) and (26) as yi is a binary variable, and we
thus do not need to include the latter two inequalities in the
model. Our final model consists of the constraints in the
basic model along with the constraints (27)-(33).
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Figure 7: Timing of the DP-heuristic vs number of features
N , log-log scale. T =1M data-points. Scaling is roughly
linear in the number of features.

B TIMING EXPERIMENT

To demonstrate the scalability of the DP-heuristic for heavy
set problems, we include some timing results. In the first
experiment we fix the number of available features to be
N = 100, and vary the number of observations T from
10K to 10M. The results appear in Figure 6 on log-log
scale and corresponding numeric values in Table 2. We
use continuous (non-discretized) feature values7. We use
the non-revisit version of the DP-heuristic (to avoid ran-
dom variation in the number of iterations), and use a bound
of 3 active features motivated by interpretability. The
coordinate-descent version that allows to revisit features
typically takes no more than 3 times of the non-revisit. We
use a basic Google cloud platform instance with 16Gb of
RAM, and limit computation to 1 CPU core.

In the second experiment we set the number of observations
to T = 1M, and vary the number of features from N = 10
to N = 1000. Results appear in Figure 7 and Table 3.

In comparison, the exact IP formulation for the experiment
in Section 6 with T = 1500 points and N = 10 features
ranged from several minutes to 30 minutes in the worst
case. The running time of the IP does not depend solely
on the problem dimension, but also on the data: problems
with multiple competing solutions (around the noise-floor)
can take significantly longer than problems with a salient
planted region with large mean. The proposed DP-heuristic
allows to dramatically expand the applicability of heavy-
sets to much larger datasets.

C LAGRANGEAN CONVEX HULL OF
MAX-SUBARRAY

In Section 4.1 we described an optimal size-constrained so-
lution of the max-subarray-sum problem in (P2), and com-

7For most practical purposes, discretization with 100 to 1000
levels would be sufficient.

Figure 8: Lagrangean relaxation (P3) is able to find a sub-
set of solutions of (P2) that lie on the convex hull.

Table 2: Timing of DP-heuristic vs. num observations T .
N = 100 features.

T 10K 30K 100K 300K 1M 3M 10M

time(s) 0.15 0.42 1.40 4.52 18.0 62.3 247.5

Table 3: Timing of DP-heuristic vs. num features N .
T =1M datapoints.

N 10 30 100 300 1000

time (sec) 1.83s 5.49s 17.46s 54.53s 189.29s

pared it to the Laragrangean formulation (P3). Problem
(P2) produces a family of solutions {w∗(K)} parameter-
ized by K, bound on the region size. Problem (P3) pro-
duces its own family of solutions {w∗(δ)}, parameterized
by penalty δ. If we were in the convex optimization setting,
then under certain technical conditions, one could show
that strong duality holds, and the two sets would be equiva-
lent. However, we are dealing with Lagrangean relaxations
of integer optimization problems, so the story is more in-
teresting. Here, we illustrate that while each solution in
{w∗(δ)} indeed corresponds to w∗(K) for some K, the
converse is not true, and the two sets are not equivalent.
Some w∗(K) can not be obtained by w∗(δ) with any set-
ting of δ. The subset of {w∗(K)} that can be reached can
be nicely characterized as the corner-points on the convex-
hull of the solution path of {w∗(δ)}. We illustrate it in Fig-
ure 8. Here, T = 500, the optimal subarray with δ = 0
has length 416, {w∗(K)} (labeled exact) is shown with
K = [1, .., 500] in steps of 1. {w∗(δ)} is computed with
a very fine grid of δ, and lack of other solutions was con-
firmed by bisection search.

Recall that solutions {w∗(δ)} have a statistical motiva-
tion, described in Section 4.3, so it would be interesting
to develop further intuition of how are they different from
those solutions in {w∗(K)} that can not be reached via La-
grangean relaxation. We hypothesize that they provide a
better balance of weight vs. sparsity.
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D PREPROCESSING OF FOLKTABLES

We describe the pre-processing that was done on folkta-
bles dataset used in experiments in Section 6. We used the
provided feature set that is used to predict income8, which
includes 10 features:

• ’AGEP’ (age)

• ’COW’ (employer type: gov/private/public/self...),

• ’SCHL’ (educational level),

• ’MAR’ (marital status),

• ’OCCP’ (occupation),

• ’POBP’ (place of birth, either US state or foreign
country),

• ’RELP’ (relation of the person responding to survey
to the survey subject),

• ’WKHP’ (weekly hours worked),

• ’SEX’ (gender),

• ’RAC1P’ (race).

We discarded 3 high-cardinality categorical features
’OCCP’, ’POBP’, ’RELP’ (with resp. 570, 215, and 18 cat-
egories). Without further domain-aware category aggrega-
tion (coarsening) these features are not useful for our analy-
sis, and likely to produce highly over-fitted results in heavy
sets, since we do not employ category subset regulariza-
tion. Furthermore, for the ’SCHL’ feature, we merged rare
categories (e.g. final level of education is 3rd-grade) keep-
ing the following ordered list of categories (in this order):

[’<=8 Grades’, ’Some high school’,
’High school’, ’GED or alt cred’,
’Incomplete college’, ’Associate degree’,
’Bachelors degree’, ’BS + Prof degree’,
’Masters degree’, ’Doctorate degree’]

Observations with missing values were discarded (handling
them in alternative ways is outside the scope of this paper).

E ADDITIONAL DATASETS

We test our approach on two additional well-known
datasets: lending-club and recidivism, which we bor-
row from (Ribeiro et. al, 2018). We follow the
pre-processing and data-cleaning steps as described
in the paper and the corresponding GitHub repository
https://github.com/marcotcr/anchor-experiments.

8Namely the indicator ”PINCP” that income ≥ 50000$.

In contrast to folktables, these two datasets are static9, so
to simulate dataset shift we pick an attribute and split the
dataset based on this attribute. Similar to folktables in
Section 6.2, we train a logistic regression model on each
split and use heavy-sets to find interpretable differences
between the two models.

Lending club. The lending-club dataset aims to predict
whether a loan on the lending-club website will default,
please see (Ribeiro et. al, 2018) for details and prepro-
cessing. There are 9 features, and 11K examples. We use
the loan-amount feature to split the dataset: loans below
median-size (below 10000$) are used to train model A, and
loans above or equal to median size to train model B. The
loan-amount feature is then removed from both sets. We
follow the steps in Section 6.2 for folktables: we train sep-
arate logistic models on training sets for small and large
loans, and evaluate both on test-set for large loans. The
datapoint weights are set to the differences of predicted
probabilities between the two models. The proposed ap-
proach finds a region with 17.5% of the data, with 11.3%
average difference in predicted default probabilities, while
the baseline is 5.1%. The AND-region for the set is:

last_fico_range_hi : 584.0 <= x <= 644.0
inq_last_6mths : 0.0 <= x <= 1.0
revol_util : -999.0 <= x <= 99.3

Recidivism. Recidivism dataset aims to predict whether
a person released from prison will be imprisoned again,
please see (Ribeiro et. al, 2018) for details and prepro-
cessing. There are 15 features, and 7K examples. We use
the educational level to split the dataset: people with less
than the median years of education (10 yrs) are used to train
model A, and the remaining people to train model B. The
educational level is then removed from both sets. We fol-
low the same procedure as for folktables and lending-club
above. The proposed approach finds a region with 12.5%
of the datapoints, where the average difference in predicted
recidivism probabilities is +4.4%, while the baseline is
−7.6%. The AND-region identifying the set is:

Age : 39.0 <= x <= 76.0
Alcohol : False
YearsSchool : 0.0 <= x <= 10.0
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