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Abstract

We introduce a non-parametric density estima-
tor deemed Radial Voronoi Density Estimator
(RVDE). RVDE is grounded in the geometry of
Voronoi tessellations and as such benefits from
local geometric adaptiveness and broad conver-
gence properties. Due to its radial definition
RVDE is continuous and computable in linear
time with respect to the dataset size. This amends
for the main shortcomings of previously studied
VDEs, which are highly discontinuous and com-
putationally expensive. We provide a theoretical
study of the modes of RVDE as well as an em-
pirical investigation of its performance on high-
dimensional data. Results show that RVDE out-
performs other non-parametric density estima-
tors, including recently introduced VDEs.

1 INTRODUCTION

The problem of estimating a Probability Density Function
(PDF) from a finite set of samples lies at the heart of statis-
tics and arises in several practical scenarios (Diggle 2013;
Scott 2015). Among density estimators, the non-parametric
ones aim to infer a PDF through a closed formula. Differ-
ently from parametric methods, they do not require opti-
mization and ideally provide an estimated PDF which is
simple, interpretable and computationally efficient. Two
traditional examples of non-parametric density estimators
are the Kernel Density Estimator (KDE; Gramacki 2018,
Rosenblatt 1956) and histograms (Freedman et al. 1981,
Pearson 1894). KDE consists of a mixture of local copies
of a kernel around each datapoint while histograms parti-
tion the ambient space into local cells (‘bins’) where the
estimated PDF is constant.
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Figure 1: An example of a density estimated via RVDE.
The Voronoi tessellation is depicted in solid gray. The es-
timated density is defined by the property that its conical
integral over the rays originating from the datapoints (or-
ange) is constant.

Both histograms and KDE suffer from bias due to the prior
choice of a local geometric structure i.e., the bins and the
kernel respectively. This bias gets exacerbated in high-
dimensional ambient spaces. The reason is that datasets
grow exponentially in terms of geometric complexity, mak-
ing a fixed simple geometry unsuitable for estimating high-
dimensional densities. This has led to the introduction of
the Voronoi Density Estimator (VDE; Ord 1978). VDE re-
lies on the geometric adaptiveness of Voronoi cells, which
are convex polytopes defined locally by the data (Okabe et
al. 2009). The PDF estimated by VDE is constant on such
cells, thus behaving as an adaptive version of histograms.
Due to its local geometric properties, VDE possesses con-
vergence guarantees to the ground-truth PDF which are
more general than the ones of KDE.

The geometric benefits of VDE, however, come with a
number of shortcomings. First, the Voronoi cells and in
particular their volumes are computationally expensive to
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compute in high dimensions. Although this has been re-
cently attenuated by proposing Monte Carlo approxima-
tions (Polianskii et al. 2022), VDE falls behind methods
such as KDE in terms of computational complexity. Sec-
ond, VDE (together with its generalized version from Po-
lianskii et al. 2022 deemed CVDE) is highly discontin-
uous on the boundaries of Voronoi cells. The estimated
PDF consequently suffers from large variance and instabil-
ity with respect to the dataset. This is again in contrast to
KDE, which is continuous in its ambient space.

In this work, we propose a novel non-parametric den-
sity estimator deemed Radial Voronoi Density Estimator
(RVDE) which addresses the above challenges. Similarly
to VDE, RVDE integrates to a constant on Voronoi cells
and thus shares its local geometric advantages and conver-
gence properties. In contrast to VDE, RVDE is continuous
and computable in linear time with respect to the dataset
size. The central idea behind RVDE is to define the PDF
radially from the datapoints so that the (conic) integral over
the ray cast in the corresponding Voronoi cell is constant
(see Figure 1). This is achieved via a ‘radial bandwidth’
which is defined implicitly by an integral equation. Intu-
itively, the radial approach reduces the high-dimensional
geometric challenge of defining a Voronoi-based estima-
tor to a one-dimensional problem. This avoids the expen-
sive volume computations of the original VDE and guar-
antees continuity because of the fundamental properties of
Voronoi tessellations. Another important aspect of RVDE
is its geometric distribution of modes. We show that the
modes either coincide with the datapoints or lie along the
edges of the Gabriel graph (Gabriel et al. 1969) depending
on a hyperparameter analogous to the bandwidth in KDE.

We compare RVDE with CVDE, KDE and the adaptive
version of the latter in a series of experiments. RVDE out-
performs the baselines in terms of the quality of the esti-
mated density on a variety of datasets. Moreover, it runs
significantly faster and with lower sampling variance com-
pared to CVDE. This empirically confirms that the geomet-
ric and continuity properties of RVDE translate into bene-
fits for the estimated density in a computationally efficient
manner. We provide an implementation of RVDE (together
with baselines and experiments) in C++ at a publicly avail-
able repository 1. The code is parallelized via the OpenCL
framework and comes with a Python interface. In summary
our contributions include:

• A novel density estimator (RVDE) based on the geom-
etry of Voronoi tessellations which is continuous and
computationally efficient.

• A complete study of the modes of RVDE and their
geometric distribution.

1https://github.com/giovanni-marchetti/
rvde

• An empirical investigation comparing RVDE to KDE
(together with its adaptive version) and previously
studied VDEs.

2 RELATED WORK

2.1 Non-parametric Density Estimation

Non-parametric methods for density estimation trace back
to the introduction of histograms (Pearson 1894). His-
tograms have been extended by considering bin geometries
beyond the canonical rectangular one, for example triangu-
lar (Scott 1988) and hexagonal (Carr et al. 1992) geome-
tries. Another popular density estimator is KDE, first dis-
cussed by Rosenblatt 1956 and Parzen 1962. The estimated
density is a mixture of copies of a priorly chosen distribu-
tion (‘kernel’) centered at the datapoints. KDE has been
extended to the multivariate case (Izenman 1991; Dehnad
1987) and has seen improvements such as bandwidth se-
lection methods (Marron 1987; Wand et al. 1994) and al-
gorithms for adaptive bandwidths (Wang et al. 2007; Walt
et al. 2017). Applications of KDE include estimation of
traffic incidents (Xie et al. 2008), of archaeological data
(Baxter et al. 1997) and of wind speed (Bo et al. 2017) to
name a few. As discussed in Section 1, both KDE and his-
tograms suffer from lack of geometric adaptiveness due to
the choice of prior local geometries.

Another class of non-parametric methods are the orthog-
onal density estimators (Vannucci 1995; Masry 1997).
Those consist of choosing a discretized orthonormal basis
of functions and computing the coefficients of the ground-
truth density via Monte-Carlo integration over the dataset.
When the basis is the Fourier one, the estimator is referred
to as ‘wavelet estimator’. The core drawback is that orthog-
onal density estimators do not scale efficiently to higher
dimensions. When considering canonical tensor product
bases the complexity grows exponentially w.r.t. the dimen-
sionality (Walter 1995), making the estimator unfeasible to
compute.

2.2 Voronoi Density Estimators

The first Voronoi Density Estimator (VDE) has been pi-
oneered by Ord 1978. The estimated density relies on
Voronoi tessellations in order to achieve local geometric
adaptiveness. This is the main advantage of VDE over
methods such as KDE. The original VDE has seen appli-
cations to real-world densities such as neurons in the brain
(Duyckaerts et al. 1994), photons (Ebeling et al. 1993)
and stars in a galaxy (Vavilova et al. 2021). However, the
method is not immediately extendable to high-dimensional
spaces because of unfeasible computational complexity of
volumes and abundance of unbounded Voronoi cells. This
has been only recently amended by Polianskii et al. 2022
by introducing approximate numerical algorithms and by

https://github.com/giovanni-marchetti/rvde
https://github.com/giovanni-marchetti/rvde
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shaping of the density via a kernel. In the present work, we
aim to design an alternative version of the original VDE
which is continuous and does not rely on volume compu-
tations. The resulting estimator is thus stable and compu-
tationally efficient while still benefiting from the geometry
of Voronoi tessellations.

3 BACKGROUND

In this section we recall the class of non-parametric density
estimators which we will be interested in throughout the
present work. To this end, let P ⊆ Rn be a finite set and
consider the following central notion from computational
geometry.

Definition 1. The Voronoi cell2 of p ∈ P is:

C(p) = {x ∈ Rn | ∀q ∈ P d(x, q) ≥ d(x, p)}. (1)

The Voronoi cells are convex polytopes that intersect at the
boundary and cover the ambient space Rn. The collection
{C(p)}p∈P is referred to as Voronoi tessellation generated
by P . Note that although the Voronoi tessellations are de-
fined in an arbitrary metric space, the resulting cells might
be non-convex for distances different from the Euclidean
one. Since convexity will be crucial for the following con-
structions, we stick to the Euclidean metric for the rest of
the work.

We call density estimator any mapping associating a proba-
bility density function fP ∈ L1(Rn) to a finite set P ⊆ Rn.
The following class of density estimators generalizes the
original one by Ord 1978.

Definition 2. A Voronoi Density Estimator (VDE) is a den-
sity estimator P 7→ fP such that for each p ∈ P :∫

C(p)

fP (x) dx =
1

|P |
. (2)

VDEs stand out among density estimators for their geo-
metric properties. This is because the Voronoi cells are ar-
bitrary polytopes that are adapted to the local geometry of
data. For VDEs all the Voronoi cells have the same esti-
mated probability, making such estimators locally adaptive
from a geometric perspective. This is reflected, for exam-
ple, by the general convergence properties of VDEs. The
following is the main theoretical result from Polianskii et
al. 2022.

Theorem 3.1. Let P 7→ fP be a VDE and suppose that
P is sampled from a probability density ρ ∈ L1(Rn) with
support in the whole Rn. For P of cardinality m consider
the probability measure Pm = fP dx which is random in
P . Then the sequence Pm converges to P = ρdx in distri-
bution w.r.t. x and in probability w.r.t. P . Namely, for any

2Sometimes referred to as Dirichlet cell.

measurable set E ⊆ Rn the sequence of random variables
Pm(E) converges in probability to the constant P(E).

In contrast, the convergence of other density estimators
such as KDE requires the kernel bandwidth to vanish
asymptotically (Devroye et al. 1979). The bandwidth van-
ishing is necessary in order to amend for the local geomet-
ric bias inherent in KDE as discussed in Section 1.

The following canonical construction of a VDE deemed
Compactified Voronoi Density Estimator (CVDE) is dis-
cussed by Polianskii et al. 2022. Given an integrable kernel
K : Rn × Rn → R>0 the estimated density is defined as

fP (x) =
K(p, x)

|P |Volp(C(p))
(3)

where p is the closest point in P to x and Volp(C(p)) =∫
C(p)

K(p, y) dy. The latter volumes are approximated
via Monte Carlo methods since they become unfeasible to
compute exactly as dimensions grow. The resulting density
inherits the same regularity as K when restricted to each
Voronoi cell but jumps discontinuously when crossing the
boundary of Voronoi cells (see Figure 3). Motivated by
this, the goal of the present work is to introduce a continu-
ous and efficient VDE.

4 METHOD

4.1 Radial Voronoi Density Estimator

In this section we outline a general way of constructing a
VDE with continuous density function. Our central idea is
to define the latter radially w.r.t. the datapoints p ∈ P . We
start by rephrasing the integral over a Voronoi cell (Equa-
tion 2) in spherical coordinates:∫

C(p)

fP (x) dx =

=

∫
Sn−1

∫ l(p+σ)

0

tn−1fP (p+ tσ) dt︸ ︷︷ ︸
Conical Integral

dσ.
(4)

Here Sn−1 ⊆ Rn denotes the unit sphere and l(x) ∈
[0,+∞] denotes the length of the segment contained in
C(p) of the ray cast from p passing through x i.e.,

l(x) = sup

{
t ≥ 0 | p+ t

x− p

d(x, p)
∈ C(p)

}
. (5)

We refer to Figure 2 for a visual illustration. Note that l(x)
is defined for x ̸= p and is continuous in its domain since
l(x) = d(x, p) = d(x, q) for x ∈ C(p) ∩ C(q).

We aim to solve Equation 4 by forcing the conical integral
in Equation 4 to be constant. To this end, we fix a contin-
uous and strictly decreasing function K : R>A → R≥0
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Figure 2: Illustration of the quantity l(x) involved in the
definition of RVDE (Definition 3). The estimated den-
sity integrates to a constant over all the infinitesimal cones
(blue) in C(p) originating from p.

(a ‘kernel’) defined on a half-line R>A, A < 0, with the
property that tn−1K(t) is integrable on R>0. By an ansatz
we look for a density in the form

fP (x) =
K (β(l(x))d(x, p))

α|P |Vol(Sn−1)
(6)

where α > 0 is a hyperparameter and β : R>0 → R
is a function that we would like to determine. The latter
intuitively represents a radial bandwidth. The density fP is
continuous since the discontinuity of l at x = p is amended
by the vanishing of d(x, p). Equation 2 is satisfied if for
every l > 0: ∫ l

0

tn−1K(β(l)t) dt = α. (7)

Since K is strictly decreasing, the above expression always
has a unique solution β(l) > A

l assuming that tn−1K(t) is
not integrable around A. Such a guaranteed solution can be
computed via any root-finding algorithm and is continuous
w.r.t. l. We provide an analysis of the function β and a
discussion of the Newton-Raphson method for its compu-
tation in Section 4.3.

The derivations above bring us to the following definition.

Definition 3. Fix an α > 0 and a continuous function K :
R>A → R>0 with the domain bound A < 0. Assume the
following:

• K(0) = 1,

• K is strictly decreasing,

• |t|n−1K(t) is integrable around +∞ but not inte-
grable around A.

The Radial Voronoi Density Estimator (RVDE) is the den-
sity estimator defined by Equation 6 where β is the function
defined implicitly by Equation 7.

The following two standard families of kernels K satisfy
the above requirements:

Exponential Rational
K(t) = e−t K(t) = 1

(t+1)k
(8)

where k > n. The domain bounds are A = −∞ and A =
−1 respectively. When n = 1 and K is the exponential
kernel, the function β is closely related to the Lambert W
function (Corless et al. 1996) via the expression:

β(l) =
1

α
+W

(
− l

α
e−

l
α

)
. (9)

We provide an empirical comparison between the two ker-
nels from Equation 8 in Section 5.3.

The intuition behind the hyperparameter α is that it con-
trols the trade-off between the amount of density concen-
trated around P and away from it (i.e., on the boundary of
Voronoi cells). Indeed as α → 0+ RVDE tends (in distri-
bution) to the discrete empirical measure over P while as
α → +∞ it tends to a measure concentrated on the bound-
ary of Voronoi cells. This can be deduced from Equation
7 since β(l) tends to +∞ and to A/l respectively and thus
Equation 6 tends to 0 for d(x, p) ̸= 0, l(x). This intuition
around α will be corroborated by Proposition 4.3, where
we study how it controls the distribution of modes of RVDE
and consequently propose a heuristic selection procedure.

4.2 Computational Complexity and Sampling

We now discuss the computational cost of evaluating
RVDE at a point x ∈ Rn. To begin with, the closest p ∈ P
to x can be found in logarithmic time w.r.t. |P | by orga-
nizing P in an efficient data structure for nearest neighbor
lookups such as a k-d tree. Then l(x) can be computed in
linear time via the following closed expression (Polianskii
et al. 2022):

l(x) = min
q ̸=p, lq(x)≥0

lq(x) (10)

where

lq(x) =
d(q, p)2

2
〈

x−p
d(x,p) , q − p

〉 . (11)

The computational cost of evaluating fP (x) is thus linear
w.r.t. |P |. The remaining compute essentially reduces to
solving Equation 7, which depends on the integrator, the
root-finder algorithm adopted and the desired precision.

The formulation of RVDE enables a simple and efficient
procedure for sampling from the estimated density. In or-
der to sample, one first chooses a p ∈ P uniformly since
fP integrates to 1

|P | on each Voronoi cell (Equation 2).
Since tn−1fP (p + tσ) integrates to a constant on the ray
r = {p + tσ}t≥0 ∩ C(p) for every σ ∈ Sn−1, one then



G. L. Marchetti, V. Polianskii, A. Varava, F. T. Pokorny, D. Kragic

KDE
(Rosenblatt 1956)

Original VDE
(Ord 1978)

CVDE
(Polianskii et al. 2022)

RVDE
(Ours)

Figure 3: From left to right: heatmaps of KDE, of the two VDEs from the literature and of our RVDE.

samples σ uniformly from the sphere. Finally one samples
t from the one-dimensional density tn−1K(t) restricted to
the interval [0, l(p + σ)]. The computational complexity
of the latter step depends on the kernel as well as of the
sampling method. The result of the sampling is p+ tσ. Be-
cause of the computational cost of l(p + σ), the sampling
complexity of RVDE is linear w.r.t. |P |.

RVDE is more efficient than the VDE discussed by Polian-
skii et al. 2022 (see the end of Section 3). The latter relies
on Monte Carlo integration for numerical approximation
of volumes of Voronoi cells and has complexity O(Σ|P |2)
where Σ is the number of Monte Carlo samples. Com-
pared to KDE, RVDE has the same computational com-
plexity (for both evaluation and sampling) while retaining
the geometric benefits of a VDE.

4.3 Study of β and Modes

In this section we discuss qualitative properties and com-
putational aspects of the function β defined implicitly by
Equation 7 and consequently characterize the modes of
RVDE. We start by presenting an explicit expression of the
Newton-Raphson iteration for the computation of β(l).

Proposition 4.1. Fix l > 0 and suppose K ∈ C1(R>A)
i.e., it is continuously differentiable. Then the iteration
βm+1 of the Newton-Raphson method for computing β(l)
by solving Equation 7 takes form:

βm+1 = (12)

= βm +
βm

n

(
1− lnK(βml)− nα

lnK(βml)− n
∫ l

0
tn−1K(βmt) dt

)
.

Moreover, if K is convex then the Newton-Raphson method
converges for any initial value β0 i.e., limm→∞ βm = β(l).

We refer to the Appendix for a proof. Note that the convex-
ity assumption is satisfied by both the kernels from Equa-
tion 8. Proposition 4.1 enables to compute β(l) and to-
gether with Section 4.2 provides all the algorithmic details
for implementing RVDE.

Next, we outline a qualitative study of the function l 7→
β(l).
Proposition 4.2. The function β : R>0 → R is increasing,
has a zero at l = (nα)

1
n and has an horizontal asymptote:

lim
l→+∞

β(l) =

(
1

α

∫ ∞

0

tn−1K(t) dt
) 1

n

. (13)

Moreover if K ∈ C1(R>A) then β ∈ C1(R>0) and it
satisfies the differential equation:(

l − nα

ln−1K(β(l)l)

)
dβ
dl

(l) = −β(l). (14)

We refer to the Appendix for a proof. As discussed in Sec-
tion 4.1, β generalizes the Lambert W function. The prop-
erties and the differential equation from Proposition 4.2
generalize their well-known instances for the W function
(Corless et al. 1996).

We now focus on the study of modes. Our goal is to de-
scribe the modes of RVDE completely. This is an ad-
vantage over density estimators such as KDE, where the
modes are challenging to describe and to compute approx-
imately (Lee et al. 2021; Comaniciu et al. 2002). Denote
by ε = (nα)

1
n the zero of β. Proposition 4.2 implies that

for x ∈ Rn, the density fP decreases radially w.r.t. p in
the direction of x if l(x) > ε and increases otherwise. This
leads to the following result.
Proposition 4.3. The modes of fP are classified as follows:

(1) p ∈ P if d(p, q) > 2ε for every Voronoi cell C(q)
adjacent to C(p),

(2) p+q
2 for p, q ∈ P if p+q

2 ∈ C(p)∩C(q) and d(p, q) <
2ε,

(3) all points belonging to the segment [p, q] for p, q ∈ P
if p+q

2 ∈ C(p) ∩ C(q) and d(p, q) = 2ε.

We refer to the Appendix for a proof and to Figure 5 for an
illustration. Since ε depends monotonically on the hyper-
parameter α, the latter controls the threshold for distances
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between adjacent points in P below which the mode gets
pushed away from such points towards the boundary of the
Voronoi cells. Intuitively, α determines the extent by which
points in P are considered ‘isolated’ (i.e., a mode) or oth-
erwise get ‘merged’ by placing a mode between them.

An alternative geometric formulation of Proposition 4.3 is
the following. Consider the Gabriel graph of P (Gabriel
et al. 1969) containing an edge between p and q iff p+q

2 ∈
C(p) ∩ C(q) and discard all the edges of length greater
than 2ε. The modes of RVDE are then associated with (1)
all isolated vertices, (2) midpoints of edges and (3) whole
edges of length 2ε. Intuitively, the modes of RVDE are dis-
tributed geometrically according to the truncated Gabriel
graph.

Figure 5: Illustration of the modes of RVDE (red) together
with the Gabriel graph (black). Datapoints that not modes
are marked in yellow.

This suggests a possible heuristic procedure for hyperpa-
rameter selection of α. An option is to consider statistics
of lengths of edges in the Gabriel graph and choose 2ε (and
thus α) as a percentile. The percentile we suggest is |P |−1

|E|
where E denotes the set of edges of the Gabriel graph.
The intuition is that we wish to avoid modes distributed
in cycles. The number of cycles in the Gabriel graph is
|P | − |E| + 1, from which our suggested percentile fol-
lows. This procedure enables to select α automatically and
we evaluate it empirically in Section 5. However, it comes
with a number of limitations. First, the computational com-
plexity of such a procedure is O(|P |3) because of the con-
struction of the Gabriel graph, which is feasible but might
become expensive for large datasets. Another limitation is
its independence from the kernel K. The selection of α
might be satisfying for some kernels but not for others. In
our empirical evaluation from Section 5 we show that for
the rational kernel the selected α is close to the optimal one
in practice, while for the exponential kernel the selection is
further from optimality.

5 EXPERIMENTS

Our empirical investigation is organized as follows. First
we study RVDE on its own by comparing the different
choices of the kernel. We then compare RVDE with other
non-parametric density estimators on a variety of datasets.

5.1 Evaluation Metrics and Baselines

We evaluate all the density estimators fP via average log-
likelihood on a test set Ptest i.e.,

1

|Ptest|
∑

x∈Ptest

log fP (x). (15)

This measures whether the estimator assigns high density
values to points outside of P but sampled from the same
distribution. In order to empirically evaluate the computa-
tional complexity, we additionally include runtimes for all
the experiments. Our implementations of all the considered
density estimators share the same programming framework
and are parallelized to a similar degree, making the raw
runtimes a fair comparison. We perform experiments on a
machine with an AMD Ryzen 9 5950X 16-core CPU and a
GeForce RTX 3090 GPU.

We deploy the following non-parametric density estimators
as baselines in the experiments.

Kernel Density Estimator (KDE): given a (normalized)
kernel K : Rn → R≥0 the density is estimated as:

fP (x) =
1

|P |hn

∑
p∈P

K

(
x− p

h

)
(16)

where h is the bandwidth hyperparameter.

Adaptive Kernel Density Estimator (AdaKDE; Wang et
al. 2007): a version of KDE where the bandwidth hp de-
pends on p ∈ P and is smaller when data is denser around
p. Specifically, if fP (p) denotes the standard KDE estimate
with a global bandwidth h then hp = hλp, where:

λp = (g/fP (p))
1
2 , g =

∏
q∈P

fP (q)
1

|P | . (17)

Compactified Voronoi Density Estimator (CVDE; Po-
lianskii et al. 2022): the VDE described at the end of Sec-
tion 3. It depends on a kernel K (together with a band-
width) and is discontinuous on the boundary of Voronoi
cells.

5.2 Datasets

In our experiments we consider data of varying nature. This
includes both simple synthetic distributions and real-world
datasets in high dimensions. For the latter, we consider



G. L. Marchetti, V. Polianskii, A. Varava, F. T. Pokorny, D. Kragic

Gaussian Laplace Dirichlet

Figure 4: Comparison of the two kernels for RVDE (Equation 8) on three simple distributions in 10 dimensions.

sound data (n = 21) and image data (n = 100). Our
datasets are the following.

Synthetic Datasets: datasets generated from a number of
simple densities in n = 10 dimensions. Both P and Ptest
contain 1000 points in all the cases. The densities we
consider are: a standard Gaussian distribution, a standard
Laplace distribution, a Dirichlet distribution with parame-
ters αi =

1
n+1 and a mixture of two Gaussians with means

µ1 = (−0.5, 0, · · · , 0), µ2 = (0.5, 0, · · · , 0) and standard
deviations σ1 = 0.1, σ2 = 10 respectively.

MNIST (Deng 2012): a dataset consisting of 28 × 28
grayscale images of handwritten digits which are normal-
ized in order to lie in [0, 1]28×28. In order to densify the
data and obtain more meaningful estimates, we downscale
the images to resolution 10 × 10. For each experimental
run, we sample half of the 60000 training datapoints in or-
der to evaluate the variance of the estimation. The test set
size is 10000.

Anuran Calls (Dua et al. 2017): a dataset consisting of
7195 calls from 10 species of frogs which are represented
by 21 normalized mel-frequency cepstral coefficients in
[0, 1]21. We retain 10% of data for testing and sample half
of the training data at each experimental run.

5.3 Comparison of Kernels

Our first experiment consists of a comparison between the
rational and the exponential kernel for RVDE (Equation 8)
on the synthetic datasets. In what follows the exponent k
for the rational kernel is set to k = n + 1 for simplic-
ity, where n is the dimension of the ambient space of the
dataset considered (in this experiment, n = 10).

The results are presented in Figure 4. The plot displays
the test log-likelihood (Equation 15) as the hyperparam-
eter α varies. The latter is scaled as α

1
n in order to be

consistent with the visualizations in the following section.
The curves on the plot represent mean and standard de-

viation (shaded areas) over 5 experimental runs for 100
bandwidths. The additional vertical lines correspond to the
value of the hyperparameter selection heuristic discussed at
the end of Section 4.3. As can be seen, the performance of
the rational kernel is more stable w.r.t. the hyperparame-
ter α. The exponential kernel, however, achieves a slightly
higher test score with its best hyperparameter on the Gaus-
sian and Laplace datasets. Note that the heuristically cho-
sen α aligns well with the one that achieves the best per-
formance for the rational kernel, but is misaligned for the
exponential one. We conclude that the rational kernel is
generally a better option unless an extensive hyperparame-
ter search is performed. In what follows we consequently
stick to the rational kernel for RVDE.

5.4 Comparison with Baselines

In our main experiment we compare the performance of
RVDE with the baselines described in Section 5.1. We con-
sider the test log-likelihood (Equation 5.1), the standard de-
viation of the latter and the runtimes. In order to make the
comparison as fair as possible, all the estimators are im-
plemented with the rational kernel. We found out that the
performances drop with the more standard Gaussian kernel
(which does not apply to RVDE). We include the results
with both the Gaussian kernel and the exponential kernel
in the Appendix.

Table 1: Average runtimes (in seconds) per one full train-
test run with fixed bandwidth. RVDE is highlighted in blue.

RVDE CVDE KDE AdaKDE

Gaussian 0.0376 0.265 0.0340 0.266

Anuran Calls 0.0581 0.490 0.0787 0.870

MNIST 17.4 408 12.5 75.0
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Figure 6: Comparison of the estimators as the bandwidth varies. All the estimators implement the rational kernel.

The plot in Figure 6 displays the (test) log-likelihood for
all the estimators as the bandwidth hyperparameter h varies
(see the definition of the baselines in Section 5.1). In order
to compare RVDE on the same scale as the other estima-
tors, we convert h to α via:

α =

∫ ∞

0

K

(
t

h

)
dt = hn

∫ ∞

0

K(t) dt. (18)

As can be seen, RVDE outperforms the baselines (each
with its respective best bandwidth) in all the cases consid-
ered. The margin between RVDE and the baselines is espe-
cially evident on the more complex and high-dimensional
datasets (Anuran Calls and MNIST). This confirms that the
geometric benefits and the continuity properties of RVDE
translate into better estimates for densities of different na-
ture and increasing dimensionality.

Table 1 reports the average runtime for an experimental run
(with a single fixed bandwidth) for each estimator. RVDE
outperforms the CVDE as well as AdaKDE by an ex-
tremely large margin. KDE achieves comparable runtimes
to RVDE: it is slightly faster on Gaussian and MNIST while
it is slightly slower on Anuran Calls. This confirms em-
pirically the discussion from Section 4.2: RVDE is signifi-

cantly more efficient than CVDE and has the same (asymp-
totic) complexity as KDE.

Table 2: Standard deviations of the (test) log-likelihood
over 5 experimental runs. RVDE is highlighted in blue.
Each estimator is considered with its best bandwidth.

RVDE CVDE KDE AdaKDE

Gaussian 0.788 0.843 0.572 0.572

Anuran Calls 1.170 1.253 1.152 1.152

MNIST 5.507 5.767 5.735 5.735

Table 2 separately reports the standard deviation of the log-
likelihood (averaged over Ptest) w.r.t. the dataset sampling.
For each estimator, we consider its best bandwidth accord-
ing to the results from Figure 6. We first observe that
RVDE achieves lower standard deviation than CVDE on
all the datasets. This corroborates the hypothesis that the
continuity of RVDE results in more stable estimates than
those obtained by the highly-discontinuous CVDE. KDE
and AdaKDE achieve the lowest standard deviations on the
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Gaussian and Anuran Calls datasets. This is likely due to
the smoothness of such estimators and again confirms the
benefit of regularity biases in terms of stability. However,
on the most complex dataset considered (MNIST) RVDE
outperforms the baselines. This suggests that for articu-
lated densities the biases of geometric nature become more
beneficial than generic biases such as smoothness.

6 CONCLUSIONS AND FUTURE WORK

In this work we introduced a non-parametric density esti-
mator (RVDE) benefiting from the geometric properties of
Voronoi tessellations while being continuous and computa-
tionally efficient. We provided both theoretical and empir-
ical investigations of RVDE.

An interesting line for future investigation is to explore the
radial construction of RVDE on Riemannian manifolds be-
yond the Euclidean space. In this generality the rays corre-
spond to geodesics defined via the exponential map of the
given manifold. A variety of Riemannian manifolds arise
in statistics and machine learning. For example, data on
spheres are the object of study of directional statistics (Mar-
dia et al. 2009), hyperbolic spaces are routinely deployed
to represent hierarchical data (Nickel et al. 2017) and com-
plex projective spaces correspond to Kendall shape spaces
from computer vision (Klingenberg 2020). Those areas of
research can potentially benefit from the geometric charac-
teristics and the computational efficiency of an extension
of RVDE to Riemannian manifolds.
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An Efficient and Continuous Voronoi Density Estimator:
Supplementary Materials

PROOFS OF RESULTS FROM SECTION 4.3

Proposition 7.1. Fix l > 0 and suppose K ∈ C1(R>A). Then the iteration βm+1 of the Newton-Raphson method for
computing β(l) by solving Equation 7 takes form:

βm+1 = βm

(
1 +

1

n

(
1− lnK(βml)− nα

lnK(βml)− n
∫ l

0
tn−1K(βmt) dt

))
. (19)

Moreover, if K is convex then the Newton-Raphson method converges for any initial value β0 i.e., limm→∞ βm = β(l).

Proof. Consider

F (β) =

∫ l

0

tn−1K(βt) dt− α. (20)

The iteration of the Newton-Rhapson method for solving F (β) = 0 takes form:

βm+1 = βm − F (βm)
dF
dβ (βm)

. (21)

Via integration by parts we obtain:

dF
dβ

(β) =

∫ l

0

tn
dK
dt

(βt) dt =
1

β

(
lnK(βl)− n

∫ l

0

tn−1K(βt) dt

)
. (22)

Equation 19 follows then from Equation 21 by elementary algebraic manipulations. The convergence guarantee follows
from the fact that if K is convex then F is easily seen to be convex as well. The Newton-Raphson method is well-known
to be convergent for convex functions (Boyd et al. 2004).

Proposition 7.2. The function β : R>0 → R is increasing, has a zero at l = (nα)
1
n and has an horizontal asymptote:

lim
l→+∞

β(l) =

(
1

α

∫ ∞

0

tn−1K(t) dt
) 1

n

. (23)

Moreover if K ∈ C1(R>A) then β ∈ C1(R>0) and it satisfies the differential equation:(
l − nα

ln−1K(β(l)l)

)
dβ
dl

(l) = −β(l). (24)

Proof. The claim on the monotonicity of β follows directly from its definition (Equation 7) and the hypothesis that K is
decreasing. In order to compute its zero, note that β(l) = 0 implies α =

∫ l

0
K(0)tn−1 = ln

n and thus l = (nα)
1
n . For the

asymptote note that for l = +∞ Equation 7 becomes by a change of variables:∫ ∞

0

tn−1K(β(+∞)t) dt =
1

β(+∞)n

∫ ∞

0

tn−1K(t) dt = α. (25)

Lastly, in order to obtain the differential equation for β we differentiate Equation 7 on both sides and get:
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0 =
d
dl

∫ l

0

tn−1K(β(l)t) dt = ln−1K(β(l)l) +

∫ l

0

tn−1 d
dl
K(β(l)t) dt

= ln−1K(β(l)l) +
dβ
dl

(l)

∫ l

0

tn
dK
dt

(β(l)t) dt

= ln−1K(β(l)l) +
dβ
dl

(l)
lnK(β(l)l)− nα

β(l)

(26)

where in the first identity we deployed the (distributional) Leibniz rule while in the last one we deployed integration by
parts.

Proposition 7.3. The modes of fP are as follows:

(1) p ∈ P if d(p, q) > 2ε for every Voronoi cell C(q) adjacent to C(p),

(2) p+q
2 for p, q ∈ P if p+q

2 ∈ C(p) ∩ C(q) and d(p, q) < 2ε,

(3) all points belonging to the segment [p, q] for p, q ∈ P if p+q
2 ∈ C(p) ∩ C(q) and d(p, q) = 2ε.

Proof. Pick p ∈ P . If p satisfies the hypothesis of the first claim then l(x) > ε for every x ∈ C(p) and thus β(l(x)) > 0
by Proposition 7.2. Since K is decreasing, fP decreases radially w.r.t. p in C(p) and the first claim follows. If p does not
satisfy the hypothesis of the first claim then β(l(x)) ≤ 0 for some x ∈ C(p). With the exception of the case β(l) = 0,
the modes lie then on the boundary and are of the form K(β(l)l) up to a multiplicative constant. The function β(l)l is
increasing in l since by appealing to Proposition 7.2 we can compute its derivative:

dβ(l)l
dl

= β(l) + l
dβ(l)

dl
= β(l)

nα

nα− lnK(β(l)l)
≥ 0. (27)

Since l(x) has local minima at midpoints of segments connecting points in P , K(β(l)l) is locally maximized therein and
the second claim follows. In the hypothesis of the third claim β vanishes on the segment and the density is thus constant.

ADDITIONAL EXPERIMENTS

In this section we report additional experimental results complementing the ones in the main of the manuscript. For
completeness, we evaluate the density estimators on different kernels. Figure 7 displays comparative results for all the
estimators with the exponential and the Gaussian kernel (note that the latter does not apply to RVDE). Moreover, we
experiment with different dimensions and evaluation metrics other than average log-likelihood. This is possible only on
a synthetic dataset where the dimension can vary and where the ground-truth density ρ is known. The latter is necessary
for the metric considered. Figure 8 displays a comparison on a high-dimensional Gaussian mixture (n = 30) as well as
a comparison on the Gaussian mixture as in Section 5 (n = 10) where the evaluation metric is the empirical Hellinger
distance on the test set:

1

2|Ptest|
∑

x∈Ptest

(
fP (x)

1
2 − ρ(x)

1
2

)2
. (28)
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Figure 7: Comparison of the estimators with the exponential and Gaussian kernel as the bandwidth varies.

n = 30 Hellinger Distance

Figure 8: Comparison of the estimators on a 30-dimensional Gaussian mixture (left) and on a 10-dimensional Gaussian
mixture with the Hellinger distance as a metric (right).
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