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Abstract

Although black-box models can accurately pre-
dict outcomes such as weather patterns, they of-
ten lack transparency, making it challenging to
extract meaningful insights (such as which atmo-
spheric conditions signal future rainfall). Model
explanations attempt to identify the essential fea-
tures of a model, but these explanations can be
inconsistent: two near-optimal models may ad-
mit vastly different explanations. In this pa-
per, we propose a solution to this problem by
constructing uncertainty sets for explanations of
the optimal model(s) in both frequentist and
Bayesian settings. Our uncertainty sets are guar-
anteed to include the explanation of the optimal
model with high probability, even though this
model is unknown. We demonstrate the effec-
tiveness of our approach in both synthetic and
real-world experiments, illustrating how our un-
certainty sets can be used to calibrate trust in
model explanations.

1 Introduction

Data is now collected at a much faster rate than can be pro-
cessed directly by humans. Thus, machine learning has
been used to synthesize complex datasets into predictive
models. For example, models can predict the 3D struc-
ture of proteins from their amino acid sequences (Jumper
et al., 2021) and forecast supply chain demand (Carbon-
neau et al., 2008; Sharma et al., 2020). However, modern
models are often black-box in nature, meaning that even
when they make accurate predictions, it is difficult to ex-
tract interpretable principles or intuitions. Whereas human
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experts can communicate their reasoning, predictive mod-
els typically lack the ability to communicate principles.

In response to this challenge, there has been growing in-
terest in model explanations: human-interpretable descrip-
tions of model predictions (Koh and Liang, 2017; Ribeiro
et al., 2018; Simonyan et al., 2013; Sundararajan et al.,
2017). The explanations highlight aspects of the model that
are particularly relevant for some downstream goal, such as
calibrating trust in a model or identifying patterns in com-
plex data. Popular explanations include SHAP (Lundberg
and Lee, 2017), LIME (Ribeiro et al., 2016), integrated
gradients (Chattopadhyay et al., 2019), TCAV (Kim et al.,
2018), and counterfactual explanations (Ustun et al., 2019).

Use cases for model explanations can be organized around
two goals: model auditing and scientific inquiry. In model
auditing, the goal is to validate or debug the predictions
of a trained model. For example, we might ask “In what
way does this climate model for global surface tempera-
ture depend on CO2 emissions?” In contrast, in scien-
tific inquiry the object of interest is the data generating
distribution itself. An analogous question for scientific in-
quiry would be “In what way is the global surface temper-
ature explained by CO2 emissions?” Explanations used for
model audit give insights about the model, whereas expla-
nations for scientific inquiry give insights about the world.
When the model is suboptimal or there are multiple near-
optimal models, the explanations of a model and can be
quite different from those of the data generating distribu-
tion. Consequently, explaining a single model may reveal
little about the process the model is approximating.

Explanations are already being used for scientific inquiry
in many domains, such as materials discovery (Raccuglia
et al., 2016), genomics (Bi et al., 2020; Johnsen et al.,
2021), motor vehicle collisions (Wen et al., 2021), eco-
nomics (Jabeur et al., 2021; Mokhtari et al., 2019), and en-
vironmental science (Zhou et al., 2022). Usually, a prac-
titioner chooses a single “best-fitting” model and treats
explanations of that model as representative of the data
generating distribution. However, model explanations are
known to be unstable (i.e., sensitive to small perturba-
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Figure 1: Top: This image of a ‘2’ digit is given as input to
neural networks trained on n = 10, 100, and 1000 MNIST
digit examples. Each model predicts the probability the im-
age is of each possible digit, 0 through 9. Middle: Feature
attribution scores computed using Deep SHAP (Lundberg
and Lee, 2017; Shrikumar et al., 2017). The color repre-
sents the impact of each pixel on the predicted probabil-
ity assigned to the correct label ‘2’ (red is positive impact,
blue is negative impact). Bottom: Uncertainty estimates
for the attribution of each pixel, computed using our con-
formal explanation intervals method. The uncertainty of
a pixel’s attribution is measured as the difference between
the maximum and minimum plausible attribution. Darker
colors represent higher uncertainty. Uncertainty decreases
as the number of training examples increases.

tions in the data) (Adebayo et al., 2018; Alvarez-Melis and
Jaakkola, 2018; Dombrowski et al., 2019; Ghorbani et al.,
2019; Lakkaraju et al., 2020; Slack et al., 2020) and incon-
sistent (i.e., random variations in training algorithms can
lead models trained on the same data to give different ex-
planations) (Lee et al., 2019). The problem is worsened
by the phenomenon of model multiplicity: the existence
of distinct models with comparable performance (Black
et al., 2022; D’Amour et al., 2020; Marx et al., 2020).
If there exist competing models—each of which provides
a different explanation of the data-generating distribution
(Breiman, 2001)—how can we tell which explanation is
correct? These issues threaten the applicability of existing
explainability procedures for scientific inquiry. Given that
explanations are known to vary widely among even near-
optimal models (Dong and Rudin, 2019), we cannot as-
sume an explanation from a model with good performance
is representative of the data generating distribution.

In this work, we aim to quantify the degree to which an
explanation can be used for valid scientific inquiry. We de-
velop broadly applicable wrappers that provide uncertainty

Figure 2: A comparison of methods for computing uncer-
tainty sets for explanations. The explanation is the mean
absolute Shapley value, a measure of feature importance.
In each panel, the feature importance for the true model
that generated the data is marked by a red star. The three
features follow a multivariate Gaussian distribution and the
first two features are highly correlated. The true labels were
sampled from the linear model y(i) = [1, 0, 0] · x(i) + ϵ(i),
where ϵ(i)

iid∼ N (0, 1). In the top left panel, we subsam-
ple the dataset 100 times and explain a best-fitting linear
model for each dataset. Note that the best-fitting model
consistently underestimates the importance of Feature 1.
In the other three panels, we display confidence intervals
generated by the three methods we propose. The frequen-
tist intervals come with strong guarantees, but tend to be
wider. The conformal and Bayesian approaches take ad-
vantage of additional information (e.g., prior and posterior
distribution) to get tighter intervals.

estimates for existing explainability methods. Instead of
computing the explanation for a single best-fitting model,
we want to infer the explanation of the population optimal
model. For ease of language, we refer to this explanation as
the “optimal explanation”. Here, “optimal” simply means
that the explanation is from the optimal model. Since the
optimal model is not known, we return an explanation set
with the guarantee that the optimal explanation is included
in the explanation set with high probability (e.g., 95%). See
Figure 3 for a high-level illustration of our approach.

When we have a well-specified probabilistic model and we
evaluate models using a proper loss function, the data gen-
erating distribution is an optimal model. In this setting,
our explanation sets can be viewed as uncertainty sets for
the explanation from the data generating distribution. In
Figure 2, naive uncertainty sets constructed by explaining
multiple models consistently disagree with the true expla-
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Figure 3: Top: The standard explainability pipeline. A single “best-fitting” model is trained and a single explanation
is generated from this model. Bottom: An instantiation of our proposed explainability pipeline. We explore the set of
explanations associated with near-optimal models to construct a confidence set for the explanation of the true model.

nation of a well-specified linear model. In contrast, our
uncertainty sets include the true explanation.

Our main contributions include:

• We present a framework for explaining the (unknown)
optimal model, as opposed to a trained model. We
give a simple example where existing explainability
procedures fail to recover the optimal explanation in
this framework.

• We propose three simple yet rigorous methods to con-
struct uncertainty sets for optimal explanations: one
for a frequentist setting, and two for a Bayesian set-
ting under different assumptions. We provide finite-
sample coverage guarantees for the uncertainty sets
given by each method.

• Through simulations, we demonstrate the effective-
ness of our method in terms of the coverage, i.e., how
often the uncertainty set includes the true explanation,
and the size of the uncertainty set. We also apply our
methods to real datasets to infer feature importance.

The rest of the paper is organized as follows. After review-
ing related works (Section 2), we introduce a framework
for quantifying uncertainty in model explanations (Section
3). We then develop frequentist and Bayesian approaches
to construct principled uncertainty sets (Sections 4 and 5,
respectively). Finally, we conduct an experimental study
on both synthetic and real-world datasets (Section 6), fol-
lowed by a final discussion (Section 7).

2 Related Work

Explainable AI. Explainable AI (XAI) aims to present
model behavior in a way that humans can easily under-
stand. Some models are inherently more interpretable, such
as generalized linear models (GLMs) (Nelder and Wed-
derburn, 1972) and tree-based models (Sagi and Rokach,
2020). For less interpretable models, post-hoc expla-
nations can still provide insights. Popular methods in-
clude Shapley-value based approaches (Frye et al., 2020;

Heskes et al., 2020; Lundberg and Lee, 2017; Shapley,
1953), perturbation-based approaches (Fong and Vedaldi,
2019), local approximations (Ribeiro et al., 2016), tree-
based methods (Chen and Guestrin, 2016), and DeepLIFT
(Shrikumar et al., 2017). Recently, there have been atten-
tion to improving the robustness of explanations to distribu-
tion shifts (Lakkaraju et al., 2020; Ning et al., 2022). Sepa-
rately, for probabilistic models, several studies explain un-
certainty estimates (Antorán et al., 2020; Ley et al., 2021)
and their effects (Shaikhina et al., 2021).

Causal Inference for Explanation. In parallel to XAI,
causal inference attempts to understand the world by iden-
tifying causal relationships from data. The popular po-
tential outcomes framework (Holland, 1986; Rubin, 1974;
Splawa-Neyman et al., 1990) and causal graphical mod-
els (Pearl, 1988) typically require either some control of the
experiments (like randomized trials), or causal assumptions
such as unconfoundedness. These methods can enable sci-
entific discovery, but require more care to be used correctly.
In contrast, most XAI methods can be deployed to any ac-
cessible predictive models. Recently, several works have
considered causal feature relevance (Heskes et al., 2020),
and causal contributions (Janzing et al., 2020a), bringing
causal inference and explainability closer together (Janzing
et al., 2020b). However, these causal explanation methods
are still centered around causal interpretations of a trained
model rather than inferring the true data generating distri-
bution.

Uncertainty Quantification. There are many ways to
quantify uncertainty in prediction tasks, including via un-
certainty sets or by providing a probability distribution
over potential outcomes. A few popular methods include
Gaussian Processes (Barber, 2012; Bishop and Nasrabadi,
2006), which predict full probability distributions, and
quantile regression (Koenker, 2005; Koenker and Bas-
sett Jr, 1978; Park et al., 2022), which can give prediction
intervals by minimizing the pinball loss. Conformal pre-
diction is a post-hoc process that can construct valid uncer-
tainty sets or predictive distributions from heuristic notions
of uncertainty (Angelopoulos and Bates, 2021; Shafer and
Vovk, 2008). To the best of our knowledge, conformal pre-
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diction has only ever been applied in a frequentist setting.

Uncertainty in Explanations Several existing works
consider uncertainty in model explanations. Slack et al.
(2021) develop Bayesian methods for quantifying uncer-
tainty about the explanations of a single trained model.
Dong and Rudin (2019) give methods to compute the set
of plausible variable importances for a restricted class of
models. Our work differs from this work in that we aim to
construct general purpose methods to quantify uncertainty
about the explanations for the data generating distribution.

3 Framework

3.1 Preliminaries

We consider the task of using features x ∈ X to pre-
dict an outcome y ∈ Y . Given a dataset of n i.i.d.
pairs D = {(x1, y1), . . . , (xn, yn)}, the learning task
is to select a probabilistic model f from a model class
F = {f : X → P(Y)} that approximates the condi-
tional distribution for y given x. Here, P(Y) is the set
of probability distributions over Y . Given a loss func-
tion ℓ(f(x), y), our goal is to minimize the expected loss
L(f) = E [ℓ(f(x), y)].

Let f∗ ∈ F be a model that minimizes the expected loss,
so L(f∗) ≤ L(f) for all f ∈ F . We assume the model is
well-specified, so there exists some model f ∈ F that out-
puts the true conditional distribution p(y | x). Furthermore,
we assume the loss is a strictly proper scoring rule, so pre-
dicting the true conditional distribution is optimal. Under
these assumptions, we refer to f∗ as the true model since
it exactly reflects the data generating distribution. When
our model is misspecified, f∗ is instead the optimal model
from within our model class.

Since we do not know the true model, we use some model-
fitting algorithm A : D → F , where D = (X × Y)n, that
takes as input a dataset D and outputs a model f̂ = A(D).
For example, in empirical risk minimization we choose the
model f̂ that minimizes the loss on the training data.

3.2 Model Explanations

We are interested in an explanation function ϕ : F → Φ
that assigns to every model an explanation in some space
Φ. The explanation ϕ(f) can be a simple function of f ,
such as the predicted conditional mean for a single input
x, ϕmean

x (f) = Ey∼f(x) [y], or a more complex function.
For example, we can consider ϕshap

i,x (f), the Shapley value
of the i-th feature applied to the feature vector x, with D
as the reference dataset; or to the average absolute Shapley
value of the i-th feature ϕshap

i (f) := Ex∼D[|ϕshap
i,x (f)|].

In binary classification where y ∈ {0, 1}, one can consider

a counterfactual explanation ϕCF
x,+(f̂) that returns the clos-

est point x′ to x such that the label is predicted to be most
likely of the positive class P̂ (Y = 1 | X = x′) > 0.5.

We are interested in the explanation of the true model
ϕ(f∗). When ϕ is a simple explanation such as the con-
ditional mean ϕmean

x , we may be able to directly estimate
ϕ(f∗) using standard statistical techniques. When ϕ(f∗) is
difficult to estimate directly (e.g., the Shapley values of the
true model), we can first estimate the true model f∗ then
apply the explanation ϕ.

3.3 Quantifiying Uncertainty for Explanations

However, the explanation of our trained model ϕ(f̂) could
be meaningfully different than the true explanation ϕ(f∗).
For example, consider the conditional mean explanation
ϕmean
x (f̂) for some rare input x taken from our dataset. An

expressive model class could vary f̂(x) drastically without
changing any other predictions on the dataset (and there-
fore only minimally change the loss). Thus, it is not enough
to simply report ϕ(f̂); we instead need to quantify our un-
certainty about ϕ(f∗).

In this work we produce uncertainty sets for the explana-
tion of the true model. Using the data D, we construct an
uncertainty set C = C(D) that is guaranteed to include the
true explanation with high probability

P (ϕ(f∗) ∈ C) ≥ 1− α, (1)

for some desired confidence level 1 − α with α ∈ (0, 1).
In Equation (1), the uncertainty set C is random due to
its dependence on the data D. In Section 5, we consider
Bayesian models, where the model itself is a random vari-
able. By convention, in the Bayesian perspective we will
denote f∗ by f instead to indicate that the data generating
distribution is random.

From the Bayesian perspective, with an additional assump-
tion that the posterior can be sampled exactly (see Section
5.1), one can achieve the following guarantee by employing
credible intervals:

P (ϕ(f) ∈ C | D) ≥ 1− α (2)

For when we cannot access exact samples from the pos-
terior (Section 5.2), we propose an algorithm inspired
by conformal prediction to recover a weaker guarantee,
P (ϕ(f) ∈ C) ≥ 1 − α, where we no longer condition on
the data. This weaker coverage guarantee is over the prior
rather than the posterior, unlike a typical Bayesian result.

Finally, we compare all three methods in Section 6. In our
analysis we focus on two metrics: how often the uncer-
tainty set includes the true explanation (the “coverage”),
and the size of the uncertainty set. In general, higher cov-
erage and tighter uncertainty sets are preferable.
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Method Requires Prior Requires Posterior Guarantee

Frequentist No No P (ϕ(f∗) ∈ C) ≥ 1− α
Conformal Yes No P (ϕ(f) ∈ C) ≥ 1− α
Bayesian Yes Yes P (ϕ(f) ∈ C | D) ≥ 1− α

Table 1: A comparison of the three methods we propose. The frequentist approach assumes there exists a fixed, true model
f∗ and gives a confidence interval that includes the explanation for the true model with high probability. The randomness in
the frequentist guarantee comes exclusively from the dependence of the confidence interval on the data. In the conformal
and Bayesian approaches, we treat the model as a random variable f distributed according to some prior distribution.
Thus, the randomness in the guarantees for the conformal and Bayesian approaches is over the model f , the data D, and
additional simulated randomness in C we use to obtain the exact guarantee.

4 Frequentist Explanation Interval

In this section, we introduce a method for constructing
valid confidence intervals in a frequentist setting when the
model class is sufficiently simple. We measure simplicity
in a learning-theoretic sense; our results hold for model
classes that satisfy uniform convergence.

Uniform convergence states that the empirical loss
Ln(f) =

1
n

∑n
i=1 ℓ(f(xi), yi) converges to the population

loss L(f) = E [ℓ(f(x), y)] “uniformly” across the model
class as the number of training samples n goes to infinity.
Definition 1. A model class F has the uniform conver-
gence property if, for any distributions P over X × Y , any
error rate α > 0, and any tolerance ϵ > 0, there exists a
sample size n < ∞ such that

PD∼P

(
sup
f∈F

|L(f)− Ln(f)| ≤ ϵ

)
≥ 1− α. (3)

We say that F satisfies (α, ϵn)-uniform convergence if n
is a sufficiently large sample size to achieve the inequal-
ity in Equation (3) with α and ϵ = ϵn. See examples of
well-known uniform convergence results in Appendix B.2.
First, we will note that uniform convergence gives us a con-
fidence set for the true model. Then, we will bound the ex-
planation of the true model by computing the most extreme
explanations within this confidence set.

An immediate result of uniform convergence is that the true
model has bounded excess empirical loss.
Lemma 1. If F satisfies (α, ϵn)-uniform convergence, then
with probability at least 1− α,

Ln(f
∗) ≤ inf

f∈F
Ln(f) + 2ϵn. (4)

See Appendix A for a simple proof of Lemma 1. This
bound gives us a confidence set for the true model,

Fα =

{
f ∈ F : Ln(f) ≤ inf

f ′∈F
Ln(f

′) + 2ϵn

}
, (5)

which includes the true model with probability at least
1 − α. Thus, the set of explanations corresponding to Fα,
namely Cfreq = {ϕ(f) : f ∈ Fα}, satisfies Equation (1).

Proposition 1. Suppose F is well-specified and satisfies
(α, ϵn)-uniform convergence. Then the confidence inter-
val Cfreq = {ϕ(f) : f ∈ Fα} includes the true explanation
with probability at least 1− α.

P (ϕ(f∗) ∈ Cfreq) ≥ 1− α (6)

The randomness in Equation (6) is over the dataset used to
compute Cfreq. Proposition 1 provides a very general guar-
antee that applies to all possible f∗ ∈ F and any data distri-
bution. This generality typically comes at the cost of larger
confidence sets. Computing Cfreq exactly can be difficult
in practice, depending on the model class. In the following
Section 4.1, we elaborate on this challenge and propose an
algorithm for efficiently approximating Cfreq.

4.1 Computing Confidence Set via Pareto Frontier

For simplicity, we now consider a real-valued explanation,
so Φ = R. However, the methods described in this sec-
tion can easily be extended to vector-valued explanations.
One option is to construct confidence intervals that hold
marginally for each component. Another is to apply a union
bound to get confidence sets that hold jointly for the entire
vector.

Note that Cfreq is a subset of the interval[
inff∈Fα

ϕ(f), supf∈Fα
ϕ(f)

]
. In fact, if Fα is con-

nected and ϕ is continuous, then the sets are equal up to
measure 0. In turn, estimating the endpoints of this interval
amounts to solving non-convex optimization problems,
which can be difficult to solve exactly:

minimize ϕ(f) s.t. f ∈ Fα (7)
maximize ϕ(f) s.t. f ∈ Fα (8)

However, we can solve a set of related unconstrained prob-
lems to approximate the solution. For Equation (7), we can
define a mixed training objective:

Jλ(f) = λϕ(f) + (1− λ)Ln(f) (9)

By optimizing this objective for a sequence of λ ∈ [0, 1],
we can estimate the Pareto frontier of ϕ(f) and Ln(f) (and
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of −ϕ(f) and Ln(f), by flipping a sign). By choosing the
first point on this Pareto frontier that satisfies the constraint,
we can estimate the solution to the optimization problems
posed in Equations (7) and (8). While not exact, these solu-
tions provides an upper bound to the solution for Equation
(7) and a lower bound for the solution to Equation (8).

Algorithm 1: UCEI: Uniform Convergence Explana-
tion Intervals
Input : dataset D, mixture weights

0 ≤ λ1 < · · · < λK ≤ 1
1 Estimate the ERM f̂ = minf∈F Ln(f) and its

empirical risk Ln(f̂)
2 for λ ∈ {λ1, . . . , λK} do
3 Optimize the mixed objective

f̂−
λ = argminf∈F λϕ(f) + (1− λ)Ln(f)

4 Optimize the mixed objective
f̂+
λ = argminf∈F −λϕ(f) + (1− λ)Ln(f)

5 end
Return:

6 The confidence interval Ĉfreq with lower bound
7 min{ϕ(f̂−

λ ) : Ln(f
−
λ ) ≤ Ln(f̂) + 2ϵn}

8 and upper bound
9 max{ϕ(f̂+

λ ) : Ln(f
+
λ ) ≤ Ln(f̂) + 2ϵn}

The frequentist guarantee relies on our ability to exactly
solve the optimization problems in Equations (7) and (8).
When ϕ is differentiable, as is the case for popular meth-
ods like LIME (Ribeiro et al., 2016) and SHAP (Lund-
berg and Lee, 2017), we can use backpropagation to op-
timize the mixed training objective. One can also optimize
each mixed objective Jλ in parallel, or adaptively search
for a λ that gives a model with empirical loss close to
minf∈F Ln(f) + 2ϵn.

5 Bayesian Explanation Sets

The algorithm in the previous section guarantees coverage
for any true function. A natural question to ask is, “can we
get tighter uncertainty sets if we instead require coverage
on average, when the true model is distributed according
to some known distribution?” Consider a Bayesian model,
where instead of estimating a fixed but unknown true func-
tion f∗, we assume the model follows a prior distribution
p(f). We are then interested in the posterior distribution
p(f | D), which represents our updated beliefs about the
model after observing the data. A credible set for the pos-
terior distribution is any subset of F that has probability at
least 1 − α under the posterior. We can similarly define
a credible set for the explanation ϕ(f) as any subset of Φ
that includes the explanation of a model drawn from the
posterior with probability at least 1− α.

5.1 Bayesian Models with a Posterior Sampler

First, we consider the case where we have sample access
to the posterior distribution, i.e., a sample ft can be drawn
from exactly p(f | D) (without approximation). Credible
intervals give us a natural notion of uncertainty quantifica-
tion for explanations of Bayesian models; we want a set of
explanations CBayes that satisfies the following inequality:

P (ϕ(f) ∈ CBayes | D) ≥ 1− α (10)

Below, we describe Algorithm 2, which outputs CBayes

achieving the guarantee in Equation (10). Suppose that
we have T models f1, . . . , fT sampled independently from
the posterior distribution p(f | D). We can explain each
model to get T explanations ϕ(f1), . . . , ϕ(fT ), which are
independently distributed according to the posterior for the
explanation p(ϕ(f) | D). We can then use these samples
the estimate the quantiles of p(ϕ(f) | D). The quantiles
of p(ϕ(f) | D) tell us how to construct credible intervals
for the explanation. For example, the interval between the
0.05 and 0.95 quantiles of p(ϕ(f) | D) represents a cred-
ible interval with 90% probability under the posterior dis-
tribution. We cannot infer the quantiles of p(ϕ(f) | D) ex-
actly from T samples, but we can estimate the quantiles in
such a way as to guarantee Equation (10) holds with a finite
number of samples T , and not only asymptotically. To see
this, consider drawing one more model from the posterior
fT+1 ∼ p(f | D). Then ϕ(f1), . . . , ϕ(fT ), ϕ(fT+1) are
i.i.d. explanations. It follows that ϕ(fT+1) is equally likely
to be the smallest, second smallest, . . . , largest element of
this collection. If we define the ranking function R(u) =∑T

t=1 1 {u ≤ ϕ(ft)} then R(ϕ(fT+1)) is distributed uni-
formly on the set {0, 1, 2, . . . , T}. Thus, if we define the
interval CBayes with lower bound and upper bound as the
⌊α
2 (T +1)⌋/T -quantile and ⌈

(
1− α

2

)
(T +1)⌉/T -quantile

(respectively) of the set {ϕ(f1), . . . , ϕ(fT )}, then Equation
(10) is guaranteed to hold, even in the finite-data regime.
This is because CBayes is random, even conditioned on the
data D, since CBayes also depends on the T randomly drawn
models from the posterior.

Algorithm 2: BEI: Bayesian Explanation Intervals
Input : Sampler of posterior distribution p(f | D),

explanation algorithm ϕ, the number of
samples T

1 for t = 1, . . . , T do
2 Sample a model ft ∼ p(f | D)
3 Compute an explanation ϕ(ft) for the sampled

model
4 end

Return:
5 the confidence interval CBayes with lower bound
6 Quantile({ϕ(f1), . . . , ϕ(fT )}; ⌊α

2 (T + 1)⌋/T )
7 and upper bound
8 Quantile({ϕ(f1), . . . , ϕ(fT )}; ⌈

(
1− α

2

)
(T + 1)⌉/T )
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5.2 Bayesian Models with a Prior Sampler

In the previous section, we showed that one can get exact
uncertainty sets for Bayesian models if an exact posteior
sampler is available. However, for many Bayesian models,
such as Bayesian neural networks (Bishop and Nasrabadi,
2006, chap 5.7) and latent Dirichlet allocation (Blei et al.,
2003), it would be prohibitively expensive to sample from
the exact posterior distribution. In such settings, practition-
ers often resort to approximating the posterior distribution,
e.g., by using variational inference or Markov Chain Monte
Carlo samplers (Bishop and Nasrabadi, 2006, ch. 10-11).
However, when we only have access to samples from an
approximate posterior distribution, it is not obvious how
we can salvage our exact credible interval guarantee in
Equation (10). In this section, we provide an algorithm
that works without exact posterior samples, at the cost of
providing weaker guarantees. Specifically, we guarantee
validity with respect to the prior instead of the posterior.
To do this, we recruit tools from conformal inference (See
Section 2.)

Conformal inference is most often applied in frequen-
tist settings, and allows one to construct prediction sets
C(xi) for each new label yi that enjoy finite-sample
coverage guarantees. Specifically, the guarantee is that
P
(
y ∈ C(f̂(x))

)
≥ 1 − α, where x and y are random,

and C is a random function of f̂(x) that also depends on
held out calibration samples. Here, f̂ is an arbitrary pre-
dictor for y that takes x as input. (Technically, there is an
assumption that f̂ treats the data symmetrically, but this
is not important for our discussion here.) Conformal pre-
diction requires T calibration samples for which both the
prediction f̂(x) and the outcome y are observed.

We give a strategy for computing an uncertainty set
Cconformal that is analogous to the conformal inference re-
sult, except that instead of giving an uncertainty set for a
new label, we give an uncertainty set for the explanation
of a model. The central challenge to applying conformal
inference to our setting is obtaining our calibration sam-
ples; we usually do not know the true model explanation for
any dataset. We get around this problem by sampling mod-
els i.i.d. from our prior distribution, f1, . . . , ft, . . . , fT ∼
p(f). Recall that since our models are probabilistic, given
an input xi, we can sample a label yti ∼ ft(xi) from the
distribution predicted by the model. By pairing each orig-
inal input xi with the corresponding resampled label yti ,
we have a dataset Dt = {(x1, y

t
1), . . . , (xn, y

t
n)} drawn

from the model ft. We can then train a model f̂t = A(Dt)
on this new dataset. This gives us T examples where we
can observe the ground truth explanation ϕ(ft) and an es-
timated explanation ϕ(f̂t). We compare how close ϕ(ft)

and ϕ(f̂t) tend to be using a nonconformity score, such as
the distance ∥ϕ(ft) − ϕ(f̂t)∥. These examples act as our
calibration dataset in Algorithm 3.

Algorithm 3: CEI: Conformal Explanation Intervals
Input : Model-fitting algorithm A, dataset

D = (x1, y1), . . . , (xn, yn)
Input : Nonconformity score s : Φ× Φ → R

1 Train a model f̂ = A(D) using the dataset
2 Explain the trained model ϕ̂ = ϕ(f̂)
3 for t = 1, . . . , T do
4 Sample a model ft ∼ p(f)
5 Sample a dataset of labels yti ∼ ft(xi)
6 Define the synthetic dataset

Dt = {(x1, y
t
i), . . . , (xn, y

t
n)}

7 Train a model f̂t = A(Dt)
8 Explain the sampled model ϕt = ϕ(ft) and the

trained model ϕ̂t = ϕ(f̂t)

9 Compute the nonconformity score st = s(ϕt, ϕ̂t)

10 end
11 Set the threshold τ as the

⌈(1− α)(T + 1)⌉/T -quantile of the set {s1, . . . , sT }
Return: Cconformal = {φ ∈ Φ : s(φ, ϕ(f̂)) ≤ τ}

The uncertainty set Cconformal has the following guarantee:

Proposition 2. The confidence interval Cconformal given by
Algorithm 3 includes the model f with high probability
over the prior distribution:

Pf∼p(f) (ϕ(f) ∈ Cconformal) ≥ 1− α (11)

Here, f is random due to the prior and Cconformal is ran-
dom due to the data and the calibration samples. Note that
computing Cconformal does not rely on us knowing the pos-
terior distribution. We only need some algorithm A, such
as an empirical risk minimizer that, given a dataset, returns
a model f̂ ∈ F . However, this guarantee is weaker than
the guarantee we got when we had access to the posterior
distribution in Equation (10). Note that we are not condi-
tioning on the data in Equation (11), and so Cconformal is not
necessarily a credible interval under the posterior. Further-
more, by integrating over the dataset D, the (conditioned)
guarantee in Equation (10) can be seen to imply the (un-
conditioned) guarantee in Equation (11). The condition in
Proposition 2 is also satisfied by any credible interval C for
the prior distribution. However, one should typically find
that Cconformal can give much tighter uncertainty sets than
this naive strategy since it is adaptive to the data. In this
way, Cconformal can be viewed as an intermediate solution
between a credible set for the prior and a credible set for
the posterior; it is more adaptive to the data than the former
but not as adaptive as the latter.

6 Experiments

We perform experiments on synthetic and real-world
datasets. Synthetic datasets allow us to generate uncer-
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Coverage Interval Width

Naive 0.5067± 0.002 0.2522± 0.001
Frequentist 1.0000± 0.000 3.9310± 0.003
Bayesian 0.9500± 0.001 0.9679± 0.001
Conformal 0.9600± 0.001 1.0493± 0.001

Table 2: A comparison of the coverage rate and interval
width of the uncertainty sets from each method on synthetic
data. Each of our proposed methods achieves the desired
coverage of 0.95. The frequentist method is overly cautious
due to its reliance on conservative learning theory results.

tainty sets for explanations where we know the true data
generating distribution. This means that we can validate
the coverage rates of our methods, which is difficult to do
with real-world data where we do not know the data gen-
erating distribution. Experiments with real-world datasets
give insight on how our methods scale to larger datasets
and realistic distributions.

6.1 Experimental Setup

We perform four experiments under the Shapley value ex-
plainer. In a synthetic experiment, we first validate that the
frequentist, Bayesian, and conformal methods all achieve
the desired coverage rate and compare the size of the un-
certainty sets each method gives. In the second synthetic
experiment, we test the robustness of the Bayesian and con-
formal methods to violations of their assumptions by ex-
ploring settings where the prior distribution is misspecified.
In the third experiment, we apply our methods to quantify
the uncertainty of Deep SHAP explanations (Lundberg and
Lee, 2017; Shrikumar et al., 2017) on the MNIST dataset.
Lastly, we apply the conformal method to infer feature im-
portance scores for a variety of real-world datasets.

Testing Coverage on Synthetic Data We consider a re-
gression problem with three features. The data is generated
according to the following distributions:

xi ∼ N

µ = 0,Σ =

 1 0.99 0
0.99 1 0
0 0 1


yi = θ⊤x+ ϵi, ϵi ∼ N (0, 1)

We fit linear models fβ(x) = N (· ; µ = β⊤x, σ2 =
1) that predict Gaussian distributions for y, where β ∈
R3. We independently sample M = 100 true models
θ1, . . . , θM ∼ N (0, I3), and for each true model θm,
we sample a dataset Dθ consisting n = 100 examples.
For the Bayesian and conformal methods, we the correct
prior N (0, I3) for θ. For the naive and conformal meth-
ods, we fit T = 100 linear models using Ridge regres-
sion. For the frequentist method, we use a standard uni-
form convergence result for linear regression. We use
closed-form expression of Shapley value under the linear

Figure 4: The range of plausible Deep SHAP feature at-
tribution scores for MNIST digits. Here, the models were
trained on 10, 100, and 1000 MNIST examples. All models
explanations were computed with the same digit as input.
Each column represents the impact of pixel values on the
predicted probability assigned to that label (0-9). The top
row next to each digit on the left is the upper bound for the
feature attribution, and the bottom row is the lower bound.
Red and blue represent positive and negative influence, re-
spectively.

case. Refer to Appendix B for the detailed Rademacher
complexity chosen and Shapley expression. For each
method, we record the portion of the time that the uncer-
tainty set includes the true explanation: coverage(C) =
1

3M

∑M
m=1

∑n
i=1 1

{
ϕ(θ

(i)
m ) ∈ C(i)

}
. For each method,

the targeted coverage rate is 0.95. We also report the av-
erage width of the uncertainty set for each method.

Testing Coverage under Model Misspecification We
also explore how the Bayesian and conformal methods per-
form when the prior distribution is incorrect. We re-run the
coverage experiment for the Bayesian and conformal meth-
ods, except with the true models sampled with a different
mean N (1, I3) and with a different variance N

(
0, 1

2I3
)
.

All other aspects of the experiment are unchanged.

MNIST Experiments We train models on the MNIST
dataset, with the number of training examples varying be-
tween 10, 100, and 1000 examples. We train convolutional
neural networks, so choosing a meaningful prior distribu-
tion for the model parameters is difficult. We explore us-
ing an isotropic Gaussian prior for all model parameters,
and an empirical Bayes approach where we partially train
an MNIST model on held-out data, then define a Gaussian
prior centered at the weights of this trained model. We ex-
plain each model using the Deep SHAP explainer. We then
generate conformal explanation intervals for each expla-
nation. We investigate which pixels have high/low uncer-
tainty, and how uncertainty varies as the number of training
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Coverage Interval Width

well-specified 0.9500±0.001 0.9679±0.001
Bayesian wrong mean 0.7511±0.001 0.8620±0.001

wrong var 0.9600±0.001 0.8720±0.001

well-specified 0.9600±0.001 1.0493±0.001
Conformal wrong mean 0.9867±0.001 1.0634±0.001

wrong var 0.9800±0.001 1.0578±0.001

Table 3: A comparison of the Bayesian and conformal
methods when their assumptions are not met, due to a mis-
specified prior distribution. The Bayesian method loses
coverage when the mean is misspecified in this case. The
conformal method becomes unnecessarily cautious, giving
wider intervals than necessary.

Figure 5: Feature importance scores (as measured by the
mean Shapley value of each feature across the dataset)
computed using the conformal method. For some datasets
(e.g., MPG) there are significant differences between the
importances assigned to different features. For other
datasets (e.g., WINE), conclusions are more difficult to
make. When features have overlapping feature importance
uncertainty sets, it indicates that practitioners should be
cautious when drawing conclusions.

examples increases.

Real-world Regression Experiments We consider eight
tabular regression datasets: (all results except for WINE and
MPG deferred to Appendix D). In each case, we train a neu-
ral network to predict a real-valued label. The model out-
puts a mean and variance for a Gaussian distribution, and
is trained with the negative log-likelihood loss. The archi-
tecture has 2 hidden layers, each with 100 neurons, and
uses ReLU activations. We compute uncertainty sets for
the explanation of the true model using the conformal ex-
planation intervals method. For the explanation, we use
the average of the absolute value of the Shapley value of
the feature across the dataset (a measure of feature impor-
tance). We set the prior distribution for each weight to be
Gaussian with zero mean and variance as the reciprocal of
the dimension of the layer. The prior for the biases are
standard Gaussian distributions. We generate T = 100 cal-
ibration examples by sampling models from the prior.

6.2 Experimental Results

Testing Coverage on Synthetic Data We find that each
of our proposed method achieves a coverage of at least 95%
(the naive method has coverage close to 50%). See Table 2
for the complete results. The frequentist coverage interval
tends to be overly conservative due to the worst-case per-
spective of uniform convergence, leading to a roughly 4x
greater interval width when compared to the other meth-
ods, and 100% coverage in our experiments.

MNIST Experiments We find that the size of the dataset
has an important impact on the degree of uncertainty in ex-
planations. The uncertainty decreases rapidly as the dataset
size increases (to a negligible value once there are 10,000
training examples). This could indicate that on MNIST,
models tend to converge to similar optima (at least in terms
of the explanations they admit) even with little data. This
may also point to the importance of choosing reasonable
priors when explaining neural networks, since our coverage
guarantees are contingent on the chosen prior distribution.
Additional results are included in Appendix D.

Real-world Regression Experiments We find that the
strength of conclusions that can be drawn from the
conformal method varies across datasets. For exam-
ple, for the MPG dataset, the features displacement,
horsepower, and weight have high importance with
low uncertainty. However, in the PROTEIN dataset, it is
difficult to make any meaningful conclusions about the rel-
ative importance of features, possibly due to the existence
of competing models that use different features. Seven ad-
ditional experimental results are included in Appendix D.

7 Discussion

We offer guidance to a practitioner deciding between the
frequentist, Bayesian, and conformal approaches. If we do
not have a prior for our model, the frequentist approach
can give strong guarantees at the cost of large uncertainty
sets. For Bayesian models, we recommend using the fully
Bayesian approach when the posterior admits exact sam-
pling, since this gives stronger guarantees. When an exact
posterior sampler is not available, the conformal approach
can recover a weaker guarantee that can still give tight un-
certainty sets.

In this work we show how to give confidence sets for ex-
planations of the data generating process. We caution, how-
ever, that explanations of the true data generating distribu-
tion do not in general have causal implications. Still, we
hope that formalizing a connection between model expla-
nations and the data generating distribution can help users
understand which explanations are the result of spurious
correlations, and which are meaningful.
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A Proofs

Lemma 1. If uniform convergence holds, then with probability at least 1− α,

Ln(f
∗) ≤ inf

f∈F
Ln(f) + 2ϵn.

Proof of Lemma 1. To see this, denote by the event E = {supf∈F |L(f)−Ln(f)| ≤ ϵ}, which occurs with probability at
least 1− α. If the event E occurs, then for all models f ∈ F we have

Ln(f
∗) ≤ L(f∗) + ϵn (E occurred)

≤ L(f) + ϵn (Optimality of f∗)
≤ Ln(f) + 2ϵn. (E occurred)

Since this inequality holds for all f ∈ F , it also holds for the infimum over F . This gives the result in Equation (4).

B Example: Linear Regression

We will walk through an example in which we infer the Shapley values of an unknown linear function.

B.1 Shapley Value Derivation for Linear Models

Consider a linear model given by fθ(x) = θ⊤x, where θ ∈ Rd and x ∈ Rd. We use the capital X to represent the
random variable for the feature vector, and the lower case x to represent a fixed value for this random variable. Given a
coalition of features S ⊆ {1, . . . , d}, we can write the feature vector x as x = [xS , xS ] where xS = {xi : i ∈ S} and
xS = {xi : i /∈ S}. The prediction associated with the coalition xS can be defined as

fθ(xS) := E [fθ([xS , XS ])] (12)

= E
[
θ⊤[xS , XS ]

]
(13)

= θ⊤S xS + θ⊤
S
E [XS ] (14)

= θ⊤S xS + θ⊤
S
xS + θ⊤

S
E [XS − xS ] (15)

= fθ(x) +
∑
i/∈S

θiE [Xi − xi] (16)

The Shapley value for a linear model on a particular instance x can then be written as:

ϕx
i (fθ) =

∑
S⊆[d]\i

|S|!(d− |S| − 1)!

d!
(fθ(xS∪{i})− fθ(xS)) (17)

=
∑

S⊆[d]\i

|S|!(d− |S| − 1)!

d!

fθ(x) +
∑

j /∈S∪{i}

θjE [Xj − xj ]

−

fθ(x) +
∑
j /∈S

θjE [Xj − xj ]

 (18)

=
∑

S⊆[d]\i

|S|!(d− |S| − 1)!

d!
θiE [Xi − xi] (19)

=
1

Z
θiE [Xi − xi] (20)

where Z =
(∑

S⊆[d]\i
|S|!(d−|S|−1)!

d!

)−1

is the normalizing constant. Using the efficiency property of the Shapley value
which states that

∑
i∈[d] ϕ

x
i (fθ) = fθ(x), we can compute the normalizing constant Z by noting that:
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fθ(x) =
∑
i∈[d]

ϕx
i (fθ) (21)

=
1

Z

∑
i∈[d]

θiE [Xi − xi] (22)

giving us that

Z =
1

fθ(x)

∑
i∈[d]

θiE [Xi − xi] (23)

We can then write the Shapley value as

ϕx
i (fθ) =

fθ(x)

θ⊤(E [X]− x)
θiE [Xi − xi] (24)

when the denominator is nonzero, and ϕx
i (fθ) = 0 when the denominator is equal to zero.

B.2 Uniform Convergence for Squared Loss of Linear Models

Uniform convergence results bound (with high probability) the disagreement supf∈F |L(f) − Ln(f)| between the sam-
ple loss and population loss over a model class. Uniform convergence results are often stated in terms of the Vap-
nik–Chervonenkis dimension, Rademacher complexity, Gaussian complexity, covering number, and other notions of com-
plexity of the model class. Below, we display a few standard results that, together, give a uniform convergence result for
linear models with squared error loss.

Theorem 1 (Awasthi et al. (2020)). Let F =
{
x 7→ θ⊤x : ∥θ∥p ≤ w

}
be a family of linear functions defined over Rd with

bounded weight in ℓp-norm. Then, the empirical Rademacher complexity of F for a sample S = (x1, . . . ,xn) admits the
following upper bounds:

R̂S (F) ≤ w

n
∥X∥Fr

where X is the d× n-matrix with xis as columns: X = [x1 . . .xn].

Theorem 2. For the squared error loss ℓ(y, ŷ) = (y − ŷ)2, let ℓ ◦ F :=
{
x 7→ (fθ(x)− f∗(x))

2
: fθ ∈ F

}
. Assume that

supx∈X ,fθ∈F (fθ(x)− f∗(x))
2 ≤ M2. Then for any sample S = {x1, . . . , xn},

R̂S(ℓ ◦ F) ≤ 2MR̂S(F) (25)

Theorem 3. With probability at least 1− δ, for all f ∈ F and distributions over X × Y the following holds:

L(f)− Ln(f) ≤ 2R̂S(ℓ ◦ F) + 3

√
ln 1/δ

2n
(26)

Together, Theorems 1-3 give us the following result for linear models with the squared error loss. For all f ∈ F and any
distribution over X × Y , with probability at least 1− δ,

L(f)− Ln(f) ≤
4Mw

n
∥X∥Fr + 3

√
ln 1/δ

2n
(27)

where X,M,w, n, δ are defined as in Theorems 1-3.
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C Conformal Prediction

Our Algorithm 3 is heavily inspired by conformal prediction, a simple and effective method for constructing statistically
rigorous uncertainty intervals (Angelopoulos and Bates, 2021; Lei and Wasserman, 2014; Vovk et al., 2005). In the standard
conformal prediction setup, we have an i.i.d. calibration dataset (X1, Y1), . . . , (Xn, Yn) and some new input Xtest for which
we want to predict the label Ytest. Given a black-box model f̂ trained (on separate data) to predict the label, we want to
construct uncertainty estimates for the predictions made by the black-box model. Conformal prediction tells us how to
construct an uncertainty interval Ctest such that the ground truth value Ytest is included in the uncertainty interval with some
chosen probability 1− α, such at 95%:

P (Ytest ∈ Ctest) ≥ 1− α (28)

Perhaps the biggest advantage of conformal prediction is that it applies under extremely weak assumptions. As long as the
model-fitting algorithm A treats the data symmetrically (e.g., a time series forecast that weighs recent data more heavily
does not treat data symmetrically) and the data is i.i.d. (in fact, the weaker condition of exchangeability is sufficient), the
uncertainty interval will be valid. No additional distributional assumptions on the data generating process are needed.

The central component of a conformal prediction algorithm is the nonconformity score. The nonconformity score
s(Y, f̂(X)) evaluates the disagreement between the observed outcome and the model’s prediction. For a binary clas-
sifier that outputs a probability p̂(Xtest) that Ytest = 1, a reasonable nonconformity score would be s(Ytest, p̂(Xtest)) =
|Ytest − p̂(Xtest)|. For a regression model, a reasonable nonconformity score would be s(Ytest, µ̂(Xtest)) = |Ytest − µ̂(Xtest)|
where µ̂(Xtest) is the predicted mean.

Importantly for our purposes, conformal prediction requires us to have i.i.d. examples to calibrate our uncertainties. When
we want an uncertainty interval for an outcome Ytest, this is not a problem since we often have access to pairs of true
outcomes Yi and predicted outcomes f̂(Xi). However, in our case we want an uncertainty interval for the explanation ϕ(f).
Problematically, we never observe a true explanation because we never observe i.i.d. examples of a “true explanation” ϕ(f)
and an estimated explanation ϕ(f̂). Usually, we only observe a single dataset generated from a single model f . However,
if we have a prior distribution for the model, then we can simulate i.i.d. examples of true explanations ϕ(f) and estimated
explanations ϕ(f̂) then run conformal prediction.

D Additional Experimental Results
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Figure 6: Additional results for Deep SHAP explanations. Here, all models were trained on 100 MNIST examples. Each
column represents the impact of pixel values on the predicted probability assigned to that label (0-9). The top row next to
each digit on the left is the upper bound for the feature attribution, and the bottom row is the lower bound. Red and blue
represent positive and negative influence, respectively.

Figure 7: Feature importance scores (as measured by the mean Shapley value of each feature across the dataset). Confi-
dence intervals are computed using the conformal explanation intervals method.
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Figure 8: Feature importance scores (as measured by the mean Shapley value of each feature across the dataset). Confi-
dence intervals are computed using the conformal explanation intervals method.

Figure 9: Feature importance scores (as measured by the mean Shapley value of each feature across the dataset). Confi-
dence intervals are computed using the conformal explanation intervals method.
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