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Abstract

Prediction algorithms, such as deep neural net-
works (DNNs), are used in many domain sciences
to directly estimate internal parameters of interest
in simulator-based models, especially in settings
where the observations include images or complex
high-dimensional data. In parallel, modern neu-
ral density estimators, such as normalizing flows,
are becoming increasingly popular for uncertainty
quantification, especially when both parameters
and observations are high-dimensional. However,
parameter inference is an inverse problem and not
a prediction task; thus, an open challenge is to con-
struct conditionally valid and precise confidence
regions, with a guaranteed probability of covering
the true parameters of the data-generating process,
no matter what the (unknown) parameter values
are, and without relying on large-sample theory.
Many simulator-based inference (SBI) methods
are indeed known to produce biased or overly con-
fident parameter regions, yielding misleading un-
certainty estimates. This paper presents WALDO,
a novel method to construct confidence regions
with finite-sample conditional validity by leverag-
ing prediction algorithms or posterior estimators
that are currently widely adopted in SBI. WALDO
reframes the well-known Wald test statistic, and
uses a computationally efficient regression-based
machinery for classical Neyman inversion of hy-
pothesis tests. We apply our method to a recent
high-energy physics problem, where prediction
with DNNs has previously led to estimates with
prediction bias. We also illustrate how our ap-
proach can correct overly confident posterior re-
gions computed with normalizing flows.
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1 INTRODUCTION

The vast majority of modern machine learning targets pre-
diction problems, with algorithms such as Deep Neural
Networks (DNNs) being particularly successful with point
predictions of a target variable Y ∈ R when the input vec-
tors x ∈ X represent complex high-dimensional data. In
many science applications, however, one is often interested
in the “inverse” problem of estimating the internal parame-
ters of a data-generating process with reliable measures of
uncertainty. The parameters of interest, which we denote by
θ, are then not directly observed but are the “causes” of the
observed data x.

In order to make inference on internal parameters, one needs
a statistical model that relates the (unknown) parameters to
the observed data. In science and engineering, simulations
are often used to model the behavior of complex systems in
lieu of an analytical likelihood, when the latter is too com-
plicated to be evaluated explicitly. Let D := (x1, . . . ,xn)

T

denote observable data, where the “sample size” n refers
to the number of observations at a fixed configuration of
the parameters θ. Likelihood-free inference (LFI), which
is a form of simulator-based inference (SBI; Cranmer et al.
(2020)), refers to parameter estimation in a setting where the
likelihood function L(θ;D) := p(D|θ) itself is intractable,
but the scientist, in lieu of an explicit likelihood, has access
to a simulator that can generate D given any θ ∈ Θ.

LFI has undergone a revolution in terms of the complexity
of problems that can be tackled, both because of faster and
more realistic simulators that can generate a large number
of examples T = {(θ(j),D(j))}Bj=1, and because of more
powerful AI techniques that can learn various quantities
of interest from these simulations. DNNs – such as con-
volutional neural networks (CNNs) (LeCun et al., 1995) –
are now used in many domain sciences to directly predict
internal parameters of interest in statistical models, espe-
cially in settings where x represents images or other high-
dimensional data. Recent examples include estimating the
energy (θ) of muons that radiate photons when traversing a
finely segmented calorimeter (x) (Kieseler et al., 2022); es-
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timating the mass of a galaxy cluster (θ) from velocities and
projected radial distances (x) for a particular line-of-sight of
the observer relative to the galaxy cluster (Ho et al., 2019);
and estimating the range and noise-to-signal covariance
parameters (θ) of spatial Gaussian processes from spatial
fields or variograms (x) (Gerber and Nychka, 2021). In par-
allel, modern neural density estimators, such as normalizing
flows, are becoming increasingly popular for uncertainty
quantification, especially when both parameters θ and obser-
vations x are high-dimensional. Recent examples include
Boyda et al. (2021); Mishra-Sharma and Cranmer (2022);
Lueckmann et al. (2021).

Purely predictive approaches are known to suffer from pre-
diction bias in inverse problems, as the point prediction –
e.g., E[θ|x] under squared error loss – is generally different
from the true (unknown) parameter θ. Concrete examples
include Dorigo et al. (2022); Ho et al. (2019); Kiel et al.
(2019), where attempts are made to correct for the observed
bias post-hoc. At the same time, many posterior estimation
methods are known to be overly confident, meaning that
they yield confidence sets with empirical coverage lower
than the desired nominal level (Hermans et al., 2021), hence
leading to potentially misleading results.

At the heart of the matter is the fact that both predictive and
posterior approaches in SBI rely heavily on how the values
of θ in the training set T are sampled. For reliable inference,
however, the coverage guarantees of the confidence sets
should be independent of the choice of prior πθ, thereby
allowing the user to design priors that can lead to tighter,
but guaranteed to be valid, confidence sets. In this work, we
present a solution without relying on large-sample theory or
computationally intensive Monte Carlo sampling.

WALDO is a new LFI procedure that can leverage any pre-
diction algorithm or neural posterior estimator to construct
confidence regions for θ with correct conditional coverage;
that is, setsR(D) satisfying

P(θ ∈ R(D)|θ) = 1− α, ∀θ ∈ Θ, (1)

regardless of the size n of the observed sample, where
(1 − α) ∈ (0, 1) is a prespecified confidence level. Cor-
rect conditional coverage implies correct marginal cover-
age, P(θ ∈ R(D)) = 1 − α, but the former is a stronger
requirement that checks that the confidence set is calibrated
no matter what the true parameter is, whereas marginal
coverage only requires the set to be calibrated on average
over the parameter space Θ. WALDO reframes the Wald
test (Wald, 1943) and leverages existing prediction or poste-
rior algorithms to first compute a test statistic (Equation 4)
based on estimates of the conditional mean E[θ|D] and con-
ditional variance V[θ|D]. It then uses a recent approach
(Dalmasso et al., 2021) to the Neyman construction (Ney-
man, 1937), which estimates critical values via quantile
regression and converts hypothesis tests into a confidence
region with finite-n conditional coverage. WALDO also

includes an independent diagnostics module to check that
the constructed confidence sets achieve the correct nominal
level of empirical coverage across the parameter space. Sec-
tion 3.2 describes our methodology in detail, and Figure 1
summarizes its different components.

WALDO embraces the best sides of both the Bayesian and
frequentist perspectives to statistical inference by provid-
ing confidence sets that (i) can effectively exploit available
domain-specific knowledge, further constraining parame-
ters when the prior is consistent with the data, and (ii) are
guaranteed to have the nominal conditional coverage even
in finite samples as long as the quantile regressor is well
estimated, regardless of the correctness of the prior. WALDO
is also amortized, meaning that once the procedure has been
trained, it can be evaluated on any number of observations.
We lay out the statistical and computational properties of
WALDO, providing synthetic examples with analytical solu-
tions to verify and support our claims (see Section 3.3 and
Section 3.4). We then show its effectiveness on two complex
applications, which confirm the results we obtained on the
synthetic examples: the first one (Section 4.1) uses an estab-
lished benchmark in SBI and leverages posterior distribu-
tions to construct valid confidence sets regardless of the prior
distribution. The second application (Section 4.2) deals with
a current problem in high-energy physics: inferring the en-
ergy of muons from a particle detector exploiting predictions
from a custom CNN and an innovative source of informa-
tion, i.e., the pattern of energy deposits left by muons in
a finely segmented calorimeter. The results we obtain for
this problem are of scientific interest by themselves, as a
rigorous estimate of the uncertainty around estimated muon
energies is essential in the search of new physics. A ready-
to-use and flexible implementation of WALDO is available
at https://github.com/lee-group-cmu/lf2i.

Notation We refer to parameters of interest as θ ∈ Θ ⊂
Rp and to a sample of size n of observable input data as
D = (x1, . . . ,xn)

T , with xi ∈ X ⊂ Rd and possibly
p ̸= d. Note that n is distinct from B,B′ and B′′, i.e.,
the number of simulations required at different steps of
our method. We distinguish between observable data and
actual observations by denoting the latter as D. We refer to
confidence regions asR(D). The terms “set”, “region” and
(when p = 1) “interval” are used interchangeably.

2 RELATION TO OTHER WORK

There exist many approaches for calibrating predictive dis-
tributions p(y|x) to achieve marginal or conditional validity
in “forward” x→ y problems; examples include conformal
inference (Vovk et al., 2005; Lei et al., 2018; Chernozhukov
et al., 2021) and the calibration procedures of Bordoloi et al.
(2010); Dey et al. (2022). In the Bayesian inference do-
main, such calibration procedures correspond to ensuring
that an estimate p̂(θ|x) of the posterior p(θ|x) indeed cor-

https://github.com/lee-group-cmu/lf2i
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Figure 1: Schematic diagram of WALDO. Left (blue): For a first simulated set T , we estimate the conditional mean E[θ|D] and variance
V[θ|D] using a prediction algorithm (e.g., DNN) or posterior estimator (e.g., normalizing flows). This gives us the WALDO test statistic
τ̂WALDO in Equation 4. Center (green): For a second simulated set T ′, we estimate critical values Ĉθ0,α for all tests H0 : θ = θ0 across
the parameter space Θ via a quantile regression of τ̂WALDO on θ. Bottom: Given an observation D, Neyman inversion converts the tests
(which compare test statistics with critical values) into a confidence region for θ. Right (red): For a third simulated set T ′′, we provide an
independent assessment of the conditional validity of constructed confidence regions by computing coverage diagnostics across the entire
parameter space. See Section 3.2 and Algorithm 1 for details.

responds to the true posterior implied by the prior that was
used. This work, on the other hand, deals with the ques-
tion of constructing confidence sets with correct conditional
coverage for internal unknown parameters θ in so-called “in-
verse problems” (recall Equation 1), which is not the same
as achieving conditional coverage for prediction sets, or
recalibrating posteriors.

Similarly, existing approaches for deep learning uncertainty
quantification (see Gawlikowski et al. (2021) for a recent
review), such as Monte Carlo drop out (Gal and Ghahramani,
2016) and conformal inference DNNs (Papadopoulos et al.,
2007), construct prediction sets instead of confidence sets.
Before WALDO, there has been no straightforward way to
obtain confidence sets from point predictions or estimated
posteriors obtained from deep neural networks and other
predictive ML algorithms.

For example, various domain science applications have de-
veloped post-hoc corrections to predictive or posterior in-
ferences to reduce observed biases and to improve the cal-
ibration of uncertainties. Such corrections are common in
areas ranging from particle physics (Dorigo et al., 2022) to
cosmology (Ho et al., 2019) and remote sensing (Kiel et al.,
2019). Usually the goal of the corrections is to reduce the
impact of the prior specification, but in contrast to WALDO,
post-hoc correction approaches do not provide formal cov-
erage guarantees. Similarly, in some settings, priors can
be designed so that credible regions achieve correct condi-
tional coverage (Bayarri and Berger, 2004; Berger, 2006;
Kass and Wasserman, 1996; Scricciolo, 1999; Datta and
Sweeting, 2005). However, this technique requires knowl-
edge of the likelihood function (which is not available in
LFI). Moreover, such prior distributions often do not encode
actual prior information, a limitation that is not present in

WALDO.

Finally, posterior inferences do not control conditional cov-
erage even for correctly specified priors (Patil et al., 2022).
WALDO addresses this problem using Neyman inversion
via an efficient regression-based approach proposed in Dal-
masso et al. (2021). In the latter work, however, the authors
construct likelihood-based test statistics (the Bayes factor
or likelihood ratio) which require an extra numerical inte-
gration or optimization step that can lead to a loss of power
of the resulting confidence sets. WALDO, on the other hand,
has the ability of directly leveraging flexible prediction al-
gorithms and posterior estimators to construct valid and
potentially more precise finite-n confidence sets.

3 METHODOLOGY

WALDO leverages a regression-based approach to the Ney-
man construction, reframing the Wald test to use the output
of common LFI prediction algorithms and posterior estima-
tors. After outlining its statistical foundations, we describe
our procedure and its properties using synthetic examples.

3.1 Foundational Tools from Classical Statistics

Neyman construction A key ingredient of WALDO is the
equivalence between hypothesis tests and confidence sets,
which was formalized by Neyman (1937). The basic idea is
to invert a series of level-α hypothesis tests of the form

H0 : θ = θ0 vs. H1 : θ ̸= θ0, (2)

for all θ0 ∈ Θ. After observing a sample D, one constructs
a confidence regionR(D) for θ by taking all θ0 values that
were not rejected by the series of tests above. By design, the
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setR(D) satisfies Equation (1), i.e., it has the correct 1−α
coverage across the entire parameter space Θ. Albeit simple,
the Neyman construction requires one to control the type I
error for every θ ∈ Θ. It is therefore hard to implement in
practice within an LFI setting, without resorting to large-n
approximations like Wilks’ theorem (Wilks, 1938), or to
Monte Carlo approaches, which become computationally
prohibitive as the dimensionality of the parameter space
increases (Cousins (2018); see also Section 3.4).

Wald test Since any test that controls the type I error at
level α can be used for the Neyman construction, we base
WALDO on the classical Wald test (Wald, 1943), which is
uniformly most powerful in many settings (Ghosh, 1991;
Lehmann et al., 2005). The Wald test measures the agree-
ment of the data with the null hypothesis for θ, and it has
the following form for p = 1:

τWALD(D; θ0) :=
(θ̂MLE − θ0)

2

V(θ̂MLE)
, (3)

where θ̂MLE is the maximum-likelihood estimator of θ and
V̂(θ̂MLE) can be any consistent estimator of its variance.
However, in our setting, we do not have access to the likeli-
hood and we cannot resort to assumptions on the distribution
of τWALD(D; θ0), nor to asymptotic regimes, which makes
it difficult to directly compute the Wald test statistic.

3.2 Confidence Sets from Predictions and Posteriors

From Wald to WALDO WALDO reframes the Wald test
by replacing θ̂MLE and its variance with quantities that are
easily computable with prediction algorithms or posterior
estimators commonly used in LFI. We define the WALDO
test statistic for parameters of arbitrary dimensionality p as

τWALDO(D;θ0) = (E[θ|D]−θ0)
TV[θ|D]−1(E[θ|D]−θ0),

(4)
where E[θ|D] and V[θ|D] are, respectively, the conditional
mean and covariance matrix of θ givenD. The connection to
the Wald test follows from the asymptotic behavior of Bayes
estimators (e.g., Chao (1970); Ghosh and Ramamoorthi
(2003); Ghosh et al. (1982); Li et al. (2020)):

E[θ|D]− θ̂
MLE

= Op(n
−1/2) and

V[θ|D]− 1

n
H−1(θ̂

MLE
) = Op(n

−1),

where H−1(θ̂
MLE

) is the negative inverse Fisher informa-

tion matrix evaluated at θ̂
MLE

. The above result implies that
WALDO would enjoy the same asymptotic properties typical
of the Wald test, making it a pivotal test statistic. On the
other hand, this does not mean that Wald and WALDO will
give the same results for small n: indeed, in Section 3.3
and Appendix B.2, we demonstrate that WALDO can benefit

from a prior over θ that is consistent with the data to achieve
smaller confidence sets, whereas the Wald test statistic only
depends on the likelihood.

Likelihood-Free Frequentist Inference (LF2I) WALDO
expands on the LF2I framework formalized in Dalmasso
et al. (2021), which proposed a fast construction of Ney-
man confidence sets using quantile regression to bypass
large-sample approximations or expensive Monte-Carlo sim-
ulations. In its original formulation, the LF2I machinery
includes three modular procedures which, respectively, (i)
estimate a likelihood-based test statistic via odds ratios, (ii)
estimate critical values Cθ,α via quantile regression, and
(iii) check that the constructed confidence sets achieve the
desired coverage level for all θ ∈ Θ. Each module is based
on a independent simulated sample from a high-fidelity sim-
ulator Fθ. WALDO replaces (i) and instead uses posteriors
or predictions to compute τWALDO in (4). We break down the
construction of a confidence set (including diagnostics) in
the following steps, as outlined in Figure 1 and Algorithm 1:

(i) Estimate the test statistic via prediction algorithms
or neural posterior estimators. Use the simulated set
T = {(θ(j),D(j))}Bj=1, where θ can be drawn from any
prior distribution πθ, to estimate E[θ|D] and V[θ|D]. This
can be done by choosing between two methods: if using
a prediction algorithm, we can leverage the fact that they
approximate the conditional mean of the outcome variable
given the inputs D, when minimizing the squared error loss
(lines 4-6 in Algorithm 1). Conversely, if using modern
neural posterior estimators (such as normalizing flows (Pa-
pamakarios et al., 2021)), we can approximate E[θ|D] and
V[θ|D] via Monte Carlo sampling from the estimated poste-
rior distribution (lines 16-18 in Algorithm 1);

(ii) Estimate critical values via quantile regression. Esti-
mate Cθ,α := F−1

τ̂WALDO(1− α|θ) by learning the conditional
(1− α)-quantile of τ̂WALDO(D;θ) using quantile regression
over a simulated set T ′ = {(θ(j),D(j))}B′

j=1, where θ is
drawn uniformly (rθ in Figure 1) over Θ to allow calibra-
tion ∀θ ∈ Θ;

(i) + (ii) Neyman inversion. Once D is observed, evaluate
τ̂WALDO(D;θ0) and Ĉθ0;α over a fine grid of parameters
θ0 ∈ Θ, and retain all θ0 for which the corresponding test
does not reject the null:

R(D) = {θ0 ∈ Θ : τWALDO(D;θ0) ≤ Ĉθ0,α}.

As we show in Appendix A, step (ii) leads to valid level-α
hypothesis tests as long as the quantile regressor is well es-
timated, which then implies thatR(D) satisfies conditional
coverage (Eq. 1) at level 1− α, regardless of the true value
of θ and of the size n of the observed sample D.

(iii) Coverage diagnostics. To check that the constructed
confidence sets indeed achieve the desired level of con-
ditional coverage, we leverage the diagnostics procedure
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Algorithm 1 Confidence set for θ via WALDO

1: // Estimate building blocks of test statistic
2: Simulate T = {(θ(j),D(j))}Bj=1

3: if prediction algorithm then
4: Estimate E[θ|D] on T under squared error loss
5: Compute {z(j) = (θ(j) − E[θ|D(j)])2}Bj=1

6: Estimate V[θ|D] = E[z|D] under squared error loss
7: else if posterior estimator then
8: Estimate posterior distribution p(θ|D) on T
9: end if

10: // Estimate critical values
11: Simulate T ′ = {(θ(j),D(j))}B′

j=1

12: if prediction algorithm then
13: Predict {Ê[θ|D(j)], V̂[θ|D(j)]}B′

j=1

14: else if posterior estimator then
15: for each D that appears in T ′ do
16: Draw N samples from p̂(θ|D)
17: Ê[θ|D] ≈

∑
i θi

N

18: V̂[θ|D] ≈
∑

i(θi−Ê[θ|D])(θi−Ê[θ|D])T

N−1
19: end for
20: end if
21: Compute {τ̂WALDO(D(j);θ(j))}B′

j=1

22: Estimate critical values Cθ,α via quantile regression of
τ̂WALDO(D;θ) on θ

23: // Neyman inversion
24: if prediction algorithm then
25: Predict Ê[θ|D] and V̂[θ|D]
26: else if posterior estimator then
27: Draw N samples from p̂(θ|D)

28: Ê[θ|D] ≈
∑

i θi

N

29: V̂[θ|D] ≈
∑

i(θi−Ê[θ|D])(θi−Ê[θ|D])T

N−1
30: end if
31: Predict Ĉθ0,α ∀θ0 ∈ Θgrid

32: InitializeR(D)← ∅
33: for θ0 ∈ Θgrid do
34: if τ̂WALDO(D;θ0) ≤ Ĉθ0;α then
35: R(D)← R(D) ∪ {θ0}
36: end if
37: end for

38: return confidence setR(D)

introduced in Dalmasso et al. (2021). In detail: simulate a
set T ′′ = {(θ(j),D(j))}B′′

j=1 and construct a confidence re-
gion for each D(j) ∈ T ′′. Then model 1{θ(j) ∈ R(D(j))}
as a function of θ(j) adopting a suitable probabilistic classi-
fication method. By definition, this will estimate E[1{θ ∈
R(D}|θ] = P[θ ∈ R(D)|θ] across the whole parameter
space. Note that this module is completely independent
from (i) and (ii). As such, it can be used to to check the em-
pirical conditional coverage of any uncertainty estimate, as

illustrated in Section 3.4 for Neyman confidence sets where
critical values are estimated via Monte Carlo sampling, in
Section 4.1 for posterior credible regions, and in Section 4.2
for prediction sets from the output of a CNN.

3.3 Statistical Properties: Coverage and Power

We now show that the coverage guarantees of WALDO are
independent from the prior distribution, which can also be
chosen to increase power. We do so through univariate
Gaussian examples with analytically computable solutions.
Since p = 1, we use simple prediction algorithms to esti-
mate E[θ|D] and V[θ|D]. See Appendix C.1 for details.

PROPERTY I: WALDO guarantees conditional coverage
across Θ, regardless of the specified prior. Scientists
sometimes have domain-specific knowledge that can guide
inference through the elicitation of a prior distribution over
the parameters of interest. The goal is to introduce a bias
to help quantifying the uncertainty, but if the prior happens
to be at odds with the data, then this bias can be harmful
and cause posteriors to be overconfident and smaller than
they should be (Hermans et al., 2021). Ideally, we would
want the coverage guarantees of any estimated parameter
region to be preserved under this bias. In this example,
we assume θ ∼ N (0, 2), D|θ ∼ N (θ, 1). As Figure 2
shows, confidence sets for θ (left panel) constructed through
Neyman inversion of a series of Wald tests guarantee the
correct conditional coverage (right panel), since Wald is
only influenced by the likelihood. Conversely, prediction
sets (E[θ|D] ± 1.96

√
V[θ|D]) are influenced by the prior

through the bias induced in the point predictions, which in-
creases with the distance from the prior mean and results in
strong under-coverage. WALDO exploits the same inputs of
prediction sets (E[θ|D] and V[θ|D]), but corrects this prob-
lem by calibrating the critical values via quantile regression,
hence guaranteeing conditional coverage. Note that we only
use a single observation (n = 1) for each confidence set.

Figure 2: PROPERTY I: WALDO guarantees conditional cover-
age across Θ, regardless of the specified prior. Prior: θ ∼
N (0, 2). Likelihood: D|θ ∼ N (θ, 1). Left: median of up-
per/lower bounds of constructed parameter regions. Right: empir-
ical coverage computed numerically using 100,000 samples for
each θ over a fine grid in Θ (i.e., not using coverage diagnostics).
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Figure 3: PROPERTY II: WALDO exploits prior information
and achieves higher power. Power curves computed by recording
the number of times a wrong value of θ is correctly outside the
confidence set over 1,000 repetitions. Likelihood: D ∼ N (40, 1).
Left: Wald and WALDO are equivalent when θ ∼ U(35, 45) .
Right: WALDO has higher power when θ ∼ N (40, 1).

PROPERTY II: WALDO exploits prior information and
achieves higher statistical power. When the prior is cor-
rectly specified, we would like to leverage the induced
bias to increase the power of the inverted tests and pro-
duce tighter constraints on the parameters, while retaining
conditional coverage. Here we simulate data from a unique
“true” Gaussian likelihood D|θ ∼ N (θ = 40, 1), and in-
vestigate the effect that the informativeness of the prior has
on the power of the resulting tests. As Figure 3 shows,
WALDO and Wald coincide when the prior is uninformative
(θ ∼ U(35, 45); left panel), but the former has higher power
when the prior is instead correctly specified (θ ∼ N (40, 1);
right panel), thereby leading to smaller confidence sets.

3.4 Computational Properties

Scaling with high-dimensional parameters As men-
tioned in Section 3.2, WALDO exploits a simulated set
sampled uniformly1 over Θ to estimate critical values via
quantile regression and guarantee coverage across the whole
parameter space. While this might seem a daunting require-
ment, the only alternative to guarantee conditional coverage
is to resort to Monte Carlo approaches that sample many
times at each θ ∈ Θ. As Figure 4 shows, WALDO requires
several orders of magnitude less simulations to achieve the
correct calibration. This is true already when p = 1, and is
even more evident when p = 10.

Quality of models WALDO relies on two estimation pro-
cedures ((i) and (ii) below) to construct the confidence set
itself. The accuracy of the results relies on the estimation
quality of these models and on the number of simulations B
and B′ that are available. In addition, there is a diagnostics
procedure (iii) to estimate the conditional coverage of the
final confidence sets, as a separate check that Equation 1
indeed holds.

1Technically, we only need to sample from a distribution that
places mass on all Θ.

(i) Test statistic. The quality of prediction algorithms and
posterior estimators is positively correlated with the power
of the resulting tests. As the precision in the estimates
of E[θ|D] and V[θ|D] decreases, the variance of the test
statistics increases, which implies more conservative critical
values and larger confidence regions. A good prior distribu-
tion will clearly help in achieving more precise estimates in
regions of interest in the parameter space.

(ii) Critical values. As we prove in Appendix A, conditional
coverage is achieved as long as the quantile regressor is well
estimated. In practice, we observe that little hyper-parameter
optimization is needed and that the number of simulations
required to achieve well-calibrated critical values is usually
a small fraction of those needed for the test statistic.

(iii) Diagnostics. The quality of the probabilistic classifier
used to check the empirical coverage probability affects
only the reliability of the diagnostics. Note that this module
is completely independent of the others, and we can check
its quality by inspecting the cross-entropy loss, and the
standard errors and confidence bands on the estimates that
common statistical packages provide (e.g., MGCV in R).

4 RESULTS

We assess the performance of WALDO on two challeng-
ing experiments. In the first example (Section 4.1), we
show how to use a posterior distribution estimated via nor-
malizing flows to compute valid confidence regions, and
how prior information can improve precision. The second
example (Section 4.2) tackles a complex particle energy
reconstruction problem in high-energy physics: we leverage
predictions from a custom CNN to construct confidence
intervals with correct coverage and high power.

4.1 Confidence Sets from Neural Posteriors

This inference task was introduced in Sisson et al. (2007)
and has become a standard benchmark in the SBI literature

Figure 4: Quantile regression (QR) is orders of magnitude more
efficient than Monte Carlo (MC) in terms of the number of
simulations B′ required to achieve correct coverage. Each panel
shows the fraction of samples (out of 1,000 total) for which the
selected method to estimate critical values achieves approximately
correct coverage (P(θ ∈ R(D)|θ) ∈ [0.95± 0.03]). Prior: θ ∼
N (0, 0.1 · I). Likelihood: D|θ ∼ N (θ, 0.1 · I). In both cases, we
used normalizing flows to estimate the posterior.
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Figure 5: WALDO converts posterior distributions into confidence regions with correct conditional coverage and high power.
Left Panel - Top: Examples of 95% credible regions (blue) from posteriors estimated with normalizing flows and a Gaussian N (0, 2I)
prior (gray) for different values of the true unknown parameter θ∗ (red star). Right Panel - Top: Credible regions have conditional
coverage close to the nominal level only in a neighborhood of the prior, and severely undercover everywhere else. Left Panel - Bottom:
Corresponding 95% WALDO confidence sets (green), derived from the same posterior estimates used for the top row. Right Panel - Bottom:
Conditional coverage for WALDO confidence sets achieves the nominal 1-α level everywhere, where α = 0.05.

(Clarté et al., 2021; Toni et al., 2009; Simola et al., 2021;
Lueckmann et al., 2021). It consists of estimating the (com-
mon) mean of the components of a two-dimensional Gaus-
sian mixture, with one component having much broader
covariance: D|θ ∼ 1

2N (θ, I) + 1
2N (θ, 0.01 · I), where

θ ∈ R2 and n = 12. We estimate p(θ|D) using the imple-
mentation of Neural Posterior Estimators (NPE) of Durkan
et al. (2020) through the SBI software package (Tejero-
Cantero et al., 2020), and report results obtained with two
different priors: θ ∼ N (0, 2 · I) and θ ∼ U([−10, 10]2)
(the latter in Appendix B.2). We estimate the critical values
with a 2-layer neural network minimizing the quantile loss.
Simulated datasets used for training are of the following
sizes: B = 100,000, B′ = 30,000 when using a Gaussian
prior. Conditional mean and variance were approximated
with 50,000 Monte Carlo samples from the neural posterior.

The first four panels on the left of Figure 5 show exam-
ples of 95% credible regions (top) and WALDO confidence
sets (bottom) obtained from the same posterior distribution,
when the true parameter is far from the prior. If the data is
at odds with the prior, then the induced bias leads to cred-
ible regions that severely undercover across the parameter
space, as it is shown at the top of the rightmost panel, where
the coverage probability for credible regions reaches values
as low as 0-10%. WALDO can correct for this bias and
output larger confidence sets which account for the added
uncertainty, thereby leading to correct conditional coverage
everywhere (bottom of rightmost panel). This is the same

2WALDO works for an observed sample of any size, but we had
to use n = 1 because the SBI Python library we used to estimate
the posterior does not yet support larger sample sizes for NPE.

behaviour seen in the first example of Section 3.3, although
for a more complex setting and for a posterior estimator.

Conversely, when the prior is consistent with the data (Fig-
ure 5, right two panels of “Parameter Regions”), WALDO is
not overly conservative and leverages the additional infor-
mation to tighten the constraints on the parameters, closely
tracking the size of the posterior credible region. In Ap-
pendix B.2, we also show that, over many independent
observations, the average size of WALDO confidence sets is
indeed smaller when using an informative prior than when
using a Uniform over Θ. These results closely mimic those
seen in the second example of Section 3.3.

4.2 Confidence Sets for Muon Energies using CNN
Predictions

We now discuss the performance of WALDO on an appli-
cation of interest to fundamental research: estimating the
energy of muons at a future particle collider. Muons are
a heavier replica of electrons; they are produced in sub-
nuclear reactions involving electroweak interactions. Muons
are also excellent probes of new phenomena: in fact, their
detection and measurement has been key to several crucial
discoveries in the past decades, including the Higgs boson
(Augustin et al., 1974; Herb et al., 1977; CDF Collaboration,
1995; Aad et al., 2012; Chatrchyan et al., 2012). Tradition-
ally, the energy of a muon is determined from the curvature
of its trajectory in a magnetic field, but at energies above a
few TeV this methods breaks down as trajectories become in-
distinguishable from straight paths even within the strongest
practically achievable fields. Searching for viable alterna-
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Figure 6: WALDO guarantees the nominal coverage level, and yields smaller confidence intervals (more precise estimates of muon
energy) with the higher-granularity (“full”) calorimeter data. Left: Energy deposited by a θ ≈ 3.2 TeV muon entering a calorimeter
with 32× 32× 50 cells. Center: WALDO (blue, orange, red in the right two panels) guarantees nominal coverage (68.3%), while 1σ
prediction intervals (green) under- or over-cover in different regions of Θ. Right: Median lengths of constructed intervals: shorter intervals
imply higher precision in the estimates. Prediction sets are on average wider than the corresponding confidence sets, using the same data.

tives, it has been observed (Kieseler et al., 2022; Dorigo
et al., 2022) that both the pattern and the magnitude of small
radiative energy losses that muons withstand in traversing
dense and finely segmented calorimeters can be used to
infer the incident muon energy, leveraging the capacity of
modern deep learning architectures. Nonetheless, the above
work also clearly showed that predictions of θ suffered from
a strong bias, mainly due to the high nonlinearity of the
response at very high energies. Motivated by this problem,
we pose two questions: (i) Can we construct confidence sets
with correct coverage of the true energy of muons using the
information contained in the pattern and magnitude of ra-
diative deposits in a dense calorimeter? (ii) Is it possible to
extract additional information from finer segmentations of
the calorimeter to allow for tighter constraints (i.e., smaller
confidence sets with correct coverage) on muon energy es-
timates? Quantifying the latter would allow scientists to
optimize their detector designs, since manufacturing very
small calorimeter cells is expensive.

We have available 886,716 3D input “images” x and scalar
muon energies θ obtained through GEANT4 (Agostinelli
et al., 2003), a high-fidelity stochastic simulator. See Fig-
ure 6 (left panel) for an illustration of one simulated xi for a
particular θi. The data are available in Kieseler et al. (2021).
As the interest is on constraining muon energies as much as
possible while guaranteeing conditional coverage, we use
three versions of the same dataset with increasing dimen-
sionality: a 1D input equal to the sum over all calorimeter
cells with deposited energy E > 0.1 GeV, for each muon; 28
custom features extracted from the spatial and energy infor-
mation of the calorimeter cells (see Kieseler et al. (2022));
and the full calorimeter measurements (xi ∈ R51,200). For
the first two datasets, we estimate E[θ|D] and V[θ|D] via
Gradient Boosting (Chen and Guestrin, 2016). For the full
calorimeter data, we rely on the CNN developed by Kieseler
et al. (2022). We use Gradient Boosting for quantile regres-

sion (Pedregosa et al., 2011).

Answering (i) affirmatively, Figure 6 (center) shows that
confidence sets constructed with WALDO achieve exact
conditional coverage (68.3%) regardless of the dataset
used. The corresponding 1σ prediction intervals (E[θ|D]±√

V[θ|D]) using full calorimeter data, instead, exhibit over-
or under-coverage in different regions over Θ, which in
the latter case means that prediction sets contain the true
value with much lower probability than anticipated. As for
question (ii), we make two observations (see Figure 6; right
panel): First, using the raw higher-dimensional energy de-
posits with WALDO allows to reduce the uncertainty around
muon energies. Second, confidence sets constructed with
WALDO are even shorter than the corresponding prediction
intervals, while also guaranteeing conditional coverage.

5 DISCUSSION

We presented WALDO, a novel method to construct con-
fidence sets with correct finite-n conditional coverage by
leveraging prediction algorithms and posterior estimators
for inverse problems. WALDO relies on a regression-based
Neyman construction, which requires orders of magnitude
fewer simulations than traditional Monte Carlo approaches
to be well calibrated across the parameter space (see Sec-
tion 3.4). Nonetheless, our method still needs a simulator
that is both high-fidelity – to draw inferences that reflect
the true data-generating process – and fast – to simulate
sufficiently large training sets to accurately learn the key
quantities of WALDO: the test statistics, the critical values,
and the coverage diagnostics, as discussed in Section 3.4.
WALDO disentangles the coverage guarantees of the confi-
dence region from the choice of the prior distribution. To
increase power, one may be able to leverage domain-specific
knowledge (see Sections 3.3 and 4.1), or take advantage of
the internal structure of the simulator (Brehmer et al., 2020),
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with the guarantee that the confidence sets always contain
the true parameter with the desired proability. One could
also adaptively simulate more data in specific regions of
interest in the parameter space. Active learning strategies,
and a more formal treatment of the relation between power
and priors, are promising areas for future studies.

Domain sciences, especially the physical sciences, routinely
seek to constrain parameters of interest using both theoreti-
cal (or simulation) models and experimental data. WALDO
provides reliable constraints that can be used to deduce
trustworthy scientific conclusions when other uncertainty
quantification methods are either unavailable, unreliable or
inefficient.
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A THEORETICAL RESULTS

We assume that the quantile regression estimator described in Section 3 is consistent in the following sense:

Assumption 1 (Uniform consistency) Let F (·|θ) be the cumulative distribution function of the test statistic τ(D;θ0)

conditional on θ, where D ∼ Fθ. Let F̂B′(·|θ) be the estimated conditional distribution function, implied by a quantile
regression with a sample T ′ of B′ simulations D ∼ Fθ. Assume that the quantile regression estimator is such that

sup
τ∈R
|F̂B′(τ |θ0)− F (τ |θ0)|

P−−−−−→
B′−→∞

0.

Assumption 1 holds, for instance, for quantile regression forests (Meinshausen and Ridgeway, 2006). Next, we show that
step (ii) in Section 3.2 yields a valid hypothesis test as B′ →∞.

Theorem 1 Let CB′ ∈ R be the critical value of the test based on a strictly continuous statistic τ(D;θ0) chosen according
to step (ii) for a fixed α ∈ (0, 1). If the quantile estimator satisfies Assumption 1, then,

PD|θ0,CB′ (τ(D;θ0) ≥ CB′)
a.s.−−−−−→

B′−→∞
α,

where PD|θ0,CB′ denotes the probability integrated over D ∼ Fθ0
and conditional on the random variable CB′ .

If the convergence rate of the quantile regression estimator is known (Assumption 2), Theorem 2 provides a finite-B′

guarantee on how far the Type-I error of the test will be from the nominal level.

Assumption 2 (Convergence rate of the quantile regression estimator) Using the notation of Assumption 1, assume that
the quantile regression estimator is such that

sup
τ∈R
|F̂B′(τ |θ0)− F (τ |θ0)| = Op

((
1

B′

)r)
for some r > 0.

Theorem 2 With the notation and assumptions of Theorem 1, and if Assumption 2 also holds, then,

|PD|θ0,CB′ (τ(D;θ0) ≥ CB′)− α| = Op

((
1

B′

)r)
.

Proofs of these results can be found in Dalmasso et al. (2021).

B ADDITIONAL EXPERIMENTS

B.1 PROPERTY III: Estimating the Conditional Variance Matters

We complete the exposition of the statistical properties of WALDO (Section 3.3) by demonstrating the importance
of estimating the conditional variance in the test statistic τWALDO. Recall that in principle any test statistic defined
in an LFI setting could be used for our framework. One could then define a simpler “unstandardized” test statistic
τWALDO-NOVAR(D;θ0) = (E[θ|D] − θ0)

T (E[θ|D] − θ0) which does not require estimation of V[θ|D]. It turns out that
estimating V[θ|D] and using τWALDO is actually of crucial importance, as it leads to confidence regions of smaller or equal
expected size, especially in settings where the conditional variance varies significantly as a function of θ. Consider, for
example, the problem of estimating the shape of a Pareto distribution with fixed scale xmin = 1 and true unknown shape
θ∗ = 5, which yields a strongly right-skewed data distribution. Figure 7 shows that τWALDO has much higher power than
τWALDO-NOVAR for inferring θ. Dividing by the conditional variance effectively stabilizes the test statistic and makes its
distribution over D pivotal, i.e., independent of θ. This implies that the critical values will be relatively constant over θ (see
top right panel for WALDO), which yields tighter parameter regions due to the curvature of the test statistic.
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Figure 7: PROPERTY III: Estimating the conditional variance matters. Left: Power curves at 95% confidence level when the true
Pareto shape θ∗ = 5, implying a very skewed data distribution. Right: Test statistics and critical values as a function of θ. (n = 10).

B.2 Confidence Sets from Neural Posteriors: Two-Dimensional Gaussian Mixture

The results of Figure 5 in the main text showed that WALDO is able to leverage an estimated posterior to construct
conditionally valid confidence regions, even when the prior is at odds with the data. On the other side, when no prior
information is available, it is common to sample θ according to a uniform distribution over the parameter space. In this case,
we observe that confidence sets and posterior credible regions largely overlap. Nonetheless, if the latter happen to suffer
from approximation errors, as is common for neural posteriors in high dimensions, this could hinder the statistical reliability
of the estimated region. WALDO can correct even for this problem and guarantee conditional coverage, as we can see from
panel a) in Figure 8.

Figure 9 shows the output of the diagnostics procedure when using a uniform prior to train the posterior estimator (compare
with Figure 5, right column, in the main text, which used a Gaussian prior). We achieve correct conditional coverage for
WALDO but not for credible regions even though the prior is is uniform, due to estimation and approximation errors in the
posterior, which WALDO can correct using quantile regression to calibrate the test statistics.

B.3 Confidence Sets for Muon Energies using CNN Predictions

Figure 10 compares confidence sets and prediction sets for the full calorimeter data, showing clearly the bias in the prediction
sets and the correction applied by Waldo. These results explain the observed patterns in Figure 6 in the main text: prediction
sets are centered around the point prediction, which is downward biased at high energies, mainly due to the nonlinearity of
the response at high energies.

Figure 8: a) When the prior is uninformative, WALDO can still correct for possible approximation errors in the estimated posterior.
b)-c) When the prior is consistent with the data, WALDO tightens the confidence sets, improving the precision with respect to the
case using a Uniform prior. a)-b): Posterior credible regions and WALDO confidence sets using different priors. Right: Average area of
credible regions and WALDO confidence sets across 100 independent samples, reported as the percentage of points retained among those
in the evaluation grid.
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Figure 9: Coverage diagnostics for Gaussian mixture model example with uniform prior. We achieve correct conditional coverage
for WALDO (left figure) but not for credible regions (right figure) even though the prior is is uniform, due to estimation and approximation
errors, which WALDO can correct via recalibration.

C DETAILS ON MODELS, TRAINING, AND COMPUTATIONAL RESOURCES

C.1 Synthetic Examples for Statistical Properties

See Section 3.3 in the main text and Appendix B.1 for descriptions of the experiments. For PROPERTY I and PROPERTY II,
we used the implementation of local linear regression available in Seabold and Perktold (2010) to estimate conditional mean
and conditional variance within a prediction setting, with B = 20,000. For PROPERTY III, instead, we used a simple neural
network with one hidden layer and B = 50,000. In all cases, for quantile regression we used quantile Gradient Boosting
Pedregosa et al. (2011), with B′ = 20,000 for PROPERTY I and PROPERTY II, and B′ = 50,000 for PROPERTY III. All
models were trained on a MacBook Pro M1Pro (CPU only).

Figure 10: Confidence and prediction sets for the muon energy reconstruction experiment. Boxplots of the upper and lower bounds
of prediction sets (green) versus WALDO confidence sets (red) for full the calorimeter data, all divided in 19 bins over true energy. We
clearly see the bias occurring in the prediction sets (especially at high energies) and the correction applied by WALDO.



Luca Masserano, Tommaso Dorigo, Rafael Izbicki, Mikael Kuusela, Ann B. Lee

C.2 Synthetic Example for Computational Properties

See Section 3.4 in the main text for a description of the experiment. To compute the test statistic τWALDO, we approximated
conditional mean and conditional variance through a posterior distribution estimated via normalizing flows (Tejero-Cantero
et al., 2020), with B = 20,000 for p = 1 and B = 200,000 for p = 10. To construct the confidence sets, critical values
were then estimated both via quantile regression using quantile Gradient Boosting (Pedregosa et al., 2011) with varying
values of B′, and via Monte Carlo by simulating many times for each θ and retaining the (1− α) quantile of the computed
test statistics. The evaluation set was made of 1,000 samples over Θ = [−1, 1]p. To make the comparison fair, if quantile
regression used B′ = 50,000, then Monte Carlo had access to 50 simulations for each of the 1,000 samples in the evaluation
set. The estimated coverage probability for both methods was then estimated using the implementation of Generalized
Additive Models (GAMs) with thin plate splines available in the MGCV package of R, with B′′ = 30,000.

C.3 Confidence Sets from Neural Posteriors: Two-Dimensional Gaussian Mixture

See Section 4.1 in the main text and Appendix B.2 for descriptions of the experiments and details on the algorithms and
sample sizes used. Training was done on a MacBook Pro M1Pro (CPU only); it took approximately 15–20 minutes to train
the posterior estimator, and an additional ∼2 minutes for the quantile neural network to estimate the critical values. Note
that the latter step requires computing the conditional mean, the conditional variance and the Waldo statistic over all sample
points in T ′. The posterior was sampled multiple times for each x ∈ T ′ to approximate E(θ|x) and V(θ|x) via Monte
Carlo; this procedure took a total of ∼45 minutes (but could potentially be optimized through vectorizations in the future).

C.4 Confidence Sets for Muon Energies using CNN Predictions

See Section 4.2 and Appendix B.3 for descriptions of the experiment and details on the algorithms and sample sizes used.
We had access to 886,716 simulated muons in total; roughly 200,000 muons were used to estimate the critical values,
∼24,000 muons to construct the final confidence sets and diagnostics, and the rest was used to estimate the conditional
mean and variance via the custom 3D CNN from Kieseler et al. (2022). Training the latter CNN took approximately 20
hours for the conditional mean and another 20 hours for the conditional variance, using an NVIDIA V100 GPU on an Azure
cloud computing machine. Estimating the critical values via quantile gradient boosted trees took approximately 2 minutes.
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