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Abstract

A key challenge in the practical application of
Gaussian processes (GPs) is selecting a proper co-
variance function. The process convolutions con-
struction of GPs allows some additional flexibil-
ity, but still requires choosing a proper smoothing
kernel, which is non-trivial. Previous approaches
have built covariance functions by using GP priors
over the smoothing kernel, and by extension the
covariance, as a way to bypass the need to specify
it in advance. However, these models have been
limited in several ways: they are restricted to sin-
gle dimensional inputs, e.g. time; they only allow
modelling of single outputs and they do not scale
to large datasets since inference is not straightfor-
ward. In this paper, we introduce a nonparametric
process convolution formulation for GPs that al-
leviates these weaknesses. We achieve this using
a functional sampling approach based on Math-
eron’s rule to perform fast sampling using interdo-
main inducing variables. We test the performance
of our model on benchmarks for single output,
multi-output and large-scale GP regression, and
find that our approach can provide improvements
over standard GP models, particularly for larger
datasets.

1 INTRODUCTION

Gaussian processes (GPs) are a widely used method for
probabilistic machine learning, that have been applied suc-
cessfully in many areas (Shafieloo et al., 2012; Kong et al.,
2018; Richardson et al., 2018). A central problem when
modelling data with GPs is the choice of a covariance func-
tion. The covariance function controls the properties of the
functions that the GP places high probability over, therefore
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f2(x) =
R2

G2(x−z)u(z)dzf1(x) =
R2

G1(x−z)u(z)dz

G1,i(xi) ∼ GP
G1(x) =

∏2
i=1 G1,i(xi) G2(x) =

∏2
i=1 G2,i(xi)

G2,i(xi) ∼ GP
u(x) ∼ GP

Figure 1: Sampling for the proposed model, showing sep-
arate convolutional kernels constructed using GPs (top
left/right), being convolved with a shared latent GP (top
center), to produce two distinct outputs with nonparametric
covariances (bottom).

selection of an appropriate covariance is crucially impor-
tant to achieving success when modelling with GPs. When
working with a single dimensional input, most commonly
in the time series setting, practitioners can inspect the data
to determine patterns such as periodicity, long term trends
and so on, and construct an appropriate covariance by com-
bining simpler covariance functions that account for these
patterns. However this procedure becomes very difficult in
higher dimensions, where it is not easy to determine which
covariances should be used by simply inspecting the data.
Because of this, in high dimensions, practitioners typically
revert to using simple covariances, most commonly the ex-
ponentiated quadratic (EQ) or Matérn class of kernels. The
difficulty of covariance design in high dimensions means
that the ability of GPs to represent rich structures present in
the data via the covariance function is often not fully utilised.
In this work, we present a model that can be applied to prob-
lems with both multiple inputs, multiple outputs (or tasks),
and can infer the form of the covariance in a nonparametric
fashion.

†Equal contribution.
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In order to build such a model, we employ the framework
of process convolutions (PCs) (Higdon, 2002; Álvarez et al.,
2012), in which a base Gaussian process is convolved with
a smoothing kernel to generate another Gaussian process
with a modified covariance. The PC framework can be lever-
aged to infer covariances nonparametrically, by placing a
GP prior over the smoothing kernel. Tobar et al. (2015) in-
troduced the Gaussian process convolution model (GPCM),
which uses this mechanism to construct a GP with a non-
parametric covariance for data with a single input and output
dimension. Recently, Ross et al. (2021) extended the GPCM
to nonlinear process convolutions, and applied the model to
problems in systems identification. In this work, we extend
and generalise the GPCM to both multiple input and output
dimensions, and provide a scalable inference scheme for the
model.

Figure 1 illustrates the proposed generative model for the
case of two input dimensions and two outputs. A shared
latent function is sampled from a GP with a short length-
scale, which is then smoothed by two distinct convolutional
kernels which are generated by a product of GPs, separable
over the input dimension, to produce two correlated GP
outputs. These distinct convolutional kernels induce differ-
ent covariance properties in each output, whilst correlations
between the outputs across the domain are captured by the
shared latent input function. We refer to our method as the
nonparametric convolved Gaussian process (NP-CGP). It
can be applied with an arbitrary number of inputs, outputs
and latent functions.

Many approaches have been proposed to allow for inference
of expressive covariance functions. Besides the PC frame-
work, a fruitful avenue has been the design of covariances in
the spectral domain. Spectral mixture kernels (Wilson and
Adams, 2013; Wilson et al., 2014; Jang et al., 2017) model
the covariance as a mixture of Gaussians in frequency space,
and have been extended to multiple outputs (Parra and To-
bar, 2017), and nonstationary processes (Altamirano and
Tobar, 2022; Shen et al., 2019). Additionally, nonparametric
GP priors can also be placed on the spectral density (Ben-
ton et al., 2019). Expressive nonstationary covariances can
also be constructed by warping the input space with deep
neural networks (Wilson et al., 2016), by the application of
stochastic differential equations Hegde et al. (2019), or, as
in the case of deep GPs (Damianou and Lawrence, 2013;
Blomqvist et al., 2019; Salimbeni and Deisenroth, 2017;
McDonald and Alvarez, 2021), by warping the space with a
composition of GPs.

In this work we present the following three contributions:
1) A generalisation of the GPCM to the case of multi-
dimensional inputs and outputs with a scalable inference
scheme to allow for the use of large datasets. 2) An ex-
tension to the functional sampling method of Wilson et al.
(2020) to cases where the inducing points lie in a trans-
formed space relative to the samples. 3) A fast sampling

procedure for the model in high dimensions based on the
exact integration of the aforementioned approximate func-
tional samples.

2 BACKGROUND

This section briefly reviews the theory behind process con-
volutions, the GPCM and sampling with pathwise updates.

2.1 Process convolutions

The PC framework allows expressive covariances for GPs
to be constructed, and can be used to automatically learn the
form of covariances from data. In the PC framework (Barry
and Ver Hoef, 1996; Higdon, 2002; Álvarez et al., 2012), the
function which we wish to model is assumed to have been
generated by applying some linear convolution operator to a
latent function u represented by a GP, which outputs a new
GP (Rasmussen and Williams, 2005). The PC framework
can be used to construct multiple output GPs (MOGPs),
which allow for inference over vector functions f : RP 7→
RD, where P is the number of input dimensions and D
is the number of output dimensions. This is useful when
we have a set of outputs, represented by the elements of f ,
which we know are correlated in some way, but also exhibit
independent variation. We can construct MOGPs using PCs
by assuming each output, fd is generated by convolving an
independent convolutional kernel Gd with a shared latent
process u, so fd(x) =

∫
X Gd(x− τ )u(τ )dτ , where X is

the domain of integration. For many applications it is often
overly restrictive to assume that the shared variations can
be encapsulated by a single function, and so we instead
can use a set of functions u : RP 7→ RQ, with each being
transformed in a different way for each output. We can
express this as fd(x) =

∑Q
q=1

∫
X Gd,q(x − τ )uq(τ )dτ .

This is the most general form of the model and can be
written in the more succinct form,

f(x) =

∫

X
G(x− z)u(z)dz =⇒

kf (x,x
′) =

∫

X
G(x− τ )ku(τ , τ

′)G⊤(x′ − τ ′)dτdτ ′,

(1)

where G : RP 7→ RD×Q consists of square integrable
elements, kf : RP × RP 7→ RD×D is the matrix-valued
covariance for the output, and ku : RP × RP 7→ RQ×Q is
the matrix-valued covariance for the shared inputs, which
is diagonal due to the assumed independence of the func-
tions representing the elements of u. Eq. (1) produces
functions with stationary covariance; a nonstationary covari-
ance can be obtained by using a convolutional kernel that
varies over the input domain, but this will not be considered
in the present work. Various properties of interest can be
embedded in f via G, for example the properties of differ-
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ent physical systems, by using the Green’s function of a
differential operator Alvarez et al. (2009).

2.2 Gaussian process convolution models

The GPCM uses the form of Eq. (1) in the case P,D,Q = 1,
and places a GP prior over the convolutional kernel, which in
turn induces a prior over the covariance function of the out-
put. To ensure the output is finite, the authors introduce the
decaying square exponential (DSE) covariance, which con-
sists of a regular EQ covariance with an additional window,
which ensures that the samples decay to zero away from the
origin. For the input process, a white noise covariance is
used, with the process being summarised by a set of interdo-
main inducing points, where the interdomain transform is a
Gaussian convolution. The use of white noise for the input
process is motivated by the fact that the lengthscale of the
output process is bounded from below by the lengthscale of
the input process. The white noise input process informally
has a lengthscale of zero, therefore by using it, no restric-
tion is placed on the lengthscale of the output. Since the
white noise has zero lengthscale, it cannot be summarised
by a finite number of inducing points, which necessitates
the interdomain transform. For inference, the GPCM uses a
classical mean field variational inference scheme. Bruinsma
et al. (2022) introduce a number of improvements to both
the model structure and inference in the GPCM, particu-
larly extending the model to non-smooth time series using a
causal convolution operator, as well as forming a structured
variational inference scheme which drastically improves the
accuracy and speed of inference. A generalisation of the
GPCM to multiple inputs and outputs has previously been
discussed by Bruinsma (2016), who coined the name gen-
eralised GPCM (GGPCM) to refer to the model. However
inference in the model was never implemented, and as such
the model was not applied to any data. Ross et al. (2021)
propose the nonparametric Volterra kernels model (NVKM),
an extension of the GPCM to nonlinear convolution opera-
tors and multiple outputs, which employs doubly stochastic
variational inference (DSVI) for approximate inference, and
can be used for systems identification, but does not use the
interdomain transform for the input process.

2.3 Sampling GP functions

Wilson et al. (2020) present a method based on Matheron’s
rule (Journel and Huijbregts, 1976), which allows for the ef-
ficient sampling of approximate functions from the posterior
of a GP with a stationary covariance. Sampling functions
enables samples from the GP at N locations to be evaluated
in O(N) time, as opposed to the O(N3) of standard GP
sampling, a significant improvement for applications which
require the evaluation of samples at many locations. An
additional benefit of sampling functions from GPs is that
different operators, including integral and differential opera-
tors, can be applied to the samples themselves, allowing for

the generation of samples from (possibly) highly complex
non-Gaussian processes to be obtained efficiently. This idea
was used by Ross et al. (2021) in the context of the NVKM
to generate samples from the output of a nonlinear process
convolution. Wilson et al. (2020) present Matheron’s rule in
the context of samples from a GP posterior given inducing
variables (or data) u as

(f | u)(·)︸ ︷︷ ︸
posterior

d
= f(·)︸︷︷︸

prior

+ k(·,Z)K−1 (u− f)︸ ︷︷ ︸
update

, (2)

where K is the covariance matrix of the inducing variables
with inputs Z, and f = f(Z). This expression shows that a
functional sample from the posterior, conditioned on data
(or inducing outputs) u, can be decomposed into functional
samples from the prior, and an update term which accounts
for the residual between the prior sample and the data. The
key innovation introduced by Wilson et al. (2020) is that
we can represent f(·) using random Fourier features (RFFs)
(Rahimi and Recht, 2007). Since only the prior, which uses a
stationary covariance, uses RFFs, the pathologies associated
with the use of RFFs in the nonstationary posterior can be
avoided, while still retaining the computational benefits they
provide.

3 NONPARAMETRIC CONVOLUTIONS
FOR GAUSSIAN PROCESSES

In this section, we present a generalised PC model of the
form shown in Eq. (1) which jointly infers vector-valued
functions f : RP 7→ RD, and their corresponding nonpara-
metric convolutional kernel G. This induces a nonparamet-
ric matrix-valued covariance, kf , for f .

3.1 Single-dimensional inputs

Before presenting the multi-dimensional version of our
model, we start with the single-dimensional input case
(P = 1) in Eq. (1), given as f(x) =

∫
R G(x − z)u(z)dz,

where each entry in the vector u(x) follows a GP, i.e.
uq(x) ∼ GP[0, kuq (x, x

′)], q = 1, . . . , Q; and each en-
try in the matrix G(x) also follows a GP, i.e. Gd,q(x) ∼
GP[0, kGd,q

(x, x′)], q = 1, . . . , Q and d = 1, . . . , D.
Throughout this work, we use the DSE covariance, de-
scribed by Tobar et al. (2015), for the elements of G to
ensure that they are square integrable. The DSE covariance
is given by kDSE(x, x

′) = σ2 exp(−α(x2 + x′2)− γ(x−
x′)2). Around the origin the DSE behaves similarly to the
SE, however as the input grows the covariance, and there-
fore sample functions, decay to 0. This model can be seen
as a generalisation of the GPCM, which can only represent
functions from R 7→ R, to the multi-output case. Both
exact sampling and exact inference in the NP-CGP model
above are intractable as the integral cannot be computed
when Gd,q(·) and uq(·) are infinite dimensional stochastic
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processes. In order to draw samples from the model, we
must first summarise the GPs representing the convolutional
kernels and the input processes with finite collections of
inducing points. These inducing points can then be used
to sample approximate functions from the convolutional
kernels and input processes, which can be integrated ex-
actly to produce samples from the output. Fast and accurate
sampling allows a doubly stochastic variational inference
scheme to be constructed for the model, which is discussed
later in this section.

3.2 Multi-dimensional inputs

To extend the model above to the multi-dimensional in-
put case, we need to perform inference on the model
f(x) =

∫
RP G(x − z)u(z)dz. Following the same con-

struction used for the single-dimensional input case, we
place GP priors over the inputs of u(x), i.e. uq(x) ∼
GP[0, kuq

(x,x′)], q = 1, . . . , Q. In a similar way, one
could place GP priors over the individual elements of G, i.e.
Gd,q(x) ∼ GP[0, kGd,q

(x,x′)]. Given that our inference
approach is based on inducing points, this option of GP
priors for Gd,q(x) is computationally intractable in high in-
put dimensions. The number of inducing points required to
characterise Gd,q increases exponentially with the number
of input dimensions, as the inducing points become increas-
ingly sparsely distributed across the input space in higher
dimensions. This is a problem for the convolutional kernels
in particular because they operate over the whole domain,
so any uncertainty in their value translates across the entire
output function.

We can address this problem by modelling Gd,q as prod-
uct separable, such that Gd,q(x) =

∏P
p=1 G

(p)
d,q(xp), where

each G
(p)
d,q is an independent GP with its own set of induc-

ing points, and xp is the p-th dimension of the input. This
assumption allows us to characterise Gd,q using a set of
inducing points whose size scales linearly with the number
of input dimensions, which is a considerable improvement.
Furthermore, if we were to assume that each degree of free-
dom for G(p)

d,q(xp) were to be modelled as a GP, we would
need DQP independent GPs to model all the elements in G.
Therefore, to reduce the number of GPs used, we further as-
sume that each smoothing kernel Gd,q(x) can be expressed
as Gd,q(x) = aqGd(x), where aq ∈ R, reducing the num-
ber of GPs to model G to DP . The generative model is
given as

uq(x) ∼ GP[0, kuq (x,x
′)],

G
(p)
d (xp) ∼ GP[0, k

G
(p)
d

(xp, x
′
p)],

Gd,q(x) = aqGd(x), Gd(x) =

P∏

p=1

G
(p)
d (xp),

f(x) =

∫

RP

G(x− z)u(z)dz,

(3)
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Figure 2: Samples of output covariance, shaded by input
process lengthscale.

with q = 1, . . . , Q, p = 1, . . . , P and d = 1, . . . , D. We
refer to the model in Eq. (3) as the nonparametric convolved
Gaussian process (NP-CGP). Notice that Gd,q(x) is not
a GP, though the output process conditioned on Gd,q(x)
will still be a GP as the convolution is a linear operator
on the input process. The separable restriction on Gd,q(x)
corresponds to the restriction that the covariance function
is a product of covariances for each input, which is true for
most popular multi-dimensional covariances, such as the
automatic relevance determination (ARD) kernel. Whilst
specifying a product separable convolutional kernel results
in a computationally feasible form of the model, we also
present a more efficient variant, which we refer to as the
Fast NP-CGP (FNP-CGP). In this case, rather than using
separate convolutional kernels G

(p)
d per input and output

dimension (resulting in a total of DP kernels), we share a
single convolutional kernel across d = 1, ..., D, with each
being convolved with a different linear combination of input
functions, i.e. Gd,q(x) = ad,q

∏P
p=1 G

(p)(xp).

3.3 Interdomain input processes

When considering this model, it may seem as though we are
free to choose any covariance we please for the input pro-
cess, and place inducing points in the same space. Indeed,
Ross et al. (2021) take this approach for a model with a
similar structure. However, for the case of high dimensional
inputs, this approach is no longer suitable. As mentioned
previously, in high dimensions it is not computationally fea-
sible to use a number of inducing points that will densely
cover the space, and as such the lengthscale of the process
the inducing points are placed upon must become large.
In PC models that use a smoothing transform, such as the
GPCM, the lengthscale of the output is, in a sense, bounded
from below by the lengthscale of the input process, as the
smoothing transform can never increase its lengthscale. This
presents an issue for the NP-CGP, because the necessity of
a long lengthscale input process in high dimensions would
make it difficult to learn expressive covariances. Figure 2
shows a covariance sample from the output smoothly inter-
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polated between a variety of input lengthscales, with all else
remaining the same. We can see that as the input length-
scale increases, the complex structures in the output process
covariance disappear, and the covariance tends to that of the
input. One way to address this problem is to use the frame-
work of interdomain inducing points (Lázaro-Gredilla and
Figueiras-Vidal, 2009; Álvarez et al., 2010), using a short
lengthscale for the input process to allow the covariances
of the output to remain expressive, and placing inducing
points within a smoothed domain. This allows us to retain
the ability to summarise the variation of the process over
long lengthscales, as is necessary in high dimensions.

3.4 Sampling from the outputs

Inference in the NP-CGP is predicated upon the ability to
generate samples from the model outputs efficiently. To
achieve this, we utilise the method of Wilson et al. (2020)
to produce function samples from the input process, u(s)(x)
and convolutional kernel process G(s)(x), which we then
analytically integrate through the convolution integral, to
obtain the output as f (s)(x) =

∫
RP G(s)(x− z)u(s)(z)dz.

Although the computation is somewhat involved, closed
form solutions to this integral can be obtained. Further
details regarding this computation are available in the sup-
plemental material.

3.5 Sampling interdomain functions

As discussed above, it is necessary to use the framework of
interdomain inducing points for the functions uq, to main-
tain the ability to represent expressive covariances in high
dimensions. Sampling and inference in our model also re-
quires access to functional samples for the functions uq,
and as such we must combine the two methods. We rep-
resent the elements of our input process using an EQ co-
variance with a short lengthscale, with the interdomain pro-
cess ũ being generated by a smoothing transformation with
a Gaussian window, ũq(x) =

∫
RP gq(z,x)uq(z)dz, with

gq(z,x) = aqe
−∑

p αq,p(xp−zp)
2

, where αq,p is related to
the lengthscale of the transformation. We can consider
the process ũ as a version of the process u with the high
frequencies removed. Because the interdomain process is
smoothed, inducing points can be used to summarise it,
since the process now has correlations over the domain.

Matheron’s rule, which the method of Wilson et al. (2020)
relies upon, applies for collections of jointly distributed
Gaussian variables, and as such, can be readily adapted to
the interdomain case, because the processes uq and ũq are
jointly Gaussian. The expression for a functional sample

from uq in the interdomain case now becomes

u(s)
q (·) =

B∑

i=1

wiϕi(·)

+ kuq,ũq (·, zũq )K−1
ũq,ũq

(
vũq − Φ̃w

)
,

(4)

where ϕi is one of B RFF basis functions with ran-
dom weights wi ∼ N (0, 1), kuq,ũq

represents the cross-
covariance between domains, zũq ∈ RMu×P is the set
of Mu inducing inputs with corresponding outputs vũq ∈
RMu×1, Kũq,ũq is the covariance of the inducing points
in the transformed domain, and Φ̃ ∈ RMu×B is a matrix
with each of the basis functions evaluated in the transformed
domain for each inducing input. These transformed basis
functions can be computed by applying the interdomain
convolution, such that ϕ̃i(x) =

∫
RP gq(z,x)ϕi(z)dz. For

the Gaussian transform discussed above, we can obtain ex-
pressions for transformed basis functions in closed form,
with details of the computation included in the supplemental
material, alongside further information regarding the RFF
basis, the derivation of (4) and the computation of the vari-
ous interdomain and cross-covariances. To the best of our
knowledge, this method for fast sampling of interdomain
GPs is yet to appear in the literature.

3.6 Doubly stochastic variational inference

Following the approach of Salimbeni and Deisenroth (2017),
we employ DSVI to perform approximate inference in the
the NP-CGP and FNP-CGP. Firstly, we must introduce
the inducing points for the convolutional kernel processes,
vGd,q ∈ RMG×1, with entries v

Gd,q

i = Gd,q(z
Gd,q

i ), i =
1, . . . ,MG, where MG is the number of inducing points
used. The associated inducing inputs are denoted as
z
Gd,q

i , i = 1, . . . ,MG, which we collect into zGd,q ∈
RMG×1. Additionally, to simplify the notation, we col-
lect all of the inducing points for the convolutional ker-
nel and input processes into VG = {vGd,q}D,Q

d,q=1 and
Vũ = {vũq}Qq=1 respectively. If we consider some input
data X ∈ RN×P with corresponding outputs Y ∈ RN×D,
we can express the joint distribution of the NP-CGP as,

p(Y,G,VG,u,Vũ) =

N∏

i=1

p(yi|Fi)

× p(G|VG)p(VG)p(u|Vũ)p(Vũ),

(5)

where the likelihood is given by p(yi|Fi) = N (yi;Fi, σ
2
Y )

and Fi = f(Xi) represents the output of the model for the
i-th input. As all of the convolutional kernel and input GPs
are independent, we have p(G|VG) =

∏D
d=1 p(Gd|vGd)

where p(Gd|vGd) is the GP posterior distribution given the
inducing points, and likewise p(u|Vũ) =

∏Q
q=1 p(uq|vũq ),

where again p(uq|vũq ) are GP posteriors. p(VG) and
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Figure 3: Inferred covariance for the toy experiment for each output, showing true target function over the training region
(left plot), true data generating covariance (central plot) and inferred covariances (right plot). For the predictions, we show
the mean function, with the uncertainty here being small.

p(Vũ) represent the priors over the inducing points. Fol-
lowing the approach of Tobar et al. (2015), we employ a
mean-field variational posterior, which takes the form,

q(G,VG,u,Vũ) = p(G|VG)q(VG)p(u|Vũ)q(Vũ),
(6)

where q(VG) =
∏D

d=1 N (vGd ;µGd ,ΣGd) and q(Vũ) =∏Q
q=1 N (vũq ;µũq ,Σũq ) are variational distributions,

whose means and covariance matrices are variational pa-
rameters. We use samples from both of these variational
distributions in the process of analytically computing the
functional samples from our model. For ease of exposition,
we have omitted the factorisation of the posterior over the
input dimensionality. Using s = 1, ..., S samples from the
model, denoted by F

(s)
i = f (s)(Xi), and representing the

KL divergence as KL[·∥·], we can approximate the varia-
tional lower bound as,

L =
1

S

S∑

s=1

log p(yi|F(s)
i )

− KL[q(Vũ)∥p(Vũ)]− KL[q(VG)∥p(VG)].

(7)

A discussion of the complexities and practical run times of
the models is given in the supplemental material, along with
an extended derivation of the bound above.

4 RELATED WORK

Ross et al. (2021) propose the nonparametric Volterra ker-
nels model (NVKM), an extension of the GPCM to nonlin-
ear systems and multiple outputs, which employs DSVI for
approximate inference. The NP-CGP can be seen as exten-
sion of this model to multiple input dimensions, however
unlike this work and that of Tobar et al. (2015), the authors
do not use interdomain inducing points for the u process.
Additionally, unlike Tobar et al. (2015), the authors use an
EQ covariance for the u process, rather than a Dirac delta
covariance. The NVKM does exploit the same efficient
sampling scheme as our model, based on pathwise updates,
as discussed in Section 2.3.

Spectral mixture kernels are an alternative approach to auto-
matic learning of covariance functions from data, which in-

volves modelling the power spectral density (PSD) of a ker-
nel with a Gaussian mixture and taking the inverse Fourier
transform of the PSD to obtain the covariance (Wilson and
Adams, 2013). Building on this work, Parra and Tobar
(2017) present the multi-output spectral mixture (MOSM),
which involves using a multivariate extension to Bochner’s
theorem in order to extend this approach to MOGPs. A
later work by Altamirano and Tobar (2022) further extends
the MOSM to the case of nonstationary data using harmo-
nizable kernels which automatically identify nonstationary
behaviour. Benton et al. (2019) present another means of
nonparametric learning of covariances which involves repre-
senting the log of the PSD with a GP and applying Bochner’s
theorem to yield a covariance function. This approach al-
lows for exact GP inference after the covariance has been
approximated, however as a result the model is not as scal-
able as the NP-CGP.

5 EXPERIMENTS

In this section, we provide a set of experiments that illustrate
the performance of our model, and compare the model to
relevant prior work. The numerical results used to generate
the figures in this section are provided in the supplemental
material, alongside further details regarding experimental
setups and the data used. Our implementation of the NP-
CGP is publicly available at https://github.com/
magnusross/npcgp.

5.1 Toy experiment

Firstly, we present a toy experiment that shows the ability
of our model to learn known covariances in multiple di-
mensions. We use a two dimensional input x = [x1, x2]

⊤

and generate the ground truth outputs f1(x) and f2(x)
by sampling from two different linear combinations of
uEQ ∼ GP(0, kEQ) and uP ∼ GP(0, kP ), which are GP
priors with an EQ and weakly periodic kernel respectively.
Figure 3 shows the true and predicted covariance, as well
as the true target functions. The training data is uniformly
sampled from the region shown in the plot, with a small
amount of noise (σ2 = 0.01) being added. From the results
shown in Figure 3, we see that the form of the predicted

https://github.com/magnusross/npcgp
https://github.com/magnusross/npcgp
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(a) (b)

Figure 4: (a) shows the predictive mean and variance of
the NP-CGP evaluated on the UK apartment price dataset,
whilst (b) is a visualisation of the covariances obtained for
each spatial dimension.

covariances from the NP-CGP agree qualitatively with the
true covariances, although they do not match exactly. These
results illustrate the ability of the model to extract the key
features of the covariances from a relatively small region
of training data. The fact that the model is confident about
the covariances when they do not match exactly can be
attributed to the mean field variational approximation, dis-
cussed in Section 6.

5.2 Regression on a spatial domain

We also include a second illustrative experiment which dis-
plays the ability of our model to capture inhomogenous
structure on a spatial domain. Specifically, we model the
variation of apartment prices across the United Kingdom,
using a dataset consisting of 149,659 observations. The
results of this experiment are shown in Figure 4, which in-
cludes a visualisation of the predictive mean and variance
obtained, alongside the covariance associated with each spa-
tial dimension. The covariance deviates considerably from
an EQ-like form in both dimensions, but particularly so for
latitude.

5.3 UCI regression

We evaluate our model on four multi-input, single output
UCI regression benchmark datasets (Dua and Graff, 2017).
We specifically chose datasets which have been shown to
benefit from additional model complexity in previous work
(Salimbeni and Deisenroth, 2017) due to either their size,
complex structure or a combination of the these factors. The
results are presented in Figure 5, where we compare our
model with 100 (NP-CGP) and 300 (NP-CGP-300) inducing
points respectively, to stochastic variational GPs with ARD
EQ kernels which also use 100 (SGP) and 300 (SGP-300)
inducing points. Additionally, we compare to a SGP with
100 inducing points and the Matérn 3/2 ARD kernel (SGP-
M32). The results show that the NP-CGP performs similarly
to the SGP for the energy and kin8nm datasets when compar-

ing to models with 100 inducing points, and slightly worse
when the number of inducing points is raised to 300. All
models provide similar results for power, and for protein the
NP-CGP with 300 inducing points performs significantly
better than the other models. We can see that the NP-CGP
performs better, relatively, for datasets with more examples,
an observation that is additionally supported by the results
in Section 5.5, and which will be discussed in further de-
tail in Section 6. Overall, these results show that although
the NP-CGP does not always provide the best performance
for all datasets, it can provide significant improvements for
specific problems.

In order to test the scalability of our approach with respect
to the number of inducing points, we also evaluated the NP-
CGP with 1000 inducing points on the largest UCI dataset,
protein. The resulting RMSE was 3.84 (0.01), whilst the
MNLL was 2.79 (0.01). This is roughly comparable to the
results obtained using an SGP with 1000 inducing points,
an RMSE of 3.82 (0.02) and MNLL of 2.75 (0.004).

5.4 Regression with multiple inputs and outputs

Additionally, to demonstrate the utility of our approach
for general regression with multiple inputs and outputs we
fit the model on three datasets of that type: energy and
naval, which are medium size datasets with two outputs,
and polymer, a small dataset with four outputs. In Figure
6, we present results for the full (NP-CGP) and fast (FNP-
CGP) variants of our model, alongside a stochastic varia-
tional MOGP, which uses the linear model of coregionaliza-
tion (SLMC) (Álvarez et al., 2012) and an exact convolved
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Figure 5: UCI regression results, showing mean and stan-
dard error over 20 train/test splits of RMSE and MNLL for
our models (▲ and ▲) and of the baselines (• and •). Lower
(i.e. further to the left) is better. Plot titles additionally show
(N,P ) for each dataset.
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Figure 6: Results over 20 train/test splits for the experiments
with multiple inputs and outputs. Plot titles additionally
show (N,P,D) for each dataset.

MOGP (CMOGP)1(Álvarez and Lawrence, 2011), which
is comparable to our model, but with parametric convolu-
tions instead. We find that our NP-CGP either matches or
exceeds the performance of the other models tested for the
energy and polymer datasets. The SLMC exhibits improved
performance for naval, however this dataset is known to be
easy for GPs, and even linear models, to fit well (Salimbeni
and Deisenroth, 2017). The FNP-CGP exhibits similar per-
formance to the full model for energy and polymer, whilst
for the energy dataset performance is worse. The variance
of the results is higher for the FNP-CGP, likely because
the constraints on the covariances make finding an optimal
solution during optimisation more difficult. These results
illustrate that the NP-CGP model can provide benefits for
regression problems with multiple outputs, when compared
to standard MOGP models.

5.5 Large-scale regression

To show the scalability of our model to regression problems
with hundreds of thousands of observations, we evaluate
the NP-CGP on two large-scale single-output regression
benchmark datasets, airline and houseelectric. airline is a
commonly used benchmark for GPs, where each observa-
tion has dimensionality P = 8. Specifically, we use the first
700k observations for training and the next 100k for testing,
with a mini-batch size of 10k. For houseelectric, there are
approximately 2.1 millions observations, each with dimen-
sionality P = 11. We evaluate on a randomly selected 10%
subset of the dataset and train on the remaining observations,
with a mini-batch size of 5k.

The results displayed in Table 1 show that the NP-CGP with

1No results available for CMOGP on naval as dataset is too
large for inference in a reasonable amount of time.

RMSE (↓) MNLL (↓)

airline house airline house

SGP 26.2 0.052 4.68 -1.53
SGP-500 25.9 0.050 4.67 -1.57

SGP-1000 25.0 0.049 4.64 -1.58
DGP2 24.9 0.044 4.63 -1.71

NP-CGP 24.6 0.048 4.62 -1.59

Table 1: Results for the large-scale regression experiments,
airline and houseelectric (house).

100 inducing points outperforms conventional variational
GPs with 100, 500 and 1000 inducing points (SGP, SGP-500
and SGP-1000) across both datasets and metrics. Addition-
ally, we see that on the airline experiment, the NP-CGP
also achieves superior performance to the two layer deep
GP of Salimbeni and Deisenroth (2017) (DGP2). The latter
is a particularly encouraging result, as it suggests that in
some settings, the performance gap between shallow and
hierarchical models may be bridged by utilising our non-
parametric approach to learning covariances, although it
should be noted that adding additional layers to the DGP
can increase performance further, beyond that of our model.

Figure 7 shows the nonparametric covariances learned by
the NP-CGP for each feature in the airline dataset; in our
model, we take the product over all of these in order to
obtain the full covariance. We can see here that for some
features such as PlaneAge, AirTime and Distance, the form
of the covariance is very similar to that of the EQ. However,
in the covariances for the other features, we see that the NP-
CGP has been able to learn a much richer representation of
the data, which likely explains the considerable performance
gap between the NP-CGP and SGP models on this problem.

6 DISCUSSION

The results of our experiments show that the NP-CGP can
provide significant improvements over standard approaches,
most notably for large scale regression, however the model
does not outperform all of the competing approaches we
consider on all problems. The proposed approach seems to
exhibit worse performance on the smaller scale problems,
and those which have simple structure (i.e. they are well de-
scribed by linear models). We believe this is due to the mean
field variational approximation that is used for the posterior
distribution over the covariances. In the mean field scheme,
we approximate the posterior over the convolutional ker-
nel and input processes as independent, which presents a
problem, since many combinations of input and kernel can
lead to the same output. This case cannot be properly repre-
sented under the mean field assumption. The result of this
is that the NP-CGP can over-fit for some problems, learn-
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Figure 7: Visualisation of the covariances learned by the
NP-CGP for the airline dataset. The solid line is the mean
computed using 50 samples from the model, and the shaded
confidence interval denotes ±2σ.

ing complex covariances with high confidence, when there
is insufficient evidence for such covariances in the data,
leading to poor performance on the test set. This does not
appear to be a problem for larger datasets, where the model
is able to learn covariances much more robustly, leading
to improved performance. Bruinsma et al. (2022) recently
developed a structured variational scheme for the GPCM, in
which the posterior over the input process and convolutional
kernel is expressed jointly, allowing for significantly im-
proved quantification of uncertainty for the covariance. The
implementation of this improved scheme for the NP-CGP
would likely address the over-fitting problem, but is highly
non-trivial, therefore we plan to investigate this in future
work.

An additional possible extension to this work is to incorpo-
rate our approach into a deep GP. In deep GPs, the covari-
ances of the internal layers are often set to be EQ, with little
motivation or reasoning for this choice, since it is difficult
to interpret the effect that the prior on the internal layers
has on the output. Since the NP-CGP uses a similar DSVI
scheme to Salimbeni and Deisenroth (2017) it should be
possible to stack layers of NP-CGPs to form a deep model,
in which the covariances of the internal layers are inferred
from the data.

7 CONCLUSION

In this work we have presented a nonparametric process
convolutions model that is suitable for regression tasks with
multiple outputs and inputs, along with efficient sampling
and inference schemes based on the adaptation of fast func-
tional sampling methods to interdomain GPs. We have
shown that allowing the form of the covariance to be directly
inferred from the data can lead to increased performance
compared to standard GP models across a number of dif-
ferent datasets, in particular for large-scale regression tasks.
As we have discussed, the mean field inference scheme we
employ has some limitations, which we plan to address in
future work.
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A ADDITIONAL DERIVATIONS

A.1 Pathwise sampling derivations

To sample from the NP-CGP, we first must sample from the inducing point variational distributions, VG ∼ q(VG) and
Vũ ∼ q(Vũ), then use the pathwise sampling method introduced by Wilson et al. (2020) to sample input functions and
convolutional kernel functions. We then map these analytically through f (s)(x) =

∫
RP G(s)(x− z)u(s)(z)dz in a similar

fashion to Ross et al. (2021), however in our case, as we have a multi-dimensional input, we split the multi-dimensional
integrals involved into products of one dimensional integrals, which yields a closed form expression for a sample function
from the model,

(
f (s)|VG,Vũ

)
(x) =

Nb∑

k=1

wu
k

(
eiβ

u
k

2

P∏

p=1

( Nb∑

i=1

w
Gp

i I1A

(
xp;αp, θ

Gp

i , β
Gp

i , θuk,p

)

+

M∑

j=1

q
Gp

j I1B

(
xp;αp, z

Gp

j , ρGp , θuk,p

))

+
e−iβu

k

2

P∏

p=1

( Nb∑

i=1

w
Gp

i I1A

(
xp;αp, θ

Gp

i , β
Gp

i ,−θuk,p

)

+

M∑

j=1

q
Gp

j I1B

(
xp;αp, z

Gp

j , ρGp ,−θuk,p

)))

+

M∑

l=1

qul

P∏

p=1

(
Nb∑

i=1

w
Gp

i I2A

(
xp;αp, θ

Gp

i , β
Gp

i , ρup , z
u
l,p

)

+

M∑

j=1

q
Gp

j I2B

(
xp;αp, ρ

Gp , z
Gp

j , ρup , z
u
l,p

))
,

(8)

where,
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A.2 Interdomain sampling derivations

In the main paper, we use the closed form expression for the Gaussian transformed basis functions in order to sample from
the interdomain input process in our model. For an input observation x ∈ RP , and a given latent process ũq(x) (we omit the
subscript for ease of exposition below), this expression takes the form,

ũ(x) =

Nb∑
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(13)

where w, β and θ define our random Fourier feature basis. w consists of entries wj ∼ N (0, 1), β consists of entries
βj ∼ U(0, 2π) and θ consists of entries θj ∼ FT(k), where FT is the Fourier transform and k represents the covariance of
the untransformed process. This transform allows us to compute the elements of Φ̃ in Eq. 5 of the main paper, which in turn
allows us to sample from our input process. Eq. 5 itself follows from a reformulation of Eq. 13 in Wilson et al. (2020),

(u(s)
q | vuq )(·) =

Nb∑

i=1

wiϕi(·) + k (·, zuq )K−1
uq,uq

(vuq −Φw). (14)

In this work, as we are using an interdomain input process, we must ensure that the update term in this expression is
computed in the transformed domain. This is achieved by replacing the cross-covariance k (·, zuq ) with kuq,ũq

(
·, zũq

)
and

the covariance matrix K−1
uq,uq

with its interdomain equivalent K−1
ũq,ũq

. We also replace the inducing points vuq with the

interdomain inducing points vũq , and the basis functions Φ with their transformed counterpart Φ̃. Applying these changes
yields Eq. 5, as stated in the main paper. The covariance used to compute the elements of Kũq,ũq

can be expressed as,
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whilst the aforementioned cross-covariance can be expressed as,

kuq,ũq
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A.3 Variational lower bound derivation

In this section, we present the full derivation of the variational lower bound for the NP-CGP. Denoting our input data as
X ∈ RN×P , and the corresponding outputs as Y ∈ RN×D, we can express the joint distribution of the NP-CGP as,

p(Y,G,VG,u,Vũ) =

N∏

i=1

p(yi|fi)p(G|VG)p(VG)p(u|Vũ)p(Vũ), (17)

where the likelihood is given by p(yi|fi) = N (yi; fi, σ
2
Y ). As all of the convolutional kernel and input GPs are independent,

we have p(G|VG) =
∏Dℓ

d=1 p(Gd|vGd), where p(Gd|vGd) is the GP posterior distribution given the inducing points, and
likewise p(u|Vũ) =

∏Qℓ

q=1 p(uq|vũq ), where again p(uq|vũq ) are GP posteriors. p(VG) and p(Vũ) represent the priors
over the inducing points. Our variational posterior takes the form,

q(G,VG,u,Vũ) = p(G|VG)q(VG)p(u|Vũ)q(Vũ), (18)

where q(VG) =
∏D

d=1 N (vGd ;µGd ,ΣGd) and q(Vũ) =
∏Q

q=1 N (vũq ;µũq ,Σũq ) are variational distributions, whose
means and covariance matrices are variational parameters. We can write down the variational lower bound as,

L = Eq(G,VG,u,Vũ)

[
p(Y,G,VG,u,Vũ)

q(G,VG,u,Vũ)

]
(19)

=

∫
q(G,VG,u,Vũ) log

[
p(Y,G,VG,u,Vũ)

q(G,VG,u,Vũ)

]
dS, (20)
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where dS represents the integral over all of the inducing points, convolutional kernel and input processes. Using Eq. 17 and
Eq. 18, we can derive a form of the evidence lower bound (ELBO) which we can use to perform approximate inference as
follows:

L =

∫ ∏

ℓ=1

p(G|VG)q(VG)p(u|Vũ)q(Vũ)

× log

[∏N
i=1 p(yi|fi)p(G|VG)p(VG)p(u|Vũ)p(Vũ)∏

ℓ=1 p(G|VG)q(VG)p(u|Vũ)q(Vũ)

]
dS

(21)

=

∫
p(G|VG)q(VG)p(u|Vũ)q(Vũ)

× log

[∏N
i=1 p(yi|fi)p(VG)p(Vũ)∏

ℓ=1 q(V
G)q(Vũ)

]
dS

(22)

=

∫
p(G|VG)q(VG)p(u|Vũ)q(Vũ) log

[
N∏

i=1

p(yi|fi)
]
dS

− KL[q(Vũ)∥p(Vũ)] + KL[q(VG)∥p(VG)]

(23)

=

N∑

i=1

Eq({G,VG,u,Vũ) [log p(yi|fi)]

− KL[q(Vũ)∥p(Vũ)] + KL[q(VG)∥p(VG)]

(24)

As the KL divergences present are between sets of independent multivariate Gaussian distributions, we
have KL[q(Vũ)∥p(Vũ)] =

∑Q
q=1 KL[N (vũq ;µũq ,Σũq )∥N (vũq ; 0,Kũq )] and KL[q(VG)∥p(VG)] =∑D

d=1 KL[N (vGd ;µGd ,ΣGd)∥N (vGd ; 0,KGd)], which have well known tractable form. Conversely, we approx-
imate the intractable expectation from the first line of Eq. (24) stochastically using S Monte Carlo samples,

Eq({G,VG,u,Vũ) [log p(yi|fi)] ≈
1

S

S∑

s=1

log p(yi|f (s)i ). (25)

where f
(s)
i denotes a sample from the model.

B MODEL COMPLEXITIES AND RUNTIMES

Table 2 shows complexities for the computation of the bound/sampling for the regular version of our model and the fast
approximation, for the cases of single and multiple outputs. We present these alongside the complexities associated with
comparable prior work. Note that the complexities do not depend on the size of the data because we employ mini-batching.
Recall that Mu is the number of input process inducing points, MG the number of convolutional kernel process inducing
points, M is the number of regular GP inducing points, P denotes the input dimension, D denotes the output dimension,
and Q denotes the number of latent functions.

Model Type

Regular Fast Prior work

Single output O(M3
u + PM3

G) O(M3
u + PM3

G) O(M3) (SGP)
Multi output O(QM3

u + PDM3
G) O(QM3

u + PM3
G) O(DM3)(SLMC)

Table 2: Computational complexities for the standard and fast versions of the model, and the equivalent prior work.

In practice this corresponds to the run-time of our model being around 15× longer than a standard SGP model. Although
this seems drastically slower, this is not a fundamental limitation of the model, and is due to the somewhat complex
implementation of our models. We believe the code could likely be optimised in such a way that the model could be made



Nonparametric Gaussian Process Covariances via Multidimensional Convolutions

RMSE

N P NP-CGP NP-CGP-300 SGP SGP-300 SGP-M32

energy 768 8 0.52 (0.03) 0.81 (0.04) 0.46 (0.01) 0.46 (0.01) 0.45 (0.01)
kin8nm 8192 8 0.08 (0.00) 0.09 (0.00) 0.08 (0.00) 0.08 (0.00) 0.09 (0.00)
power 9568 4 3.82 (0.03) 3.76 (0.03) 3.85 (0.03) 3.73 (0.03) 3.77 (0.03)
protein 45730 9 4.22 (0.01) 3.98 (0.01) 4.41 (0.01) 4.16 (0.01) 4.31 (0.01)

MNLL

N P NP-CGP NP-CGP-300 SGP SGP-300 SGP-M32

energy 768 8 1.08 (0.07) 1.67 (0.08) 0.65 (0.03) 0.64 (0.03) 0.64 (0.03)
kin8nm 8192 8 -1.02 (0.01) -0.37 (0.03) -1.03 (0.00) -1.13 (0.00) -0.98 (0.00)
power 9568 4 2.78 (0.01) 2.77 (0.01) 2.77 (0.01) 2.74 (0.01) 2.75 (0.01)
protein 45730 9 2.86 (0.00) 2.81 (0.00) 2.90 (0.00) 2.84 (0.00) 2.88 (0.00)

Table 3: Results over 20 train/test splits for the UCI regression experiments. The mean values are reported, with the standard
error in brackets. N represents the number of observations in each dataset, and P the number of input dimensions.

to run much faster. In particular, the computation of gradients with respect to the integrals required for sampling took
significantly longer than expected, as the PyTorch framework is not well optimised for computing gradients with respect to
the complex point-wise operations represented by the integrals in the model.

C EXPERIMENTAL DETAILS

The experiments in this work were performed on HPC clusters, using nodes containing a range of different GPUs, including
40GB and 80GB NVIDIA A100-SXM4 GPUs, as well as 16GB and 32GB NVIDIA Tesla V100-SXM2 GPUs. Throughout
we utilise the interdomain transform for the input process, since without this element we were unable to achieve convergence
during training for most problems. Throughout we use S = 2 Monte Carlo samples, since we found this to give the best
trade off between computation speed and variance of the estimates of the variational objective.

C.1 Toy experiment

For our toy experiment, we used an input x ∈ RN×P , with N = 3000 and P = 2, where the entries of x were sampled
from a standard normal distribution. As mentioned in the main paper, the ground truth function values in this experiment,
f1(x) and f2(x), were generated by sampling from two different linear combinations of two GP priors uEQ ∼ GP(0, kEQ)
and uP ∼ GP(0, kP), which have EQ and weakly periodic kernels respectively. kEQ uses a lengthscale of 1.5 for each
input dimension, and kP is constructed from the product of an EQ kernel and periodic kernel both using lengthscales of
1.5 per dimension, with periods of 1.8 and 2.1 for each input dimension in the periodic component. Specifically, the linear
combinations we use are f1 = 0.9uEQ +0.1uP and f2 = 0.5uEQ +0.5uP . Prior to sampling our ground truth output values,
we also applied independent Gaussian noise to each output with σ = 0.01.

C.2 UCI regression

The numerical values used to generate the boxplots in Figure 4 in the main paper, are shown in Table 3. As discussed in
the main paper, all data is freely available from the UCI Machine Learning Repository (Dua and Graff, 2017). For these
experiments, we performed 20 different random splits of the standardised data (which were kept in common across all of the
models evaluated), using 90% of each dataset for training and the remaining 10% to evaluate the test set metrics which
we report in the paper and this appendix. For our NP-CGP models, we used 16 basis functions for estimating the lower
bound, initialising the likelihood variance to 0.01. We used 15 inducing points for the convolutional kernel processes, and
either 100 (NP-CGP) or 300 (NP-CGP-300) inducing points for the input processes, and these input inducing points were
initialised using k-means clustering. Training was performed for 40,000 iterations with a batch size of 1000, using the
Adam optimiser (Kingma and Ba, 2015) with a learning rate of 0.001. For the variational GP models (SGP, SGP-300 and
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RMSE

N P D FNP-CGP NP-CGP S-LMC CMOGP

energy 768 8 2 1.19 (0.02) 0.84 (0.03) 1.27 (0.00) 0.89 (0.08)
naval 11934 16 2 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) -

polymer 60 10 4 0.08 (0.01) 0.08 (0.00) 0.12 (0.00) 0.19 (0.03)

MNLL

N P D FNP-CGP NP-CGP S-LMC CMOGP

energy 768 8 2 1.60 (0.03) 1.46 (0.04) 2.16 (0.01) 1.44 (0.23)
naval 11934 16 2 -5.38 (0.06) -5.21 (0.04) -7.55 (0.01) -

polymer 60 10 4 0.63 (0.91) -0.77 (0.04) 0.00 (0.00) -0.15 (0.16)

Table 4: Results over 20 train/test splits for the experiments with multiple inputs and outputs. The mean values are
reported, with the standard error in brackets. N represents the number of observations in each dataset, P the number of input
dimensions and D the number of outputs.

SGP-M32), we mirrored these settings as closely as possible, with the only difference being that we used a learning rate of
0.01 for the optimiser.

C.3 Regression with multiple inputs and outputs

The numerical values used to generate the boxplots in Figure 5 in the main paper, are shown in Table 4. We include results
for regression with multiple inputs and outputs on three different datasets. Firstly, the energy dataset is the same dataset
used in the UCI experiments, however rather than just using one of the two outputs, we infer both. Similarly, naval is
another UCI dataset commonly used as a single output benchmark, but we infer both of its outputs in this work. Finally, the
polymer dataset, freely available at ftp://ftp.cis.upenn.edu/pub/ungar/chemdata, was selected in order
to test the predictive capability of the model in a small-data setting. The settings used for our NP-CGP models in this
experiment broadly mirror those described in Section C.2. For the stochastic multi-output GP (S-LMC), implemented using
GPyTorch (Gardner et al., 2018), we used a number of latent GPs equal to the number of outputs for the given dataset, and
all experimental settings for this model were the same as those used for the NP-CGP. Similarly, for the convolved MOGP
(CMOGP), we also used a number of latent functions equal to the number of outputs.

C.4 Large-scale regression

The settings used for the NP-CGP on the large-scale regression experiment once again broadly mirror those described in
Section C.2, with three key differences due to the scale of the datasets: firstly the batch size was increased to 10,000 for
airline and 5,000 for houseelectric, secondly, the number of training iterations was increased to 100,000, and finally, we did
not perform repeats. For the DGP2 model we employ EQ ARD kernels and the same initialisations used by Salimbeni and
Deisenroth (2017).

ftp://ftp.cis.upenn.edu/pub/ungar/ chemdata
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