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Abstract

We theoretically analyze the model selection con-
sistency of least absolute shrinkage and selec-
tion operator (Lasso), both with and without post-
thresholding, for high-dimensional Ising models.
For random regular (RR) graphs of size p with
regular node degree d and uniform couplings θ0,
it is rigorously proved that Lasso without post-
thresholding is model selection consistent in the
whole paramagnetic phase with the same order
of sample complexity n = Ω(d3 log p) as that of
ℓ1-regularized logistic regression (ℓ1-LogR). This
result is consistent with the conjecture in Meng,
Obuchi, and Kabashima 2021 [Meng et al., 2021]
using the non-rigorous replica method from sta-
tistical physics and thus complements it with a
rigorous proof. For general tree-like graphs, it is
demonstrated that the same result as RR graphs
can be obtained under mild assumptions of the
dependency condition and incoherence condition.
Moreover, we provide a rigorous proof of the
model selection consistency of Lasso with post-
thresholding for general tree-like graphs in the
paramagnetic phase without further assumptions
on the dependency and incoherence conditions.
Experimental results agree well with our theoreti-
cal analysis.

1 Introduction

Ising model [Ising, 1925] is one renowned binary
undirected graphical models (also known as Markov
random fields (MRFs)) [Wainwright and Jordan, 2008,
Koller and Friedman, 2009, Mezard and Montanari, 2009]
with wide applications in various scientific disciplines such
as social networking [McAuley and Leskovec, 2012],
gene network analysis [Marbach et al., 2012,
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Krishnan et al., 2020], and protein interactions
[Morcos et al., 2011, Liebl and Zacharias, 2021], just to
name a few. Given an undirected graph G = (V,E), where
V = {1, ..., p} is a collection of nodes associated with the
binary spins X = (Xi)

p
i=1 and E = {(r, t) |θ∗rt ̸= 0} is a

collection of undirected edges that specify the pairwise
interactions θ∗ = (θ∗rt)r ̸=t, the joint probability distribution
of an Ising model has the following form

Pθ∗ (x) =
1

Z (θ∗)
exp

{∑
r ̸=t

θ∗rtxrxt

}
, (1)

where Z (θ∗) =
∑

x exp
{∑

r ̸=t θ
∗
rtxrxt

}
is the par-

tition function. In general, there are also external
fields but here they are assumed to be zero for sim-
plicity. Importantly, the conditional independence
between X = (Xi)

p
i=1 can be well captured by the

associated graph G [Wainwright and Jordan, 2008,
Koller and Friedman, 2009] and hence one fundamental
problem, namely Ising model selection (also widely
known as the inverse Ising problem. Please refer to
[Nguyen et al., 2017] for a nice review), is to recover
the underlying graph structure (edge set E) of G from
a collection of n i.i.d. samples Xn :=

{
x(1), . . . , x(n)

}
,

where x(i) ∈ {−1,+1}p represents the i-th sample. To
address this fundamental problem, a variety of methods
have been proposed over the past several decades in various
fields [Tanaka, 1998, Kappen and Rodrı́guez, 1998,
Ricci-Tersenghi, 2012, Wainwright et al., 2007,
Höfling and Tibshirani, 2009, Ravikumar et al., 2010,
Decelle and Ricci-Tersenghi, 2014, Bresler, 2015,
Vuffray et al., 2016, Lokhov et al., 2018]. Notably,
under the framework of the pseudo-likelihood (PL)
[Besag, 1975], both ℓ1-regularized logistic regres-
sion (ℓ1-LogR) [Ravikumar et al., 2010] and ℓ1-
regularized interaction screening estimator (RISE)
[Vuffray et al., 2016, Lokhov et al., 2018] are the two most
popular methods in reconstructing the graph structure and
the number of samples required is even near-optimal with re-
spect to (w.r.t.) previously established information-theoretic
lower-bound [Santhanam and Wainwright, 2012].

In this paper, we consider the well-known least absolute
shrinkage and selection operator (Lasso) [Tibshirani, 1996]
for Ising model selection. At first sight, one might even
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doubt its suitability for this problem since apparently the
Ising snapshots are binary data generated in a nonlin-
ear manner while Lasso is (presumably) used for con-
tinuous data with linear regression. In fact, the idea of
using linear regression for binary data is not as outra-
geous (or naive) as one might imagine [Brillinger, 1982,
Dobriban and Wager, 2018, Erdogdu et al., 2019], and per-
haps surprisingly, sometimes linear regression even outper-
forms logistic regression as demonstrated in [Gomila, 2021].
Indeed, if our goal is to make predictions of new outcomes,
say binary classification, then linear regression might not
be a good choice since it is easily prone to out-of-bound
forecasts1. However, when it comes to other goals such
as estimating variables or causal effects [Gomila, 2021],
the answer becomes highly nontrivial. For Ising model
selection, the goal is not about making predictions of
new binary outcomes, but rather inferring the graph struc-
ture and thus deciphering the underlying conditional in-
dependence between different variables. Hence, given
the popularity of Lasso, it is of both practical and the-
oretical significance to study the (mis-specified) Lasso’s
model selection consistency for the nonlinear Ising mod-
els, i.e., under what conditions Lasso can (or cannot)
successfully recover the true structure of Ising model.
While several early studies [Bento and Montanari, 2009,
Lokhov et al., 2018, Meng et al., 2020, Meng et al., 2021]
have implied Lasso’s potential consistency for Ising model
selection, a rigorous theoretical analysis has still largely
remained unresolved.

1.1 Our Contributions

We theoretically analyze the model selection consistency
of Lasso, both with and without post-thresholding, for
Ising models in the high-dimensional (n ≪ p) regime,
where the number of vertices p = p (n) may also scale
as a function of the sample size n. The paramagnetic
phase of Ising models is considered where the coupling
strength is relatively small so that the expectation of the
magnetization m := 1

p

∑p
i=1 xi is zero [Nishimori, 2001,

Mezard and Montanari, 2009]. Our main contributions are
summarized as follows.

(a) For random regular (RR) graphs with regular node degree
d and uniform active couplings θ∗r,t = θ0,∀(r, t) ∈ E, in the
paramagnetic phase, i.e., (d−1) tanh θ0 < 1, we prove that
Lasso without post-thresholding is model selection consis-
tent for Ising models, and remarkably, the required sample
complexity has the same scaling order as that of ℓ1-LogR.
(Theorem 1)

(b) For general tree-like graphs, under mild assumptions of

1In fact, even for classification, linear regression is widely used,
e.g., ridge classification [Dobriban and Wager, 2018], which can
be significantly faster than logistic regression with a high number
of classes [Scikit-learn, ].

the dependency condition and incoherence condition, it is
proved that Lasso without post-thresholding is still model
selection consistent for Ising models with the same order of
sample complexity as that of ℓ1-LogR. (Theorem 2)

(c) For general tree-like graphs, we not only obtain an upper
bound of the reconstructed square error of Lasso, but also
prove that, with some proper post-thresholding, Lasso is
model selection consistent with the same order of sample
complexity as that of ℓ1-LogR and RISE without any further
assumptions on the dependency and incoherence conditions.
(Theorems 3 and 4)

Remark 1: It is worth strengthening that in this paper we
focus on Lasso both with and without post-theresholding.

Remark 2: Given the wide popularity and efficiency of
Lasso, our analysis not only provides a theoretical back-
ing for its practical use, but also deepens our understand-
ing of learning Ising models using Lasso. Previously,
it has long been believed that the success of Lasso for
Ising model selection (approximately) happens only when
θ∗r,t → 0,∀(r, t) ∈ E so that the square loss of Lasso is
similar to the logistic loss of ℓ1-LogR [Lokhov et al., 2018].
However, we identify and prove that Lasso actually behaves
similarly as ℓ1-LogR and RISE in the whole paramagnetic
phase (as opposed to the limit regime θ∗r,t → 0,∀(r, t) ∈ E).
We hope that our study could inspire further research on
alternative simple and efficient methods for Ising model
selection.

1.2 Related Works

In [Bento and Montanari, 2009], the authors pointed out a
potential relevance of the incoherence condition of Lasso
[Zhao and Yu, 2006] to ℓ1-LogR by expanding the logistic
loss around the true interactions θ∗. However, on the one
hand, it is restricted to the case when the ℓ1 regularization
parameter approaches zero. On the other hand, the resul-
tant quadratic loss is actually different from that of Lasso.
Later, [Lokhov et al., 2018] observed that at high tempera-
tures when the magnitude of interactions approaches zero,
i.e., θ∗r,t → 0,∀(r, t) ∈ E, both the logistic and interaction
screening objective (ISO) losses can be approximated as a
square loss using a second-order Taylor expansion around
zero (as opposed to θ∗ in [Zhao and Yu, 2006]). However,
their results are severely limited to the regime θ∗r,t →
0,∀(r, t) ∈ E. In other words, [Lokhov et al., 2018] at-
tributed the potential success of Lasso to its similarity
with ℓ1-LogR/RISE in the regime θ∗r,t → 0,∀(r, t) ∈ E.
Moreover, without considering the ℓ1 regularization term,
[Lokhov et al., 2018] only compared the analytical solution
with that of the naive mean-field method [Tanaka, 1998,
Kappen and Rodrı́guez, 1998, Ricci-Tersenghi, 2012]. A
rigorous theoretical analysis of the consistency of Lasso
for Ising model selection is still lacking.
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To the best of our knowledge, the first ex-
plicit analysis of Lasso for Ising model selec-
tion is given in [Meng et al., 2021] using sta-
tistical physics methods, building on previous
studies [Bachschmid-Romano and Opper, 2017,
Abbara et al., 2020, Meng et al., 2020]. In particu-
lar, [Meng et al., 2021] demonstrated that Lasso has
the same order of sample complexity as ℓ1-LogR
for random regular (RR) graphs in the paramagnetic
phase [Mezard and Montanari, 2009]. Furthermore,
[Meng et al., 2021] provided an accurate estimate of the
typical sample complexity as well as a precise prediction
of the non-asymptotic learning performance. How-
ever, there are several limitations in [Meng et al., 2021].
First, since the replica method [Opper and Saad, 2001,
Nishimori, 2001, Mezard and Montanari, 2009] they use
is a non-rigorous method from statistical mechanics,
a rigorous mathematical proof has remained lacking.
Second, the results in [Meng et al., 2021] are restricted
to the special class of RR graphs. In addition, since
their analysis relies on the self averaging property
[Nishimori, 2001, Mezard and Montanari, 2009], the
results in [Meng et al., 2021] are meaningful in terms of
the “typical case” [Engel and Van den Broeck, 2001] rather
than the worst case. Moreover, [Meng et al., 2021] did not
analyze the case of Lasso with post-thresholding.

Regarding the study of Lasso for nonlinear (not necessarily
binary) targets, the past few years have seen an active
line of research in the field of signal processing with a
special focus on the single-index model [Brillinger, 1982,
Plan and Vershynin, 2016, Thrampoulidis et al., 2015,
Zhang et al., 2016, Genzel, 2016]. These studies are
related to ours but with several important differences. First,
in our study, the covariates are generated from an Ising
model rather than a Gaussian distribution. Second, we
focus on model selection consistency of Lasso while most
previous studies considered estimation consistency except
[Zhang et al., 2016]. However, [Zhang et al., 2016] only
considered the classical asymptotic regime while we are
interested in the high-dimensional setting where n ≪ p.
Another closely related work is [Erdogdu et al., 2019],
which studied the relationship between the true minimizer
of the population risk of a generalized linear model and
the ordinary least square coefficient. Nevertheless, they
only focused on the classic n ≫ p case. Moreover, even
in the classic case, [Erdogdu et al., 2019] did not provide
a rigorous analysis of the model selection consistency of
Lasso with the empirical risk.

1.3 Notations

For each vertex r ∈ V , the neighborhood set is denoted as
N (r) := {t ∈ V | (r, t) ∈ E}, the signed neighborhood set
is defined as N± (r) := {sign (θ∗rt) t|t ∈ N (r)}, and the
corresponding node degree is denoted as dr := |N (r)|. The

maximum node degree of the whole graph G is denoted as
d := max

r∈V
dr. We use Gp,d to denote the ensemble of graphs

G with p vertices and maximum (not necessarily bounded)
node degree d ≥ 3. The minimum and maximum magni-
tudes of the interactions θ∗rt for (r, t) ∈ E are respectively
denoted as

θ∗min := min
(r,t)∈E

|θ∗rt| , θ∗max := max
(r,t)∈E

|θ∗rt| . (2)

Eθ∗ {·} denotes expectation w.r.t. the joint distribution
Pθ∗ (x) (1). 9A9∞ = maxj

∑
k |Ajk| is the ℓ∞ matrix

norm of a matrix A. Λmin (A) and Λmax (A) denote the
minimum and maximum eigenvalue of A, respectively.

2 Problem Setup

The problem of Ising model selection can be generally de-
scribed as follows: given a collection of n i.i.d. samples
Xn :=

{
x(1), . . . , x(n)

}
from an Ising model defined on

a graph G = (V,E), the goal is to reconstruct the graph
structure of G. In this paper we focus on Ising models
defined on general locally tree-like graphs, i.e., the lo-
cal neighborhood of a uniformly random vertex of the
graph converges in distribution to a random rooted tree
[Dembo and Montanari, 2010]. In particular, we also pay a
special attention to the popular random regular (RR) graphs,
one typical class of locally tree-like graphs with regular node
degree dr = d and uniform couplings θ∗r,t = θ0,∀(r, t) ∈
E.

As in [Ravikumar et al., 2010], we consider the slightly
stronger criterion of signed edge recovery, and investigate
the sufficient conditions on the sparsistency property.

Definition 1. (signed edge) The signed edge set E∗ of
one Ising model with interactions θ∗ is defined as E∗ :=
{sign (θ∗rt)} where sign (·) is an element-wise operation
that maps every positive entry to 1, negative entry to -1, and
zero entry to zero.

Definition 2. (sparsistency property) Suppose that Ên is an
estimator of the signed edge E∗ given Xn, then it is called
(signed) model selection consistent in the sense that

P
(
Ên = E∗

)
→ 1 as n → +∞, (3)

which is known as the sparsistency property
[Ravikumar et al., 2010].

Our goal is to investigate the sparsistency property of
Lasso [Tibshirani, 1996] for high-dimensional Ising mod-
els on locally tree-like graphs. Since recovering the
edge set E∗ of any graph G = (V,E) is equivalent
to reconstructing the associated signed neighborhood set
N± (r) := {sign (θ∗rt) t|t ∈ N (r)} for each vertex r ∈ V
[Ravikumar et al., 2010], one can equivalently investigate
the scaling condition on (n, p, d) which ensures that the
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estimated signed neighborhood N̂± (r) agrees with the true
neighborhood, i.e.,

{
N̂± (r) = N± (r) ,∀r ∈ V

}
, with

high probability.

Specifically, the estimate of the sub-vector θ∗\r :=

{θ∗rt|t ∈ V \ r} ∈ Rp−1, ∀r ∈ V is obtained via Lasso
as follows

θ̂\r = argmin
θ\r

{
ℓ
(
θ\r;Xn

)
+ λ(n,p,d)

∥∥θ\r∥∥1} , (4)

where ℓ
(
θ\r;Xn

)
denotes the square loss function

ℓ
(
θ\r;Xn

)
:=

1

2n

n∑
i=1

(
x(i)
r −

∑
u∈V \r

θrux
(i)
u

)2
, (5)

and λ(n,p,d) > 0 is the regularization parameter. For sim-
plicity, instead of λ(n,p,d), λn will be used hereafter.

Subsequently, one can obtain an estimate N̂± (r) of N± (r)

from the Lasso results θ̂\r in (4). Here we focus on
two different settings: without post-theresholding and with
post-thresholding. Without post-theresholding, one can
simply estimate N̂± (r) using the sign information as
[Ravikumar et al., 2010]

N̂± (r) :=
{

sign
(
θ̂rt

)
t|t ∈ V \ r, θ̂rt ̸= 0

}
. (6)

Alternatively, one introduces a threshold ξ > 0 and then
perform post-thresholding on θ̂\r [Ekeberg et al., 2013,
Decelle and Ricci-Tersenghi, 2014, Lokhov et al., 2018],
leading to

N̂± (r) :=
{

sign
(
θ̂rt

)
1
(∣∣∣θ̂rt∣∣∣ > ξ

)
t|t ∈ V \ r, θ̂rt ̸= 0

}
,

(7)
where 1 (·) is an indicator function that equals to 1 if the
event is true and 0 otherwise.

3 Main results

3.1 Preliminary Results

Before stating the main results, we first present two differ-
ent results of Lasso compared with ℓ1-LogR regarding the
expected first and second derivative of the loss function, i.e.,
Eθ∗{∇ℓ

(
θ\r;X

n
1

)
} and Eθ∗{∇2ℓ

(
θ\r;X

n
1

)
}.

Lemma 1. For general tree-like graphs in the paramagnetic
phase, the solution to Eθ∗{∇ℓ

(
θ\r;X

n
1

)
} = 0, denoted as

θ̃∗\r =
{
θ̃∗rt

}
t∈V \r

∈ Rp−1, can be obtained as

θ̃∗rt =


tanh(θ∗

rt)/(1−tanh2(θ∗
rt))

1−dr+
∑

u∈N(r)
1

1−tanh2(θ∗ru)
if (r, t) ∈ E

0 otherwise.
(8)

where dr is the node degree of r. In particular, for RR
graph with uniform coupling strength θ∗rt = θ0,∀ (r, t) ∈ E

and constant node degree dr = d, there is

θ̃∗rt =

{
tanh(θ0)

1+(d−1) tanh2(θ0)
if (r, t) ∈ E

0 otherwise.
(9)

Proof. See Appendix A.

Lemma 1 indicates that, the solution θ̃∗\r is a rescaled value
of the true parameter θ∗\r and thus shares the same sign

structure, i.e., sign
(
θ̃∗\r

)
= sign

(
θ∗\r

)
. The minimum

magnitude of θ̃∗rt for (r, t) ∈ E in (8) is denoted as

θ̃∗min := min
(r,t)∈E

θ̃∗rt. (10)

For the second derivative or Hessian matrix, in the case of
Lasso, it corresponds exactly to the covariance matrix, i.e.,

Q∗
r := Eθ∗{∇2ℓ

(
θ\r;X

n
1

)
} = Eθ∗{X\rX

T
\r},∀r ∈ V.

(11)
As opposed to [Ravikumar et al., 2010], the additional
variance function term of ℓ1-LogR (eq. (12) in
[Ravikumar et al., 2010], denoted as η(X; θ∗)) does not ex-
ist in Q∗

r ( 11), which makes Lasso different from ℓ1-LogR,
including its behavior and the corresponding proof. For
notational simplicity, Q∗

r will be written as Q∗ hereafter.
Denote S := {(r, t) | t ∈ N (r)} as the subset of indices
associated with edges of r and Sc as its complement. The
dr × dr sub-matrix of Q∗ indexed by S is denoted as Q∗

SS .
Other sub-matrices like Q∗

ScS are defined in the same way.

3.2 Lasso without Post-thresholding

For Lasso without post-thresholding, i.e., the signed edge
set N̂± (r) ,∀r ∈ V is obtained as (6), we have

Theorem 1. (RR graphs) Consider a collection of n i.i.d.
samples Xn :=

{
x(1), . . . , x(n)

}
drawn from an Ising

model on a RR graph G = (V,E) ∈ Gp,d with regular
node degree d and uniform couplings θ∗r,t = θ0,∀(r, t) ∈ E.
Suppose that the Ising model is in the paramagnetic phase,
i.e., (d − 1) tanh θ0 < 1, then there exist constants L, c
independent of (n, p, d), so that the Lasso estimator (4) with
the regularization parameter λn ≤ tanh(θ0)(1−tanh2 (θ0))

6
√
d(1+(d−1) tanh2(θ0))

reconstructs the signed edge set by (6) perfectly with proba-
bility at least

P
(
Ên = E∗

)
≥ 1− 2 exp

(
−cλ2

nn
)

(12)

as long as n ≥ max
{
Ld3, 64(1+tanh (θ0))

2

(1−tanh (θ0))2λ2
n

}
log p.

Remark 3: Theorem 1 indicates that the probability that the
Lasso estimator (4) successfully recovers the true signed
edge set decays exponentially as a function of λ2

nn, which
is the same as ℓ1-LogR [Ravikumar et al., 2010]. If λn is
chosen such that λ2

nn → ∞ as n → ∞, Lasso is model
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selection consistent, i.e., P
(
Ên = E∗

)
→ 1 as n → ∞. In

the high-dimensional case, one reasonable choice of λn that

satisfies both Theorem 1 and λ2
nn → ∞ is λn = κ

√
log p
n ,

where κ ≥ 8(1+tanh θ0)
1−tanh θ0

. In this case, i.e., λn = κ
√

log p
n ,

from Theorem 1, it is obtained that the number of sam-
ples required for model selection consistency needs to sat-
isfy n ≥ max

{
Ld3, 36κ2(1+(d−1) tanh (θ0))

2

tanh2 (θ0))(1−tanh2 (θ0))2
d
}
log p. In

practical applications, one might not be able to obtain the
ideal κ when θ0 is unknown. However, a larger κ can be
chosen, which is possible either by using a prior knowl-
edge of the range of θ0 for a specific problem, or by set-
ting κ as large as possible. A disadvantage of larger κ
is that, the number of samples n becomes larger since
n ≥ max

{
Ld3, 36κ2(1+(d−1) tanh (θ0))

2

tanh2 (θ0))(1−tanh2 (θ0))2
d
}
log p. How-

ever, this is an inevitable price we have to pay due to the
lack of knowledge of the models.

Note that while the uniform coupling of RR graphs in Theo-
rem 1 is a limitation, Theorem 1 holds without additional
assumptions as ℓ1-LogR [Ravikumar et al., 2010]. For gen-
eral locally tree-like graphs, under additional mild assump-
tions similar to ℓ1-LogR [Ravikumar et al., 2010], namely
the dependency condition and incoherence condition, we
can still obtain similar results as RR graphs in Theorem 1.

Condition 1 (C1): dependency condition. The sub-matrix
Q∗

SS has bounded eigenvalue, i.e., there exists a constant
Cmin > 0 such that

Λmin (Q
∗
SS) ≥ Cmin. (13)

Condition 2 (C2): incoherence condition. There exists an
α ∈ (0, 1] such that

9Q∗
ScS (Q∗

SS)
−1 9∞ ≤ 1− α. (14)

Theorem 2. (tree-like graphs) Consider general tree-like
graphs G = (V,E) ∈ Gp,d in the paramagnetic phase.
Suppose that conditions (C1) and (C2) are satisfied by the
population covariance matrix Q∗. If the regularization pa-

rameter λn is selected to satisfy λn ≥ 4
√
c+1(2−α)

α

√
log p
n

for some constant c > 0, then there exists a constant L
independent of (n, p, d) such that if

n ≥ Ld3 log p, (15)

then with probability at least 1− 2 exp (−c log p) → 1 as
p → ∞, the following properties hold:

(a) For each node r ∈ V , the Lasso estimator (4) has a
unique solution, and thus uniquely specifies a signed neigh-
borhood N̂± (r) with (6).

(b) For each node r ∈ V , the estimated signed neighborhood
vector N̂± (r) with (6) correctly excludes all edges not in
the true neighborhood. Moreover, it correctly includes all

edges if the minimum magnitude of the rescaled parameter
satisfies θ̃∗min ≥ 6λn

√
d

Cmin
.

Remark 4: Theorem 2 indicates that the probability that
Lasso recovers the true signed edge set P

(
Ên = E∗

)
→ 1

exponentially as a function of log p. Hence, for tree-
like Ising models in the paramagnetic phase, under con-
ditions (C1) and (C2), in the high-dimensional setting
(for p → ∞), Lasso is model selection consistent with
n = Ω(d3 log p) samples, which is the same as ℓ1-LogR
[Ravikumar et al., 2010].

In contrast to RR graphs in Theorem 1, for general tree-like
graphs, two additional assumptions (C1) and (C2) are im-
posed for the success of Lasso without post-thresholding.
However, it is worth noting that ℓ1-LogR without post-
thresholding also suffers from the same limitation as shown
in [Ravikumar et al., 2010], which is due to the fundamental
difficulty in verifying (C1) and (C2) for general graphs.

3.3 Lasso with Post-thresholding

For Lasso with post-thresholding, i.e., the signed neighbor-
hood set N̂± (r) ,∀r ∈ V is obtained as (7), we obtain the
following results.

Theorem 3. (Square error, tree-like graphs) Consider an
Ising model defined on tree-like graphs G = (V,E) ∈ Gp,d.
∀r ∈ V and for any ε1 > 0, in the paramagnetic phase, the
square error of the Lasso estimator (4) with regularization

parameter λn = 4

√
log 3p

ε1

n is bounded with probability at
least 1− ε1 by

∥∥∥θ̂\r − θ̃∗\r

∥∥∥
2
≤ 26

√
d (d+ 1) e2θ

∗
maxd

√
log 3p

ε1

n
(16)

when n ≥ 214d2 (d+ 1)
2
e4θ

∗
maxd log 3p2

ε1
.

Theorem 4. (Structure learning, tree-like graphs) Consider
an Ising model defined on tree-like graphs G = (V,E) ∈
Gp,d. In the paramagnetic phase, for any ε2 > 0, the
Lasso estimator (4) with regularization parameter λn =

4

√
log 3p2

ε2

n reconstructs the sign edge set by (7) perfectly
with probability

P
(
Ê = E∗

)
≥ 1− ε2, (17)

as long as

n ≥ max

{
d,
(
θ̃∗min

)−2
}
214d (d+ 1)

2
e4θ

∗
maxd log

3p3

ε2
.

(18)

Remark 5: Results in Theorems 3 and 4 hold for general
tree-like graphs without any further assumptions of (C1)
and (C2). In particular, Theorem 4 indicates that Lasso
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with post-thresholding is model selection consistent under
similar conditions as the RISE [Vuffray et al., 2016] and ℓ1-
LogR with post-thresholding [Lokhov et al., 2018]. Note
that similarly as RISE and ℓ1-LogR [Vuffray et al., 2016,
Lokhov et al., 2018], the obtained bound in (18) is a rather
loose bound, especially in the paramagnetic phase, e.g.,
while it suggests an exponential growth w.r.t. θ∗max, it is in
fact not the case in the paramagnetic phase (see Figure 4 in
[Lokhov et al., 2018]).

Remark 6: In Theorems 3 and 4, the regularization parame-
ter λn is chosen as a function of the controlled probability
values ϵ1 or ϵ2. In practical applications when no prior
knowledge is available, similarly as [Vuffray et al., 2016,
Lokhov et al., 2018], we can simply choose λn as λn =

4

√
log 3p

ϵ1

n or λn = 4

√
log 3p2

ϵ2

n , respectively. Moreover, as
described in [Lokhov et al., 2018], given a sufficient num-
ber of samples, other techniques such as consistency cross-
validation can be used for selecting the optimal value of λn

on a case-by-case basis. For more details, please refer to the
supplementary material of [Lokhov et al., 2018].

4 Proof of the main results

Here we provide a sketch of the proofs for the main results.
For details, please refer to Appendices D and E.

4.1 Sketch of the proof for Theorems 1 and 2

For the proof of Lasso without post-thresholding,
we use the primal-dual witness proof framework
[Ravikumar et al., 2010], which was originally proposed in
[Wainwright, 2009]. The main idea of the primal-dual wit-
ness method is to explicitly construct an optimal primal-dual
pair which satisfies the sub-gradient optimality conditions
associated with the Lasso estimator (4). Subsequently, it is
proved that under the stated assumptions on (n, p, d), the
optimal primal-dual pair can be constructed such that they
act as a witness, i.e., a certificate that guarantees that the
neighborhood-based Lasso estimator (4) together with (6)
correctly recovers the signed edge set of the graph G ∈ Gp,d.

Generally speaking, the proof of Theorems 1 and 2 con-
sists of two stages. At the first stage, we consider a “fixed
design” case assuming that the sample Hessian Qn :=

1
n

∑n
i=1 x

(i)
\r

(
x
(i)
\r

)T
, satisfies both conditions (C1) and

(C2). Afterwards, at the second stage, using some large-
deviation analysis we provide guarantees under which both
conditions (C1) and (C2) hold for the sample Hessian Qn

with high probability. Finally, we obtain Theorems 1 and 2
combining results of the two stages. Notably, for RR graphs,
there is one remarkable property, as shown in Lemma 2:

Lemma 2. For Ising models defined on RR graphs G =
(V,E) ∈ Gp,d with regular node degree d and uniform

couplings θ∗r,t = θ0,∀(r, t) ∈ E. In the paramagnetic
phase, both conditions (C1) and (C2) hold for Q∗, where
Cmin = 1− tanh2 θ0 and α = 1− tanh θ0.

Proof. See Appendix B.

As a result, in Theorem 1, there is no need for assumptions
(C1) and (C2) in the case of RR graphs.

The important results at the first stage are shown in Proposi-
tion 1 and Proposition 2, which correspond to the RR graphs
and general tree-like graphs, respectively.

Proposition 1. (fixed design, RR graphs) Consider an Ising
model on a RR graph G = (V,E) ∈ Gp,d with regular node
degree d and uniform couplings θ∗r,t = θ0,∀(r, t) ∈ E. Sup-
pose that the Ising model is in the paramagnetic phase, and
that the sample Hessian Qn satisfies (C1) and (C2). If the

regularization parameter λn satisfies λn ≥ 8(2−α)
α

√
log p
n ,

then with probability at least 1− 2 exp
(
−cλ2

nn
)
→ 1, the

following properties hold:

(a) For each node r ∈ V , the Lasso estimator (4) has a
unique solution, and thus uniquely specifies a signed neigh-
borhood N̂± (r).

(b) For each node r ∈ V , the estimated signed neighbor-
hood vector N̂± (r) using the Lasso estimator (4) correctly
excludes all edges not in the true neighborhood. Moreover,
it correctly includes all edges if θ̃∗min ≥ 6λn

√
d

Cmin
.

Proof. See Appendix D.1.

Proposition 2. (fixed design, tree-like graphs) Consider an
Ising model defined on a tree-like graph G = (V,E) ∈ Gp,d

with parameter vector θ∗ and associated signed edge set
E∗. Suppose that the Ising model is in the paramag-
netic phase, and the sample Hessian Qn satisfies (C1)
and (C2) and the regularization parameter λn satisfies

λn ≥ 4
√
c+1(2−α)

α

√
log p
n for some constant c > 0. Un-

der these conditions, if

n ≥ (c+ 1)d2 log p, (19)

then with probability at least 1− 2 exp (−c log p) → 1 as
p → ∞, the following properties hold:

(a) For each node r ∈ V , the Lasso estimator (4) has a
unique solution, and thus uniquely specifies a signed neigh-
borhood N̂± (r).

(b) For each node r ∈ V , the estimated signed neighborhood
vector N̂± (r) correctly excludes all edges not in the true
neighborhood. Moreover, it correctly includes all edges if
θ̃∗min ≥ 6λn

√
d

Cmin
, where θ̃∗min is the minimum magnitude of

the rescaled parameter θ̃∗ defined in (8).

Proof. See Appendix D.2.
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Note that in the above two Propositions of the“fixed design”
case, in contrast to the “fixed design” results of ℓ1-LogR
in [Ravikumar et al., 2010], there is no requirement of an
additional scaling condition of n ≥ Ld2 log p. This is due to
the fundamental difference between the square loss of Lasso
and the logistic loss of ℓ1-LogR. Specifically for ℓ1-LogR,
n ≥ Ld2 log p is needed to ensure the ℓ2-consistency of the
primal sub-vector and to bound the remainder term, while
it is not the case for Lasso with square loss, as shown in
Lemma 5. However, this only holds under the assumption
that the sample Hessian satisfies conditions (C1) and (C2).
To ensure that these conditions are satisfied by the sample
Hessian, an additional requirement of n ≥ Ld3 log p is
still needed, as shown in the final results in Theorem 1 and
Theorem 2.

Some key results: The key results for the proofs of Lasso
without post-thresholding are given as follows.

Lemma 3. Denote Wn = −∇ℓ
(
θ̃∗\r;X

n
1

)
. The s-th ele-

ment of Wn, denoted as Wn
s , can be written as follows

Wn
s =

1

n

n∑
i=1

Z(i)
s , ∀s ∈ V \ r, (20)

Z(i)
s := x(i)

s (x(i)
r −

∑
t∈V \r

θ̃∗rtx
(i)
t ). (21)

Then, Eθ∗

(
Z

(i)
s

)
= 0, Var

(
Z

(i)
s

)
≤ 1. Furthermore:

(a) For RR graphs, there is
∣∣∣Z(i)

s

∣∣∣ ≤ 2;

(b) For general tree-like graphs, there is
∣∣∣Z(i)

s

∣∣∣ ≤ d.

Proof. See Appendix C.1.

The behavior of ∥Wn∥∞ is shown in Lemma 4.

Lemma 4. Regarding Wn = −∇ℓ
(
θ̃∗\r;Xn

)
in Lemma 3:

(a) For RR graphs, if λn ≥ 8(2−α)
α

√
log p
n , then

P
(2− α

λn
∥Wn∥∞ ≥ α

2

)
≤ 2 exp

(
− α2λ2

nn

32(2− α)2
+log p

)
,

(22)
(b) For general tree-like graphs, if n ≥ (c+ 1) d2 log p for

some constant c > 0 and λn ≥ 4
√
c+1(2−α)

α

√
log p
n , then

P
(2− α

λn
∥Wn∥∞ ≥ α

2

)
≤ 2 exp (−c log p) . (23)

Proof. See Appendix C.2.

Lemma 5. If ∥Wn∥∞ ≤ λn

2 , then there is∥∥∥θ̂S − θ̃∗S

∥∥∥
2
≤ 3

Cmin
λn

√
d. (24)

Proof. See Appendix C.3.

4.2 Sketch of the proof for Theorems 3 and 4

In proving Theorems 3 and 4, we resort to the restricted
strong convexity framework in [Negahban et al., 2012].

First, consider the proof of Theorem 3 which provides an
estimation error bound (16) of Lasso. Similarly as RISE
and ℓ1-LogR [Vuffray et al., 2016, Negahban et al., 2012,
Lokhov et al., 2018], to obtain a handle on the (rescaled)
square error of Lasso, two sufficient conditions (C3) and
(C4) are enforced as follows:

Condition 3 (C3): The ℓ1 regularization parameter λn

strongly enforces regularization if it is greater than any
partial derivatives of the loss function ℓ

(
θ\r;X

n
1

)
evaluated

at θ̃∗\r defined in (8), i.e.,

λn ≥ 2
∥∥∥∇ℓ

(
θ̃∗\r;X

n
1

)∥∥∥
∞

. (25)

Condition (C3) guarantees that if the vector of the rescaled
couplings θ̃∗\r has at most d non-zero elements, then the

estimation difference θ̂\r − θ̃∗\r lies within the set

K :=
{
△ ∈ Rp−1 | ∥△∥1 ≤ 4

√
d ∥△∥2

}
. (26)

Condition 4 (C4): The square loss of Lasso is restricted
strongly convex w.r.t. set K (26) on a ball of radius R
centered at θ\r = θ̃∗\r if for all △θ\r ∈ K such that∥∥△θ\r

∥∥
2
≤ R, there exists a constant κ > 0 such that

the remainder of the first-order Taylor expansion of the loss
function satisfies

δℓ
(
△θ\r , θ̃

∗
\r;X

n
1

)
≥ κ

∥∥△θ\r

∥∥2
2
. (27)

where △θ\r ∈ Rp−1 is an arbitrary vector and the remainder
can be calculated as

δℓ
(
△θ\r , θ̃

∗
\r;X

n
1

)
=

1

2
△T

θ\r
Qn△θ\r . (28)

The key point is that, the estimation error
∥∥θ̂\r − θ̃∗\r

∥∥
2

of Lasso can be controlled if conditions (C3) and (C4) are
satisfied, as shown in Proposition 3:

Proposition 3. (Theorem 1, [Negahban et al., 2012]) If the
Lasso estimator (4) satisfies both (C3) and (C4) with R ≥
3
√
dλn

κ , then the square error is bounded by∥∥∥θ̂\r − θ̃∗\r

∥∥∥
2
≤ 3

√
d
λn

κ
. (29)

As a result, the proof of Theorem 3 is done through Proposi-
tion 3 by evaluating the two conditions (C3) and (C4).

Regarding the proof of Theorem 4, it is simply an appli-
cation of Theorem 3 by choosing a specific value of the
estimation error. Specifically, with the definition of θ̃∗min in
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(8) as the minimum rescaled coupling for a general graph,
suppose that the estimated error

∥∥θ̂\r − θ̃∗\r
∥∥
2

is controlled

to be smaller than θ̃∗min/2, then one can readily recover the
structure of the neighborhood of node r by setting the edges
whose absolute estimated couplings are less than θ̃∗min/2
to be absent [Lokhov et al., 2018]. Subsequently, repeating
this procedure over all the p vertices, we are guaranteed
through the union bound that exact reconstruction of the full
edge set E∗ can be obtained with some predefined probabil-
ity.

Some key results: The key results for the proofs of Lasso
with post-thresholding are given as follows. Specifically,
Lemma 7 and Lemma 8 are used to prove Lemma 9, which
is then combined with Lemma 6 to evaluate the conditions
(C3) and (C4) via Proposition 3, leading to the proof of
Theorem 3.

Lemma 6. For any ε3 > 0, if n ≥ d2 log 2p
ε3

, then proba-
bility at least 1− ε3

∥Wn∥∞ ≤ 2

√
log 2p

ε3

n
. (30)

Proof. See Appendix C.4.

The randomness of δℓ
(
△θ\r , θ̃

∗
\r;X

n
1

)
can be controlled

by Qn, which concentrates towards its mean independently
of △θ\r , as shown in following lemma

Lemma 7. Let ϵ > 0, ε4 > 0 and n ≥ 2
ϵ2 log

p2

ε4
, then with

probability greater than 1− ε4, we have for all s, t ∈ V \ r

|Qn
st −Q∗

st| ≤ ϵ,

where Qn
st = 1

n

∑n
i=1 x

(i)
t x

(i)
t and Q∗

st =

Eθ∗

(
x
(i)
s x

(i)
t

)
, s, t ∈ V \ r.

Proof. See Appendix C.5.

Lemma 8 states that the smallest eigenvalue of Q∗ is
bounded below from zero independent of p.

Lemma 8. (Lemma 7 in [Vuffray et al., 2016]) For Ising
model with graph G ∈ Gp,d with maximum coupling
strength θ∗max. Then for all △θ\r ∈ Rp−1, we have

△T
θ\r

Q∗△θ\r ≥ e−2θ∗
maxd

d+ 1

∥∥△θ\r

∥∥2
2
.

Given the above results, the restricted strong convexity of
the square loss (5) for Ising model problems is stated as
follows.

Lemma 9. For Ising model with graph G ∈ Gp,d with
maximum coupling strength θ∗max, ∀ε4 > 0, when n >

211d2 (d+ 1)
2
e4θ

∗
maxd log p2

ε4
, the square loss (5) of Lasso

satisfies, with probability at least 1−ε4, the restricted strong
convexity condition

δℓ
(
△θ\r , θ̃

∗
\r;X

n
1

)
≥ e−2θ∗

maxd

4 (d+ 1)

∥∥△θ\r

∥∥2
2

(31)

for all △θ\r ∈ Rp−1 such that
∥∥△θ\r

∥∥
1
≤ 4

√
d
∥∥△θ\r

∥∥
2
.

Proof. See Appendix C.6.

5 Experimental Results

In this section we conduct simulations to verify our theoreti-
cal findings that, simply speaking, Lasso performs similarly
as ℓ1-LogR on typical tree-like graphs in the paramagnetic
phase. Two different structures of tree-like graphs are evalu-
ated, namely RR graphs and star-shaped graphs. In addition,
to have a look at the performance of Lasso for graphs with
many loops, we also evaluate the square lattice (grid) graphs
with periodic boundary condition. It is worth noting that the
RR and star-shaped graphs represent graphs with bounded
node degree (the maximum node degree d is a fixed constant)
and unbounded node degree (the maximum node degree d
grows as the size of p), respectively.

The experimental procedures are as follows. First, a graph
G = (V,E) ∈ Gp,d is generated and the Ising model is
defined on it. Then, the spin snapshots are obtained us-
ing Monte-Carlo sampling, yielding the dataset Xn

1 . The
regularization parameter is set to be a constant factor of√

log p
n . For any graph, we performed simulations using

neighborhood-based Lasso (4) ∀r ∈ V and then the as-
sociated signed neighborhood N̂± (r) is estimated as (6).
Similar to [Ravikumar et al., 2010], the sample size n scal-
ing is set to be proportional to d log p. For comparison, the
results of the ℓ1-LogR estimator [Ravikumar et al., 2010]
are also shown. The results are averaged over 200 trials in
all cases.

The results of RR graph and grid graph are shown in Figure
1. In both cases, even for grid graph with many loops, using
the Lasso estimator, all curves for different model sizes p
line up with each other well, demonstrating that for a graph
with fixed degree d, the ratio n/ log p controls the success
or failure of the Ising model selection. Importantly, the
behavior of Lasso is about the same as ℓ1-LogR.

Figure 2 shows results for star-shaped graph whose maxi-
mum degree d is unbounded and grows as the dimension
p grows. Two kinds of star-shaped graphs are considered
by designating one node as the hub and connecting it to
d < (p − 1) of its neighbors. Specifically, for linear spar-
sity, it is assumed that d = ⌈0.1p⌉ while for logarithmic
sparsity, we assume d = ⌈log p⌉. We use positive inter-
actions and set the active interactions to be θ∗rt =

1.2√
d

for
all (r, t) ∈ E as [Ravikumar et al., 2010]. As depicted in
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Figure 1: Success probability versus the control parameter
β for Ising models. Left: RR graph with d = 3 and mixed
interactions θ∗rt = ±0.4 for all (r, t) ∈ E, β = n

10d log p ;
Right: 4-nearest neighbor grid graph with d = 4 and posi-
tive interactions θ∗rt = 0.2 for all (r, t) ∈ E, β = n

15d log p .

Figure 2: Success probability versus the control parameter
β = n

10d log p for Ising models on star-shaped graphs for
attractive interactions θ∗rt =

1.2√
d

for all (r, t) ∈ E. Left: lin-
ear growth in degrees, i.e., d = ⌈0.1p⌉; Right: logarithmic
growth in degrees, i.e., d = ⌈log p⌉.

Figure 2, Lasso behaves similarly as ℓ1-LogR in both cases,
which is consistent with our theoretical analysis.

6 Conclusion

We have theoretically analyzed the model selection consis-
tency of Lasso, both with and without post-thresholding,
for the problem of high-dimensional Ising model selection
with a focus on the paramagnetic phase. Specifically, in
the case without post-thresholding, we prove that Lasso is
model selection consistent with the same order of sample
complexity as that of ℓ1-LogR for RR graphs. For general
tree-like graphs, similar result is obtained under mild as-
sumptions of the dependency condition and incoherence
condition. Moreover, in the case with post-thresholding, for
general tree-like graphs, we not only obtain an upper bound
of the reconstructed square error of Lasso, but also prove the
consistency of Lasso with post-thresholding with the same
order of sample complexity as that of ℓ1-LogR and RISE
without any assumptions on the dependency condition and
incoherence condition. Experimental results are consistent
with the theoretical analysis.

There are several interesting future directions for current
study. First, since our focus in this paper is the param-
agnetic phase, one important future work is to extend the

current analysis to high-dimensional Ising models defined
on general graphs beyond the paramagnetic phase, e.g., fer-
romagnetic phase, to see whether it still can, similarly as
ℓ1-LogR and RISE, successfully recover the graph struc-
ture of Ising models with the same order of the number of
samples. Another future work is to investigate the perfor-
mance of Lasso for high-dimensional Ising model selection
in the non-i.i.d. case [Dutt et al., 2021]. The study of other
alternative simple and efficient methods for Ising model
selection is also an interesting topic for future investigation.
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Küffner, R., Vega, N. M., Prill, R. J., Camacho, D. M.,
Allison, K. R., Kellis, M., Collins, J. J., and Stolovitzky,
G. (2012). Wisdom of crowds for robust gene network
inference. Nature methods, 9(8):796–804.

[McAuley and Leskovec, 2012] McAuley, J. J. and
Leskovec, J. (2012). Learning to discover social circles
in ego networks. volume 2012, pages 548–56. Citeseer.

[Meng et al., 2020] Meng, X., Obuchi, T., and Kabashima,
Y. (2020). Structure learning in inverse Ising problems
using ℓ2-regularized linear estimator. arXiv preprint
arXiv:2008.08342.

[Meng et al., 2021] Meng, X., Obuchi, T., and Kabashima,
Y. (2021). Ising model selection using ℓ1-regularized
linear regression: A statistical mechanics analysis. Ad-
vances in Neural Information Processing Systems, 34.

[Mezard and Montanari, 2009] Mezard, M. and Montanari,
A. (2009). Information, physics, and computation. Ox-
ford University Press.

[Morcos et al., 2011] Morcos, F., Pagnani, A., Lunt, B.,
Bertolino, A., Marks, D. S., Sander, C., Zecchina, R.,
Onuchic, J. N., Hwa, T., and Weigt, M. (2011). Direct-
coupling analysis of residue coevolution captures native
contacts across many protein families. Proceedings of the
National Academy of Sciences, 108(49):E1293–E1301.

[Negahban et al., 2012] Negahban, S. N., Ravikumar, P.,
Wainwright, M. J., Yu, B., et al. (2012). A unified frame-
work for high-dimensional analysis of m-estimators
with decomposable regularizers. Statistical science,
27(4):538–557.

[Nguyen and Berg, 2012] Nguyen, H. C. and Berg, J.
(2012). Bethe–Peierls approximation and the inverse
Ising problem. Journal of Statistical Mechanics: Theory
and Experiment, 2012(03):P03004.

[Nguyen et al., 2017] Nguyen, H. C., Zecchina, R., and
Berg, J. (2017). Inverse statistical problems: from the in-
verse Ising problem to data science. Advances in Physics,
66(3):197–261.

[Nishimori, 2001] Nishimori, H. (2001). Statistical physics
of spin glasses and information processing: an introduc-
tion. Number 111. Clarendon Press.



Xiangming Meng, Tomoyuki Obuchi, Yoshiyuki Kabashima

[Opper and Saad, 2001] Opper, M. and Saad, D. (2001).
Advanced mean field methods: Theory and practice. MIT
press.

[Plan and Vershynin, 2016] Plan, Y. and Vershynin, R.
(2016). The generalized lasso with non-linear obser-
vations. IEEE Transactions on information theory,
62(3):1528–1537.

[Ravikumar et al., 2010] Ravikumar, P., Wainwright, M. J.,
Lafferty, J. D., et al. (2010). High-dimensional Ising
model selection using ℓ1-regularized logistic regression.
The Annals of Statistics, 38(3):1287–1319.

[Ricci-Tersenghi, 2012] Ricci-Tersenghi, F. (2012). The
Bethe approximation for solving the inverse Ising prob-
lem: a comparison with other inference methods. Jour-
nal of Statistical Mechanics: Theory and Experiment,
2012(08):P08015.

[Rockafellar, 1970] Rockafellar, R. T. (1970). Convex anal-
ysis, volume 36. Princeton university press.

[Rothman et al., 2008] Rothman, A. J., Bickel, P. J., Lev-
ina, E., Zhu, J., et al. (2008). Sparse permutation invariant
covariance estimation. Electronic Journal of Statistics,
2:494–515.

[Santhanam and Wainwright, 2012] Santhanam, N. P. and
Wainwright, M. J. (2012). Information-theoretic limits
of selecting binary graphical models in high dimensions.
IEEE Transactions on Information Theory, 58(7):4117–
4134.

[Scikit-learn, ] Scikit-learn. Ridge classification. https:
//scikit-learn.org/stable/modules/
linear_model.html#ridge-regression.

[Tanaka, 1998] Tanaka, T. (1998). Mean-field theory
of Boltzmann machine learning. Physical Review E,
58(2):2302.

[Thrampoulidis et al., 2015] Thrampoulidis, C., Abbasi,
E., and Hassibi, B. (2015). Lasso with non-linear mea-
surements is equivalent to one with linear measurements.
Advances in Neural Information Processing Systems,
28:3420–3428.

[Tibshirani, 1996] Tibshirani, R. (1996). Regression
shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological),
58(1):267–288.

[Vershynin, 2018] Vershynin, R. (2018). High-dimensional
probability: An introduction with applications in data
science, volume 47. Cambridge university press.

[Vuffray et al., 2016] Vuffray, M., Misra, S., Lokhov, A.,
and Chertkov, M. (2016). Interaction screening: Efficient

and sample-optimal learning of Ising models. In Ad-
vances in Neural Information Processing Systems, pages
2595–2603.

[Wainwright, 2009] Wainwright, M. J. (2009). Sharp
thresholds for high-dimensional and noisy sparsity recov-
ery using ℓ1-constrained quadratic programming (lasso).
IEEE Transactions on Information Theory, 55(5):2183–
2202.

[Wainwright and Jordan, 2008] Wainwright, M. J. and Jor-
dan, M. I. (2008). Graphical models, exponential fami-
lies, and variational inference. Now Publishers Inc.

[Wainwright et al., 2007] Wainwright, M. J., Lafferty, J. D.,
and Ravikumar, P. K. (2007). High-dimensional graphi-
cal model selection using ℓ1-regularized logistic regres-
sion. In Advances in neural information processing sys-
tems, pages 1465–1472.

[Zhang et al., 2016] Zhang, Y., Guo, W., and Ray, S.
(2016). On the consistency of feature selection with
lasso for non-linear targets. In International Conference
on Machine Learning, pages 183–191. PMLR.

[Zhao and Yu, 2006] Zhao, P. and Yu, B. (2006). On model
selection consistency of lasso. The Journal of Machine
Learning Research, 7:2541–2563.

https://scikit-learn.org/stable/modules/linear_model.html#ridge-regression
https://scikit-learn.org/stable/modules/linear_model.html#ridge-regression
https://scikit-learn.org/stable/modules/linear_model.html#ridge-regression


On Model Selection Consistency of Lasso for High-Dimensional Ising Models

A Proof of Lemma 1

Proof. The gradient of the square loss ℓ
(
θ\r;X

n
1

)
in (5) w.r.t. θ\r reads

∇ℓ
(
θ\r;X

n
1

)
=

1

n

n∑
i=1

x
(i)
\r

x(i)
r −

∑
t∈V \r

θrtx
(i)
t

 . (32)

After taking expectation of gradient ∇ℓ
(
θ\r;X

n
1

)
over the distribution Pθ∗ (x) and setting it to be zero, we obtain

Eθ∗
(
∇ℓ
(
θ\r;X

n
1

))
= 0 in matrix form:

Q∗
rθ\r = b, (33)

where Q∗
r = Eθ∗

(
X\rX

T
r

)
is the covariance matrix of X\r and b = Eθ∗

(
X\rXr

)
. The solution to (33), denoted as θ̃∗\r,

can be analytically obtained as θ̃∗\r = (Q∗
r)

−1
b. Next, we construct the full covariance matrix C = Eθ∗

(
XXT

)
of all spins

X as follows

C =

[
1 bT

b Q∗
r

]
, (34)

where Xr is indexed as the first variable in C without loss of generality. From the block matrix inversion lemma, the inverse
covariance matrix can be computed as

C−1 =

 F−1
11 −F−1

11

(
θ̃∗\r

)T
−θ̃∗\rF

−1
11 F−1

22

 , (35)

where

F11 = 1− bT (Q∗
r)

−1
b, (36)

F22 = Q∗
r − bbT . (37)

On the other hand, for general tree-like graphs in the paramagnetic phase, the inverse covariance matrix C−1 can be
computed from the Hessian of the Gibbs free energy [Ricci-Tersenghi, 2012, Nguyen and Berg, 2012, Abbara et al., 2020].
Specifically, each element of the covariance matrix C = {Crt}r,t∈V can be expressed as

Crt = Eθ∗(xrxt)− Eθ∗(xr)Eθ∗(xt) =
∂2 logZ(σ)

∂σr∂σt
, (38)

where Z(σ) =
∑

x Pθ∗ (x) e
∑

s∈V σsxs with σ = {σs}s∈V and the assessment is carried out at σ = 0. In addition, for
technical convenience we introduce the Gibbs free energy as

A (m) = max
σ

{
σTm− logZ (σ)

}
. (39)

The definition of (39) indicates that following two relations hold:

∂mr

∂σt
=

∂2 logZ(σ)

∂σr∂σt
= Crt, (40)

∂σr

∂mt
= [C−1]rt =

∂2A(m)

∂mr∂mt
, (41)

where the evaluations are performed at σ = 0 and m = argminm A(m) (= 0 under the paramagnetic assumption).
Consequently, the inverse covariance matrix of a tree-like graph G ∈ Gp,d can be computed as [Ricci-Tersenghi, 2012,
Nguyen and Berg, 2012, Abbara et al., 2020]

[
C−1

]
rt

=

 ∑
u∈N (r)

1

1− tanh2 (θ∗ru)
− dr + 1

 δrt

− tanh (θ∗rt)

1− tanh2 (θ∗rt)
(1− δrt) . (42)
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The two representations of C−1 in (35) and (42) are equivalent so that the corresponding elements should equal to each
other. Thus, the following identities hold

F−1
11 =

∑
u∈N (r)

1
1−tanh2(θ∗

ru)
− dr + 1,

θ̃∗\rF
−1
11 =

tanh(θ∗
\r)

1−tanh2
(
θ∗
\r

) , (43)

where tanh (·) is applied element-wise. From (43), we obtain (8), which is a rescaled version of the true interactions. In
particular, for RR graphs with constant coupling θ∗rt = θ0,∀ (r, t) ∈ E and dr = d, substituting the results one can obtain

θ̃∗rt =

{
tanh(θ0)

1+(d−1) tanh2(θ0)
if (r, t) ∈ E;

0 otherwise.
(44)

which completes the proof.

B Proof of Lemma 2

The corresponding belief propagation (BP) equation on a RR graph can be written as follows [Mezard and Montanari, 2009]

mr→t = tanh

 ∑
k∈N (r)\t

tanh−1 (tanh (θ0)mk→r)

 . (45)

where mr→t is the message from node r to node t. The spontaneous magnetization for the node r ∈ V is assessed as

mr = tanh

 ∑
t∈N (r)

tanh−1 (tanh (θ0)mt→r)

 . (46)

Due to the uniformity of RR graphs, these equations are reduced to

mc = tanh
(
(d− 1) tanh−1 (tanh (θ0)mc)

)
, (47)

m = tanh
(
d tanh−1 (tanh (θ0)mc)

)
, (48)

where we set mr→t := mc and mr := m for all directed edges r → t and all nodes r ∈ V .

Suppose that x = (xr)
p
r=1 is subject to a Hamiltonian H (x) = −

∑
s̸=t θ

∗
rtxrxt. For this, we define the Helmholtz free

energy as

F (ξ) = − ln

(∑
x

exp

(
−H (x) +

p∑
r=1

ξrxr

))
. (49)

Using F (ξ), one can evaluate the expectation as

mr := Eθ∗ {xr} = − ∂F (ξ)

∂ξr

∣∣∣∣
ξ=0

=

∑
x xr exp (−H (x))∑
x exp (−H (x))

. (50)

In addition, the covariance of xr and xt can be computed as

Eθ∗ {xrxt} − Eθ∗ {xr}Eθ∗ {xt} =
∂Eθ∗ {xr}

∂ξt

∣∣∣∣
ξ=0

=

∑
x xrxt exp (−H (x))∑

x exp (−H (x))
−
∑

x xr exp (−H (x))∑
x exp (−H (x))

·
∑

x xt exp (−H (x))∑
x exp (−H (x))

, (51)

where the last equation is termed the linear response relation [Nishimori, 2001].
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Suppose that node r is placed at the distance of l from node t. A remarkable property of tree-like graphs, including typical
RR graphs, is that a unique path is defined between two arbitrary nodes. This indicates that the linear response relation (51)
can be evaluated by the chain rule of partial derivative using messages of belief propagation as

Eθ∗ {xrxt} − Eθ∗ {xr}Eθ∗ {xt} =
∂mr

∂ξt

∣∣∣∣
ξ=0

= (1−m2)

(
tanh (θ0) (1−m2

c)

1− tanh2 (θ0)m2
c

)l

. (52)

In the the paramagnetic phase where m = 0 and mc = 0, we have

Eθ∗ {xrxt} − Eθ∗ {xr}Eθ∗ {xt} = tanhl (θ0) . (53)

Let us examine the dependency condition (C1). Since the distances between any two different nodes in S :=
{(r, t) | t ∈ N (r)} are 2, all the off-diagonal elements in sub-matrix Q∗

SS equal to tanh2 θ0 and all the diagonal ele-
ments equal to 1, i.e.,

Q∗
SS =

1 tanh2 θ0 tanh2 θ0 · · · tanh2 θ0

tanh2 θ0 1 tanh2 θ0
... tanh2 θ0

tanh2 θ0 tanh2 θ0
. . . tanh2 θ0

...
... · · · tanh2 θ0 1 tanh2 θ0

tanh2 θ0 tanh2 θ0 · · · tanh2 θ0 1


d×d

. (54)

It can be analytically computed that Q∗
SS has two different eigenvalues: one is 1 + (d − 1) tanh2 θ0 and the other is

1− tanh2 θ0 with multiplicity (d− 1). Consequently, Q∗
SS has bounded eigenvalue and we explicitly obtain the result of

Cmin as

Λmin (Q
∗
SS) = 1− tanh2 θ0 := Cmin. (55)

Then, we prove that the incoherence condition (C2) also satisfies. From (54), the inverse matrix (Q∗
SS)

−1 can be analytically
computed as

(Q∗
SS)

−1
=



a b b · · · b

b a b
... b

b b
. . . b

...
... · · · b a b
b b · · · b a


d×d

, (56)

where

a =
1 + (d− 2) tanh2 θ0(

1− tanh2 θ0
) (

1 + (d− 1) tanh2 θ0
) , (57)

b = − tanh2 θ0(
1− tanh2 θ0

) (
1 + (d− 1) tanh2 θ0

) . (58)

Then, by definition of 9Q∗
ScS (Q∗

SS)
−1 9∞, it is achieved for r ∈ Sc where r belongs to the nearest neighbors of the nodes

in S. Specifically, in that case, the elements in the row in Q∗
ScS associated with node r ∈ Sc can only take two different

values: one element is tanh θ0 and the other (d− 1) elements are tanh3 θ0. Then, from (56), after some algebra, it can be
calculated that

9Q∗
ScS (Q∗

SS)
−1 9∞ = tanh θ0 := 1− α, (59)

where we obtain an analytical result α := 1− tanh θ0 ∈ (0, 1], which completes the proof.
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C Proofs of the key results

C.1 Proof of Lemma 3

Proof. The result that Eθ∗

(
Z

(i)
s

)
= 0 can be readily obtained by the definition of θ̃∗\r in Lemma 1. Thus, to prove

Var
(
Z

(i)
s

)
≤ 1, it suffices to prove Eθ∗

((
Z

(i)
s

)2)
≤ 1 in the paramagnetic phase.

We introduce an auxiliary function

f1
(
θ\r
)
= Eθ∗

x(i)
r −

∑
t∈V \r

θtx
(i)
t

2

. (60)

Thus we have Eθ∗

((
Z

(i)
s

)2)
= f1

(
θ̃∗\r

)
. The gradient vector can be computed as ∇f1

(
θ\r
)
= 2Eθ∗

(
∇ℓ
(
θ\r;Xn

))
.

Since Eθ∗

(
∇ℓ
(
θ̃∗\r;Xn

))
= 0 as shown in Lemma 1, we have ∇f1

(
θ̃∗\r

)
= 0. Moreover, since ∇2f1

(
θ\r
)
=

2Eθ∗

(
X\rX

T
\r

)
≻ 0, we can conclude that f1

(
θ\r
)

reaches its minimum at θ\r = θ̃∗\r. As a result, we have

Eθ∗

((
Z(i)
s

)2)
=f1

(
θ\r = θ̃∗\r

)
≤f1

(
θ\r = 0

)
=Eθ∗

(
x(i)
r

)2
=1, (61)

where in the last line the fact that x(i)
r ∈ {−1,+1} ,∀r ∈ V is used. Therefore, we obtain Var

(
Z

(i)
s

)
≤ 1.

Moreover, the absolute value
∣∣∣Z(i)

s

∣∣∣ is bounded. Specifically, (a) for RR graphs, in the paramagnetic phase, we have

∣∣∣Z(i)
s

∣∣∣ =
∣∣∣∣∣∣x(i)

s (x(i)
r −

∑
t∈V \r

θ̃∗rtx
(i)
t )

∣∣∣∣∣∣
≤ 1 +

∑
t∈V \r

|θ̃∗rt|

= 1 +
d tanh (θ0)

1 + (d− 1) tanh2 (θ0)

≤ 2. (62)

(b) for general tee-like graphs, recalling the result (8), we have ∑
u∈N (r)

1

1− tanh2 (θ∗ru)
− dr + 1

 ∑
t∈V \r

∣∣∣θ̃∗rt∣∣∣
=
∑

t∈N (r)

|tanh (θ∗rt)|
1− tanh2 (θ∗rt)

=
∑

t∈N (r)

|tanh (θ∗rt)|+ 1− tanh2 (θ∗rt) + tanh2 (θ∗rt)− 1

1− tanh2 (θ∗rt)

=− dr +
∑

t∈N (r)

|tanh (θ∗rt)|+ 1− tanh2 (θ∗rt)

1− tanh2 (θ∗rt)
, (63)
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To proceed, consider an auxiliary function f2 (x) = x+ 1− x2, 0 ≤ x ≤ 1. Then it can be proved that 1 ≤ f2 (x) ≤ 5
4 , so

that from (63), we have ∑
t∈V \r

∣∣∣θ̃∗rt∣∣∣ ≤ −dr +
5
4

∑
u∈N (r)

1
1−tanh2(θ∗

ru)∑
u∈N (r)

1
1−tanh2(θ∗

ru)
− dr + 1

. (64)

It can be easily checked that
∑

u∈N (r)
1

1−tanh2(θ∗
ru)

∈ [dr,∞). We introduce another auxiliary function

f3 (x) =
−dr +

5
4x

x− dr + 1
, x ∈ [dr,∞). (65)

The first-order derivative of f3 (x) can be easily computed as

f
′

3 (x) =
5− dr

4 (x− dr + 1)
2 . (66)

As a result, f
′

3 (x) > 0 when dr < 5 and f
′

3 (x) < 0 when dr > 5. Consequently,

max
x∈[dr,∞)

f3 (x) =

{
5
4 dr ≤ 5
dr

4 dr > 5
(67)

Finally, combining the above results together yields∣∣∣Z(i)
s

∣∣∣ ≤ max

{
9

4
,
4 + dr

4

}
< dr,∀dr ≥ 3. (68)

By definition, there is dr ≤ d so that
∣∣∣Z(i)

s

∣∣∣ ≤ d, which completes the proof.

C.2 Proof of Lemma 4

Proof. Frist, we prove the case (a). In this case, According to Lemma 3, Eθ∗

(
Z

(i)
s

)
= 0 and

∣∣∣Z(i)
s

∣∣∣ ≤ 2, so that by the
Azuma Hoeffding inequality [Vershynin, 2018], for ∀η > 0, we have

P (|Wn
s | > η) ≤ 2 exp

(
−η2n

8

)
. (69)

Setting η = αλn

2(2−α) , we obtain

P
(
2− α

λn
|Wn

s | >
α

2

)
≤ 2 exp

(
− α2λ2

nn

32(2− α)2

)
. (70)

Then, by using a union bound we have

P
(
2− α

λn
∥Wn∥∞ ≥ α

2

)
≤ 2 exp

(
− α2λ2

nn

32(2− α)2
+ log p

)
, (71)

which completes the proof of (a).

In the case (b) for general graphs, the proof is slightly complicated. According to Lemma 3, applying the Bernstein’s
inequality [Vershynin, 2018], ∀η > 0 we have

P (|Wn
s | > η) ≤ 2 exp

(
−

1
2η

2n

1 + 1
3dη

)
. (72)

Similar to [Vuffray et al., 2016], inverting the following relation

ξ =
1
2η

2n

1 + 1
3dη

, (73)
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and substituting the result in (72) yields

P
(
|Wn

s | >
1

3

(
u+

√
u2 + 18

u

d

))
≤ 2 exp (−ξ) , (74)

where u = ξ
nd. Suppose that n ≥ ξd2, then u2 = ξ2

n2 d
2 ≤ ξ

n while u
d = ξ

n . Consequently, we have

1

3

(
u+

√
u2 + 18

u

d

)
≤ 1

3

(√
ξ

n
+

√
ξ

n
+ 18

ξ

n

)
(75)

≤ 1

3

(√
ξ

n
+

√
ξ

n

√
25

)
(76)

= 2

√
ξ

n
, (77)

where a relaxed result is obtained. Subsequently, we obtain an expression which is independent of d:

P

(
|Wn

s | > 2

√
ξ

n

)
≤ 2 exp (−ξ) . (78)

Setting ξ = (c+ 1) log p, then if λn ≥ 4(2−α)
√
c+1

α

√
log p
n , we have αλn

2(2−α) ≥ 2
√

ξ
n so that

P
(
2− α

λn
|Wn

s | >
α

2

)
≤ P

(
|Wn

s | > 2

√
ξ

n

)
≤ 2 exp (− (c+ 1) log p) . (79)

Then, by using a union bound we have

P
(
2− α

λn
∥Wn∥∞ ≥ α

2

)
≤ 2 exp (−c log p) . (80)

As a result, when n ≥ (c+ 1) d2 log p, as long as λn ≥ 4
√
c+1(2−α)

α

√
log p
n , it is guaranteed that P

(
2−α
λn

∥Wn∥∞ ≥ α
2

)
→

0 at rate exp (−c log p) for some constant c > 0, which completes the proof.

C.3 Proof of Lemma 5

Proof. Using the method in [Rothman et al., 2008], here the proof follows [Ravikumar et al., 2010] but with essential
modifications. First, define a function Rd → R as follows [Rothman et al., 2008]

G (uS) :=ℓ
(
θ̃∗S + uS ;Xn

)
− ℓ

(
θ̃∗S ;Xn

)
+ λn

(∥∥∥θ̃∗S + uS

∥∥∥
1
−
∥∥∥θ̃∗S∥∥∥

1

)
. (81)

Note that G is a convex function w.r.t. uS . Then ûS = θ̂S − θ̃∗S minimizes G according to the definition in (4). Moreover,
it is easily seen that G (0) = 0 so that G (ûS) ≤ 0. As described in [Ravikumar et al., 2010], if we can show that there
exists some radius B > 0 and any uS ∈ Rd with ∥uS∥2 = B satisfies G(uS) > 0, then we can claim that ∥ûS∥2 ≤ B since
otherwise one can always, by appropriately choosing t ∈ (0, 1], find a convex combination tûS + (1− t) 0 which lies on
the boundary of the ball with radius B and thus G (tûS + (1− t) 0) ≤ 0, leading to contradiction. Consequently, it suffices
to establish the strict positivity of G on the boundary of a ball with radius B = Mλn

√
d, where M > 0 is one parameter to

choose later.

Specifically, let uS ∈ Rd be an arbitrary vector with ∥uS∥2 = B. Expanding the quadratic form ℓ
(
θ̃∗S + uS ;Xn

)
, we have

G (uS) =− (Wn
S )

T
uS + uT

SQ
n
SSuS

+ λn

(∥∥∥θ̃∗S + uS

∥∥∥
1
−
∥∥∥θ̃∗S∥∥∥

1

)
, (82)
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where Wn
S is the sub-vector of Wn = −∇ℓ

(
θ̃∗;Xn

)
, and Qn

SS is the sub-matrix of the sample matrix Qn. The expression
(82) is simpler than the counterpart in [Ravikumar et al., 2010] which is obtained from the Taylor series expansion of the
non-quadratic loss function and thus its quadratic term is dependent on θ. To proceed, we investigate the bounds of the three
terms in the right hand side (RHS) of (82), respectively.

Since ∥uS∥1 ≤
√
d ∥uS∥2 and ∥Wn

S ∥∞ ≤ λn

2 , the first term is bounded as∣∣∣− (Wn
S )

T
uS

∣∣∣ ≤ ∥Wn
S ∥∞ ∥uS∥1 ≤ ∥Wn

S ∥∞
√
d ∥uS∥2

≤
(
λn

√
d
)2 M

2
. (83)

The third term is bounded as

λn

(∥∥∥θ̃∗S + uS

∥∥∥
1
−
∥∥∥θ̃∗S∥∥∥

1

)
≥ −λn ∥uS∥1 ≥ −λn

√
d ∥uS∥2

= −M
(
λn

√
d
)2

. (84)

The remaining middle Hessian term in RHS of (82) is, different from [Ravikumar et al., 2010], quite simple due to the
square loss function:

uT
SQ

n
SuS ≥ ∥uS∥22 Λmin (Q

n
SS)

≥ CminM
2
(
λn

√
d
)2

, (85)

where the last inequality comes from the dependency condition Λmin (Q
∗
SS) ≥ Cmin in (13). In contrast to

[Ravikumar et al., 2010], there is no need to control the additional spectral norm.

Combining the three bounds (83) - (85) together with (82), we obtain that

G (uS) ≥
(
λn

√
d
)2{

−M

2
+ CminM

2 −M

}
. (86)

It can be easily verified from (86) that G (uS) is strictly positive when we choose M = 3
Cmin

. Consequently, as long as

∥Wn∥∞ ≤ λn

2 , we are guaranteed that ∥ûS∥2 ≤ Mλn

√
d = 3λn

√
d

Cmin
, which completes the proof.

C.4 Proof of Lemma 6

Proof. According to Lemma 3, applying the Bernstein’s inequality, ∀η > 0 we have

P (|Wn
s | > η) ≤ 2 exp

(
−

1
2η

2n

1 + 1
3dη

)
. (87)

Similar to [Vuffray et al., 2016], inverting the following relation

ξ =
1
2η

2n

1 + 1
3dη

(88)

and substituting the result in (87) yields

P
(
|Wn

s | >
1

3

(
u+

√
u2 + 18

u

d

))
≤ 2 exp (−ξ) . (89)
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where u = ξ
nd. Suppose that n ≥ ξd2, then u2 = ξ2

n2 d
2 ≤ ξ

n while u
d = ξ

n . Consequently, we have

1

3

(
u+

√
u2 + 18

u

d

)
≤ 1

3

(√
ξ

n
+

√
ξ

n
+ 18

ξ

n

)
(90)

≤ 1

3

(√
ξ

n
+

√
ξ

n

√
25

)
(91)

= 2

√
ξ

n
. (92)

where a relaxed result is obtained. Subsequently, we obtain an expression which is independent of d

P

(
|Wn

s | > 2

√
ξ

n

)
≤ 2 exp (−ξ) . (93)

Then, by using a union bound we have

P

(
∥Wn∥∞ > 2

√
ξ

n

)
≤ 2 exp (−ξ + log p) . (94)

Setting ξ = log 2p
ε3

, then if n ≥ d2 log 2p
ε3

, we have

P

∥Wn∥∞ > 2

√
log 2p

ε3

n

 ≤ 2 exp

(
− log

2p

ε3
+ log p

)
(95)

= ε3, (96)

which completes the proof.

C.5 Proof of Lemma 7

Proof. Since x
(i)
r x

(i)
t is bounded by

∣∣∣x(i)
r x

(i)
t

∣∣∣ ≤ 1. Therefore, using the Hoeffding inequality [Hoeffding, 1994], for any
ϵ > 0, there is

P (|Qn
st −Q∗

st| > ϵ) ≤ 2 exp

(
−nϵ2

2

)
. (97)

Then, due to the symmetry of Qn
st, using a union bound we have

P (|Qn
st −Q∗

st| ≤ ϵ, ∀s, t ∈ V \ r) ≥ 1− p2 exp

(
−nϵ2

2

)
, (98)

As a result, as long as n ≥ 2
ϵ2 log

p2

ε4
, there is P (|Qn

st −Q∗
st| ≤ ϵ,∀s, t ∈ V \ r) ≥ 1− ε4, which completes the proof.

C.6 Proof of Lemma 9

Proof. According (28) and Lemma 8, we have

δℓ
(
△θ\r , θ̃

∗
\r;X

n
1

)
=

1

2
△T

θ\r
Qn△θ\r

=
1

2
△T

θ\r
Q∗△θ\r +

1

2
△T

θ\r
(Qn −Q∗)△θ\r

≥ e−2θ∗
maxd

2 (d+ 1)

∥∥△θ\r

∥∥2
2
+

1

2
△T

θ\r
(Qn −Q∗)△θ\r . (99)
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Then, from Lemma 7, choosing ϵ = e−2θ∗maxd

32d(d+1) , then with probability at least 1− ε4, there is

△T
θ\r

(Qn −Q∗)△θ\r ≥ − e−2θ∗
maxd

32d (d+ 1)

∥∥△θ\r

∥∥2
1

≥ − e−2θ∗
maxd

2 (d+ 1)

∥∥△θ\r

∥∥2
2
. (100)

as long as n ≥ 2
ϵ2 log

p2

ε4
= 211d2 (d+ 1)

2
e4θ

∗
maxd log p2

ε4
. As a result, there is

δℓ
(
△θ\r , θ̃

∗
\r;X

n
1

)
≥ e−2θ∗

maxd

2 (d+ 1)

∥∥△θ\r

∥∥2
2
− e−2θ∗

maxd

4 (d+ 1)

∥∥△θ\r

∥∥2
2

=
e−2θ∗

maxd

4 (d+ 1)

∥∥△θ\r

∥∥2
2
, (101)

which completes the proof.

D Proofs of Theorems 1 and 2

First, to prove the “fixed design” results in Proposition 1 and Proposition 2, for each vertex r ∈ V , an optimal primal-dual
pair

(
θ̂\r, ẑr

)
is constructed, where θ̂\r ∈ Rp−1 is a primal solution and ẑr ∈ Rp−1 is the associated sub-gradient vector.

They satisfy the zero sub-gradient optimality condition [Rockafellar, 1970] associated with Lasso (4):

∇ℓ
(
θ̂\r;Xn

)
+ λnẑr = 0, (102)

where the sub-gradient vector ẑr satisfies {
ẑrt = sign

(
θ̂rt

)
, if θ̂rt ̸= 0; (a)

|ẑrt| ≤ 1, otherwise. (b)
(103)

Then, the pair is a primal-dual optimal solution to (4) and its dual. Further, to ensure that such an optimal primal-dual pair
correctly specifies the signed neighorbood of node r, the sufficient and necessary conditions are as follows{

sign (ẑrt) = sign (θ∗rt) , ∀ (r, t) ∈ S, (a)

θ̂ru = 0, ∀ (r, u) ∈ Sc := E \ S. (b)
(104)

Note that while the regression in (4) corresponds to a convex problem, for p ≫ n in the high-dimensional regime, it is
not necessarily strictly convex so that there might be multiple optimal solutions. Fortunately, the following lemma in
[Ravikumar et al., 2010] provides sufficient conditions for shared sparsity among optimal solutions as well as uniqueness of
the optimal solution.

Lemma 10. (Lemma 1 in [Ravikumar et al., 2010]). Suppose that there exists an optimal primal solution θ̂\r with associated
optimal dual vector ẑr such that ∥ẑSc∥∞ < 1. Then any optimal primal solution θ̃ must have θ̃Sc = 0. Moreover, if the

Hessian sub-matrix [∇2ℓ
(
θ̂\r;Xn

)
]SS is strictly positive definite, then θ̂\r is the unique optimal solution.

As a result, using the framework in [Ravikumar et al., 2010], we can construct a primal-dual witness
(
θ̂\r, ẑ

)
for the Lasso

estimator (4) as follows:

(a) First, set θ̂S as the minimizer of the partial penalized likelihood

θ̂S = argmin
θ\r=(θS ,0)∈Rp−1

{
ℓ
(
θ\r;Xn

)
+ λn ∥θS∥1

}
, (105)

and then set ẑS = sign
(
θ̂S

)
.
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(b) Second, set θ̂Sc = 0 so that condition (104) (b) holds.

(c) Third, obtain ẑSc from (102) by substituting the values of θ̂\r and ẑS .

(d) Finally, we need to show that the stated scalings of (n, p, d) imply that, with high probability, the remaining conditions
(103) and (104) (a) are satisfied.

D.1 Proof of Proposition 1

From Lemma 4 (a), if the regularization parameter λn satisfies λn ≥ 8(2−α)
α

√
log p
n , then with probability greater than

1− 2 exp
(
−cλ2

nn
)

there is

∥Wn∥∞ ≤ α

2− α

λn

2
≤ λn

2
, (106)

so that the condition in Lemma 5 is also satisfied. The zero-subgradient condition (102) can be equivalently re-written as
follows Qn

ScS

(
θ̂S − θ̃∗S

)
= Wn

Sc − λnẑSc ,

Qn
SS

(
θ̂S − θ̃∗S

)
= Wn

S − λnẑS ,
(107)

where we have used the fact that θ̂Sc = 0 from the primal-dual construction, and also the result θ̃∗Sc = 0 from Lemma 1.
After some simple algebra, we obtain

Wn
Sc −Qn

ScS (Qn
SS)

−1
Wn

S + λnQ
n
ScS (Qn

SS)
−1

ẑS = λnẑSc . (108)

For strict dual feasibility, from (108), we obtain

∥ẑSC∥∞ ≤ |||Q∗
SCS (Q∗

SS)
−1 |||∞

[
∥Wn

S ∥∞
λn

+ 1

]
+

∥∥Wn
SC

∥∥
∞

λn

≤ (1− α) + (2− α)
∥Wn∥∞

λn

≤ (1− α) + (2− α)
1

2− α

α

2

= 1− α

2
< 1, (109)

with probability converging to one. For correct sign recovery, it suffices to show that
∥∥∥θ̂S − θ̃∗S

∥∥∥
∞

≤ θ̃∗
min

2 . From Lemma 5
(since (106) holds), we have

2

θ∗min

∥∥∥θ̂S − θ̃∗S

∥∥∥
∞

≤ 2

θ∗min

∥∥∥θ̂S − θ̃∗S

∥∥∥
2
≤ 6

θ̃∗minCmin

λn

√
d. (110)

As a result, if θ̃∗min ≥ 6λn

√
d

Cmin
, or λn ≤ θ̃∗

minCmin

6
√
d

, the condition
∥∥∥θ̂S − θ̃∗S

∥∥∥
∞

≤ θ̃∗
min

2 holds. In the paramagnetic phase, from

Lemma 1, there is θ̃∗min = tanh(θ0)
1+(d−1) tanh2(θ0)

. Substituting these results lead to Proposition 1.

D.2 Proof of Proposition 2

The proof of Proposition 2 is the same as that of Proposition 1 in Appendix D.1, except that different conditions in Lemma 4
(b) are used, and that we need to impose the assumptions that the population Hessian Q∗ satisfies both conditions (C1) and
(C2) for the considered general graphs.

D.3 Proof of Theorem 1

Now we are ready to prove the main results in Theorem 1. As shown in Lemma 2, for RR graphs with uniform couplings,
the population Hessian Q∗ for Lasso already satisfies both conditions (C1) and (C2), so that assumptions of (C1) and (C2)
can be dropped for RR graphs.
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Next, using large deviation analysis as [Ravikumar et al., 2010], we prove that the sample Hessian Qn of Lasso satisfies the
same properties as the population Hessian Q∗ with high probability with large enough samples.

Lemma 11. Consider an Ising model on a RR graph G = (V,E) ∈ Gp,d with regular node degree d and uniform couplings
θ∗r,t = θ0,∀(r, t) ∈ E. Then, for any δ > 0, there are some positive constants A,B,K

P (Λmin (Q
n
SS) ≤ Cmin − δ) ≤ 2 exp

(
−A

δ2n

d2
+B log d

)
, (111)

P
(
9Qn

ScS (Qn
SS)

−1 9∞ ≥ 1− α

2

)
≤ 2 exp

(
−K

n

d3
+ log p

)
, (112)

where Cmin and α are Cmin = 1− tanh2 θ0 and α = 1− tanh θ0.

Proof. The proof is the same as Lemma 5 and Lemma 6 in [Ravikumar et al., 2010], with the only difference that the
variance function term does not exist, by substituting into the the results of Cmin and α in the Lemma 2.

Lemma 11 demonstrates that the sample Hessian Qn satisfies both conditions (C1) and (C2) with high probability as long as
n ≥ Ld3 log p for some constant L. As the results of Proposition 1 builds on top of the assumption that the sample Hessian
Qn satisfies (C1) and (C2), we readily obtain that all results of Proposition 1 will hold for if we replace the requirement that
the sample Hessian Qn satisfies both conditions (C1) and (C2) by an extra scaling requirement n ≥ Ld3 log p for some
constant L independent of (n, p, d).

Consequently, by combining Lemma 2, Lemma 11, and Proposition 1 and substituting the specific results of Cmin and α in
Lemma 2, after some algebra, we readily obtain Theorem 1, which completes the proof.

D.4 Proof of Theorem 2

The proof of Theorem 2 is the same as that of Theorem 1 in Appendix D.3, except that different conditions in Lemma 4 (b)
are used.

E Proofs of Theorems 3 and 4

E.1 Proofs of Theorem 3

This is done through Proposition 3 by evaluating the two conditions (C3) and (C4). First, let ε3 = 2ε1
3 > 0 in Lemma 6.

Then, by setting λn = 4

√
log 3p

ε1

n , if n ≥ d2 log 3p
ε1

, with probability at least 1− 2ε1
3 , we have ∥Wn∥∞ ≤ 2

√
log 3p

ε1

n = λn

2

so that condition (C3) satisfies as long as n ≥ d2 log 3p
ε1

. Second, let ε4 = ε1
3 > 0 in Lemma 9. From Lemma 9,

with probability at least 1 − ε1
3 , the restricted strong convexity condition is satisfied with the value κ = e−2θ∗maxd

4(d+1) when

n > 211d2 (d+ 1)
2
e4θ

∗
maxd log 3p2

ε1
. Then, the relation R ≥ 3

√
dλn

κ in Proposition 3 reads

R > 3
√
d4

√
log 3p

ε1

n

(
e−2θ∗

maxd

4 (d+ 1)

)−1

. (113)

To find a value of R that satisfies (113), we can choose R = 2/
√
d. Then from (113), the number of samples n needs to

satisfy

n > 9 · 210d2 (d+ 1)
2
e4θ

∗
maxd log

3p2

ε1
. (114)

As a result, when n ≥ 214d2 (d+ 1)
2
e4θ

∗
maxd log 3p2

ε1
, the condition (C4) satisfies with probability at least 1− ε1

3 . Based on
the union bound, both condition (C3) and condition (C4) will be simultaneously satisfied with probability at least 1− ε1,
which completes the proof by using Proposition 3.



Xiangming Meng, Tomoyuki Obuchi, Yoshiyuki Kabashima

E.2 Proofs of Theorem 4

First consider any fixed vertex r ∈ V , if the square error
∥∥∥θ̂\r − θ̃∗\r

∥∥∥
2
≤ θ̃∗

min

2 , then it is guaranteed that the absolute

difference of each element of θ̂\r and θ̃∗\r is less than θ̃∗
min

2 so that one can perfectly recover all its correct neighbors

with a thresholding θ̃∗
min

2 . According to Theorem 3, with probability 1 − ε1, when n ≥ 214d2 (d+ 1)
2
e4θ

∗
maxd log 3p2

ε1
,

there is
∥∥∥θ̂\r − θ̃∗\r

∥∥∥
2
≤ 26

√
d (d+ 1) e2θ

∗
maxd

√
log 3p

ε1

n . Further, let 26
√
d (d+ 1) e2θ

∗
maxd

√
log 3p

ε1

n ≤ θ̃∗
min

2 , we obtain that

n ≥ 214
(
θ̃∗min

)−2

d (d+ 1)
2
e4θ

∗
maxd log 3p

ε1
. Consequently, with at least probability 1− ε1 we have

∥∥∥θ̂\r − θ̃∗\r

∥∥∥
2
≤ θ̃∗

min

2

and thus correct neighbors are recovered for any fixed r ∈ V whenever

n ≥ max

{
d,
(
θ̃∗min

)−2
}
214d (d+ 1)

2
e4θ

∗
maxd log

3p2

ε1
. (115)

Then, setting ε2 = pε1 and using the union bound for all vertices r ∈ V , we have

P

(∥∥∥θ̂\r − θ̃∗\r

∥∥∥
2
>

θ̃∗min

2
,∃ r ∈ V

)
≤ pε1 = ε2, (116)

so that

P

(∥∥∥θ̂\r − θ̃∗\r

∥∥∥
2
≤ θ̃∗min

2
,∀ r ∈ V

)
> 1− ε2, (117)

which completes the proof.
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