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Abstract

In critical applications, causal models are the
prime choice for their trustworthiness and ex-
plainability. If data is inherently distributed and
privacy-sensitive, federated learning allows for
collaboratively training a joint model. Existing
approaches for federated causal discovery share
locally discovered causal model in every iter-
ation, therewith not only revealing local struc-
ture but also leading to very high communica-
tion costs. Instead, we propose an approach
for privacy-preserving federated causal discov-
ery by distributed min-max regret optimization.
We prove that max-regret is a consistent scoring
criterion that can be used within the well-known
Greedy Equivalence Search to discover causal
networks in a federated setting and is provably
privacy-preserving at the same time. Through ex-
tensive experiments, we show that our approach
reliably discovers causal networks without ever
looking at local data and beats the state of the art
both in terms of the quality of discovered causal
networks as well as communication efficiency.

1 INTRODUCTION

Discovering causal dependencies from observational data
is one of the most fundamental problems in science (Pearl,
2009). While a plethora of approaches for discovering
causal networks are designed for single datasets (Spirtes
et al., 2000; Chickering, 2002; Shimizu et al., 2006; Peters
et al., 2014; Huang et al., 2018), in critical applications,
such as healthcare, we cannot pool data due to privacy
considerations. In such cases we have multiple sites each
with their own private data. Learning causal networks over
such data presents a challenging setting where we don’t
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just want to discover the underlying causal network in a
federated manner, we can also not compromise on privacy.
We therefore consider the problem of discovering a global
causal network over distributed datasets with a fixed set of
variables — in a privacy preserving manner.

Most state-of-the-art causal discovery approaches that can
work with multiple datasets require that we first pool the
data (Mooij et al., 2016; Zhang et al., 2017), which makes
them inapplicable to the current setting. Approaches that
do not require data to be pooled, work only for a single
target variable (Peters et al., 2016), or place strict assump-
tions on the causal mechanisms that are unlikely to hold in
practice (Shimizu, 2012; Ghassami et al., 2017).

On the other hand, state of the art federated learning ap-
proaches allow to train models in a distributed manner
without sharing any data, but their application to causal
discovery is not straightforward. A naive approach is dis-
covering individual causal models for each local dataset,
pooling those models and computing the likely global
causal model governing the process that generated all lo-
cal datasets. Sharing models, however, is not privacy-
preserving, since one can make inferences about local
datasets from model parameters (Geiping et al., 2020; Lyu
and Chen, 2021; Singhal et al., 2021). Another naive ap-
proach is to discover local causal networks for each dataset
and compute their union. This has two major issues: (i)
For finite dataset sizes, locally discovered causal models
can vary substantially from the true network and may con-
tain spurious edges, leading to a bad performance, and (ii)
this still requires us to explicitly communicate the local
causal networks for pooling, which may compromise pri-
vacy guarantees (Geiping et al., 2020; Wang et al., 2020).

In this work, we propose to discover the global causal net-
work without sharing any data, model parameters, or even
local causal networks— using regrets. Intuitively, the re-
gret measures how much worse a given causal network is,
compared to the best causal network for a given dataset.
We show that minimizing the worst-case regret over these
distributed datasets allows us to define a scoring criterion
that, under mild assumptions, is guaranteed to be consis-
tent. It can hence be employed as a score within Greedy
Equivalence Search (GES) (Chickering, 2002) to discover
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the global causal network by only using regrets obtained
from local datasets: we first let each site discover the best
network for its dataset using GES with any consistent scor-
ing criterion (e.g., BIC), and then optimize the worst-case
regret, once again using GES, with respect to the locally
discovered causal networks. Throughout the entire learn-
ing process, the optimizing algorithm neither sees the data,
nor knows the local model parameters. To ensure privacy
of local data, we show that using the Laplace mechanism
on the shared regrets guarantees ϵ-differential privacy.

To perform federated causal discovery, we instantiate our
proposed approach, which we call PERI1, using three well
known consistent scoring criteria. Through extensive ex-
periments we show that PERI discovers causal networks of
higher quality than the state of the art on both synthetic and
real-world data, scales upto 100 distributed environments
while requiring orders of magnitude less communication.

We organize this paper as follows. We first discuss related
work in Sec. 2. In Sec. 3 we describe preliminary details
required for our proposed method. Sec. 4 and 5 describe
theoretical guarantees resp. practical instantiation of our
approach. Next, we provide privacy-preserving guarantees
of our instantiation in Sec. 6 and report our empirical eval-
uation results in Sec. 7. We conclude with a discussion and
future research directions in Sec. 8

2 RELATED WORK

Causal discovery, i.e., the discovery of causal networks
from observational data, is perhaps the most important
problem in causal inference as without a causal model,
causal inference is impossible. Many methods have
been proposed to discover causal networks given a single
dataset (Spirtes et al., 2000; Chickering, 2002; Shimizu
et al., 2006; Peters et al., 2014; Blöbaum et al., 2018;
Huang et al., 2018; Zheng et al., 2018; Mian et al., 2021),
much fewer for doing so given data collected from multiple
environments (Zhang et al., 2017; Mooij et al., 2016), and
only a small handful for doing so when the data cannot be
gathered centrally (Ng and Zhang, 2022).

Methods that can consider only a single dataset are not ap-
plicable in our setting; even if we ignore all privacy as-
pects and were to centrally collect and pool all data, it is
well known that naively pooling the data can introduce un-
wanted bias in estimation (Tillman, 2009). Methods that
can consider multiple datasets, such as when data has been
collected from different environments (Yang et al., 2018;
Squires et al., 2020), come one step closer to the scenario
we consider in this paper. The most prominent approaches
still combine all data, adding one or more context variables

1In astronomy, Peri is the point at which an orbiting object is
closest to the center of mass of the body it is orbiting (such as a
planet). In our approach, we aim to discover that network which
is collectively closest to the local networks of all environments.

to distinguish the rows of the combined datasets, and then
perform causal discovery on the augmented data (Zhang
et al., 2017; Magliacane et al., 2018). A very general
such approach is the Joint Causal Inference (JCI) frame-
work proposed by Mooij et al. (2016), which permits any
constraint-based causal discovery algorithm to work with
data from multiple environments. Each of these approaches
require that all data is available at one site, which is pro-
hibitive in our setting as this violates privacy.

Federated learning allows for learning without the need
for centralized data. Rather than sharing data with other
nodes, the key idea in federated learning is that we share
(partial) local results. The topic of federated causal dis-
covery is relatively young. Proposals for federated causal
inference (Xiong et al., 2021) and federated causal discov-
ery (Shimizu, 2012) require strong parametric assumptions.
Recent approaches avoid these, either by sacrificing con-
vergence guarantees (Gao et al., 2021) or by sharing addi-
tional learning parameters (Ye et al., 2022; Ng and Zhang,
2022). Although these methods do not directly share data,
by sharing completely specified local causal models they
can provide attackers sufficient information to reconstruct
local data (Geiping et al., 2020; Singhal et al., 2021).

In this paper, we build upon a recent approach of (Mian
et al., 2022), proposing a regret-based framework to fed-
erated learning and instantiating it using an approximate
beam-search-based approach. However, it provides no the-
oretical or privacy guarantees of their solution. Further-
more, the proposed method does not scale beyond a few
(10) variables. Our work, on the other hand, uses the
the idea of regret-based learning to propose a theoretically
sound score that comes with strong privacy guarantees and
achieves lower communication costs while scaling up to
100 environments.

3 PRELIMINARIES

3.1 Notation and Assumptions

We consider data X, consisting of m variables, split into
d different datasets X(1), . . . , X(d) of sizes n(1), . . . , n(d).
We assume that each X(i) is drawn i.i.d. from a distribution
Pi(X

(i)), which are all are entailed by the same true causal
network G∗ but where the parameters associated with G∗

may be different between X(i). Our goal is to solve the
following problem.

Problem Statement (Informal). Given data X, discover
the true causal network G∗ in a federated (without pooling
data) and privacy-preserving (without sharing any models
fit over individual datasets) manner.

To identify the underlying causal network, we need to as-
sume that the distributions Pi(X

(i)) and the local causal
network G∗ satisfy the following common assumptions
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made in causal discovery. First is the causal Markov condi-
tion, stating that every variable in G∗ is independent of its
non-descendants conditional on its parents in G∗ and sec-
ond, the Faithfulness assumption is that if sets U, V are in-
dependent given a set W in P , then W d-separates U and V
in G∗. Together, the Causal Markov Condition and Causal
Faithfulness condition entail that the conditional indepen-
dence relations in P correspond precisely to d-separation
relations in G∗, which lets us identify the Markov equiva-
lence class (MEC) of G∗, i.e. the set of all graphs entailing
the exact same independence constraints as G . We write
G ∼ H when G,H are in the same MEC, and G ⊒ H if
G ∼ H ′ for some H ′ containing all edges in H . As we in-
stantiate our proposed solution using Greedy Equivalence
Search (Chickering, 2002) (Sec 3.2), we need to make the
causal sufficiency assumption, telling us that there are no
latent confounders. The sufficiency and faithfulness as-
sumptions, however, are not always necessary and we pro-
vide a discussion in Sec 8 on how they can be avoided.

When all of the above assumptions hold, algorithms such as
Greedy Equivalence Search can discover causal networks,
for a single dataset, up to Markov equivalence (Glymour
et al., 2019) i.e. partially oriented causal networks where
all collider structures are correctly identified.

3.2 Greedy Equivalence Search

Greedy Equivalence Search (GES) (Chickering, 2002) is a
score-based causal discovery approach that learns a causal
network Ĝ from observational dataset X(i). To do so it
uses a scoring criterion L to measure how well a network
G describes X(i). Starting from an empty network, GES it-
eratively builds a causal network through repeated forward
respectively backward-search. In each step of the forward
search, GES chooses a single edge addition to the current
best network such that the edge improves score the most
and uses the new network as the best network for the next
step. Similarly, in each step of the backward search, sin-
gle edge deletions that improve score the most are chosen.
Each phase ends when no modifications of the current net-
work improve score anymore. GES is guaranteed to re-
turn the correct Markov equivalence class as n→∞ if the
following two conditions hold. First, L is decomposable,
meaning that L can be expressed as

L(X;G) =

m∑
j=1

lj(Xj ; pa
G
j ) ,

where paG
j are the parents of variable Xj in G and lj is only

a function of Xj and its parents. And second, L satisfies the
consistency property which is formally stated as follows.

Definition 1 (Chickering (2002). Consistent Scoring Cri-
terion). Let G, H be any pair of DAGs, X be a set of
data consisting of m records that are i.i.d. samples from
some distribution P (·). A (minimizing) scoring criterion

L is consistent if in the limit n → ∞, the following two
properties hold:

1. If H contains P and G does not contain P , then
L(X;H) < L(X;G)

2. If H and G both contain P , and G contains fewer
parameters than H , then L(X;G) < L(X;H),

where contains means that G has the exact independence
constraints implied by P .

Despite its greedy nature, if L is consistent, GES is guaran-
teed to find a graph in the MEC of the true G in the large
sample limit, although (in the worst-case) this discovery
could require runtime super-exponential in the number of
variables. Examples of decomposable consistent scores in-
clude the Akaike’s Information Criterion (AIC) (Akaike,
1974), Bayesian Information Criterion (BIC) (Schwarz,
1978) and scores defined using Minimum Description
Length (MDL) (Grünwald, 2007; Mian et al., 2021).

GES, however, is limited to finding causal networks over
a single dataset and can therefore only be used to learn
individual networks G(i) for each X(i). To extend GES
to a federated setting, we require that we can measure the
score of a global network G relative to a locally learned
G(i) without knowing what the local networks are. To do
so, we introduce the concept of regret.

3.3 Regret

Given data X and some model M , from a model classM
that explains the data, let L(X;M) be a score function that
is minimized when M is the true model for X . Regret
R(M) for a given model M with respect to data X is de-
fined as the difference in scores when evaluating X using
M instead of the best model M∗ for X . Formally stated

R(M) := L(X;M)− min
M∗∈M

L(X;M∗) , (1)

where we drop the dependence on the data X to simplify
notation. Simply put, regret measures how much worse the
proposed model M is compared to the best model for the
data. If both M and M∗ are present inM, R(M) is lower
bounded by 0, which is achieved when M ≡M∗.

4 REGRET-BASED FEDERATED
CAUSAL DISCOVERY

In this section we show that we can use the regret (Eq. (1))
to build a consistent score for GES. Using such a regret-
based score, we provide a score-agnostic framework that
can be used to perform federated causal discovery. We then
show that the minimizer of the proposed score discovers the
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correct underlying causal structure in the limit. We provide
the proofs of our results in the Supplementary section.

For our model classM defined in Eq (1), we consider the
space of all Directed Acyclic Graphs (DAGs), G. Hence for
our proposed setup we can write Eq. (1) as

Ri(G) := L(X(i);G)− min
G(i)∈G

L(X(i);G(i)) ,

where Ri(G) is the regret associated with dataset X(i)

when using network G.

Now it becomes easy to see the merit of using regret from a
federated learning perspective: Given a server S that aims
to learn a global causal network using d different sites, each
with their own private datasets X(1), . . . , X(d), S can send
a network G and a scoring criterion L to each site and op-
timize using the regrets that it receives back. To do so, S
needs to consolidate these regret values received back from
each site into a meaningful score. We propose this to be the
worst-case regret calculated over all environments,

LF (G) := max
i

Ri(G)

= max
i

(
L(X(i);G)− L(X(i);G(i))

)
(2)

where G(i) is the minimizer for L(X(i); ·).

Using the aforementioned formulation, the goal of the
server is to find that network G that minimizes the worst-
case regret among all the networks. Formally stated

Problem Statement. Given samples X = {X(1), . . .
, X(d)} over d environments that share a common under-
lying causal DAG, find Ĝ such that

Ĝ = argmin
G∈G

max
i

Ri(G) . (3)

This obtained network Ĝ is the one which trades off errors
relative to one local network G(i) to another local network
G(j) and tries to jointly minimize them. Such a Ĝ is the
least bad network relative to any of the local networks.

Next we show the conditions under which the minimizer
for Eq. (3) finds the correct underlying causal network, up
to Markov equivalence.

4.1 Consistency

To prove that the minimizer for Eq. (3) is the true causal
network, we need to assume that L(X(i);G) is of the form

L(X(i);G) = L(G) + L(X(i)|G) ,

where L(G) is a function penalizing the complexity of the
network G and the parameters associated with the class of
generating functions e.g. linear or spline relationships be-
tween each variable and its parents, and L(X(i)|G) is the
log-likelihood of the data given the G.

We can now show that in the limit, when every site uses the
same consistent score L and obtains arbitrarily much data
then our method is guaranteed to find the correct MEC.

Theorem 1. Let G∗ be the true causal network for all
P (X(i)) and let n(1) . . . , n(d) → ∞. Further let L be a
consistent score. Then

lim
n(1),...,n(d)→∞

P
(
Ĝ ∼ G∗

)
= 1 .

That is, maxi Ri(G) is consistent when all n(i) →∞.

We can further relax Thm. 1 to not require that every site’s
amount of data grows over time. In fact, as long as even
one of the datasets grows, we nevertheless find all edges.

Theorem 2. Let G∗ be the true causal network for all
P (X(i)) and let N := maxi n

(i) → ∞. Further let L
be a consistent score. Then

lim
N→∞

P
(
Ĝ ⊒ G∗

)
= 1 .

For scores L, like AIC, the correct MEC is generally im-
possible to recover precisely because the penalty for addi-
tional edges does not scale with the number of data points.
In contrast, for the BIC score this is not an issue.

Corollary 3. Let the assumptions of Thm. 2 hold and let L
be the BIC score. Then

lim
N→∞

P
(
Ĝ ∼ G∗

)
= 1 .

That is, the score maxi Ri(G) is consistent when L incor-
porates a BIC-penalty for parameters and N →∞.

The proof of Cor. 3 applies equally to any other consistent
criterion where the parameter-penalty grows strictly with
sample size, e.g., MDL-based scores. In Sec. 8 we discuss
how to extend our work to other types of scores.

These results imply that Ri(G) is a consistent scoring cri-
terion as long as L used within Ri(G) is consistent. We can
therefore define Ri(G) using any consistent L and perform
a search for the underlying causal network G by exhaus-
tively evaluating all possible causal networks and choosing
one that minimizes Eq (3). Exhaustive search, however, is
super-exponential in the number of nodes and is only fea-
sible for networks with very few variables. The problem
of learning exact Bayesian network structure is NP-hard
after all (Chickering et al., 2004). Using our consistency
guarantees, however, we can instantiate our search more
efficiently using GES. We show in the next section how
we can instantiate an efficient regret-based causal learning
framework, while maintaining privacy guarantees.

5 PRACTICAL ALGORITHM

We now describe PERI, a score-based federated causal dis-
covery approach for distributed environments. Let L be
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any consistent score used within GES, such as BIC, and let
LF be the composition that calculates the worst-case regret
using L as defined in Eq.(2). Then LF can be used as a
consistent score within GES (Thm. 2, Cor. 3) to discover
causal networks in a federated fashion.

As a result, we can perform federated causal discovery as
shown in Algorithm 1. Given a server S and d different
sites, each with their own private datasets X(1), . . . , X(d),
the server communicates L to each of the sites. Each site
then learns a local network G(i) using GES (lines 1-2). The
server then instantiates LF as defined in Eq. (2) (l. 4) and
runs its own GES using LF . In the forward pass (l. 6),
the server communicates the best discovered network Gt,
at iteration t, to all sites. Each site converts Gt to the MEC
Et and calculates regret over all possible single edge exten-
sions of Et. The list of these scores is communicated back
to the server. Next, the server chooses the network Gt+1

with the lowest worst-case regret among all these exten-
sions and sets this network as the best network for the next
iteration. The forward search ends when no extensions of
Gt improve the score anymore. The backward search (l.
7) is analogous to the forward search except that the re-
gret scores are calculated over single edge deletions of Et
at each iteration. We repeat the search process until conver-
gence (l. 8). During the learning process, the server neither
sees the data, nor knows the local models for any site. The
only communication that takes place between server and
sites is the list of regret values for networks in the MEC for
the query DAG Gt.

This proposed approach has several advantages: First, the
regret for a query network can be calculated locally at each
site and returned back to the server, requiring no commu-
nication of model parameters — the job of the server is to
choose the worst-case regret for a given network G. Sec-
ond, PERI is guaranteed to converge. This is because regret
is lower-bounded by 0, and we only take steps that reduce
regret. Third, we do not need any additional assumptions
except the ones required for L — to be used within GES
we require L to be decomposable and consistent. PERI, in
fact, can be viewed as a generalization of GES to multiple
datasets as it is easy to see that running PERI using only a
single site is akin to running GES on a single dataset.

With the algorithm explained, we now describe how we can
guarantee differential privacy using PERI.

6 PRIVACY OF SHARING ONLY
REGRETS

Intuitively, sharing only regrets reveals less about local data
than sharing model parameters and causal networks: At-
tackers can infer membership in local datasets from model
parameters (Shokri et al., 2017; Ma et al., 2020) and even
reconstruct local datasets from model updates (Zhu and

Algorithm 1: PERI for federated causal discovery
Input: Scoring criterion L
Output: Causal network G

1 for i = 1 . . . d do
2 site[i].GREEDYEQVSEARCH(L)

3 G∗ ← ∅
4 Define LF (G) := maxi

[
L(X(i), G)− L(X(i), G(i))

]
5 repeat
6 G∗ ← server.FORWARDEQVSEARCH(G∗, LF )
7 G∗ ← server.BACKWARDEQSEARCH(G∗, LF )

8 until convergence;
9 return G∗

Han, 2020). Moreover, model parameters allow an attacker
to craft poisoning and backdoor attacks (Sun et al., 2019).
Sharing only causal graphs still does not fully protect local
data, since "a causal graph can leak information about par-
ticipants in the dataset" (Wang et al., 2020). PERI shares
only regret values, but local causal networks can be recon-
structed by optimizing Eq. (3) with respect to the target site,
which is in principle NP-hard (Chickering et al., 2004).

By applying the Laplace mechanism (Dwork et al., 2006),
i.e., adding appropriate noise to the regret values, we can
guarantee that sensitive local data is protected in terms of
ϵ-differential privacy. To prove this guarantee holds, it suf-
fices to show that all regrets Ri have bounded sensitiv-
ity. For that, we assume that G corresponds at each site
i to a parameter vector θ(i) such that X(i) is modeled via
X

(i)
j = f(Paj , ϵj ; θ(i)) with independent noise ϵj . We

assume that our score L is well-behaved in the following
sense: when X(i) is of size n and X ′(i) differs in one el-
ement from X(i) then the corresponding optimizers for L
differ by

∥∥θ(i) − θ′(i)
∥∥
1
∝ 1/n. This assumption holds for

many learning algorithms, e.g. convex empirical risk min-
imization with finite VC-dimension or Rademacher com-
plexity (Von Luxburg and Schölkopf, 2011).

Lemma 4. Assume that Pi(x; θ) is uniformly lower-
bounded bounded by r, i.e., ∀x ∈ X ∀θ ∈ Θ : Pi(x; θ) ≥
r, that ∥θ∥ ≤ M for all local model parameters θ ∈ Θ,
and that the score L is partially differentiable with respect
to θ. Let X(i) and X ′(i) be datasets that differ in a single
element, i.e. X(i)\X ′(i) = xk, θ and θ′ the respective local
parameters, and R̂i(G) and R̂′

i(G) the respective regrets.
Assume that ∥θ − θ′∥1 ≤ 2M/n. Then the sensitivity ∆R̂i

of the regret is bounded by

max
∣∣∣R̂i(G)− R̂′

i(G)
∣∣∣ ≤ (4M +1) log r+O

(
log n

n

)
.

With this, it follows from the Laplace mechanism (Dwork
et al., 2006) that adding Laplacian noise to regrets before
sending them to the server guarantees ϵ-differential privacy.
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Figure 1: [Top, Lower is better] SHD and [Bottom, Higher
is better] F1 over environment size d = {3, 5, 7, 9}.
PERI-MDL performs the best overall.

Proposition 5. Assume that each local regret R̂i has sensi-
tivity ≤ Q. Then PERI with i.i.d. Laplace noise with scale
λ = Q/ϵ added to each R̂i is ϵ-differentially private.

In practice, adding noise can deteriorate the training pro-
cess, but we show in Sec. 7 that the practical performance
of PERI is robust against noise added to local regret values
and that it performs well under privacy requirements.

7 EVALUATION

Setup We instantiate PERI using three consistent scor-
ing criteria, which are: the AIC (Sakamoto et al., 1986),
BIC (Schwarz, 1978) and spline-based MDL score (Mian
et al., 2021). We refer to these instantiations as PERI-AIC,
PERI-BIC and PERI-MDL respectively. Since GES could
get stuck in local-optima when discovering local causal net-
works with limited sample sizes (Lu et al., 2021), for prac-
tical reasons we run PERI in two rounds to prevent it from
being misled due to incorrectly discovered local networks:
first we use PERI to learn G̃ using the learned G(i) for each
environment. Next, we learn the actual G∗ using PERI by
enforcing G̃ as the local model for all environments.

We compare to RFCD (Mian et al., 2022) as represen-
tative score-based approach. As representative ANM
based method we compare to Direct-LINGAM (Shimizu,
2012), which is a modified version of the original
LINGAM (Shimizu et al., 2006) for causal discovery over
multiple groups. We compare to the nonlinear version of
NOTEARS-ADMM (NT-ADMM) (Ng and Zhang, 2022)
as continuous optimization based federated causal discov-
ery approach. Both of the above approaches require that
the model parameters be communicated between server and
sites. As baseline, we use GES (Chickering, 2002) to lo-

5 10 15
0

0.2

0.4

0.6

0.8

1

S
H

D

PERI-MDL PERI-BIC PERI-AIC RFCD-M
RFCD-B NT-ADMM LINGAM GES

5 10 15
0

0.2

0.4

0.6

0.8

1

m

F
1

Figure 2: [Top, Lower is better] SHD and [Bottom, Higher
is better] F1 over networks with variable count m =
{5, 10, 15}. PERI-MDL consistently performs the best
overall. RFCD does not terminate within 24 hours for any
15 variable networks.

cally discover causal networks within each environment
and take a union over the discovered networks to predict
the global causal network. While no parameter exchange
takes place, the local causal networks are still shared with
the server. We cannot compare to CDNOD (Zhang et al.,
2017) or to JCI (Mooij et al., 2016) as they first pool all
data and are therefore not applicable to our setting.

We evaluate the predicted networks in terms of struc-
tural similarity using the Structural Hamming Distance
(SHD) (Tsamardinos et al., 2006) — which counts the num-
ber of edges where two networks differ. For comparability
across multiple experiments, we normalize SHD to be in
the range [0, 1]. To measure correctness of edge orienta-
tions in the predicted networks, we use the F1 score. For
synthetic data, we terminate all experiments that do not fin-
ish within 24 hours. We standardize all data to have zero
mean and unit variance to avoid practical issues like var-
sortability (Reisach et al., 2021) and make all code and data
available for research purposes2.

Results Next, we provide empirical results of our work
on PERI. We extensively test PERI using both synthetic and
real-world data and evaluate PERI’s performance on five
distinct aspects: 1) causal discovery in our intended setting
2) causal discovery when only a subset of environments are
available at each learning iteration 3) communication effi-
ciency, 4) performance under privacy considerations, and
5) causal discovery on real-world data.

Causal discovery in our intended setting We start with
the simplest setting where we generate multiple datasets

2https://eda.rg.cispa.io/prj/peri/
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Figure 3: [Lower is better] Averaged SHD over ASIA (Left)
and WASTE (Right) networks when querying only a subset
s of environments. PERI-MDL performs best. Results for
PERI progressively improve as more environments are al-
lowed to be queried. RFCD-B and RFCD-M do not finish
within 24 hours for any experiments with s > 0.4.

using the same underlying distribution. We have num-
ber of environments d ∈ {3, 5, 7, 9}, number of variables
m ∈ {5, 10, 15}, and samples per environment n = 5000
as our experimental setting. We perform a total of 52 ex-
periments for each m. We simulate DAGs using the Erdős-
Rényi model and generate each effect, Xi from its parents
Pai using functions of the form Xi = f(Pai) + ϵi, where
f is a non-linear function defined over Pai, and ϵi is in-
dependent additive noise Gaussian noise with zero mean.
We generate complex causal relationships by defining f to
be a randomly initialized 2-layer neural network, using the
causal discovery toolbox (Kalainathan and Goudet, 2019).

We report the results across varying number of environ-
ments in Fig. 1 and for different sized networks in Fig. 2.
We see that overall PERI-MDL outperforms all other ap-
proaches in terms of both SHD as well as orientation-F1.
One reason for this is that spline-based MDL score uses
non-parmetric regression to model causal relationships and
is therefore able to identify the causal parents with higher
accuracy. This is in contrast to PERI-BIC and RFCD-B,
both of which use the BIC score with a lenient parameter
penalty which could support inclusion of spurious edges.
We see in Fig. 2 that both RFCD variants, despite their
competitive performance, fail to scale to networks with
m = 15. Moreover we find that baseline GES has better
F1-scores than LINGAM and NT-ADMM..

Discovering networks when only a subset of envi-
ronments are available As our next experiment, we
generate data using two well known causal structures,
namely the ASIA (Lauritzen and Spiegelhalter, 1988) and
WASTE (Lauritzen, 1992) networks. We generate a total of
10 experiments, each containing 100 unique environments.
At each round of update, we allow the methods to only
query a fraction s ∈ {0.2, 0.4, 0.6, 0.8, 1.0} of randomly
chosen environments. We average the results over 30 iter-
ations of each experiment for PERI-MDL, PERI-BIC and
PERI-AIC whereas for NT-ADMM,RFCD-M and RFCD-B

ASIA WASTE
0

300000

600000

900000

1200000

1500000

T

PERI-MDL PERI-BIC PERI-AIC

RFCD-M RFCD-B NT-ADMM

Figure 4: [Lower is better] Average number of parameter
values, T , communicated to infer causal structures over
ASIA and WASTE networks at d = 100. For baseline
GES, the number of parameters is always 6400 and 8100
for ASIA resp. WASTE networks. Neither RFCD-M nor
RFCD-B produce any results within 24 hours for d = 100.
We therefore report their results for d = 40.

we average over 10 iterations due to longer run times. We
omit LINGAM as it does not contain a mechanism to query
a subset of environments. We show the results in Fig 3
where we see that PERI-MDL performs the best overall.
All of the PERI approaches show improvement in results
as the available number of environments increase. Surpris-
ingly, NT-ADMM shows inconsistent performance which
initially improves with increasing environment, but subse-
quently worsens even when all of the sites are available.

Communication efficiency To measure communication
efficiency between server and sites, we investigate the to-
tal rounds of communications required by each approach
to infer a causal network. Overall PERI-MDL is able to
discover the causal network on average 15 rounds of com-
munications for the ASIA network, with PERI-BIC and
PERI-AIC following closely with 21 resp. 23 rounds. This
is much less than NT-ADMM which always terminates af-
ter the max iteration cap of 176 rounds set by Ng and
Zhang (2022). This means that the number of parame-
ters that PERI exchanges during the course of learning for
both ASIA and WASTE networks are significantly less than
NT-ADMM and RFCD as we show in Fig. 4.

Performance under privacy considerations We test the
effect of adding Laplacian noise with 0 mean and increas-
ing scale λ over the range [0.01−100] to the values of regret
before communicating the regret values to the server. The
results in Fig. 5 indicate that PERI is robust to Laplacian
noise. Indeed, the performance of PERI does not change
significantly with λ up to 1; and not even with λ = 10 when
we use MDL. Since the larger noise corresponds to stronger
privacy guarantees, this implies that PERI performs well
under privacy requirements. We find that neither RFCD-M
nor RFCD-B produced any output after 24 hours for any of
the settings in this experiment.
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Figure 5: [Lower is better] Averaged SHD over ASIA
(Left) and WASTE (Right) networks with d = 100 and
Laplace noise on regret values with scale parameter λ ∈
[0.0, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 100]. PERI-MDL deterio-
rates the slowest. RFCD is omitted as it does not produce
any output after 24 hours for this experiment.

Real world Data To see how well PERI performs on
real-world data, we consider three distinct real-world
networks. We consider two non-overlapping networks
of sizes {5, 15} from the Lung cancer gene-expression
dataset (REGED) (Statnikov et al., 2015). For each of
the REGED networks we generate 9 distinct environments
without any sample overlap, each with 2000 samples per
environment. Third, we consider the SACHS protein
signaling network (Sachs et al., 2005) consisting of 11
variables, already measured over 9 distinct environments.
The SACHS dataset provides a challenging setting since
each environment has its data generated from a different
intervened-upon causal network. This violates our assump-
tion of a common, shared ground truth network.

We see from the results in Table 1 that PERI-MDL discov-
ers the exact ground truth for both REGED5 and REGED15
networks and is marginally outperformed by LINGAM on
the assumption-breaking case of SACHS dataset. We find
that RFCD-M, which also uses a spline-based MDL score,
recovers the correct causal network for REGED5 but fails
to do the same for REGED15.

8 DISCUSSION AND CONCLUSION

We considered the problem of discovering causal networks
in a federated setup. We have proposed a new method PERI
that allows us to discover causal networks in a privacy-
preserving manner. Extensive experiments on diverse set-
tings show that PERI outperforms the state of the art in fed-
erated causal discovery, both in quality of the discovered
causal networks and communication efficiency while pro-
viding privacy guarantees on top of it.

We considered three different scores to instantiate PERI:
AIC (Akaike, 1974), BIC (Schwarz, 1978), and spline-
based MDL score (Mian et al., 2021). We found that while
all three work well, the MDL score overall works best in
practice. One of the reasons for the superiority is the abil-

Table 1: [Lower is better] SHD for multiple real-world net-
works. PERI-MDL discovers the exact ground truth for
both REGED5 and REGED15.

REGED5 REGED15 SACHS

PERI-MDL 0 0 18
PERI-BIC 1 25 18
RFCD-M 0 5 17
RFCD-B 1 37 18
LINGAM 4 26 17

NT-ADMM 6 23 23
GES 2 55 25

ity of the proposed MDL score to model causal relation-
ships non-parametrically in combination with an adaptive
penalty for the parameters, rendering the method robust
even when large noise values are added to regret.

We discover the global DAG by sharing only regrets, but
we do not obtain the global models for each causal relation-
ship; methods that share local model parameters do obtain
them, at the cost of privacy and communication. We could
additionally measure the regret with respect to global pa-
rameters θ. In such a scenario, the server proposes both G
and θ to each site, instead of sending G alone. The condi-
tions under which the parameter space Θ can be efficiently
searched remains an open question.

We have used orientation-F1 to measure the correctness
of edge orientation. Alternatively, one could consider the
use of Structural Intervention Distance SID (Peters and
Bühlmann, 2015), which measures the number of interven-
tion distributions where two networks differ. It is, however,
not straightforward to interpret SID between two Markov
equivalence classes. This is because, as opposed to SHD,
the SID of the ground-truth Markov equivalence class with
itself is almost always non-zero. This makes interpretation
of SID dependent on the underlying Markov equivalence
class and prevents comparison across experiments.

While in this work we instantiate PERI using GES, regret-
based federated causal discovert framework is agnostic of
the underlying causal discovery algorithm: For any score-
based causal discovery algorithm A and a consistent score
L̃ with respect toA, if LF defined in Eq. (3) can be proven
to be consistent for L̃, we can simply replace GES in Al-
gorithm. 1 with A and perform federated causal learning
using L̃ as the score. This implies that, unlike GES, if A
does not require the faithfulness assumption as in the case
of GSP (Solus et al., 2017), we can perform causal discov-
ery without the latter. How to entail consistency guaran-
tees for such score-based approaches, as well as for the
ones that consider a mixture of observational and interven-
tional data (Yang et al., 2018; Squires et al., 2020; Brouil-
lard et al., 2020) is an engaging line of future work.
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Appendix

A PROOFS AND FORMAL RESULTS

In this section we provide the proofs for the formal results in Sec. 4 and Sec. 6.

Theorem 1. Let G∗ be the true causal network for all P (X(i)) and let n(1) . . . , n(d) →∞. Further let L be a consistent
score. Then

lim
n(1),...,n(d)→∞

P
(
Ĝ ∼ G∗

)
= 1 .

That is, maxi Ri(G) is consistent when all n(i) →∞.

Proof. Since L is a consistent score, we know that limn(i)→∞ P (G(i) = G∗) = 1 for all i. Thus
P
(
Ĝ = argminG maxi

(
L(X(i);G)− L(X(i);G∗)

))
= 1, which is clearly minimized when Ĝ ∼ G∗.

Theorem 2. Let G∗ be the true causal network for all P (X(i)) and let N := maxi n
(i) →∞. Further let L be a consistent

score. Then
lim

N→∞
P
(
Ĝ ⊒ G∗

)
= 1 .

Proof. When all n(i) →∞, Thm. 1 applies.

We therefore consider the case where some n(i) remain bounded. Let I =
{
i : n(i) <∞

}
and M =

max
{
lim supn(i) : i ∈ I

}
. Then we have maxG maxi∈I Ri(G) ≤ cM < ∞ for some c > 0. Meanwhile for all i

with n(i) → ∞ we have for all G ⊊ G∗ that L(X(i);G) − L(X(i);G(i)) ≈ L(X(i);G) − L(X(i);G∗) ∝ n(i) → ∞.
Hence any smaller G < G∗ achieves strictly worse minmax regret than any G ⊒ G∗ as N →∞.

Corollary 3. Let the assumptions of Thm. 2 hold and let L be the BIC score. Then

lim
N→∞

P
(
Ĝ ∼ G∗

)
= 1 .

That is, the score maxi Ri(G) is consistent when L incorporates a BIC-penalty for parameters and N →∞.

Proof. When L is the BIC score then for any dataset i such that n(i) → ∞ we have Ri(G) ∝ log(n(i)) → ∞ when
G = G∗ is too large. This grows larger than any finite penalty incurred from any of the datasets j with n(j) ≤M bounded,
so that picking Ĝ ∼ G∗ will be the best choice as N →∞.

Lemma 4. Assume that P (x;G) is uniformly lower-bounded bounded by r, i.e., ∀x ∈ X ∀G : P (x;G) ≥ r, that ∥θ∥ ≤M
for all local model parameters θ, and that the score L is partially differentiable wrt. θ. Let X(i) and X ′(i) be datasets that
only differ in a single element, i.e., X(i) \X ′(i) = xk, θ and θ′ the respective local parameters, and R̂i(G) and R̂′

i(G) the
respective regrets. Assume that |θ − θ′| ≤ 2M/n. Then the sensitivity ∆R̂i of the regret is bounded by

max
∣∣∣R̂i(G)− R̂′

i(G)
∣∣∣ ≤ (4M + 1) log r +O

(
log n

n

)
.
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Proof. Removing a single element from a local dataset X(i) changes also the local causal model, both in terms of the DAG
G(i) and the local model parameters θ(i). There fore, the local score changes for two reasons: (i) the dataset the score is
computed on changes, and (ii) the local causal model changes. That is, the sensitivity is

max
∣∣∣R̂i(G)− R̂′

i(G)
∣∣∣ = ∣∣∣L(X(i), G)− L(X(i), G(i))

−L(X ′(i), G) + L(X ′(i), G′(i))
∣∣∣

=
∣∣∣L(X ′(i), G′(i))− L(X(i), G(i))

∣∣∣ .

Thus, it suffices to bound |L(X ′, G′)−L(X,G)| for datasets X and X ′ that only differ in a single element and correspond-
ing different DAGs G,G′ and local model parameters θ, θ′. This difference encompasses both the difference in DAGs and
local model parameters. Since the difference in DAGs is determined by the difference of θ and θ′, we for convenience
write L(X,G) = L(X, θ) and show that the difference |L(X, θ)− L(X ′, θ′)| is bounded. Since

|L(X, θ)− L(X ′, θ′)| ≤ |L(X ′, θ)− L(X, θ)|
+ ∥θ − θ′∥ |L(X, θ′)− L(X, θ)| ,

we can use the linearization of L and get

|L(X, θ)−L(X ′, θ′)| ≤ |L(xk, θ)|︸ ︷︷ ︸
≤log r

+ ∥θ − θ′∥ |L(X, θ)− L(X, θ′)|︸ ︷︷ ︸
∝n

+ ∥θ − θ′∥︸ ︷︷ ︸
≤2M/n

|L(θ)− L(θ′)|+O
(
log n

n

)

≤ log r + 2M log r + 2M log r +O
(
log n

n

)
=(4M + 1) log r +O

(
log n

n

)
.

It follows that the sensitivity is bounded by (4M + 1) log r+O (log n/n). Note that the assumption |θ− θ′| ≤ 2M/n for
θ, θ′ optimized on datasets that only differ in a single element holds for most learning algorithms, e.g., convex empirical
risk minimization with finite VC-dimension or Rademacher complexity Von Luxburg and Schölkopf (2011).

Proposition 5. Assume that P (x;G) is uniformly lower-bounded bounded by r and that the regret has sensitivity (4M +
1) log r + O (log n/n). Then PERI with Laplacian noise with scale λ = ϵ−1 ((4M + 1) log r +O (log n/n)) added to
local regret values is ϵ-differentially private.

Proof. The Laplace mechanism guarantees that adding noise with mean 0 and scale λ to a function f with sensi-
tivity δf is δf/λ-differentially private. Since the regret has sensitivity (4M + 1) log r + O

(
logn
n

)
, choosing λ =

ϵ−1 ((4M + 1) log r +O (log n/n)) results in a sensitivity of

δR

λ
=

(4M + 1) log r +O
(

logn
n

)
ϵ−1 ((4M + 1) log r +O (log n/n))

= ϵ .
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B ALL EVALUATION RESULTS

B.1 Causal Discovery in our intended setting

Table 1: [Lower is better] Normalized SHD for methods over varying numbers of environments d, averaged over network
sizes {5, 10, 15}.

d PERI-MDL PERI-BIC PERI-AIC RFCD-B RFCD-M NT-ADMM GES LINGAM

3 0.185 0.281 0.371 0.277 0.230 0.599 0.429 0.445
5 0.232 0.304 0.353 0.317 0.243 0.563 0.438 0.400
7 0.186 0.322 0.370 0.277 0.245 0.542 0.478 0.434
9 0.194 0.342 0.337 0.277 0.255 0.603 0.520 0.440

Table 2: [Higher is better] F1 score for all methods over varying numbers of environments d, averaged over network sizes
{5, 10, 15}.

d PERI-MDL PERI-BIC PERI-AIC RFCD-B RFCD-M NT-ADMM GES LINGAM

3 0.741 0.694 0.647 0.697 0.739 0.273 0.657 0.340
5 0.726 0.694 0.653 0.670 0.722 0.258 0.653 0.402
7 0.750 0.680 0.646 0.697 0.712 0.330 0.632 0.381
9 0.740 0.659 0.678 0.711 0.712 0.248 0.608 0.350

Table 3: [Lower is better] Normalized SHD for all methods over varying numbers of variables m, averaged over environ-
ment sizes {3, 5, 7, 9}.

m PERI-MDL PERI-BIC PERI-AIC RFCD-M RFCD-B LINGAM NT-ADMM GES

5 0.180 0.310 0.350 0.250 0.240 0.500 0.710 0.440
10 0.218 0.325 0.368 0.240 0.330 0.363 0.450 0.495
15 0.163 0.240 0.275 - - 0.310 0.280 0.375

Table 4: [Higher is better] F1 score for all methods over varying numbers of variables m, averaged over environment sizes
{3, 5, 7, 9}.

m PERI-MDL PERI-BIC PERI-AIC RFCD-M RFCD-B LINGAM NT-ADMM GES

5 0.850 0.790 0.740 0.820 0.820 0.400 0.290 0.730
10 0.628 0.578 0.570 0.623 0.575 0.343 0.263 0.545
15 0.613 0.568 0.550 - - 0.305 0.208 0.518
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B.2 Discovering networks when only a subset of environments are available

Table 5: [Loweris better] Averaged SHD over ASIA and WASTE networks when querying only a subset s of environments.
PERI-MDL performs best. Results for PERI progressively improve as more environments are allowed to be queried.
RFCD-B and RFCD-M do not finish within 24 hours for any experiments with s > 40%.

s Dataset PERI-MDL PERI-BIC PERI-AIC RFCD-M RFCD-B NT-ADMM

20%

ASIA

0.35 0.56 0.59 0.4 0.51 0.85
40% 0.34 0.55 0.59 0.39 0.56 0.85
60% 0.33 0.55 0.58 - - 0.33
80% 0.32 0.54 0.57 - - 0.36
100% 0.31 0.53 0.57 - - 0.52

20%

WASTE

0.36 0.44 0.45 0.27 0.4 0.87
40% 0.35 0.43 0.45 0.24 0.4 0.87
60% 0.35 0.42 0.44 - - 0.3
80% 0.33 0.41 0.44 - - 0.34
100% 0.32 0.39 0.43 - - 0.46

Table 6: [Higher is better] Orientation F1 over ASIA and WASTE networks when querying only a subset s of environments.
PERI-MDL performs best. Results for PERI progressively improve as more environments are allowed to be queried.
RFCD-B and RFCD-M do not finish within 24 hours for any experiments with s > 40%.

s Dataset PERI-MDL PERI-BIC PERI-AIC RFCD-M RFCD-B NT-ADMM

20%

ASIA

0.35 0.56 0.59 0.4 0.51 0.85
40% 0.34 0.55 0.59 0.39 0.56 0.85
60% 0.33 0.55 0.58 - - 0.33
80% 0.32 0.54 0.57 - - 0.36
100% 0.31 0.53 0.57 - - 0.52

20%

WASTE

0.36 0.44 0.45 0.27 0.4 0.87
40% 0.35 0.43 0.45 0.24 0.4 0.87
60% 0.35 0.42 0.44 - - 0.3
80% 0.33 0.41 0.44 - - 0.34
100% 0.32 0.39 0.43 - - 0.46
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B.3 Performance under privacy considerations

Table 7: [Lower is better] Averaged SHD over ASIA and WASTE networks with number of environments d = 100 and
Laplace noise on regret values with scale parameter λ ∈ [0.0, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 100]. RFCD is omitted as it does
not produce any output after 24 hours for this experiment.

λ Dataset PERI-MDL PERI-BIC PERI-AIC

0

ASIA

0.43 0.52 0.55
0.01 0.42 0.52 0.56
0.05 0.42 0.52 0.55
0.1 0.42 0.52 0.55
0.5 0.42 0.54 0.58
1 0.42 0.54 0.61
5 0.49 0.58 0.62
10 0.50 0.60 0.62
50 0.51 0.60 0.60

100 0.53 0.59 0.58

0

WASTE

0.35 0.41 0.50
0.01 0.36 0.41 0.50
0.05 0.35 0.41 0.50
0.1 0.35 0.41 0.51
0.5 0.35 0.43 0.54
1 0.35 0.46 0.57
5 0.39 0.52 0.57
10 0.42 0.60 0.58
50 0.46 0.53 0.55

100 0.46 0.52 0.53

Table 8: [Higher is better] Averaged F1 over ASIA and WASTE networks with number of environments d = 100 and
Laplace noise on regret values with scale parameter λ ∈ [0.0, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 100]. RFCD is omitted as it does
not produce any output after 24 hours for this experiment.

λ Dataset PERI-MDL PERI-BIC PERI-AIC

0

ASIA

0.41 0.38 0.34
0.01 0.42 0.38 0.34
0.05 0.43 0.38 0.34
0.1 0.42 0.38 0.34
0.5 0.42 0.37 0.32
1 0.4 0.34 0.3
5 0.34 0.3 0.29

10 0.34 0.29 0.29
50 0.31 0.27 0.28
100 0.31 0.27 0.27

0

WASTE

0.4 0.44 0.36
0.01 0.41 0.44 0.36
0.05 0.41 0.44 0.37
0.1 0.41 0.43 0.37
0.5 0.41 0.4 0.32
1 0.4 0.35 0.31
5 0.35 0.3 0.28

10 0.35 0.28 0.29
50 0.33 0.27 0.27
100 0.34 0.27 0.26
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B.4 Real-world data

Table 9: [Lower is better] SHD for multiple real-world networks. PERI-MDL discovers the exact ground truth for both
REGED5 and REGED15.

REGED5 REGED15 SACHS

PERI-MDL 0 0 18
PERI-BIC 6 25 18
PERI-AIC 6 70 28
RFCD-M 0 5 17
RFCD-B 1 37 18
LINGAM 4 26 17

NT-ADMM 6 23 23
GES 2 56 25

Table 10: [Higher is better] Orientation F1 for multiple real-world networks. PERI-MDL discovers the exact ground truth
for both REGED5 and REGED15.

REGED5 REGED15 SACHS

PERI-MDL 1.0 1.0 0.38
PERI-BIC 0.59 0.58 0.50
PERI-AIC 0.59 0.30 0.43
RFCD-M 1.0 0.89 0.37
RFCD-B 0.89 0.41 0.28
LINGAM 0.22 0.26 0.33

NT-ADMM 0.36 0.13 0.38
GES 0.84 0.39 0.42
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