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Abstract

Class imbalance is a common phenomenon in
multiple application domains such as healthcare,
where the sample occurrence of one or few class
categories is more prevalent in the dataset than
the rest. This work addresses the class-imbalance
issue by proposing an over-sampling method for
the minority classes in the latent space of a Reg-
ularized Auto-Encoder (RAE). Specifically, we
construct a latent space by maximizing the condi-
tional data likelihood using an Encoder-Decoder
structure, such that oversampling through con-
vex combinations of latent samples preserves the
class identity. A jointly-trained linear classi-
fier that separates convexly coupled latent vec-
tors from different classes is used to impose
this property on the AE’s latent space. Further,
the aforesaid linear classifier is used for final
classification without retraining. We theoreti-
cally show that our method can achieve a low
variance risk estimate compared to naive over-
sampling methods and is robust to overfitting.
We conduct several experiments on benchmark
datasets and show that our method outperforms
the existing oversampling techniques for han-
dling class imbalance. The code of the proposed
method is available at: https://github.
com/arnabkmondal/OversamplingRAE
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1 Introduction

1.1 Background and Motivation

The framework of empirical risk minimization (Shalev-
Shwartz & Ben-David, 2014) for classification does not
yield good estimates in the presence of class imbalance,
which refers to having a skewed distribution over the class
or label priors (Wei et al., 2013; Yuan et al., 2018; Ku-
bat et al., 1998; Rao et al., 2006). Many real-world ap-
plications such as fraud/fault detection (Wei et al., 2013)
and clinical anomaly detection (Yuan et al., 2018) inher-
ently possess the problem of imbalance because the class
of interest will be naturally sparse. In such cases, the usu-
ally employed monte-carlo estimates for class conditional
empirical risk for the minority classes will be very biased,
leading to overfitting on minority class samples (Li et al.,
2020). Therefore, it is important to address the problem of
class imbalance in real-world classification problems ap-
pearing in application areas such as healthcare.

The problem of class-imbalance is well recognised in the
literature and several solutions have been proposed (see
Sec. 2 for a detailed discussion). Two of the most common
approaches involve loss function modification (Li et al.,
2021; Cao et al., 2019; Wang et al., 2016; Lin et al., 2017a;
Zhang et al., 2017b; Sarafianos et al., 2018; Dong et al.,
2018; Li et al., 2019; Cui et al., 2019; Park et al., 2021;
Kini et al., 2021), and data resampling (Hart, 1968; Wil-
son, 1972; Tomek, 1976; Laurikkala, 2001; Mani & Zhang,
2003; Kubat & Matwin, 1997; Garcı́a & Herrera, 2009;
Koziarski, 2020; Lin et al., 2017b; Vuttipittayamongkol &
Elyan, 2020; Chawla et al., 2002; Han et al., 2005; Nguyen
et al., 2011; He et al., 2008; Stefanowski & Wilk, 2008;
Abdi & Hashemi, 2016; Batista et al., 2004; Ramentol
et al., 2012; Sáez et al., 2015; Mariani et al., 2018; Mul-
lick et al., 2019; Wang et al., 2020; Dablain et al., 2022).
In the former class of methods, the objective is to design
novel loss functions that suit better for long tailed distri-
butions whereas in latter methods, the objective is to bal-
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ance the dataset via resampling. The current work focuses
on proposing a new resampling (specifically oversampling)
strategy that could address the shortcomings of the existing
resampling methods.

The objective of the oversampling methods is to learn the
distribution of the minority classes and oversample from
it to reduce the inherent skewness present in the dataset.
Classical methods such as synthetic minority oversampling
technique (SMOTE) (Chawla et al., 2002) algorithm syn-
thetically generates data from the minority class by interpo-
lations between the nearest neighbors of a given point from
the minority class. Despite being intuitive and simple, they
are not very effective with high dimensional data (e.g., im-
ages) owing to the ‘curse of dimensionality’ (Dablain et al.,
2022). Recently, deep generative models such as Gen-
erative Adversarial Networks (GANs) (Goodfellow et al.,
2014) and Variational Auto-Encoders (Kingma & Welling,
2013) have been used to address the class imbalance prob-
lem for high dimensional data by conditionally generating
more samples from the minority class. While they improve
upon the classical methods by a considerable margin, it
may result in a lack of diversity in the generated minor-
ity samples (due to mode collapse (Shahbazi et al., 2022)),
especially in the limited data regime. Additionally, retrain-
ing on the oversampled points may or may not aid the fi-
nal classification since, in many of such methods (Dablain
et al., 2022; Mariani et al., 2018), the classifier and sampler
operate independently.

Motivated by the above observations, we seek to build a
‘good’ oversampling method with the following properties:

• Oversampling is carried out in a lower-dimensional
latent space than in the original data space (unlike
(Chawla et al., 2002; Han et al., 2005; Mullick et al.,
2019)) to avoid the ‘curse of dimensionality’.

• The oversampling strategy is independent of an ex-
plicit distance metric and is class preserving by con-
struction (unlike in SMOTE (Chawla et al., 2002) and
DeepSMOTE (Dablain et al., 2022)). In other words,
the latent space is learned in a way that is conducive
to oversampling and classification.

• Instead of learning the decision boundary
(of the classifier) after minority oversam-
pling (like BAGAN (Mariani et al., 2018) and
DeepSMOTE (Dablain et al., 2022)), oversampling
should be done simultaneously while learning the
decision boundary. We believe this will lead to a
robust classifier.

1.2 Contributions

Our goal is to learn a low-dimensional representation of
data that facilitates oversampling in a class-preserving

manner. Specifically, the contributions of this work are
listed as follows:

1. We present a method for oversampling that uses con-
vex combinations of the latent vectors of a regularized
autoencoder learned by maximizing conditional data
likelihood.

2. Under the proposed oversampling technique, the la-
tent space is regularized to preserve the class (via con-
struction) by concurrently learning a linear classifier
on the latent space along with the mixing coefficients
required for oversampling.

3. We theoretically establish that the class preserving mi-
nority oversampling via convex combinations reduces
the variance of the estimated empirical risk and results
in a robust classifier in terms of the Lipschitz constant.

4. We conduct extensive experiments on several datasets
showing superior performance over many recent
benchmark methods to validate our claims. We ob-
serve a gain in ACSA of about 12%, 8% and 7% on
CIFAR10, ImageNet-100 and CelebA datasets respec-
tively.

2 Related Work

The approaches for mitigating class-imbalance can broadly
be classified into following categories: data resampling
methods (Hart, 1968; Wilson, 1972; Tomek, 1976; Lau-
rikkala, 2001; Mani & Zhang, 2003; Kubat & Matwin,
1997; Garcı́a & Herrera, 2009; Koziarski, 2020; Lin et al.,
2017b; Vuttipittayamongkol & Elyan, 2020; Chawla et al.,
2002; Han et al., 2005; Nguyen et al., 2011; He et al., 2008;
Stefanowski & Wilk, 2008; Abdi & Hashemi, 2016; Batista
et al., 2004; Ramentol et al., 2012; Sáez et al., 2015),
feature resampling methods (Ando & Huang, 2017; Chu
et al., 2020), learning-objective modification methods (Li
et al., 2021; Cao et al., 2019; Wang et al., 2016; Lin et al.,
2017a; Zhang et al., 2017b; Sarafianos et al., 2018; Dong
et al., 2018; Li et al., 2019; Cui et al., 2019; Park et al.,
2021; Kini et al., 2021), cost-sensitive learning methods
(Domingos, 1999; Fan et al., 1999; Karakoulas & Shawe-
Taylor, 1998; Viola & Jones, 2002; Ting, 2002; Zhou &
Liu, 2006), Meta-learning approaches (Wang et al., 2017;
Wu et al., 2018; Shu et al., 2019; Lee et al., 2020; Liu
et al., 2020a), ensemble learning (Liu et al., 2008, 2020b;
Freund & Schapire, 1997; Guo & Viktor, 2004; Chawla
et al., 2003; Seiffert et al., 2009; Wang & Yao, 2012;
Galar et al., 2013; Barandela et al., 2003; Wang & Yao,
2009; Błaszczyński et al., 2010), semi and self-supervised
learning approaches, (Yang & Xu, 2020; Kim et al., 2020;
Lee et al., 2021), curriculum learning based methods (Hu
et al., 2019; Zheng et al., 2018; Wang et al., 2019), data-
augmentation methods (Zhao & Lei, 2021) and representa-
tion learning based approaches (Huang et al., 2016; Kang
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et al., 2020; Chen et al., 2021). Here, we review only the
relevant data resampling literature in detail. For an exten-
sive review of other methods refer to the latest survey by
Das et al. (2022).
Classical approaches for oversampling: These resam-
pling methods are classifier-independent in that they first
re-sample without involving the classifier, which is trained
with the balanced data post hoc. They can be broadly di-
vided into three categories: Undersampling methods (Hart,
1968; Wilson, 1972; Tomek, 1976; Laurikkala, 2001; Mani
& Zhang, 2003; Kubat & Matwin, 1997; Garcı́a & Her-
rera, 2009; Koziarski, 2020; Lin et al., 2017b; Vuttipit-
tayamongkol & Elyan, 2020) that reduce the size of ma-
jority class, Oversampling methods (Chawla et al., 2002;
Han et al., 2005; Nguyen et al., 2011; He et al., 2008;
Stefanowski & Wilk, 2008; Abdi & Hashemi, 2016) that
increase the size of minority class, and Hybrid meth-
ods (Batista et al., 2004; Ramentol et al., 2012; Sáez
et al., 2015) that combine both under and over sam-
pling. Out of these three strategies, oversampling has
gained a lot of attention due to the remarkable success
achieved by Synthetic Minority Over-sampling TEchnique
(SMOTE) (Chawla et al., 2002) and ADAptive SYNthetic
(ADASYN) sampling (He et al., 2008). Both of these
techniques generate novel data instances from the minor-
ity class by interpolation between a given samples and
its nearest neighbors defined by a certain distance metric.
ADASYN seeks to generate examples close to the original
samples that were incorrectly classified using a k-Nearest
Neighbors classifier. Whereas, the standard SMOTE does
not distinguish between easy and hard samples to be clas-
sified. A few variants of SMOTE (Han et al., 2005;
Nguyen et al., 2011) focus on samples near the optimal
decision boundary and generate samples in the opposite di-
rection of the nearest neighbors’ class. However, for high-
dimensional data such as images, these classical pixel-
based oversampling methods not only suffer from ‘curse
of dimensionality’ but also are memory intensive as they
require access to the entire training split for computing
nearest neighbors. Recent research (Koziarski et al., 2019)
has shown that SMOTE-based algorithms cannot handle
multi-modal data with a large intra-class overlap or noise.
To mitigate this issue, Radial-Based Oversampling (RBO)
(Koziarski et al., 2019) avoids using k-nearest neighbors in
favour of imbalance distribution estimation with radial ba-
sis functions.
Deep Generative Model-based Resampling approaches:
Deep neural generative frameworks such as GAN (Good-
fellow et al., 2014), VAE (Kingma & Welling, 2013) and
their variants (Arjovsky et al., 2017; Gulrajani et al., 2017;
Makhzani et al., 2016; Tolstikhin et al., 2018; Dai & Wipf,
2019; Mondal et al., 2020, 2021) have been extensively uti-
lized for sampling from high dimensional data (Yi et al.,
2019). Owing to this, the work in (Douzas & Bacao, 2018)
uses conditional Generative Adversarial Networks (cGAN)

(Mirza & Osindero, 2014) to generate data from the minor-
ity class of various imbalanced datasets. However, such a
framework may not be ideal (Mariani et al., 2018; Mullick
et al., 2019) due to boundary distortion (Santurkar et al.,
2018) and mode-collapse (Shahbazi et al., 2022). To over-
come these problems, BAGAN (Mariani et al., 2018) uses
an autoencoder to initialize the GAN modules and includes
all accessible images of majority and minority classes dur-
ing adversarial training; this allows the generative model
to acquire valuable features from majority classes and ap-
ply them to minority class images. Generative Adversarial
Minority Oversampling (GAMO) (Mullick et al., 2019) ex-
ploits a three-player adversarial game among a convex gen-
erator, a classifier, and a discriminator. The convex gen-
erator creates new samples from minority classes as con-
vex combinations of existing examples (in the pixel space)
to deceive both the discriminator and the classifier into
misidentifying the generated samples. As a result, syn-
thetic data is generated at critical locations around the pe-
ripheries of different classes. Consequently, the classifier-
induced boundaries are adjusted in such a way that the mi-
nority classes are less likely to be miscategorized. Deep
Generative Classifier (DGC) (Wang et al., 2020) is a deep
latent variable model that aims to capture the cause of the
target label in the latent variable. To mitigate the class
imbalance problem, DGC takes advantage of both model
perturbation and data perturbation. DeepSMOTE (Dablain
et al., 2022) uses the reconstruction loss and a supervised
penalty to train an encoder-decoder pair and then performs
SMOTE in the latent space during inference.
Uniqueness of our work: The uniqueness of our work
lies in the formulation and realization of “class preserv-
ing oversampling”. In particular, we layout the theoret-
ical framework to achieve class preserving oversampling
(Section 3.1) and then we show that the proposed formu-
lation can be realized using a Regularized Auto Encoder
(RAE) (Section 3.2). To ensure class preservation, we reg-
ularise the latent space of an auto-encoder using convex
combinations and a linear classifier. The concept of em-
ploying a linear classifier to regularise the latent space of
an auto-encoder is not new; for instance, (Le et al., 2018)
uses a linear projection of the latent vector to solve a re-
gression task along with reconstructing the input to obtain
high performance on the regression task. However, there
is no concept of class-preservation involved in this work.
Similarly, using convex combination of latent vectors has
also been explored in prior literature. (Zhang et al., 2017a;
Verma et al., 2019) show that using a convex combination
of feature maps for training helps in obtaining meaning-
ful representations which is further helpful in downstream
tasks. (Berthelot et al., 2018) uses convex combination of
latent vector to generate a real sample from the decoder,
they show that this aids in learning meaningful represen-
tations and it makes the latent space ‘smooth’. However,
none of these works ensure class preservation. Further-
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more, we note that while the RAE described in this work is
one way of realising the suggested formulation, there may
be additional methods as well.

3 Proposed Method

3.1 Class Preserving Oversampling

Our goal in this work is to learn latent representations
of the input data such that we can sample from it in a
class-preserving manner. Mathematically, consider a la-
belled dataset DX×Y = {(xi, yi)}Ni=1

iid∼ p(x, y), where,
xi ∈ Rd and yi ∈ {1, · · ·C} denotes ith-datapoint and its
corresponding class-label, respectively with p(x, y) denot-
ing their true joint distribution. GivenDX×Y , our objective
is to learn a latent space Z ∈ Rm with a corresponding dis-
tribution q(z) such that oversampling in the Z space pre-
serves the class labels.

We propose to oversample in the Z space by taking convex
combinations of latent vectors corresponding to the same
class. Let zi, i = 1, 2, ..., t denote the latent vectors corre-
sponding to datapoints xi, i = 1, 2, ..., t all with the same
class-label. Then the novel (oversampled) latent point z′ is
obtained as follows:

z′ =

t∑
i=1

αizi s.t.
∑
i

αi = 1 and αi ≥ 0 (1)

However, such a method for sampling does not enforce
class preservation, that is, the class label of z′ may not be
same as that of zi. Classes of the oversampled latents can
be preserved by learning a latent space such that the class-
conditional latent densities have non-overlapping supports
and the classes are linearly separable in the latent space.
Formally, let Ri = {x | h(z) = i} denote the set of all in-
put samples x that gets mapped to class y = i under an ora-
cle linear classifier h(z). Suppose q(z | x ∈ Ri) represent
the class-conditional latent distribution for class i, then we
seek Supp

(
q(z | x ∈ Ri)

)
∩ Supp

(
q(z | x ∈ Rj)

)
= ϕ

∀ i ̸= j where, Supp(·) denotes the support of the distri-
bution. Practically, this can be achieved by jointly learning
the latent space along with a linear classifier that assigns
the same label to latent vectors corresponding to a given
class and their convexly combined (oversampled) counter-
parts (Proposition 1). We propose to achieve it in a reg-
ularized auto encoder framework as described in the next
section.

3.2 Regularized Autoencoders with class preserving
latent space

The aforementioned objective can be potentially achieved
by inducing a latent space where all the data points corre-
sponding to a particular class are mapped to a single latent

Figure 1: Architecture of the proposed methodology. It is
a regularized autoencoder, where the latent space is regu-
larized using a linear classifier to facilitate distance metric
free class preserving oversampling of the minority classes.
The decoder network maximizes the conditional data like-
lihood to avoid degeneracy in the latent space.

vector. This results in producing de-generate representa-
tions, which defeats the purpose of oversampling. To avoid
such de-generate representations, we propose to learn the
latent space by maximizing the conditional data-likelihood
p(x | z′) such that the class-preservation constraints are
met. Specifically, we parameterize the data distribution
conditioned on the oversampled latent space with a decoder
network pθ(x | z′) and the conditioned latent distribution
using an encoder network qφ(z | x). Additionally, the
class-preserving constraint detailed in the previous section
is imposed on the latent space (output of the encoder) us-
ing a linear classifier hw(z). The following optimization
problem is solved to maximize the likelihood of the data
conditioned on the latent vector with the class-preserving
regularization:

max
θ,φ,ω

Ez′ log pθ

(
x

∣∣∣∣ z′) (2)

s.t. Supp
(
qφ(z | x ∈ Ri)

)
∩ Supp

(
qφ(z | x ∈ Rj)

)
= ϕ

∀ i ̸= j where, Ri = {x |hw(z) = i} and hw(z) = wT z

The maximization of the conditional log-likelihood term
in the above optimization problem ensures that the learned
latent vectors (z) are not de-generate. All the three net-
works, namely the encoder, decoder, and the classifier, are
trained jointly with implicit minority oversampling by tak-
ing convex combinations of latent vectors corresponding
to the same class during training. Upon convergence, the
latent space (and hence the classifier) will be robust to
class imbalance since they have been trained along with
implicit class-preserving minority oversampling; this has
been demonstrated empirically in the experiment section
(c.f. Section 5). In the subsequent sections, we present
implementation details and analyze our method with theo-
retical performance guarantees.
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3.3 Implementation Details

Our model consists of an encoder network (Eφ) for qφ(z |
x) and a decoder (Dθ) network for pθ(x | z′); the latent
space is regularized using a linear classifier (Lω), which
takes t-number of zi’s (from the same class) and the corre-
sponding z′ as inputs and predicts the corresponding label.
The true label of z′ is set to be the same as that of zi’s for
class preservation as discussed earlier.

The mixing coefficients α used for oversampling (Eq. 1)
can be chosen arbitrarily from any distribution, albeit, in
Section 4, we argue that learning them leads to enhanced
performance. To this end, we employ a Mixer network
(Mζ) which takes the latent vectors zi’s as input and gives
α as output from a softmax layer. The mixer network is
trained to produce the α which would make it hard for the
linear classifier (Lω) to correctly classify the sampled latent
vector. To achieve this, the mixer net is made to minimize
a cross-entropy loss which is calculated by keeping the la-
bel of z′ different from that of zi’s. Intuitively, this would
force the mixer net to generate samples (through α) that are
‘difficult’ for the linear classifier to classify. Formally, the
loss for the mixer network Lmixer is:

Lmixer = −
C∑
k=1

y
(k)
j log ŷ′(k) j ̸= i (3)

where, ŷ′(k) = Lω(z
′)(k) denotes the kth element of out-

put of the linear classifier and y
(k)
j is the indicator of the

true class. Note that, from Equation 1, ŷ′(k) is a function
of α and so is Lmixer.

To train the decoder network, that seeks to maximize pθ(x |
z′), we use standard adversarial loss (Gulrajani et al., 2017)
between the output of the decoder (x̃) and true data sam-
ples (x). We seek a distributional match between the in-
put data and decoder output but not a sample-by-sample
match since data points corresponding to oversampled la-
tent codes do not exist in the given dataset. This demands
the use of a critic network denoted by Cψ . We use the
loss outlined in WGAN-GP (Gulrajani et al., 2017) for its
superior stability and convergence to train the the critic net-
work. Accordingly, the loss functions for the decoder and
critic networks are given by:

Ldecoder = − E
x̃∼PG

[Cψ(x̃)] (4)

Lcritic = E
x̃∼PG

[Cψ(x̃)]− E
x∼Pdata

[Cψ(x)] +

λ E
x̂∼Px̂

[
(∥∇x̂Cψ(x̂)∥2 − 1)2

]
(5)

where, PG denotes the distribution of decoder’s output
and Pdata denotes the marginal of true data distribution.
Px̂ is the distribution of points sampled uniformly along
straight line between points sampled from the data distri-
bution Pdata and the decoder distribution PG.

Next, the linear classifier (used for latent regularization and
final classification) is trained via (t+1) categorical crossen-
tropy loss terms (one for z′ and t for each of corresponding
zi’s):

Lclf = −
t∑
i=1

C∑
j=1

y
(j)
i log ŷ

(j)
i −

C∑
j=1

y
(j)
i log ŷ′(j) (6)

where ŷ
(j)
i = Lω(zi)

(j), ŷ′(j) = Lω(z
′)(j) are the class-

wise outputs of the linear classifier for zi and z′, respec-
tively and y

(j)
i is the indicator for the jth true class for the

zi. Lastly, the encoder network is using the above defined
Lclf and an additional mean absolute error loss between the
generated image from the decoder and the original image.
Hence the encoder loss is given by:

Lencoder = λclf · Lclf + λmae · Lmae (7)

where, Lmae =
∑
i

∥xi −Dθ ⊙ Eφ(xi)∥1

The overall block diagram of the proposed method can be
found in Figure 1. For all our experiments, we have set
λclf = 5 and λmae = 0.01. A detailed description of
the training procedure is described in Algorithm 1 of the
supplementary.

4 Theoretical Analysis

In this section, we analyze and derive theoretical guaran-
tees on different parts of the proposed design. The proofs
for all the propositions can be found in the Supplementary
material.

The first proposition is to show that the constraint enforced
in Eq. 2, preserves class labels. Without loss of generality,
we show it for a binary classification problem.

Proposition 1 (Label Preservation). In a binary classifica-
tion problem, let S0 = {zi | yi = C0} and S1 = {zi |
yi = C1}. Also suppose S0 and S1 are linearly separa-

ble. Then,
N0∑
i=1

αizi∈S0
∈ C0 and

N1∑
j=1

αjzi∈S1
∈ C1, where

αi, αj ∈ R+ and
N0∑
i=1

αi =
N1∑
j=1

αj = 1.

From the above proposition, it is clear that if the data points
from different classes are linearly separable (in some space
Z), then oversampling via convex combinations according
to Eq. 1 preserves the class, in that particular space. Ac-
cordingly, in our method, we focus on learning a latent
space that by construction induces linearly separable class-
conditional distributions. Note that prior works (Zhang
et al., 2017a; Verma et al., 2019; Berthelot et al., 2018) take
inter-class convex combination as opposed to intra-class
convex combination, which does not ensure class preser-
vation in the proposed setting.
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Our next claim is that oversampling via convex combina-
tions can result in a reduced variance in the empirical risk,
which is desired for better generalization. Let us define,
R̂(ℓ;D) and R̂α(ℓ;D) to be the empirical risk of a clas-
sifier without and with convex oversampling on a dataset
D ∼ P of size N , respectively.

R̂(ℓ;D) =
1

N

∑
i

ℓ(zi) (8)

R̂α(ℓ;D) =
1

N

∑
i

ℓ
(
αT zi

)
(9)

where, α = [α1 . . . αn]
T such that

∑
i αi = 1 and zi =

[z1 . . . zn]
T where zi’s are sampled i.i.d fromD and belong

to same class. Then we have the following proposition:

Proposition 2. For a convex function ℓ(·) : Rd → R+

whose variance is upper bounded by a constant B, there
exists some α such that:

VP

[
R̂α(ℓ;D)

]
≤ VP

[
R̂(ℓ;D)

]
(10)

where VP[·] is the variance operator.

Proposition 2 asserts that if the mixing coefficients are cho-
sen appropriately, the variance of estimate of empirical risk
for the oversampling case will be less than that of without
oversampling. This can be used directly to give the follow-
ing proposition.

Proposition 3. Let ℓ(·) denote a bounded loss function.
Fix a hypothesis class F of predictors f : Z → RC , with
induced class H∗ ⊂ [0, 1]Z of functions h(z) = ℓ(αT z).
Suppose H∗ has uniform covering number N∞. Then, for
α chosen appropriately and any δ ∈ (0, 1), with probability
atleast 1− δ over D ∼ P,

R(f) ≤ R̂α(ℓ;D)+O


√
VαN (ℓ) ·

log
M∗

N

δ

N
+

log
M∗

N

δ

N


(11)

whereM∗
N = N∞

(
1
N ,H

∗, 2N
)

and VαN is the empirical
variance of the loss values {ℓ(αT zi)}Ni=1

Note that the given PAC bound is tight for the oversampling
case as compared to the without oversampling case because
of Proposition 2, making the risk estimate closer to the true
risk. Additionally, both Prop. 2 and 3 are valid for a range
of α (as seen in the proof of Prop. 2) which motivates the
need for the mixer network to learn α in our method.
Next, we analyze the robustness of the proposed method
in terms of the Lipschitz constant, specifically, a classifier
with unbounded lipschitz constant is prone to overfitting
and outliers, leading to high generalization errors. How-
ever, if the lipschitz constant of a classifier is bounded then
the interpolations will be smooth and hence the the gener-
alization error will be low as shown in the following propo-
sition.

Proposition 4. Consider a dataset (xi, yi)Ni=1 where xi is
i.i.d uniform on the sphere Sd−1 =

{
x ∈ Rd | ∥x∥ = 1

}
,

yi is uniform on {−1,+1} and N ≤ c · d for some c ∈ R.
Let h∗α(x) = wTα (αx1 + (1 − α)x2) be the optimal linear
classifier, where, wα ∈ Rd and x1,x2 have the same label.
Then h∗α(x) has an upper bound on the lipschitz constant.

The assumptions required for this proposition to hold are
same as those mentioned in Theorem 5.58 of Vershynin
(2010). As note by them, the assumptions can be relaxed
and extended to datasets where xi are i.i.d from a centered
Gaussian with covariance 1

dId and where yi are i.i.d with
random signs. This is similar to the definition of ‘generic’
datasets defined by Bubeck et al. (2021). We further note
that the bounds obtained in this proposition hold for any
dataset that satisfies the conditions of a generic dataset.
Therefore, if one chooses to sample α from a fixed (non-
learnable) distribution, whose support lies outside the given
range, then the given bounds need not hold true.

Proposition 4 can be used to derive conditions under which
the bound on lipschitz constant for the oversampling case
will be tighter than that of without oversampling case. This
idea is presented in the following Corollary.
Corollary 1. Let N be the size of original dataset and M
be the size of dataset after oversampling. Then for N ≤
M ≤ (1+r)N , there exists some α for which the bound on
Lip(h∗α(x)) is tighter than Lip(h∗(x)) (lipschitz constant
for without oversampling case) for some r ∈ R+.

The above corollary tells us that if oversampled in right
amount, the trained linear classifier will be more robust
than the one trained without oversampling. The upper
bound on number of oversampled points (M ) can be in-
terpreted as follows: naively sampling beyond a certain
threshold leads to decrease in diversity of sampled points
which will lead the classifier to overfit.

Thus in summary, we showed that our method which over-
samples in a class-preserving manner does not only results
in lower empirical risk and tighter PAC bounds, but also is
robust to overfitting and outliers. We confirm our hypothe-
sis by extensive experiments in the next section.

5 Experimental Results

5.1 Dataset Description and Baselines

To validate the efficacy of the proposed method,
we consider the following five real-world datasets
— MNIST(Lecun, 2010), Fashion MNIST (Xiao
et al., 2017), SVHN (Netzer et al., 2011), CIFAR-10
(Krizhevsky, 2009), and CELEB-A (Liu et al., 2015) as
in the recent baselines (Mullick et al., 2019; Wang et al.,
2020; Dablain et al., 2022). Since these datasets are
not significantly imbalanced, following the prior works
(Mullick et al., 2019; Wang et al., 2020; Dablain et al.,
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Table 1: Performance (Mean ± Std. Dev.) of our method on Balanced test dataset

Dataset Metrices Ours
DeepSMOTE

(Dablain et al., 2022)
GAMO

(Mullick et al., 2019)
BAGAN

(Mariani et al., 2018)
DGC

(Wang et al., 2020)

MNIST
ACSA 96.79 ± 0.09 92.60 ± 0.50 94.97 ± 0.32 92.76 ± 0.45 94.60 ± 0.31

F1 96.78 ± 0.09 92.44 ± 0.54 94.90 ± 0.33 92.62 ± 0.49 94.53 ± 0.33
GM 98.20 ± 0.05 95.83 ± 0.29 97.19 ± 0.18 95.92 ± 0.26 96.90 ± 0.21

FashionMNIST
ACSA 84.79 ± 0.15 82.78 ± 0.06 83.29 ± 0.40 79.93 ± 1.42 82.34 ± 0.38

F1 84.30 ± 0.18 82.11 ± 0.11 82.63 ± 0.44 79.23 ± 1.74 81.48 ± 0.35
GM 91.30 ± 0.09 90.11 ± 0.04 90.41 ± 0.24 88.40 ± 0.86 89.02 ± 0.21

SVHN
ACSA 78.66 ± 0.47 70.67 ± 0.31 74.60 ± 0.45 70.19 ± 1.13 68.91 ± 1.89

F1 78.42 ± 0.48 69.64 ± 0.26 74.05 ± 0.49 70.85 ± 2.81 68.16 ± 1.95
GM 87.62 ± 0.29 82.68 ± 0.20 85.14 ± 0.28 81.86 ± 0.17 80.77 ± 1.35

CIFAR10
ACSA 57.94 ± 0.15 41.51 ± 0.58 45.65 ± 0.73 43.35 ± 1.73 41.39 ± 1.12

F1 57.13 ± 0.15 38.51 ± 0.52 43.05 ± 0.97 40.40 ± 1.47 39.75 ± 1.24
GM 74.31 ± 0.10 62.30 ± 0.46 65.49 ± 0.55 63.73 ± 1.07 60.49 ± 1.01

CELEBA
ACSA 74.65 ± 0.26 62.70 ± 0.84 66.80 ± 0.29 66.22 ± 0.84 67.55 ± 0.56

F1 74.02 ± 0.32 60.05 ± 1.03 65.09 ± 0.27 63.11 ± 0.23 65.62 ± 0.47
GM 83.67 ± 0.15 75.39 ± 0.59 78.27 ± 0.20 77.57 ± 0.13 77.54 ± 0.33

CIFAR100
ACSA 26.41 ± 0.15 23.33 ± 0.08 12.68 ± 0.39 22.99 ± 0.70 24.64 ± 0.11

F1 23.99 ± 0.19 22.19 ± 0.11 09.67 ± 0.30 22.74 ± 0.66 22.29 ± 0.10
GM 51.20 ± 0.11 48.11 ± 0.08 35.45 ± 0.55 48.42 ± 0.90 45.76 ± 0.05

ImageNet100
ACSA 25.15 ± 0.13 12.66 ± 0.17 07.90 ± 0.28 17.16 ± 0.69 08.82 ± 0.12

F1 22.31 ± 0.11 11.55 ± 0.14 06.44 ± 0.25 15.72 ± 0.32 07.64 ± 0.07
GM 44.81 ± 0.32 35.42 ± 0.22 27.97 ± 0.48 41.25 ± 0.56 23.90 ± 0.01

Table 2: Statistical significance: p-values obtained from
Shaffer post-hoc tests and Bayesian Wilcoxon signed-rank
tests for pairwise comparison of the proposed method with
the baseline oversampling-based approaches for the ACSA
metric. We have combined the results from imbalanced and
long-tailed recognition test cases.

Our vs.
Shaffer

post-hoc
Bayesian Wilcoxon

signed-rank
DeepSMOTE 5.15× 10−14 2.40× 10−3

GAMO 1.27× 10−6 1.15× 10−2

DGC 7.01× 10−12 2.96× 10−2

BAGAN 2.91× 10−14 1.80× 10−4

2022), we introduce imbalance by randomly sub-sampling
disproportionate number of samples from different classes.
As can be seen from Table 7 in the supplementary material,
the imbalance ratio of the majority class and the smallest
minority class is 100:1 for MNIST and Fashion MNIST.
For SVHN, CIFAR-10, and CelebA, the imbalance ratio
is approximately 56:1. For CelebA, following the prior
works (Wang et al., 2020; Dablain et al., 2022), five
non-overlapping classes (black hair, brown hair, blond,
gray, and bald) were selected. Further to evaluate the
proposed method’s performance over a large number of
classes we consider CIFAR-100 (Krizhevsky, 2009) (cf.
Table 8 in supp.) and ImageNet-100 (previously used in
(Kalantidis et al., 2020; Van Gansbeke et al., 2020; Ravula
et al., 2021)) (cf. Table 9 in supp.).

As in prior work (Wang et al., 2020), two kinds of test
datasets were considered. In the first setting, the ratio
of test examples across different classes follow a similar
ratio as present in the training split (Imbalanced Test
data). In the second setting, we keep an equal amount of
data across all the classes in the test split (Balanced Test
data). We compare the performance of our method with
several state-of-the-art deep resampling methods: BAGAN
(Mariani et al., 2018), GAMO (Mullick et al., 2019), DGC
(Wang et al., 2020), and DeepSMOTE (Dablain et al.,
2022).
Additionally, we test our approach on tabular datasets
(Alcalá-Fdez et al., 2011) to see how it performs in a
variety of settings. The results on tabular datasets are
presented in the Table 13 of the supplementary material.

5.2 Performance Metrics

For quantitative evaluation of classification performance, it
is imperative to select unbiased performance metrics for the
majority or minority classes. Like previous works (Mullick
et al., 2019; Wang et al., 2020; Dablain et al., 2022), we
consider the following three metrics: Average Class Spe-
cific Accuracy (ACSA), macro-averaged Geometric Mean
(GM), and macro-averaged F1 score (F1) as these are not
biased towards any specific class (Sokolova & Lapalme,
2009; Mullick et al., 2020).
Further, to quantify the goodness of the learned latent space
for tasks beyond minority classification, we study the qual-
ity of the images generated by the decoder from the learned
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Table 3: Density/Coverage performance comparison of the baselines with our method

MNIST FashionMNIST SVHN CIFAR10 CelebA
Density Coverage Density Coverage Density Coverage Density Coverage Density Coverage

BAGAN (Mariani et al., 2018) 0.257 0.338 0.563 0.132 0.010 0.005 0.393 0.054 0.143 0.006
GAMO2PIX (Mullick et al., 2019) 0.521 0.346 0.769 0.403 0.106 0.080 2.240 0.438 0.743 0.229
DeepSMOTE (Dablain et al., 2022) 0.345 0.305 0.396 0.287 0.076 0.126 1.138 0.287 0.316 0.141

Ours (Proposed Method) 0.729 0.511 1.177 0.379 0.104 0.117 2.042 0.362 0.919 0.341

Table 4: Ablation Studies: Contribution of each component in classification performance.

Linear
Classifier Oversampling Decoder Mixer

Network
CIFAR10 CELEBA

ACSA GM F1 ACSA GM F1

✗ ✓ ✓ ✗ 20.58 31.21 13.51 29.28 42.34 26.39
✓ ✗ ✓ ✗ 35.51 47.41 29.20 63.94 67.83 57.04
✓ ✓ ✗ ✓ 52.16 69.04 50.93 73.20 82.33 72.86
✓ ✓ ✓ ✗ 54.51 71.94 53.07 74.38 83.45 73.98
✓ ✓ ✓ ✓ 57.94 74.31 57.13 74.65 83.67 74.02

Table 5: ACSA of the proposed method at various values
of bottleneck layer dimensionality, m.

Dataset m
ACSA

m/4 m/2 2 ∗m
MNIST 64 97.23 97.44 97.53

FMNIST 64 85.70 85.82 86.04
SVHN 128 80.11 80.75 80.26

CIFAR10 256 57.64 57.20 56.44
CelebA 256 75.98 75.50 74.32

latent space. Note that this is not the primary objective
of our method since the goal is not to learn a generative
model. Nevertheless, we report density and coverage met-
rics (Naeem et al., 2020) between the output of the decoder
and the true data, to quantify quality and diversity, respec-
tively. Density is unbounded. A higher density score indi-
cates better quality. Coverage is bounded by 1, and a higher
coverage score indicates better diversity. Additionally, we
report the Fréchet Inception Distance (FID) (Heusel et al.,
2017) between the true data samples and outputs of our de-
coder in Table 11 of the supplementary material.

5.3 Model Architecture and Compute Resource

The proposed method uses a small Convolution-based
architecture for Encoder, Discriminator, and Transpose
Convolution-based architecture for the Decoder network.
These architectures are derived from prior work (Dai &
Wipf, 2019; Mondal et al., 2021). The output layer of the
linear classifier contains neurons equal to the number of
classes in the dataset. The mixer network is a simple multi-
layer perceptron (MLP). Refer to the supplementary mate-
rial (Table 16, Table 17) for details of the architecture. For

baseline methods, either exact or equal capacity architec-
tures were used. The proposed method, GAMO (Mullick
et al., 2019), and DGC (Wang et al., 2020) are one-stage
frameworks with a built-in classifier. BAGAN (Mariani
et al., 2018) and DeepSMOTE (Dablain et al., 2022) first
augment the minority classes and then train a standalone
classifier on the balanced data. Following (Dablain et al.,
2022), for these two methods we use a Resnet-18 archi-
tecture (He et al., 2016) for the classifier. For all of our
experiments, we have chosen t = 2, as the performance as
measured by ACSA is similar for t = 2, 3 and 4 (see Figure
3 in the supplementary).

All the experiments in this paper, including the hyper-
parameter search and reproducing the baseline methods,
were conducted on a machine with Intel® Xeon® Sil-
ver 4216 CPU (@ 2.10 GHz), 128GB RAM and 48GB
NVIDIA RTX A6000 GPU.

5.4 Results

In Table 1 we compare our method with other oversam-
pling methods (mentioned in Section 5.1) on Balanced test
dataset. Refer to the supplementary material Table 10 for
performance on imbalanced test set. For each method,
we compute and report the mean and standard deviation
(error) over three runs. As can be seen, majority of the
time, single-stage methods (GAMO and DGC) exhibit su-
perior performance over two-stage methods (BAGAN and
DeepSMOTE). This might be ascribed to the fact that the
samples generated using two-stage methods are not guaran-
teed to be useful for learning the decision boundary among
the classes. Finally, the proposed method outperforms all
of the baselines by a significant margin on all the consid-
ered metrics. Similar comparisons and observations are
made with the classical oversampling methods as seen in
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Figure 2: t-SNE visualization of the latent space.

Tables 14 and 15 of the supplementary. Further, following
Dablain et al. (2022), we conduct the Shaffer post-hoc test
(Stapor et al., 2021) and the Bayesian Wilcoxon signed-
rank test (Benavoli et al., 2017) for statistical comparison
over several datasets to determine if the proposed method
outperforms the baseline resampling techniques. Both the
tests utilise a statistical significance level of 0.05. Table 2
presents the statistical test results for the ACSA metric. It is
seen that the performance boost achieved by the proposed
method is statistically significant.
The density and coverage metrics for the output of the de-
coder are mentioned in Table 3. Refer to the supplemen-
tary material Table 11 for FID comparison and output sam-
ples. It is noteworthy that, our method achieves best sample
quality in all but 1-2 cases. This suggests that the proposed
method not only aids classification but also produces good
quality samples under the presence of class-imbalance.

In Figure 2, we visualise the linear separability of the la-
tent space learnt by our method through t-SNE plot. It
is observed that the performance of the proposed method
corroborates the linear separability assumption. For exam-
ple, for simple datasets such as MNIST the classes are well
separated and the proposed method achieves almost per-
fect classification score. On the other hand, for complex
datasets such as CIFAR-10 the classes are overlapping in
the latent space and therefore we observe a dip in the clas-
sification accuracy. However, our performance is still sig-
nificantly better than the SOTA.

5.5 Ablation Studies

To examine the impact of each component in the proposed
method, we conduct several ablation studies. As can be
seen from Table 4, when the linear classifier and mixer net-
work are not present, the performance is the worst. This
might be ascribed to the fact that the oversampling is not
guaranteed to preserve the class label anymore. In the
absence of decoder (class preserving regularization is im-
posed on the output of the encoder without the decoder)
or the mixer network (uniform sampling for α), the per-
formance degrades albeit not as severely without oversam-
pling. This suggests that the most important component is
the class-preserving convex oversampling. However, learn-
ing α and/or avoiding latent degeneration provides con-

siderable boost especially in a ‘difficult’ dataset such as
CIFAR-10, CIFAR-100 and ImageNet-100. In Table 5, we
study the impact of the bottleneck layer’s dimensionality
(m) on classification performance. It is seen that the perfor-
mance as measured using ACSA remains almost constant
over a wide range ofm. Next, we validate the effectiveness
of learning the mixing coefficients (α) as opposed to sam-
pling them according to some fixed distribution. For exam-
ple, when α ∼ Beta(2, 2), ACSA achieved on CIFAR10
is 52.35, which is better than the peroformance obtained
using no class-preserving interpolation but still worse than
the case of learnable α.

6 Conclusion, Limitations, Risks, and
Broader Impact

Real-world data frequently exhibit skewed distributions
with a long tail rather than the ideal uniform distributions
across each class. There are numerous ways to deal with
this problem. We seek to improve upon existing oversam-
pling approaches by developing a label-preserving over-
sampling strategy. We have also included theoretical guar-
antees for the suggested method. We anticipate that practi-
tioners will be able to work with significantly skewed data
in real-world circumstances by using this strategy. How-
ever, data in many real-world applications like autonomous
driving, medical diagnostics, and healthcare may impose
additional limitations on the learning process and final
models, such as being fair or private, in addition to being
innately unbalanced. Our method, albeit theoretical sound
and empirically observed to perform, warrants rigorous val-
idations in the presence of the aforementioned additional
constraints in critical, high-stakes applications before de-
ployment.
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A Theoretical Results

In this section, we analyze our method and give some guarantees on different estimates. For notations and definitions,
please refer to Section 4 of the main text.
The first proposition is the key statement which we use to enforce the constraint in Eq. 2 of the main paper.

Proposition 5 (Label Preservation). In a binary classification problem, let S0 = {zi | yi = C0} and S1 = {zi | yi = C1}.

Also let S0 and S1 are linearly separable. Then,
N0∑
i=1

αizi∈S0
∈ C0 and

N1∑
j=1

αjxi∈S1
∈ C1, where αi, αj ∈ R+ and

N0∑
i=1

αi =
N1∑
j=1

αj = 1.

Proof. Since the datapoints are linearly separable ∃W and b such that

WT z+ b < 0, ∀z ∈ S0 (12)

WT z+ b > 0, ∀z ∈ S1 (13)

Now,

WT
N0∑
i=1

αizi∈S0
+ b =

N0∑
i=1

αiW
T zi∈S0

+

N0∑
i=1

αib =

N0∑
i=1

αi(W
T zi∈S0

+ b) < 0 (14)

Similarly, it can be shown,

WT
n1∑
j=1

αjzi∈S1 + b > 0 (15)

Therefore, novel datapoint resulting out of the convex combination of datapoints of the same class preserves the class
label.

Proposition 6. For a convex function ℓ(·) : Rd → R+ whose variance is upper bounded by a constant B, there exists
some α such that:

VP

[
R̂α(ℓ;D)

]
≤ VP

[
R̂(ℓ;D)

]
(16)

where VP[·] is the variance operator.

Proof. By definition, we have:

VP

[
R̂(ℓ;D)

]
= VP

[
1

N

∑
i

ℓ(zi)

]

=
1

N2

∑
i

VP [ℓ(zi)]

=
1

N
VP [ℓ(z)]

where, we have used the fact that zi’s are iid and hence, VP [ℓ(zi)] = VP [ℓ(z)] ∀i. Now, similarly:

VP

[
R̂α(ℓ;D)

]
= VP

[
1

N

∑
i

ℓ
(
αT zi

)]

=
1

N2

∑
i

VP
[
ℓ
(
αT zi

)]
=

1

N
VP
[
ℓ
(
αT zi

)]
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Using V[·] and E[·] for brevity, consider the following:

VP
[
ℓ
(
αT zi

)]
= E

[
ℓ(αT z)2

]
−
(
E
[
ℓ(αT z)

])2
≤ E

(∑
i

αiℓ(zi)

)2
− (E [ℓ(αT z)])2 (∵ ℓ(·) is convex)

= E

∑
i

α2
i ℓ(zi)

2 + 2
∑
i,j

αiαjℓ(zi)ℓ(zj)

− (E [ℓ(αT z)])2 −∑
i

α2
i (E[ℓ(zi)])

2
+
∑
i

α2
i (E[ℓ(zi)])

2

= ∥α∥22V[ℓ(z)] + (E[ℓ(z)])2 −

(
E

[
ℓ

(∑
i

αizi

)])2

≤ ∥α∥22V[ℓ(z)] + (E[ℓ(z)])2 −

(
ℓ

(∑
i

αiE[z]

))2

(∵ Jensen’s Inequality)

= ∥α∥22V[ℓ(z)] + (E[ℓ(z)]− ℓ(E[z])) (E[ℓ(z)] + ℓ(E[z]))

Now, the second term in the above expression is non-negative by Jensen’ Inequality and definition of ℓ(·). Let,
(E[ℓ(z)]− ℓ(E[z])) (E[ℓ(z)] + ℓ(E[z])) = K ≥ 0. Therefore, we have:

V
[
ℓ
(
αT zi

)]
≤ ∥α∥22V[ℓ(z)] +K

Since, V[ℓ(z)] ≤ B, we have for {α | ∥α∥22 ≤ 1− K
B }:

V
[
ℓ
(
αT z

)]
≤ ∥α∥22V[ℓ(z)] +K ≤ V [ℓ(z)]

=⇒ VP

[
R̂α(ℓ;D)

]
≤ 1

N
VP
[
ℓ
(
αT zi

)]
≤ 1

N
VP [ℓ(z)] = VP

[
R̂(ℓ;D)

]

Proposition 7. For a bounded loss function ℓ(·). Fix a hypothesis class F of predictors f : X → RC , with induced
class H∗ ⊂ [0, 1]X of functions h(x) = ℓ(αTx). Suppose H∗ has uniform covering number N∞. Then, for α chosen
appropriately and any δ ∈ (0, 1), with probability atleast 1− δ over D ∼ P,

R(f) ≤ R̂α(ℓ;D) +O


√
VαN (ℓ) ·

log
M∗

N

δ

N
+

log
M∗

N

δ

N

 (17)

whereM∗
N = N∞

(
1
N ,H

∗, 2N
)

and VαN is the empirical variance of the loss values {ℓ(αTxi)}Ni=1

Proof. The proof follows directly from Proposition 6 and a version of Bennet’s equality from (Maurer & Pontil, 2009)
[Theorem 6].

Proposition 8. Consider a dataset (xi, yi)Ni=1 where xi is i.i.d uniform on the sphere Sd−1 =
{
x ∈ Rd | ∥x∥ = 1

}
, yi is

uniform on {−1,+1} and N ≤ c · d for some c ∈ R. Let h∗α(x) = wTα (αx1 + (1 − α)x2) where, wα ∈ Rd and x1,x2

have the same label be the optimal linear classifier. Then h∗α(x) has an upper bound on the lipschitz constant.

Proof. The general solution to the system Xw = Y where X is N × d matrix with ith row equal to xi and Y =
(y1, y2, . . . , yN ) is:

w = XT (XXT )−1Y

However, for the oversampling case, the matrixX will become X̄ = αX+(1−α)PX where P is any permutation matrix
such that PY = Y . Hence, the solution to above optimization problem is:

wα = X̄T (X̄X̄T )−1Y
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Now, using (Vershynin, 2010) [Theorem 5.58] and N ≤ c · d, we have with probability atleast 1− exp (C − cd):

XXT ⪰ 1

2
IN

Consider the following:

X̄X̄T = α2XXT + (1− α)2PXXTPT+

α(1− α)
[
XXTPT + PXXT

]
⪰ α2

2
IN +

(1− α)2

2
(PPT ) +

α(1− α)
2

(PT + P )

Now, since P is a permutation matrix, we have PPT = IN and (PT + P ) is symmetric =⇒ (PT + P ) ⪰ kIN where
k = λmin(P

T + P ) is the minimum eigen value of PT + P . Hence, we have the following:

X̄X̄T ⪰ α2 + (1− α)2 + kα(1− α)
2

IN

=
1

2
d(α)IN

where, d(α) = α2 + (1− α)2 + kα(1− α)

=⇒
(
X̄X̄T

)−1 ⪯ 2

d(α)
IN

Let Lip(h∗α(x)) denote the lipschitz constant of h∗α(x), then we have:

Lip(h∗α(x)) = ∥w∥ =
√
Y T

(
X̄X̄T

)−1
Y ≤

√
2N

d(α)

Corollary 2. Let M be the size of original dataset and N be the size of dataset after oversampling. Then for M ≤ N ≤
(1+r)M , there exists some α for which the bound on Lip(h∗α(x)) is tighter than Lip(h∗(x)) (lipschitz constant for without
oversampling case) for some r ∈ R+.

Proof. For the above conditions, we have from previous Proposition:

Lip(h∗α(x)) ≤

√
2N

d(α)
and Lip(h∗(x)) ≤

√
2M

For a tight bound, we have: √
2N

d(α)
≤
√
2M

=⇒ N

α2 + (1− α)2 + kα(1− α)
≤M

=⇒ α2 − α+
N −M
M(k − 2)

≤ 0

=⇒ α ∈

1−
√

1− 4(N−M)
M(k−2)

2
,
1−

√
1 + 4(N−M)

M(k−2)

2


For above range to be valid, we need:

1 ≥ 4(N −M)

M(k − 2)
=⇒ N ≤

(
1 +

(k − 2)

4

)
M

We know that N ≥M , thus we have:

M ≤ N ≤ (1 + r)M where, r =
(k − 2)

4
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Algorithm 1: Proposed Method’s Pseudo Code

Input: Imbalanced Dataset D = {xi, yi}Ni=1 with C classes, Encoder Network Eφ, Decoder Network Dθ, Linear
Classifier Lω , Mixer Network Mζ and a Critique Network Cψ

Output: Trained Classifier Lω∗

1 Create Sc = {xi | yi = c}
2 Create Simb =

⋃
i S{i:|Si|<maxj(|Sj |)

3 while not converged do
4 for (xi, yi) ∈ D do
5 Sample {xij ∈ Syi}t−1

j=1 and let xit = xi
6 Find latent vectors {zij = Eφ∗(xij)}tj=1

7 Find mixing coefficients {αij =Mζ∗(zij)}tj=1

8 Sample z′ =
∑t
j=1 αijzij

9 Calculate the predicted labels ŷ′ = Lω∗(z′) and {ŷij = Lω∗(zij)}
10 Reconstruct the images {x̂ij = Dθ∗(zij)}tj=1 and x̂′ = Dθ∗(z

′)

11 Calculate Lmixer, Ldecoder, Lcritic, Lclf , Lencoder according to Eq. (3-7) of main paper.
12 ω∗ ← ω∗ − γ1∇ω∗Lclf
13 ζ∗ ← ζ∗ − γ2∇ζ∗Lmixer
14 φ∗ ← φ∗ − γ3∇φ∗(Lencoder
15 θ∗ ← θ∗ − γ3∇θ∗Ldecoder
16 ψ∗ ← ψ∗ − γ4∇ψ∗Lcritic
17 Return the learned classifier Lω∗

Table 6: Summarized Description of Benchmark Datasets

Dimension (h× w × c) # of Classes Train Split Size Test Split Size
MNIST (Lecun, 2010) 28× 28× 1 10 60, 000 10, 000

Fashion-MNIST (Xiao et al., 2017) 28× 28× 1 10 60, 000 10, 000
SVHN (Netzer et al., 2011) 32× 32× 3 10 73, 257 26, 032

CIFAR-10 (Krizhevsky, 2009) 32× 32× 3 10 50, 000 10, 000
CELEBA (Liu et al., 2015) 32× 32× 3 5 15, 160 5, 000

CIFAR-100 (Krizhevsky, 2009) 32× 32× 3 100 50, 000 10, 000
ImageNet-100 (Deng et al., 2009) 32× 32× 3 100 50, 973 5, 000

Table 7: Class distributions of the datasets used in this work for benchmarking.

Class MNIST/Fashion MNIST SVHN/CIFAR-10 CelebA
Train Balanced Test Imbalanced Test Train Balanced Test Imbalanced Test Train Balanced Test Imbalanced Test

0 4000 800 1000 4500 800 1000 9000 1000 1000
1 2000 800 500 2000 800 500 4500 1000 500
2 1000 800 250 1000 800 250 1000 1000 111
3 750 800 187 800 800 187 500 1000 55
4 500 800 125 600 800 125 160 1000 17
5 350 800 87 500 800 87
6 200 800 50 400 800 50
7 100 800 25 250 800 25
8 60 800 15 150 800 15
9 40 800 10 80 800 10

A.1 Dataset Description

We use six image datasets to benchmark the proposed method.

1. MNIST (Lecun, 2010): MNIST dataset contains 60,000 gray-scale training images and 10,000 gray-scale test exam-
ples of handwritten digits.
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Table 8: Class distribution for CIFAR-100

Training Set Balanced Test Set Imbalanced Test Set
500, 488, 477, 466, 455, 445, 434, 424, 415, 405,
396, 387, 378, 369, 361, 352, 344, 336, 328, 321,
314, 306, 299, 292, 286, 279, 273, 266, 260, 254,
248, 243, 237, 232, 226, 221, 216, 211, 206, 201,
197, 192, 188, 183, 179, 175, 171, 167, 163, 159,
156, 152, 149, 145, 142, 139, 135, 132, 129, 126,
123, 121, 118, 115, 112, 110, 107, 105, 102, 100,

98, 95, 93, 91, 89, 87, 85, 83, 81, 79,
77, 75, 74, 72, 70, 69, 67, 66, 64, 63,
61, 60, 58, 57, 56, 54, 53, 52, 51, 50

80, 80, 80, 80, 80, 80, 80, 80, 80, 80,
80, 80, 80, 80, 80, 80, 80, 80, 80, 80,
80, 80, 80, 80, 80, 80, 80, 80, 80, 80,
80, 80, 80, 80, 80, 80, 80, 80, 80, 80,
80, 80, 80, 80, 80, 80, 80, 80, 80, 80,
80, 80, 80, 80, 80, 80, 80, 80, 80, 80,
80, 80, 80, 80, 80, 80, 80, 80, 80, 80,
80, 80, 80, 80, 80, 80, 80, 80, 80, 80,
80, 80, 80, 80, 80, 80, 80, 80, 80, 80,
80, 80, 80, 80, 80, 80, 80, 80, 80, 80

100, 97, 95, 93, 91, 89, 86, 84, 83, 81,
79, 77, 75, 73, 72, 70, 68, 67, 65, 64,
62, 61, 59, 58, 57, 55, 54, 53, 52, 50,
49, 48, 47, 46, 45, 44, 43, 42, 41, 40,
39, 38, 37, 36, 35, 35, 34, 33, 32, 31,
31, 30, 29, 29, 28, 27, 27, 26, 25, 25,
24, 24, 23, 23, 22, 22, 21, 21, 20, 20,
19, 19, 18, 18, 17, 17, 17, 16, 16, 15,
15, 15, 14, 14, 14, 13, 13, 13, 12, 12,
12, 12, 11, 11, 11, 10, 10, 10, 10, 10

Table 9: Class distribution for Imagenet-100

Training Set Balanced Test Set Imbalanced Test Set
1300, 1270, 1240, 1212, 1184, 1157, 1130, 1104, 1079, 1054,

1030, 1006, 983, 960, 938, 917, 896, 875, 855, 835,
816, 797, 779, 761, 743, 726, 710, 693, 677, 662,
647, 632, 617, 603, 589, 575, 562, 549, 537, 524,
512, 500, 489, 478, 467, 456, 445, 435, 425, 415,
406, 397, 387, 378, 370, 361, 353, 345, 337, 329,
322, 314, 307, 300, 293, 286, 280, 273, 267, 261,
255, 249, 243, 237, 232, 227, 221, 216, 211, 206,
202, 197, 193, 188, 184, 180, 175, 171, 167, 164,
160, 156, 152, 149, 146, 142, 139, 136, 133, 130

50, 50, 50, 50, 50, 50, 50, 50, 50, 50,
50, 50, 50, 50, 50, 50, 50, 50, 50, 50,
50, 50, 50, 50, 50, 50, 50, 50, 50, 50,
50, 50, 50, 50, 50, 50, 50, 50, 50, 50,
50, 50, 50, 50, 50, 50, 50, 50, 50, 50,
50, 50, 50, 50, 50, 50, 50, 50, 50, 50,
50, 50, 50, 50, 50, 50, 50, 50, 50, 50,
50, 50, 50, 50, 50, 50, 50, 50, 50, 50,
50, 50, 50, 50, 50, 50, 50, 50, 50, 50,
50, 50, 50, 50, 50, 50, 50, 50, 50, 50

50, 48, 47, 46, 45, 44, 43, 42, 41, 40,
39, 38, 37, 36, 36, 35, 34, 33, 32, 32,
31, 30, 29, 29, 28, 27, 27, 26, 26, 25,
24, 24, 23, 23, 22, 22, 21, 21, 20, 20,
19, 19, 18, 18, 17, 17, 17, 16, 16, 15,
15, 15, 14, 14, 14, 13, 13, 13, 12, 12,
12, 12, 11, 11, 11, 11, 10, 10, 10, 10,

9, 9, 9, 9, 8, 8, 8, 8, 8, 7,
7, 7, 7, 7, 7, 6, 6, 6, 6, 6,
6, 6, 5, 5, 5, 5, 5, 5, 5, 5

2. Fashion-MNIST (Xiao et al., 2017): Fashion MNIST is a drop-in replacement of the MNIST (Lecun, 2010) dataset.
It consists of Zalando’s article images.

3. SVHN (Netzer et al., 2011): Street View House Number dataset consists of small, cropped digits from house numbers
in Google Street View images. It has 73,257 images for training and 26,032 images for testing.

4. CIFAR-10 (Krizhevsky, 2009): The CIFAR-10 dataset includes 60,000 small colour images categorised into ten
classes, each with 6,000 images. This database has a standard split of 50,000 training images and 10,000 testing
images.

5. CelebA (Liu et al., 2015): CelebFaces Attributes Dataset (CelebA) is a large-scale face attributes dataset of 202, 599
celebrity photos, each with 40 attribute annotations. We resize the images to 32 × 32 following previous work in
imbalance learning (Dablain et al., 2022).

6. CIFAR-100 (Krizhevsky, 2009): This dataset is a sub-class of the CIFAR-10 dataset, and comprises of 100 classes,
each with 600 images. Each class has 500 training images and 100 testing images.

7. ImageNet-100 (Deng et al., 2009): Following previous literature (Kalantidis et al., 2020; Van Gansbeke et al., 2020;
Ravula et al., 2021)), we randomly subsample 100 classes from ImageNet dataset to validate the proposed methods
effectiveness on large scale dataset.

The key information about the datasets used in this paper is summarised in Table 6. Since, the class distributions are not
skewed in the original datasets, we artificailly create imbalance following prior works (Mullick et al., 2019; Dablain et al.,
2022; Wang et al., 2020). Table 7 and 8 presents the training and test distribution used for experimentation.

Further, we use four tabular datasets (Alcalá-Fdez et al., 2011) to validate the performance of the proposed method. We
use the standard train-test split as provided by the Imbalanced-learn package (Lemaı̂tre et al., 2017).

1. OPTICAL DIGITS (Alcalá-Fdez et al., 2011): Majority vs minority class ratio for this dataset is 9.1:1. Total number
of samples is 5,620 and size of feature vector is 64.

2. ISOLET (Alcalá-Fdez et al., 2011): Majority vs minority class ratio for this dataset is 12:1. Total number of samples
is 7,797 and size of feature vector is 617.
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3. WEBPAGE (Alcalá-Fdez et al., 2011): Majority vs minority class ratio for this dataset is 33:1. Total number of
samples is 34,780 and size of feature vector is 300.

4. PROTEIN HOMO (Alcalá-Fdez et al., 2011): Majority vs minority class ratio for this dataset is 11:1. Total number
of samples is 145,751 and size of feature vector is 74.

A.2 Experimental Results

A.2.1 Performance of Deep Learning Methods

In Table 1 of the main paper, we have compared the performance of the proposed method on balanced testset. Here we
provide results on imbalanced testset in Table 10. Further Table 11 compares sample quality of each method as measured
by FID (Heusel et al., 2017). Moreover, in Table 12 we also compare our solution with baseline methods on AURPC-
OVA metric. AURPC-OVA refers to the multi-class version of Area under the Precision Recall Curve (AURPC) following
One vs All (OVA) startegy. It has been shown by Mullick et al. (2020) that AURPC-OVA metric satifies all the desirable
properties to be a suitable evaluation metric for classifiers under multi-class imbalance setting.

Table 10: Performance (Mean ± Std. Dev.) of our method on Imbalanced test dataset.

Dataset Metrices Our
DeepSMOTE

(Dablain et al., 2022)
GAMO

(Mullick et al., 2019)
BAGAN

(Mariani et al., 2018)
DGC

(Wang et al., 2020)

MNIST
ACSA 96.75 ± 0.86 93.30 ± 1.20 95.38 ± 0.82 93.26 ± 0.06 94.89 ± 0.35

F1 94.74 ± 0.98 94.71 ± 0.58 96.10 ± 0.52 94.59 ± 0.33 94.61 ± 0.71
GM 98.29 ± 0.45 96.51 ± 0.61 97.60 ± 0.42 96.67 ± 0.36 97.26 ± 0.19

FashionMNIST
ACSA 86.24 ± 1.24 82.81 ± 1.40 81.85 ± 2.44 80.56 ± 0.80 81.78 ± 0.71

F1 83.38 ± 1.22 82.12 ± 2.10 80.47 ± 2.30 81.79 ± 0.65 80.97 ± 0.80
GM 92.30 ± 0.68 90.44 ± 0.78 89.93 ± 1.40 89.20 ± 0.44 89.43 ± 0.35

SVHN
ACSA 79.49 ± 2.04 71.34 ± 3.69 75.18 ± 1.67 71.19 ± 0.36 69.28 ± 0.90

F1 66.83 ± 1.34 69.15 ± 3.33 72.77 ± 0.39 71.49 ± 2.63 63.64 ± 0.71
GM 88.35 ± 1.17 83.69 ± 2.22 86.13 ± 0.96 83.44 ± 0.10 81.24 ± 1.02

CIFAR10
ACSA 56.63 ± 2.95 42.46 ± 2.25 45.99 ± 2.14 43.47 ± 2.72 39.99 ± 0.32

F1 45.06 ± 1.44 41.16 ± 1.93 44.52 ± 2.30 42.19 ± 2.22 37.12 ± 0.67
GM 73.84 ± 1.98 63.79 ± 1.72 66.58 ± 1.60 64.60 ± 2.07 59.67 ± 0.08

CELEBA
ACSA 76.85 ± 0.59 63.28 ± 2.18 66.80 ± 0.54 65.91 ± 0.74 65.03 ± 0.76

F1 68.64 ± 2.66 65.46 ± 1.40 67.11 ± 0.53 68.56 ± 0.81 63.72 ± 0.52
GM 84.23 ± 2.04 77.12 ± 1.47 79.63 ± 0.33 80.36 ± 0.89 77.19 ± 1.02

CIFAR100
ACSA 25.86 ± 0.17 23.05 ± 0.23 12.14 ± 0.43 23.09 ± 0.46 23.41 ± 0.16

F1 20.96 ± 0.29 23.02 ± 0.26 11.68 ± 0.36 23.54 ± 0.55 21.56 ± 0.10
GM 50.66 ± 0.17 47.83 ± 0.23 34.70 ± 0.62 48.96 ± 0.69 42.03 ± 0.08

ImageNet100
ACSA 26.21 ± 0.12 12.85 ± 0.39 08.56 ± 0.16 15.55 ± 0.27 09.55 ± 0.35

F1 24.43 ± 0.28 12.53 ± 0.31 08.41 ± 0.12 14.73 ± 0.29 08.65 ± 0.41
GM 44.14 ± 0.08 35.70 ± 0.19 29.12 ± 0.67 39.27 ± 0.47 22.81 ± 1.20

Table 11: FID of samples obtained from oversampling

Method MNIST Fashion SVHN CIFAR-10 CelebA
BAGAN 28.72 75.05 201.82 133.82 184.33

GAMO2PIX 19.32 36.84 104.73 101.52 73.08
DeepSMOTE 13.27 42.39 113.92 86.40 45.57

Proposed Method 13.24 33.95 100.88 89.53 60.27

Table 12: Comparison of mAURPC-OVA

MNIST Fashion SVHN CIFAR10 CelebA
Our 0.9971 0.9233 0.8929 0.6389 0.8452
DeepSMOTE 0.9862 0.8821 0.8087 0.4477 0.7042
GAMO 0.9802 0.8906 0.8319 0.5004 0.7454
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Table 13: Performance of our method on Tabular datasets.

Dataset Metrices Our
DeepSMOTE

(Dablain et al., 2022)
GAMO

(Mullick et al., 2019)
BAGAN

(Mariani et al., 2018)
DGC

(Wang et al., 2020)

OPTICAL DIGITS
ACSA 98.01 95.61 98.19 93.29 96.65

F1 97.94 94.18 98.18 94.36 95.38
GM 98.01 95.61 98.19 93.29 96.63

ISOLET
ACSA 95.69 92.98 93.75 90.65 90.97

F1 97.77 91.86 93.72 91.29 89.03
GM 95.66 92.99 93.75 90.66 90.71

WEBPAGE
ACSA 94.83 83.66 89.79 62.36 88.61

F1 96.89 86.18 89.68 68.02 90.72
GM 94.82 83.67 89.79 62.36 87.91

PROTEIN HOMO
ACSA 94.70 82.23 91.89 81.08 86.09

F1 97.51 88.48 91.87 88.07 91.39
GM 94.68 82.23 91.89 81.08 84.96

A.2.2 Performance of Classical Approaches

In this section we present the classification performance of the following classical machine learning methods: SMOTE
(Chawla et al., 2002), AMDO (Yang et al., 2017), MC-CCR (Koziarski et al., 2020), and MC-RBO (Koziarski et al.,
2019). These results have been taken from DeepSMOTE (Dablain et al., 2022) and presented here for easy reference.

Table 14: Performance of Classical Oversampling methods on Imbalanced Test Dataset

Datasets Metrics Our SMOTE AMDO MC-CCR MC-RBO

MNIST
ACSA 96.75 81.48 84.29 86.19 87.25

F1 94.74 82.44 84.88 86.46 88.69
GM 98.29 83.99 88.73 92.04 94.46

FashionMNIST
ACSA 86.24 67.94 74.90 78.58 80.06

F1 83.38 67.12 75.39 79.03 80.14
GM 92.30 74.84 80.89 86.17 88.02

SVHN
ACSA 79.49 70.18 71.94 72.01 74.20

F1 66.83 71.80 73.06 80.94 74.91
GM 88.35 76.33 78.52 74.26 82.97

CIFAR10
ACSA 56.63 28.02 31.19 32.83 33.01

F1 45.06 29.58 32.44 33.91 35.83
GM 73.84 50.08 53.99 56.68 59.15

CELEBA
ACSA 76.85 60.29 63.54 65.23 67.11

F1 68.64 60.03 62.94 64.88 80.52
GM 84.23 70.48 72.86 77.14 65.37

A.3 Ablation on t:

We have chosen number of mixing components, t = 2, 3, 4 and performed experiments to compute ACSA on the bench-
mark datasets using our method. It can be seen in Figure 3, the performance achieved is more or less similar. So for all of
our experiments, we have chosen t = 2.

A.4 Qualitative Samples

In the main paper, the performance of the proposed method is evaluated mainly quantitatively, using standard metrics:
ACSA, macro-averaged GM, macro-averaged F1 score, and density/coverage (Naeem et al., 2020) score. Further, in Sec-
tion A.2 of the supplementary material we have presented more quantitative metrics for imbalanced test set and compared
FID. We have used 800 generated samples and 800 real test examples from each class for computation of FID and den-
sity/coverage score for all datasets. It has been observed that the proposed method not only outperform all other current
state-of-the-art models in classification task as measured using those metrics (ACSA, GM, F1) but also achieve competi-
tive scores for generative task (either outperforms or comparable). In this section, we present qualitative results (generated
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Table 15: Performance of Classical Oversampling methods on Balanced Test Dataset

Datasets Metrics Our SMOTE AMDO MC-CCR MC-RBO

MNIST
ACSA 96.79 87.98 88.34 90.83 91.28

F1 96.78 85.02 87.28 91.22 92.49
GM 98.20 89.99 91.03 93.18 94.62

FashionMNIST
ACSA 84.79 70.58 72.98 75.78 76.91

F1 84.30 68.06 71.53 74.39 75.92
GM 91.30 76.39 79.36 81.04 82.14

SVHN
ACSA 78.66 68.19 71.59 74.29 75.38

F1 78.42 64.28 68.47 72.49 73.52
GM 87.62 74.48 79.13 81.62 81.98

CIFAR10
ACSA 57.94 27.93 31.85 33.48 39.17

F1 57.13 25.10 30.04 32.88 40.37
GM 74.31 42.81 48.19 51.18 59.29

CELEBA
ACSA 74.65 48.19 51.44 58.46 61.53

F1 74.02 42.19 47.28 57.91 62.08
GM 83.67 56.39 60.73 65.39 72.95

samples) for visual evaluation of the proposed framework. Figure 4, 5, 6, 7 and 8 presents 5 randomly generated samples
per minority class of MNIST, Fashion-MNIST, SVHN, CIFAR-10 and CELEBA datasets respectively.

A.5 Model Architecture

For all image datasets (except ImageNet-100), the encoder, Eφ and the decoder, Dθ architectures are adapted from prior
works (Chen et al., 2016; Lucic et al., 2018; Dai & Wipf, 2019; Mondal et al., 2021). The architecture of the encoder and
the decoder networks are same irrespective of the dataset chosen, as presented in Table 16. However, number of neurons in
the 2nd fully connected layer of decoder varies based on the dimension of the images. For ImageNet-100, the architecture
of the encoder network is based on DenseNet201 (Huang et al., 2017). The architectures of the mixer, Mζ , the critic, Cψ
are fixed across all image datasets as mentioned in Table 17. Table 18 and Table 19 presents the model architectures used
for tabular datasets.

Notation wise, CONVn,k,s denotes a convolutional layer with n kernels of size k and stride size s. TCONVn,k,s denotes
a transpose convolutional layer with n kernels of size k and stride size s. FCn denotes a Fully Connected layer with n
neurons. BN denotes a batch normalization layer. lReLU denotes Leaky Rectified Linear Unit activation. ReLU denotes
Rectified Linear Unit activation. Dropout(r) denotes a Dropout layer with dropout rate = r.

A.6 Training Details

In this section, we give detailed information about the training regime and hyperparameters which were used in the ex-
periments shown in the main paper. We have compared our proposed method with four baseline methods, DeepSMOTE
(Dablain et al., 2022), GAMO (Mullick et al., 2019), BAGAN (Mariani et al., 2018), and DGC (Wang et al., 2020). The
architecture used for all these algorithms had parameters comparable to the architecture described in Table 16 to ensure a
fair comparison. All of these methods were evaluated on the six well-known image datasets mentioned in Section A.1.

In our proposed method, the experimental settings except the latent space dimension were the same for all datasets. For
MNIST (Lecun, 2010) and FashionMNIST (Xiao et al., 2017) datasets, the latent space dimension used was 64, whereas
for the SVHN (Netzer et al., 2011) dataset it was set to 128. In the case of CIFAR-10 (Krizhevsky, 2009), CelebA (Liu
et al., 2015), CIFAR-100 (Krizhevsky, 2009), and ImageNet-100 (Deng et al., 2009) datasets, it was chosen to be 256,
256, 256 and 512 respectively. For the tabular datasets (OPTICAL DIGITS, ISOLET, WEBPAGE, PROTEIN HOMO),
we use a latent space of dimensionality 8. To learn the encoder network, we used AdamW optimizer with a learning rate
of 2 × 10−4 and a weight decay of 10−3. For all the other components of our method, we used Adam optimizer with a
learning rate of 2× 10−4, β1= 0.5 and β2= 0.9.
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Figure 3: Ablation: Number of mixing components vs. Classification performance (ACSA) for different datasets.

Table 16: Encoder and Decoder Architectures for Image Datasets

Encoder, (Eφ) Decoder, (Dθ)

x ∈ Rh×w×c

→ Conv64,4,2 → BN→ lReLU→ Dropout(0.4)
→ Conv128,4,2 → BN→ lReLU→ Dropout(0.4)
→ Flatten→ FC1024 → BN→ lReLU→ Dropout(0.4)
→ FCm

z ∈ Rm,y ∈ Rn

→ FC1024 → BN→ ReLU
→ FCh

4 ×
w
4 ×128 → BN→ ReLU

→ Reshapeh
4 ×

w
4 ×128

→ TCONV128,4,2 → BN→ ReLU
→ TCONV64,4,2 → BN→ ELU
→ CONVc,3,1 → Sigmoid

m = 64 for MNIST, Fashion-MNIST; m = 128 for SVHN and m = 256 CIFAR10, CELEBA.
n = 10 for MNIST, Fashion-MNIST, SVHN and CIFAR10, n = 5 for CELEBA.

Table 17: Mixer and Critic Network Architectures for Image Datasets

Mixer, (Mζ) Critic, (Cψ)
z1 ∈ Rm, z2 ∈ Rm,y1 ∈ Rn,n ∈ Rm ∼ N (0, I)

→ FC1024 → BN→ lReLU→ Dropout(0.4)
→ FC1024 → BN→ lReLU→ Dropout(0.4)
→ FC1024 → BN→ lReLU→ Dropout(0.4)
→ FC1024 → BN→ lReLU→ Dropout(0.4)
→ FC2 → Softmax

x ∈ Rh×w×c

→ Conv64,4,2 → lReLU
→ Conv128,4,2 → lReLU
→ Flatten→ FC1024 → lReLU
→ FC1

m = 64 for MNIST, Fashion-MNIST; m = 128 for SVHN and m = 256 CIFAR10, CELEBA.
n = 10 for MNIST, Fashion-MNIST, SVHN and CIFAR10, n = 5 for CELEBA.
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(a) Original (Lecun,
2010)

(b) Proposed Method (c) GAMO2PIX (Mullick
et al., 2019)

(d) DeepSMOTE
(Dablain et al., 2022)

(e) BAGAN (Mariani
et al., 2018)

Figure 4: MNIST minority class images, with rows corresponding to digit classes. All the images are randomly chosen
without any cherry picking.

(a) Original (Xiao et al.,
2017)

(b) Proposed Method (c) GAMO2PIX (Mullick
et al., 2019)

(d) DeepSMOTE
(Dablain et al., 2022)

(e) BAGAN (Mariani
et al., 2018)

Figure 5: FashionMNIST (Xiao et al., 2017) minority class images: trouser / pullover / dress / coat / sandal / shirt / sneaker
/ bag / ankle boot. All the images are randomly chosen without any cherry picking.

Table 18: Encoder and Decoder Architectures for Tabular Datasets

Encoder, (Eφ) Decoder, (Dθ)

x ∈ Rl

→ FC512 → BN→ lReLU→ Dropout(0.4)
→ FC256 → BN→ lReLU→ Dropout(0.4)
→ FCm

z ∈ Rm,y ∈ Rn

→ FC512 → BN→ ReLU
→ FC256 → BN→ ReLU
→ FCl

m = 8
l = 64, 617, 300, 74 for OPTICAL DIGITS, ISOLATE, WEBPAGE and PROTEIN HOMO.
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(a) Original (Netzer et al.,
2011)

(b) Proposed Method (c) GAMO2PIX (Mullick
et al., 2019)

(d) DeepSMOTE
(Dablain et al., 2022)

(e) BAGAN (Mariani
et al., 2018)

Figure 6: SVHN (Netzer et al., 2011) minority class images, with rows corresponding to digit classes. All the images are
randomly chosen without any cherry picking.

(a) Original (Krizhevsky,
2009)

(b) Proposed Method (c) GAMO2PIX (Mullick
et al., 2019)

(d) DeepSMOTE
(Dablain et al., 2022)

(e) BAGAN (Mariani
et al., 2018)

Figure 7: CIFAR-10 (Krizhevsky, 2009) minority class images: automobile / bird / cat / deer / dog / frog / horse / ship /
truck. All the images are randomly chosen without any cherry picking.

(a) Original (Liu et al.,
2015)

(b) Proposed Method (c) GAMO2PIX (Mullick
et al., 2019)

(d) DeepSMOTE
(Dablain et al., 2022)

(e) BAGAN (Mariani
et al., 2018)

Figure 8: CelebA (Liu et al., 2015) minority class images: brown hair / blond hair / gray hair / bald. All the images are
randomly chosen without any cherry picking.
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Table 19: Mixer and Critic Network Architectures for Tabular Datasets

Mixer, (Mζ) Critic, (Cψ)
z1 ∈ Rm, z2 ∈ Rm,y1 ∈ Rn,n ∈ Rm ∼ N (0, I)

→ FC512 → BN→ lReLU→ Dropout(0.4)
→ FC512 → BN→ lReLU→ Dropout(0.4)
→ FC512 → BN→ lReLU→ Dropout(0.4)
→ FC512 → BN→ lReLU→ Dropout(0.4)
→ FC2 → Softmax

x ∈ Rl

→ FC512 → lReLU
→ FC512 → lReLU
→ FC512 → lReLU
→ FC1

m = 8
l = 64, 617, 300, 74 for OPTICAL DIGITS, ISOLATE, WEBPAGE and PROTEIN HOMO.


