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Abstract

Causal discovery methods typically extract causal
relations between multiple nodes (variables)
based on univariate observations of each node.
However, one frequently encounters situations
where each node is multivariate, i.e. has multiple
observational modalities. Furthermore, the ob-
served modalities may be generated through an
unknown mixing process, so that some original
latent variables are entangled inside the nodes.
In such a multimodal case, the existing frame-
works cannot be applied. To analyze such data,
we propose a new causal representation learning
framework called connectivity-contrastive learn-
ing (CCL). CCL disentangles the observational
mixing and extracts a set of mutually independent
latent components, each having a separate causal
structure between the nodes. The actual learn-
ing proceeds by a novel self-supervised learning
method in which the pretext task is to predict the
label of a pair of nodes from the observations
of the node pairs. We present theorems which
show that CCL can indeed identify both the latent
components and the multimodal causal structure
under weak technical assumptions, up to some in-
determinacy. Finally, we experimentally show its
superior causal discovery performance compared
to state-of-the-art baselines, in particular demon-
strating robustness against latent confounders.

1 INTRODUCTION

Estimating causal relations among a set of random variables
based on purely observational data is called causal discov-
ery, and has a great importance in a wide variety of fields,

Proceedings of the 26th International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2023, Valencia, Spain. PMLR:
Volume 206. Copyright 2023 by the author(s).

such as medicine, biology, finance, social sciences, and neu-
rosciences. Causal discovery is generally formulated as esti-
mation of a directed-acyclic graph (DAG) representing the
causal relations of variables. However, learning a DAG from
data is known to be highly challenging because the number
of possible DAGs grows super-exponentially as a function
of the number of variables (Robinson, 1977), and many
different graphs can represent exactly the same data distri-
bution (Andersson et al., 1997; Spirtes et al., 2001). There
are mainly three approaches to tackle this problem (Gly-
mour et al., 2019): the constraint-based, score-based, and
asymmetry-based approaches. The score-based approach
posits a scoring criterion for DAGs and then searches for the
model with the highest score given the observations, while
the constraint-based approach is based on conditional inde-
pendence tests among variables. The asymmetry-based ap-
proach, which we use in this paper, formulates the problem
as a continuous optimization of a statistical causal model,
such as Bayesian network (BN) or structural equation model
(SEM), with assumptions that make the model suitably
asymmetric, such as nonlinearity or non-Gaussianity.

While most frameworks focus on causal discovery given a
univariate variable for each node, in many applications we
have access to multimodal observations (variables) for each
node, for example with the same set of physical quantities
across nodes. Examples include any kinds of sensor net-
works, such as sensor-arrays for climate monitoring (where
a node is a single sensor location, and the modalities in-
clude temperature, humidity, rainfall (Longman et al., 2018),
pollutants (Reani et al., 2022), and so on), or simultaneous
measurements of multiple brain-imaging modalities (Hus-
ter et al., 2013; Shin et al., 2018) (where a node is a brain
region), and so on.

If all variables are allowed to have causal relationships, the
causal structure in such data can be simply represented by
an adjacency matrix with the size of (modality × node) ×
(modality × node), though this leads to a very large ma-
trix. On the other hand, if the measurement modalities are
statistically mutually independent, as assumed in (Chen
et al., 2021; Wang et al., 2020), the causal structure can be
fully described by a three-way tensor (modality × node ×
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node) representing separate modality-wise causal structures
with no connections between modalities. Unfortunately in
many cases, clearly including the examples just given, both
of these simple frameworks fail because of dependencies
across modalities, not due to causal relations but a mixing
effect caused by (unknown) measurement process. An ob-
servational mixing clearly violates the assumption of causal
relations between variables, which makes the conventional
frameworks completely inapplicable.

Fortunately, there exists practical evidence, especially in
the context of the recently developed nonlinear indepen-
dent component analysis (NICA) (Hyvärinen and Morioka,
2016; Hyvarinen and Morioka, 2017; Hyvarinen et al., 2019;
Khemakhem et al., 2020), that observations can often be
disentangled into mutually independent latent components,
which is a form of representation learning. If we can disen-
tangle the observational mixing, obtaining latent modalities
(components) which are mutually independent, the causal
structure across node variables can often be properly de-
scribed using causal connections inside those latent com-
ponents. We can thus describe the causal structure hidden
in the data by a three-way tensor (component × node ×
node). This is never possible by the existing NICA or causal
discovery frameworks alone.

In this study, we propose a completely new framework,
connectivity-contrastive learning (CCL), for causal discov-
ery from multimodal node observations with unknown ob-
servational mixing (Fig. 1b). CCL jointly performs repre-
sentation learning and causal discovery so that while the
representation is learned for decomposing the observational
modalities into latent modalities (components) inside each
node (e.g. sensor location, brain region), the component-
wise causal relations over node-variables are learned si-
multaneously. CCL assumes a generative model where the
observational modalities are obtained as node-wise nonlin-
ear mixtures of mutually independent latent components
(Fig. 1a). Each component includes multiple node variables,
which are causally generated based on a pairwise BN charac-
terized by a component-specific adjacency matrix together
with asymmetric (nonlinear) causal effect functions. CCL
then learns the latent components together with their causal
structures from the observations in a data-driven manner,
by a new self-supervised learning framework: The pretext
task is to predict the pair index, or location in the graph,
given multimodal observations from every pairs of nodes.
Although this self-supervised framework may not seem rel-
evant to representation learning or causal discovery at first
glance, we prove the identifiability of the latent components
as well as of the multimodal causal structures (up to some in-
evitable indeterminacies) by proving the consistency of the
model estimation by CCL. Experiments show that CCL can
estimate multimodal causal structures, and beats the existing
state-of-the-art methods, both on simple simulated data and
a synthetic gene regulatory network recovery task, and this

both with and without nonlinear observational mixing or
latent confounders.

2 MODEL DEFINITION

We first present a short overview of the model definition
(Fig. 1a). We obtain a two-dimensional matrix observation
for each sample n; X(n) = (xai)

(n) ∈ Rp×d, whose ele-
ments are obtained from multiple nodes a ∈ V (|V| = p)
with multiple observational modalities i ∈ {1, . . . , d}.1
This is a general situation to consider, for example, a sen-
sor array measuring multiple physical quantities (i) having
unknown relations across some geographical locations (a)
at different time points (n). We then assume that the ob-
servations are actually generated from a causally-structured
latent matrix S(n) = (saj)

(n) ∈ Rp×d, where a is the node
from the same set V while j ∈ {1, . . . , d} is a component
index. The elements of S(n) are assumed mutually indepen-
dent across components j, while causally-structured across
nodes a ∈ V for each j, as in Chen et al. (2021); Wang
et al. (2020). If the latent matrix is directly given as the
observation (i.e., X(n) = S(n)), the problem resembles that
of Chen et al. (2021); Wang et al. (2020), and thus those
multitask causal discovery frameworks would be applicable.
However, we additionally assume that the observational ma-
trix is obtained through an unknown observational mixing
for each node a, which happens frequently in many practical
situations, including the example of the sensor arrays above.
This study considers the case where the all nodes has the
same measurement process. Unfortunately, such observa-
tional mixings generally break the causal relations between
elements of X, and thus make the existing causal discovery
frameworks on the observational space impossible. Our
goal is to jointly estimate the latent matrix and its causal
structures from the observations in a data-driven manner,
which was never possible before.

Causally Structured Latent Components The latent ma-
trix S(n) = (saj)

(n) ∈ Rp×d is generated probabilistically
for each sample n, mutually independently across compo-
nents j, while with causal structures across nodes a ∈ V
within each j (Fig. 1a), based on a pairwise BN model,
as described in detail below. Note that, based on the two-
dimensional structure of S(n) for given n, the elements of
each component j corresponds to a vector (saj)a∈V , i.e.
the j-th column of S, representing its realizations over the
nodes a ∈ V . This is a general setting to represent causal
relations of multiple nodes having multiple (mutually in-
dependent) modalities j, similarly to Chen et al. (2021);
Wang et al. (2020), and thus would be useful for many prac-
tical situations. We assume that the samples are generated
independently, thus n does not need to be time, as in stud-

1We sometimes omit the sample index n below when it repre-
sents a random variable instead of a sample, or it is apparent from
the context.
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Figure 1: (a) Generative model combining causal structure and observational mixing. We obtain a two-dimensional matrix
observation X(n) for each sample n, whose elements are obtained from p nodes (rows) with d observational modalities
(columns). The observations are obtained from a latent matrix S(n) with the same set of nodes through unknown node-wise
nonlinear mixings, which elements are mutually independent across components (columns) while causally-structured
between nodes (rows) based on component-specific pairwise bayesian networks. This is a general model to consider, for
example, a time series (n) from sensor array on multiple locations (row) with multiple physical quantities (column). (b) CCL
jointly performs representation learning and causal discovery. We train a feature extractor by self-supervised multinomial
logistic regression (MLR) which attempts to predict the pair-label (a, b) from paired observations (xa,xb) for every pairs
and samples, through ordinary back-propagation training. After training, the feature extractor h(·) represents the latent
components, and the weight parameters (wjab) of MLR represent the adjacency matrices, up to some indeterminacy.

ies based on temporal dependency (e.g., Granger (1980);
Lippe et al. (2022)). Our method is thus more general in the
sense that no assumptions on possible time dependencies
are made.

We model the causality of the node variables (saj)a∈V for
each component j by a BN with some assumptions on it.
BNs generally represent a causal graph by a factorization
of the joint distribution by a product of conditional distribu-
tions (e.g., Choi et al. (2020); Park and Raskutti (2015));

pj((saj)a∈V) =
∏
a∈V

paj(saj | pa(saj)) (1)

where pa(saj) is the set of parents of variable saj on the
causal graph of component j. Since this model is too gen-
eral and is not identifiable in general (Andersson et al., 1997;
Spirtes et al., 2001), we assume that Eq. 1 is further factor-
ized and parameterized by the following pairwise form;

pj((saj)a∈V) ∝
∏
a∈V

q̄aj(saj)
∏

(a,b)∈E

exp
(
λjabφj(saj , sbj)

)
,

(2)

where E ⊂ V2 is the all directed pairs of nodes exclud-
ing the self-pairs (∀a, (a, a) /∈ E), q̄aj(·) : R → (0,∞)
is a node potential function, φj(·, ·) : R × R → R is a
nonlinear (asymmetric) pairwise causal effect function, and
λj = (λjab)(a,b)∈E ∈ R|E| is coefficients modulating the
causal effects across node-pairs. This factorization is pos-
sible (Eq. 1 can be given by Eq. 2), for example, when the
causal graph is a (union of) directed rooted tree(s), where

each node has only (up to) one parent, and each (cross-term
of) conditional distribution pbj(sbj |saj) is given by an ex-
ponential family parameterized by λjab and φj . The function
φj is specific to each component j and does not vary across
pairs, while the coefficients λj controls the strengths of
the relations across node-pairs. The coefficients (λjab) are
supposed to be non-zero only when a is the direct cause of b
(or the opposite, depending on the functional form of φj) on
the causal graph of component j (note that the exponential
function is constant when λjab = 0). Hence, although the
nodes V and the pairs E are the same across components, the
actual causal structures and ordering can be different across
j due to the modulations by λj . From those properties, λj
can be interpreted as the causal graph (vectorized adjacency
matrix), and estimating λj is equivalent to the causal discov-
ery in this model. In some special cases, this pairwise BN
causal model can be also represented by a nonlinear SEM
(see Supplementary Material E), though such translation is
not always possible. We will find below assumptions of φj
and λj necessary for the identifiability of the model.

Observation Model The observed data consists of ma-
trices X(n) = (xai)

(n) ⊂ Rp×d, where i = 1, . . . , d is the
observation modality index, while a ∈ V is the same node
index as in the latent matrix (saj)

(n), for each sample n
(Fig. 1a). The observations are obtained from the latent
variables through an unknown observational mixing across
components j, for each node a and sample n;

x(n)
a = f(s(n)

a ), (3)
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where s
(n)
a = (saj)

(n)
j ∈ Rd is the a-th row of S(n),

representing the set of d components at node a ∈ V ,
x

(n)
a = (xai)

(n)
i ∈ Rd is similarly the a-th row of X(n),

i.e. the set of the d observational modalities at the same
node, and f : Rd → Rd is the observational mixing func-
tion, which is common across nodes. (See Section 6 for
the possibility of different dimensions for the observational
modalities and the latent components.) Importantly, the
fundamental difference between the latent and the obser-
vational matrices is the lack or presence, respectively, of
statistical dependence over the second index (components
j or modalities i), induced by the observational mixing in
the latter case. Although such dependency is inherent in
many applications including the examples above, it breaks
the causal relations between variables, and thus make the
existing causal discovery frameworks inapplicable.

This observational model resembles NICA (Hyvarinen et al.,
2019), except that the elements of each component here is
a vector representing multiple nodes a ∈ V with causal
relationships (Fig. 1a). Such combination of causality and
observational mixing makes existing NICA frameworks in-
applicable and thus requires a new framework which jointly
performs the demixing and the causal discovery. Treating
multimodal causal discovery as a novel type of nonlinear
ICA, with this definition of a causal structure inside each
component, and in particular in a directed, causal way, is
the originality of our model.

Illustrative Example Consider a battery of environmental
sensors which measure d physical quantities at p different
geographical locations, and at different time points. Thus,
the observed data is a tensor with the three indices: location
(a), physical quantity (i), and time (n). The measurements
are not independent across locations; the measured phenom-
ena at one location are causally affected by those at other
(nearby) locations but in a very complex way. Then, the
multidimensional signal at geographical location a and time
point n can be used in our model as x

(n)
a as in Eq. 3. The

observed matrix X(n) contains a temporal snapshot of the
multidimensional measurements x

(n)
a at all locations a ∈ V ,

and is observed for many time points n. This measured
signal is assumed to be a mixture of underlying compo-
nents s

(n)
a that we want to recover, since the sensors do

not directly give the essential disentangled quantities. The
component at a given location s(n)

aj has component-specific

causal relations with those on the other locations (s
(n)
bj )b6=a

based on unknown causal graphs λj and relations φj .

3 CONNECTIVITY-CONTRASTIVE
LEARNING

We propose a novel self-supervised method called CCL for
estimating the model just defined (Fig. 1b). Estimation is

based on a multinomial logistic regression (MLR) problem,
whose goal is to well predict the node-pair label (a, b) ∈ E
of paired node observations (x

(n)
a ,x

(n)
b ), for every node-

pair E and sample n. The learning procedure is based on
the minimization of a softmax loss, as generally done in
supervised classification problems, but here with a specific
form of the softmax function, and node-paired inputs;

L = −
∑
n

∑
(a,b)∈E

exp(
∑d
j=1 z

j
ab(xa

(n),xb
(n)))∑

(l,m)∈E exp(
∑d
j=1 z

j
lm(xa(n),xb(n)))

,

(4)

where zjab(y1,y2) = wjabψj(hj(y1), hj(y2)) +

wjbaψj(hj(y2), hj(y1))+ψ̄jab(hj(y1))+ψ̄jba(hj(y2))+bab,
(wjab) and (bab) are the weight and bias parameters, hj
is the jth element of a (nonlinear) feature extrac-
tor h(·) : Rd → Rd, and ψj(·, ·) : R2 → R and
ψ̄jab(·) : R→ R are scalar-valued nonlinear functions. All
of those parameters are learned from the observational data
{X(n)}n in a data-driven manner so as to optimize the loss
function. The nonlinear functions are assumed to have
universal approximation capacity (Hornik et al., 1989), and
would typically be learned as neural networks. We can use
any optimization method; a pseudo-code based on a basic
SGD is given in Supplementary Algorithm 1.

CCL can be seen as a new type of contrastive-learning,
which performs representation learning by taking contrast
of pairwise marginal distributions (numerator of Eq. 4) with
that of the all other node-pairs (denominator). This is the
reason why this framework is called connectivity-contrastive
learning. Interestingly, although this learning framework
may not seem to be related to representation learning or
causal discovery at first sight, our theorems below show
that it actually achieves both of them simultaneously, by
learning the function h(·) and the weights (wjab) of the soft-
max function (Eq. 4). The crucial point is the functional
form of Eq. 4 specially designed to be consistent with the
generative model shown above (such as mutual indepen-
dence across j represented by the summation

∑
j , and the

pairwise BNs parameterized by ψj and wjab). With some
additional assumptions on the generative model, we can
guarantee that the best loss-score can be only achieved by
the model satisfying those assumptions (up to some extent),
which automatically leads to the representation learning and
causal discovery.

The identification of the latent components is given by the
following Theorem, proven in Supplementary Material A:

Theorem 1. Assume the following:

1. (X) We obtain a dataset of two-dimensional observa-
tions {X(n)}n generated as node-wise nonlinear mix-
tures of latent components (Eq. 3), where the unknown
mixing f is invertible and sufficiently smooth.
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2. (S) The elements of latent matrices {S(n)}n are gen-
erated mutually independently across components j,
while with causal relations across nodes a ∈ V rep-
resented by a pairwise BN (Eq. 2) within each j, for
each sample n.

3. (φ) The causal effect function φj in Eq. 2 is asymmetric,
in the sense that there is at least one point (z1j , z2j) ∈
R2 where φ12

j (z1j , z2j) 6= φ12
j (z2j , z1j) for each j,

where φ12
j (η1, η2) = ∂2

∂η1∂η2
φj(η1, η2).

4. (λ) The underlying undirected structure of λj is
acyclic for all j, and each λj is sufficiently distinct
across components j, in the sense that the concate-
nated matrix [L̄, L̄′] has full column rank 2d, where
L̄ = (λjab − λja∗b∗)(a,b),j is a matrix of modulation
coefficients from which some pivot pair (a∗, b∗) is sub-
tracted, with the all pairs (a, b) ∈ E giving row index
and the component j the column index, and similarly
with L̄′ = (λjba − λ

j
b∗a∗)(a,b),j .

5. (CCL) We train MLR given by the loss function Eq. 4
with universal approximation capability.

6. (h) The function h in Eq. 4 is invertible.

7. (ψ) Each ψj in Eq. 4 is asymmetric, in the sense that
∂
∂z1

logψ12
j (z1, z2) 6= ∂

∂z1
logψ12

j (z2, z1), for all j
and for almost all (z1, z2) ∈ R2, where ψ12

j (η1, η2) =
∂2

∂η1∂η2
ψj(η1, η2).

Then, in the limit of infinite samples, h in the regres-
sion function provides a consistent estimator of the la-
tent components: The output of the feature extractor
h(x

(n)
a ) = (h1(x

(n)
a ), . . . , hd(x

(n)
a ))T gives the latent com-

ponents s
(n)
a = (saj)

(n)
j , up to permutation and scalar

(component-wise) invertible transformations for all a ∈ V
and n.

This theorem guarantees the (local) convergence (i.e. statis-
tical consistency) of the learning algorithm, which imme-
diately implies the identifiability of the components, up to
some indeterminacy.

Assumption 3 implies that φj needs to have sufficient
asymmetricity, and excludes for example a linear autore-
gressive model with Gaussian innovations; pbj(sbj |saj) ∝
exp(sbj − λjabsaj)2, where φj is obtained as a symmetric
form φj(saj , sbj) ∝ sajsbj , which is consistent with the
well-known result in the causal discovery studies (Shimizu
et al., 2006).

The acyclicity of the underlying undirected causal structure
of λj2 (Assumption 4) is required to ensure that the cross-
term of the pairwise marginal distribution pjab(saj , sbj) is
given by a specific form parameterized only by λjab, λ

j
ba,

2Note that λj themselves are not undirected.

and φj(·, ·) for every node-pair (a, b) ∈ E and component j
(see Supplementary Material A), and it includes forests with
asymmetric weights, directed forests, and so on. Although
this assumption excludes general DAGs, which can have
cycles in the underlying undirected structures in general,
we will experimentally show that CCL can still work on
more general types of graphs (see Experiments 5). Note that
for Theorem 1 (extraction of latent components), the graph
structures do not need to be strictly directed, but just need
to be asymmetric (i.e. both λjab and λjba can have non-zero
values), in contrast to the Theorem 2 below for the causal
discovery on directed graphs.

The assumption also requires the graph structures to be
different across components j to some extent, so as to have
a sufficiently strong and diverse difference of the pairwise
distributions of the variables across node-pairs (a, b) ∈ E ,
to be discriminated by MLR. This assumption requires at
least |E| = p2 − p ≥ 2d, which would not be difficult since
we usually have much larger number of node-pairs than the
components; i.e., |E| = p2 − p� 2d.

The assumptions of the nonlinear functions to be trained in
Eq. 4 (Assumptions 6 and 7) apply after learning. Although
they are not trivial, we assume they are only necessary to
have a rigorous theory, and immaterial in practice.

The identifiability of the adjacency matrices λj requires
additional assumptions on λj and (wjab), and is given by the
following theorem, proven in Supplementary Material B:

Theorem 2. In addition to the assumptions of Theorem 1,
assume the following:

8. (λ) The causal structures given by λj are never bidi-
rectional (meaning at least one of λjab and λjba is 0 for
each (a, b) ∈ E) for all components j, and there is at
least one pair (a∗, b∗) ∈ E where λja∗b∗ = λjb∗a∗ = 0
for all j.

9. (w) (wjab − wja∗b∗)(a,b)∈E′j ∈ R|E
′
j | and (wjba −

wjb∗a∗)(a,b)∈E′j ∈ R|E
′
j | are linearly independent, or

one of them is a zero vector, where E ′j is the set of
pairs (a, b)a<b in the causal graph of j whose nodes
are arranged in a causal order, such that no later node
b causes any earlier node a < b, for each j.

Then, wσ(j) = (w
σ(j)
ab )(a,b)∈E ∈ R|E| in the regression func-

tion gives either λj = (λjab)(a,b)∈E ∈ R|E| or its matrix-
transpose λ′j = (λjba)(a,b)∈E ∈ R|E|, up to a linear scaling
and a bias, where σ(j) represents the permutation of com-
ponents (that is indeterminate according to Theorem 1).

This theorem shows that the weight parameters (wjab) in
the regression function (Eq. 4) represent the hidden causal
structures (λjab) up to some indeterminacy after the training.

CCL cannot perfectly determine the causal graphs in the
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sense whether the estimation wσ(j) gives λj or its matrix-
transpose λ′j , and these transposes can be different across j.
This is caused by the indeterminacy of the functional causal
direction of φj in Eq. 2, and thus inevitable; if the functional
direction of φj is flipped and λj is transposed, they simply
lead to the same model, and thus cannot be distinguished
only from the observations without further assumptions on
φj . In practice, the directions can be determined by a prior
knowledge about the causal direction of at least one edge
for each j.

Assumption 8 together with 4 requires the graph structures
to be directed forests. We emphasize again that although
this assumption is stronger than general DAGs assumed in
ordinary causal discovery, our experiments show that CCL
can still work well on more general DAGs. The existence of
a node-pair without any connection (end of Assumption 8)
should be easily satisfied in practice.

Note that the assumptions require the graph structures to
be only partially distinctive across components, rather than
completely different; at least one edge needs to be different
from that on the other components, but the other parts of the
graphs can have the same structures.

The assumption on (wjab) (Assumption 9) is not trivial, but
it can be easily verified after learning, and could be achieved
by extra constraints during training.

4 ALTERNATIVE THEORY

We can also construct an identifiability theory of the la-
tent components based on rather different assumptions. To
this end, we adapt the theory of Hyvarinen and Morioka
(2017); Hälvä et al. (2021). While those papers considered
stationary time series, they did it in a way that has some
resemblance to a multimodal modelling: They transformed
time series into a multimodal data where the modalities are
obtained by taking time windows, in particular (x(t),x(t−1))
in the basic case. On the other hand, they make no refer-
ence to causality, but the asymmetric models we use for the
causal discovery can be considered as simply one possible
model of dependencies that still fit some of the assumptions
of those studies.

The alternative theorem guarantees the identifiability of
the latent components (but not the causal structures), only
making assumptions on a single specific node-pair, rather
than considering the whole set of pairs as in CCL. Due to
lack of space, please refer to Supplementary Material C
for the detailed description of the theorem and the proof.
Basically, we assume that there exists a single node-pair
(a∗, b∗) ∈ E where the joint distributions of the paired
latent variables (sa∗j , sb∗j) are not locally quasi-Gaussian
(Hälvä et al., 2021) for all j. We can further propose an
estimation framework consistent with that theory, which we
call CCLalt, and estimate the latent components only from

the observations obtained from that single node-pair. We
prove the identifiability of the latent components by proving
the consistency of the model estimation by CCLalt (up to
the same level of indeterminacies given by CCL).

This alternative theorem has an advantage that the constraint
on the whole causal graph is weaker than that in CCL (As-
sumption 4) because it is only based on the joint distribu-
tions on a single node-pair, though it still would imply some
level of constraints on the whole causal graphs.

5 EXPERIMENTS

5.1 Simulation 1: Multimodal DAG Causal Discovery

Data Generation We generated artificial data based on
the generative model described in Section 2. The number
of nodes (p) was fixed to 30, the number of modalities and
components (d) was 10, and the number of data points n
was 4, 096. The causal graphs of the latent components
were designed to be DAGs (no directed cycles), though
their underlying undirected graphs can have cycles and thus
do not really satisfy Assumption 4. We obtained the ob-
servations directly from the latent matrix (X(n) = S(n);
denoted as L = 0), or with nonlinear observational mixings
(L = 3). See Supplementary Material E for more details of
the experimental settings.3

Training and Evaluation For CCL, we trained the MLR
(Eq. 4) from the observed data, with using multilayer per-
ceptrons (MLPs) for the nonlinear functions. CCLalt is also
applied to the same data. Note that CCLalt can perform only
the latent components estimation, but not causal discovery.

The estimated latent components and the causal structures
were then evaluated by comparing them to the true ones. The
latent components were evaluated by Pearson correlation,
while the adjacency matrices are evaluated by precision,
recall, and F1-score, after binarizing both of the estimations
and the true ones. All of them were averaged over 10 runs.

For comparison, we also applied PC (Spirtes and Glymour,
1991), FGS (Ramsey et al., 2017), GFCI (Ogarrio et al.,
2016), CAM (Bühlmann et al., 2014), DirectLiNGAM
(Shimizu et al., 2011), NOTEARS-linear (Zheng et al.,
2018), NOTEARS-MLP (Zheng et al., 2020), and Mul-
tiDAG (Chen et al., 2021) to the same data. See Supple-
mentary Material G for their detail. Basically, all baselines
estimate all of the d-component causal graphs separately or
jointly, and then are evaluated with the same way as in CCL,
so as to make the comparisons as fair as possible.

Results Firstly and notably, CCL showed the best causal
discovery F1-score compared to the baselines on the directly-

3The codes are available at https://github.com/
hmorioka/CCL.

https://github.com/hmorioka/CCL
https://github.com/hmorioka/CCL
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Figure 2: Comparisons of the causal discovery performances of multimodal DAGs by the proposed framework CCL and the
baselines. (a) Simulation 1: The estimation performances measured by precision, recall, and F1-score. The performances
were evaluated for each of directly-observed case (L = 0) and the case with unknown nonlinear observational mixings
across modalities (L = 3). CCL shows the best F1-scores on both settings. (b) Simulation 2: Evaluation of robustness
against presence of latent confounders. The similar performances of CCL to those in a show the robustness of CCL. (c)
Gene regulatory network recovery task: CCL showed the best performances.

observed cases (Fig. 2a; L = 0). This is presumably due
to the estimation principle of CCL, which jointly estimates
the multimodal causal structures by combining the whole
information from the all modalities, rather than estimating
them separately as in many of the baselines. Importantly, al-
though the true causal graphs have cycles in their underlying
undirected graphs and thus do not satisfy Assumption 4 (see
Supplementary Fig. 6 for some examples), the results show
that CCL can still work on this more general type of DAGs.
Although MultiDAG also considers multimodal structures,
the performances were worse than CCL presumably because
of the nonlinear causal model here. Especially nonlinear
methods (CCL, CAM, and NOTEARS-MLP) worked well
here because they can consider nonlinear causal effects.

Crucially, CCL could reconstruct the causal structures even
with unknown nonlinear observational mixings (L = 3)
with comparable performances to those without the mixings
(L = 0; Fig. 2a, and Supplementary Fig. 6 for some exam-
ples). Supplementary Figs. 3 and 4 show how the complexity

L, the number of nodes p, modalities d, and n affect the
performances; a higher L, p, and d make learning more dif-
ficult, and a larger amount of n make it possible to achieve
higher performances, as expected. The performances of
the baselines were hugely deteriorated by the observational
mixings because they cannot perform the demixing (rep-
resentation learning) by themselves. We also applied the
baselines on the latent components estimated by CCL (the
output of h; Supplementary Fig. 5). The results show im-
proved estimation performances for the baselines compared
to Fig. 2a, but they are still worse than CCL. This result
indicates the importance of performing both representation
learning and causal discovery simultaneously, as in CCL.

CCL could also reconstruct the latent components reason-
ably well even with unknown nonlinear observational mix-
ings across modalities (Supplementary Fig. 3a Correlation).
CCLalt also succeeded to reconstruct the latent components
on the same dataset (Supplementary Fig. 8). However, the
performances were slightly worse than CCL, presumably
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because it only uses the information on a specific node-pair,
unlike CCL which utilizes the whole node-pair information.

5.2 Simulation 2: Latent Confounders

To show robustness of CCL against presence of unobserv-
able latent confounders, we evaluated CCL by artificial
data similarly to Simulation 1, but now with unobservable
(masked) nodes. More specifically, we firstly generated la-
tent components with 60 nodes with the same manner to
Simulation 1, and then simply masked half of the nodes as
unobservable nodes (latent confounders) alternately; there
are p = 30 observable nodes and 30 latent confounders.
We used the same regression model, training, and evalua-
tion methods. CCL showed slightly lower but comparable
performances to those in Simulation 1 even with the latent
confounders (Fig. 2b). On the other hand, the performances
of the baselines were severely deteriorated by the presence
of the confounders. This result shows the higher robustness
of CCL against latent confounders.

The latent components were also well-reconstructed by CCL
even with latent confounders, though it required larger num-
ber of samples compared to the case without latent con-
founders (Supplementary Fig. 3b Correlation).

5.3 Recovery of Gene Regulatory Network

Methods We also evaluated CCL on a more realistic
causal model. Since real (especially multimodal) data gen-
erally do not have information of the true causal relations
behind, we used synthetic single-cell gene expression data
generated by SERGIO (Dibaeinia and Sinha, 2020), simi-
larly to (Chen et al., 2021). We emulated a situation where
we have latent matrices {(saj)(n)}n representing steady-
state expression levels of causally-interacting multiple genes
(nodes a), measured individually from many cells (samples
n) under multiple conditions (components j) each, such as
different developmental stages of the cells (Kojima et al.,
2017) or perturbations (Sachs et al., 2005), which are known
to lead to distinctive causal interactions of genes. The obser-
vations {(xai)(n)}n are then obtained as gene-wise (node-
wise) nonlinear mixtures of the expression levels across the
multiple conditions (components). The goal of this exper-
iment is to estimate the condition-specific gene regulatory
networks (GRNs) from the nonlinearly mixed observations.

We used similar causal DAGs as in the previous sections,
but with more difficult settings; We generated the expression
level data of 100 genes (nodes a) in 8,192 cells (samples
n) under 10 different measurement conditions of the cells
(components j) having distinctive GRNs. Each GRN is
designed so that each gene has (approximately) two activator
and two repressor parents. We then selected half of the genes
as observable nodes alternately (p = 50), and left the others
as latent confounders. See Supplementary Material F for
some additional information.

Results CCL showed the best performances among the
baselines (Fig. 2c), which indicates the good applicability
of CCL to real datasets for causal discovery. Although Mul-
tiDAG was originally applied on synthetic data generated
by SERGIO in Chen et al. (2021) and showed reasonable
performances, its performance was worse here. This would
be because of the different settings of the gene dynamics,
which are more close to Dibaeinia and Sinha (2020) here,
and the denser connections of the GRNs.

6 DISCUSSION

This study has an important novelty from the both aspects
of representation learning and causal discovery. Although
the multimodal (multi-task) causal structure considered here
is similar to those in Chen et al. (2021); Wang et al. (2020)
and itself would have great practical importance, there are
further advances in this study. Firstly, CCL assumes non-
linear causal relations between variables, rather than linear
ones. Secondly, CCL utilizes the differences of the causal
structures across modalities for the estimation, rather than
the consistency (same causal orderings) as in Chen et al.
(2021); Wang et al. (2020), which might be too restrictive in
some applications. Thirdly and the most importantly, CCL
also performs disentanglements of observational mixings
(representation learning) jointly with the causal discovery on
the latent space, which was never considered before. In the
aspect of the representation learning, CCL can be seen as a
novel NICA framework, but it considers two-dimensional
structures of the variables (multimodal observations from
multiple nodes) and also estimates hidden causal structures,
which are both new compared to existing NICA (Hälvä and
Hyvärinen, 2020; Hyvarinen et al., 2019; Khemakhem et al.,
2020; Morioka et al., 2021). See Supplementary Material D
for more details of the related works.

CCL is not a simple aggregation of representation learning
and causal discovery; those two are not mutually orthogonal,
but closely related each other. Firstly, without the represen-
tation learning, we cannot perform the causal discovery
because the causal relations between variables are broken
by unknown observational mixings (Eq. 3). Secondly, with-
out assuming the causal structures, representation learning
(demixing) is infeasible because of the well-known inde-
terminacy of NICA (Hyvärinen and Pajunen, 1999). CCL
smartly utilizes such hidden causal structures to perform the
two tasks jointly as a novel contrastive learning, achieving
better causal discovery performance than any baseline.

CCL is based on the idea of contrastive-learning (Gut-
mann and Hyvärinen, 2012; Sugiyama et al., 2012) or self-
supervised learning Jaiswal et al. (2021), which have been
receiving increasing attention recently. However, this is
the first study which uses the node-pair-indices of node-
paired inputs as the auxiliary labels for taking contrasts,
and then jointly achieves causal discovery, which is also
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quite new. Although the definition of contrast in CCL seems
to be conceptually different from other major contrastive-
learning frameworks measuring dissimilarity of some data
samples (positive samples) to the other set of samples (neg-
ative samples), they are somewhat connected. The softmax
function in Eq. 4 represents the contrast of how likely the
paired-observation (xa,xb) is obtained from the true node-
pair (a, b) (numerator) compared to the all other pairs E
(denominator). This indicates that minimizing Eq. 4 implic-
itly enforces the feature values from the positive samples
(xa,xb) to be somehow distinctive from those from the all
other negative samples (xl,xm)(l,m)6=(a,b), similarly to the
other contrastive-learning frameworks.

The identifiability is basically guaranteed by nonstationarity
of the distributions of paired observations (xa,xb) across
node-pairs E , which is satisfied by the distinctiveness of the
causal structures across components (Assumption 4). CCL
thus can be seen as an extension of NICA based on temporal
nonstationarity (Hyvärinen and Morioka, 2016) to causal
graphs and multimodal data.

We can consider some possible generalizations of CCL.
Firstly, the exponential function in Eq. 2 representing the
(cross-term of) conditional distribution can be higher order:
exp

(∑
k λ

jk
abφjk(saj , sbj)

)
with k > 1. Such a model

would have higher representational power, and should be
useful to model the conditional distributions based on, for
example, a Gaussian distribution with scaling and bias, Beta
distribution, and so on. Our proofs can be easily extended to
this model. Secondly, although we have focused exclusively
on pairwise interaction models (Eq. 2), it should be possible
to develop CCL for higher-order interactions, where the ex-
ponential function in Eq. 2 is represented by a combination
of more than two latent node variables, where the causal
graph λj is represented by a high-order tensor.

We can also generalize CCLalt to consider multiple node-
pairs simultaneously, rather than focusing only on a single
node-pair. This would weaken the assumption of the non-
quasi-Gaussianities of the “all components on a specific
node-pair,” to those of “some of the components for each
node-pair.” This should also improve the performance com-
pared to the single node-pair case used above.

Although we assume that the number of the latent compo-
nents and the observational modalities are the same (d), it
would be possible to consider, especially, the case where
the number of the latent components is smaller than that
of the observation modalities, with the similar claim used
in Hyvärinen and Morioka (2016); it is enough to assume
that while we formally have the same dimensions, there
exist some latent components which do not have any causal
relations across nodes, and those would be automatically
ignored in CCL learning.

Since CCL needs to solve a |E| = p2− p class classification

problem, it would be computationally inefficient in large
network data (say p is more than several hundreds). Using
special classifiers designed for a high number of classes
(e.g., Babbar and Schölkopf (2017)) should be able to solve
such issue. Nevertheless, CCL shows decent scalability up
to p = 64 (or possibly up to 128; around 10 thousands
of pair-labels) in our experimental setting (Supplementary
Fig. 4b), which is comparable to the state-of-the-art base-
lines (e.g., see Fig. 3 of Zheng et al. (2018)), even with
nonlinear observational mixings in CCL.

7 CONCLUSION

This study proposed a novel framework called CCL for
jointly performing representation learning and causal dis-
covery. In contrast to the conventional causal discovery
frameworks which assume univariate node-variables, CCL
assumes that each node has multiple observational modali-
ties (variables) with mutual dependency due to an unknown
observational mixing process. CCL then estimates mutu-
ally independent latent components together with a specific
causal structure over node-variables for each of them, using
a novel self-supervised learning method in a data-driven
manner. Our theorems showed identifiability of the model
and the consistency of the estimation method. A crucial
assumption is the pairwise BN causal model with distinctive
graph structures across components. Experiments using syn-
thetic data and more-realistic gene expression data showed
that CCL works better than the state-of-the-art causal discov-
ery baselines, both when nonlinear observational mixing is
present or not, and even in the case with latent confounders.
Since such multimodal causal structures together with ob-
servational mixing and latent confounders are inherent in
many data, CCL has a great potential for application.
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A PROOF OF THEOREM 1

Firstly, we reformulate the parameterized pairwise BN causal model (Eq. 2) by the following pairwise factor graph;

pj((saj)a∈V) ∝
∏
a∈V

q̄aj(saj)
∏

(a,b)∈Ē

qjab(saj , sbj), (5)

where Ē ⊂ E is the set of the all undirected pairs (i.e., combinations) of nodes, and qjab is the pairwise clique potential on
each node-combination, given by

qjab(saj , sbj) ∝ exp
(
λjabφj(saj , sbj) + λjbaφj(sbj , saj)

)
, (6)

which is simply a product of the two (directed) exponential factors in Eq. 2 on that combination. Note that qjab(saj , sbj) =

qjba(sbj , saj) due to its symmetric functional form, and the clique potential is constant when saj and sbj are not causally
related (λjab = λjba = 0). In the pairwise factor graph represented by Eq. 5, the marginal distribution of a paired latent
variables (saj , sbj) for each (a, b) ∈ Ē is given (or approximated) by brief propagation (BP) (Noorshams and Wainwright,
2013; Pearl, 1988; Sudderth et al., 2003), after the convergence, as

pjab(saj , sbj) ∝ q̄aj(saj)q̄bj(sbj)q
j
ab(saj , sbj)

 ∏
k∈Nj(a)\b

mj
ka(saj)

 ∏
k∈Nj(b)\a

mj
kb(sbj)

 , (7)

where Nj(a) \ b indicates the neighbors of node a except for node b in the graph of component j, mj
ka(saj) is a message

sending information from node k to a on component j, as a function of the state of node a (i.e., saj), via the recursive form

mj
ka(saj) ∝

∫
q̄kj(skj)q

j
ka(skj , saj)

∏
l∈Nj(k)\a

mj
lk(skj)dskj . (8)

The important implication of Eq. 7 is that the marginal distribution pjab(saj , sbj) is given as a combination of the pairwise
clique potential qjab(saj , sbj) (Eq. 6) and the other functions only dependent on either saj or sbj . For acyclic factor graphs
(Assumptions 2 and 4), BP is guaranteed to converge after a finite number of iterations and Eq. 7 yields the exact marginal
distributions, whereas for cyclic graphs it yields only the approximations, though still known to be a good one. Note that
we do not need to perform BP for CCL, but just need to guarantee that the pairwise marginal distribution (Eq. 7) is given
as a combination of the pairwise clique potential (Eq. 6) and univariate functions of saj and sbj , which is satisfied by the
existence of the exact solution by BP on the graph structures with Assumptions 2 and 4.

From the generative model, the pairwise marginal distribution of paired observations (ξ1, ξ2) = (f(η1), f(η2)) ∈ Rd×2 on
each node-pair (a, b) ∈ E is given by, using the probability transformation formula and that of the latent components Eq. 7,

log pab(ξ1, ξ2)

= log pab(g(ξ1),g(ξ2)) + log |det Jg(ξ1)|+ log |det Jg(ξ2)|

=

d∑
j=1

log pjab(gj(ξ1), gj(ξ2)) + log |det Jg(ξ1)|+ log |det Jg(ξ2)|

=

d∑
j=1

λjabφj(gj(ξ1), gj(ξ2)) + λjbaφj(gj(ξ2), gj(ξ1)) + log µjab(gj(ξ1)) + log µjba(gj(ξ2))

− logZjab + log |det Jg(ξ1)|+ log |det Jg(ξ2)|, (9)

where J denotes the Jacobian, g : Rd → Rd is the (true) inverse function of the observational mixing f (Eq. 3), and thus
η1j = gj(ξ1) gives a single latent component for each j = 1, . . . , d by definition. The second equation comes from the
mutual independence of the latent components, and third equation comes from the pairwise marginal distribution of the
latent node-variables given by BP (Eq. 7) and the pairwise clique potential model (Eq. 6). µjab(η1j) represents functions
depending only on a single variable η1j in Eq. 7 (the node potential function and the messages), and similarly for µjba(η2j).
Zjab denotes the partition functions (normalization constants) of the marginal distributions.
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On the other hand, on the optimal discrimination relation of MLR given by Eq. 4, the softmax function in Eq. 4 is supposed
to represent the posterior distribution of the node-pair index p((a, b)|ξ1, ξ2) given a paired observation (ξ1, ξ2) after the
training. By applying Bayes rule on this, after dividing all the exponential terms by the one corresponding to the pair (a∗, b∗)
assumed in Assumption 4 to avoid the well-known indeterminacy of the softmax function,

log pab(ξ1, ξ2)

=

d∑
j=1

(wjab − w
j
a∗b∗)ψj(hj(ξ1), hj(ξ2)) + (wjba − w

j
b∗a∗)ψj(hj(ξ2), hj(ξ1))

+ ψ̄jab(hj(ξ1))− ψ̄ja∗b∗(hj(ξ1)) + ψ̄jba(hj(ξ2))− ψ̄jb∗a∗(hj(ξ2))

+ log pa∗b∗(ξ1, ξ2) + αab, (10)

where αab = bab − ba∗b∗ − log p(a, b) + log p(a = a∗, b = b∗), which is a collection of the terms not dependent on ξ1 and
ξ2.

Setting Eq. 9 and Eq. 10 to be equal for arbitrary (a, b) ∈ E , we have:

d∑
j=1

(wjab − w
j
a∗b∗)ψj(hj(ξ1), hj(ξ2)) + (wjba − w

j
b∗a∗)ψj(hj(ξ2), hj(ξ1))

+ ψ̄jab(hj(ξ1))− ψ̄ja∗b∗(hj(ξ1)) + ψ̄jba(hj(ξ2))− ψ̄jb∗a∗(hj(ξ2)) + αab

=

d∑
j=1

(λjab − λ
j
a∗b∗)φj(gj(ξ1), gj(ξ2)) + (λjba − λ

j
b∗a∗)φj(gj(ξ2), gj(ξ1))

+ log µjab(gj(ξ1))− logµja∗b∗(gj(ξ1)) + log µjba(gj(ξ2))− logµjb∗a∗(gj(ξ2)) + zjab (11)

where zjab = − logZjab + logZja∗b∗ , and we substituted Eq. 9 with (a, b) = (a∗, b∗) into Eq. 10. Importantly, the Jacobians
do not appear in Eq. 11 because of the subtraction by the pivot condition (a, b) = (a∗, b∗).

By collecting Eq. 11 for all the candidates of (a, b) ∈ E into rows;

W̄ψ(h(ξ1),h(ξ2)) + W̄′ψ(h(ξ2),h(ξ1)) + ψ̄(h(ξ1)) + ψ̄′(h(ξ2)) +α

= L̄φ(η1,η2) + L̄′φ(η2,η1) + µ̄(η1) + µ̄′(η2) + z, (12)

where W̄ and W̄′ ∈ R|E|×d are matrices of (wjab −w
j
a∗b∗) and (wjba −w

j
b∗a∗) respectively, with the pairs (a, b) ∈ E giving

row index and the components j column index, ψ(h(ξ1),h(ξ2)) = (ψ1(h1(ξ1), h1(ξ2)), . . . , ψd(hd(ξ1), hd(ξ2)))
T ,

φ(η1,η2) = (φ1(η11, η21), . . . , φd(η1d, η2d))
T , ψ̄(h(ξ1)) =

(∑d
j=1 ψ̄

j
ab(hj(ξ1))− ψ̄ja∗b∗(hj(ξ1))

)
(a,b)∈E

,

ψ̄′(h(ξ2)) =
(∑d

j=1 ψ̄
j
ba(hj(ξ2))− ψ̄jb∗a∗(hj(ξ1))

)
(a,b)∈E

, µ̄(η1) =
(∑d

j=1 logµjab(η1j)− logµja∗b∗(η1j)
)

(a,b)∈E
,

µ̄′(η2) =
(∑d

j=1 logµjba(η2j)− logµjb∗a∗(η2j)
)

(a,b)∈E
, α = (αab)(a,b)∈E , and z =

(∑d
j=1 z

j
ab

)
(a,b)∈E

. Let a com-

pound demixing-mixing function v(η1) = h ◦ f(η1), we then have

W̄ψ(v(η1),v(η2)) + W̄′ψ(v(η2),v(η1)) + ψ̄(v(η1)) + ψ̄′(v(η2)) +α

= L̄φ(η1,η2) + L̄′φ(η2,η1) + µ̄(η1) + µ̄′(η2) + z. (13)

We firstly show that the concatenated matrix [W̄,W̄′] ∈ R|E|×2d has full column rank 2d. We differentiate Eq. 13 with
respect to η1k, η2k, 1 ≤ k ≤ d, and obtain[

W̄,W̄′] ∂2

∂η1k∂η2k

[
ψ(v(η1),v(η2))
ψ(v(η2),v(η1))

]
=
[
L̄, L̄′

] [φ12
k (η1k, η2k)
φ12
k (η2k, η1k)

]
, (14)

where φ12
k (η1k, η2k) = (0, . . . , 0, ∂2

∂η1k∂η2k
φk(η1k, η2k), 0, . . . , 0)T ∈ Rd such that the non-zero entry is at index k. Now

we concatenate Eq. 14 into columns with changing k, with also flipping the top and the bottom half of the vectors, we get[
W̄,W̄′] Q̃ =

[
L̄, L̄′

] [Φ12(η1,η2) Φ12(η2,η1)
Φ12(η2,η1) Φ12(η1,η2)

]
, (15)
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where Φ12(η1,η2) = diag
(

∂2

∂η11∂η21
φ1(η11, η21), . . . , ∂2

∂η1d∂η2d
φd(η1d, η2d)

)
, and Q̃ is a collection of partial derivatives

of ψ with respect to the same variables. Now, from Assumption 3, we can find d sets of points (z11, z21), . . . , (z1d, z2d)
which make the collection of the partial derivatives of φ (the second factor in the right-hand side) full-rank (2d). Since
[L̄, L̄′] is full column rank (Assumption 4), the right-hand side of Eq. 15 has full column rank (2d), and so does the left-hand
side. This implies that [W̄,W̄′] has full column rank 2d.

For the main result of the Theorem, what we need to prove is that v is an invertible element-wise function, in the sense that
vj(η1) is a function of only one η1σ(j) for all j, where σ(j) represents the permutation of components. Since v is invertible
because both h and f are invertible, the proof can be done by showing that the product of any two distinct partial derivatives
of any component is always zero. Along with invertibility, this means that each component depends exactly on one variable.
We differentiate Eq. 13 with respect to η2, η1k, 1 ≤ k ≤ d, and η1l, k < l ≤ d, and get

[
W̄,W̄′] ∂3

∂η1k∂η1l∂η2

[
ψ(v(η1),v(η2))
ψ(v(η2),v(η1))

]
= 0. (16)

From the full column rank of
[
W̄,W̄′] and the calculation of differentials, we get

∂3

∂η1k∂η1l∂η2

[
ψ(v(η1),v(η2))
ψ(v(η2),v(η1))

]
=

[
Ψ112(v(η1),v(η2)) Ψ12(v(η1),v(η2))
Ψ221(v(η2),v(η1)) Ψ21(v(η2),v(η1))

] [
Nk×l(η1)
Nkl(η1)

]
Jv(η2) = 0, (17)

where Ψiij(η1,η2) = diag
(

∂3

∂ηi1∂ηi1∂ηj1
ψ1(η11, η21), . . . , ∂3

∂ηid∂ηid∂ηjd
ψd(η1d, η2d)

)
, Ψij(η1,η2) =

diag
(

∂2

∂ηi1∂ηj1
ψ1(η11, η21), . . . , ∂2

∂ηid∂ηjd
ψd(η1d, η2d)

)
, i, j ∈ {1, 2}, Nk×l(η1) =

diag
(
vk1 (η1)vl1(η1), . . . , vkd(η1)vld(η1)

)
, Nkl(η1) = diag

(
vkl1 (η1), . . . , vkld (η1)

)
, vki (η1) = ∂

∂η1k
vi(η1),

vkli (η1) = ∂2

∂η1k∂η1l
vi(η1), and Jv is the Jacobian of v. From Assumption 7, the matrix of the collection of the

derivatives of ψj , [
∂3

∂η1j∂η1j∂η2j
ψj(η1j , η2j)

∂2

∂η1j∂η2j
ψj(η1j , η2j)

∂3

∂η1j∂η1j∂η2j
ψj(η2j , η1j)

∂2

∂η1j∂η2j
ψj(η2j , η1j)

]
(18)

has full rank 2 for almost all of η1j and η2j , for all 1 ≤ j ≤ d, which implies that the first factor of Eq. 17 has full-rank 2d
for almost always. The Jacobian Jv has full rank d from the invertibility of v. By multiplying the inverses of them to both
sides, we get [

Nk×l(η1)
Nkl(η1)

]
= 0, (19)

In particular, vkj (η1)vlj(η1) = 0 for all 1 ≤ j ≤ d, 1 ≤ k ≤ d, and k < l ≤ d. This means that the Jacobian of v has at
most one non-zero entry in each row. Now, by invertibility and continuity of Jv, we deduce that the location of the non-zero
entries are fixed and do not change as a function of η1. This proves that vj(η1) is represented by only one η1σ(j) up to a
scalar (component-specific) invertible transformation, and the Theorem is proven.

B PROOF OF THEOREM 2

From the result of Theorem 1 with the required assumptions, the j-th element of v(η1) represents an invertible transformation
of a single component η1σ(j); we have vj(η1) = kσ(j)(η1σ(j)), where kσ(j) is a scalar invertible function, and σ(j) is the
permutation of components, which is indeterminate according to Theorem 1. Without loss of generality, we assume that the
estimated components were sorted properly (σ(j) = j). Using this result to Eq. 15, with only focusing on the elements
related to component j, we have

[
w̄j , w̄

′
j

] [ψ12
j (kj(η1j), kj(η2j)) ψ12

j (kj(η2j), kj(η1j))
ψ12
j (kj(η2j), kj(η1j)) ψ12

j (kj(η1j), kj(η2j))

]
=
[
λ̄j , λ̄

′
j

] [φ12
j (η1j , η2j) φ12

j (η2j , η1j)
φ12
j (η2j , η1j) φ12

j (η1j , η2j)

]
, (20)

where w̄j , w̄′j , λ̄j and , λ̄′j are the jth column of W̄, W̄′, L̄, and L̄′, respectively. We then assume that, without loss of
generality, the nodes were arranged in a causal order on the j-th component, such that no later node b causes any earlier node
a < b, which is possible due to the directed acyclic causal structure assumption (Assumptions 4 and 8). We denote the set of



Connectivity-Contrastive Learning: Combining Causal Discovery and Representation Learning for Multimodal Data

node-pairs (a, b)a<b on the causally-ordered graph of component j as E ′j . This means that only the half of the elements
of λj corresponding to the node-pairs E ′j can have non-zero values, while the elements of λ′j on the same pairs are zeros
because they represent the edges on the opposite directions. We now substitute the point (a∗, b∗) in Assumptions 8 and
also (z1j , z2j) in Assumptions 3 into Eq. 20. We then have, by only considering the rows corresponding to the node-pairs
(a, b) ∈ E ′j ,

[
w̄j?, w̄

′
j?

] [ψ12
j (kj(z1j), kj(z2j)) ψ12

j (kj(z2j), kj(z1j))
ψ12
j (kj(z2j), kj(z1j)) ψ12

j (kj(z1j), kj(z2j))

]
= [λj?,0]

[
φ12
j (z1j , z2j) φ12

j (z2j , z1j)
φ12
j (z2j , z1j) φ12

j (z1j , z2j)

]
, (21)

where w̄j?, w̄′j?, and λj? ∈ R|E
′
j | are the elements of w̄j , w̄′j , and λj ∈ R|Ej | on the node-pairs (a, b) ∈ E ′j , respectively. We

used here λ̄j? = (λjab − λ
j
a∗b∗)(a,b)∈E′j = λj? because λja∗b∗ = 0 (Assumptions 8), and λ̄′j? = (λjba − λ

j
b∗a∗)(a,b)∈E′j = 0

because of the causal ordering as mentioned above.

We firstly show that the second factor (2×2 matrix) of the left-hand side has full rank. If the matrix does not have full rank, it
means that ψ12

j (kj(z1j), kj(z2j)) = ψ12
j (kj(z2j), kj(z1j)). However, this implies that φ12

j (z1j , z2j) = φ12
j (z2j , z1j) from

the relations of the elements of both sides of Eq. 21, which is contradictory to Assumption 3, and thus the matrix should
have full rank.

Now, since the second factors (2 × 2 matrices) on both sides have full rank and the first factor of the right-hand side
has rank-1, so that of the left-hand side does. This excludes the case where w̄j? and w̄′j? are linearly independent in
Assumption 9, and thus either w̄j? or w̄′j? is a zero vector. This indicates that λj? is given by either wj? or w′j? up to a
linear scaling and a bias (note that w̄j? = (wjab − w

j
a∗b∗)(a,b)∈E′j is biased by wja∗b∗ ), and the other one (either wj? or w′j?)

is a vector with a constant value.

C ALTERNATIVE IDENTIFIABILITY THEORY

A key assumption here is non-quasi-gaussianity, introduced in Hyvarinen and Morioka (2017), and refined in Hälvä et al.
(2021). The relevant definition is

Definition 1. A two-dimensional random vector (x, y) is called locally quasi-Gaussian if there is an open subset A ∈ Rn,
a function α : R→ R, and a constant c ∈ R such that

∂2 log pxy(x, y)

∂x∂y
= c α(x)α(y) ∀(x, y) ∈ A. (22)

This generalizes the definition of Gaussianity since for α equal to a constant, we get the case of the Gaussian bivariate
distribution.

In the alternative theorem, we focus only on a single specific node-pair (a∗, b∗) ∈ E which satisfies the assumptions
shown below, rather than the all pairs E simultaneously as in the previous theorems. We then train a (nonlinear) feature
extractor h : Rd → Rd based on a logistic regression (LR) which discriminates two datasets obtained from the node-pair;
{(x(n)

a∗ ,x
(n)
b∗ )}n and {(x(n)

a∗ ,x
∗
b∗)}n, where x

(n)
a∗ ∈ Rd and x

(n)
b∗ ∈ Rd are the a∗-th and b∗-th rows of X(n), and x∗b∗ ∈ Rd

is obtained randomly from the distribution of xb∗ , in practice by randomly permuting (shuffling) the sample index n of x
(n)
b∗ .

We use a regression function of the form

r(x
(n)
a∗ ,x

(n)
b∗ ) =

d∑
j=1

ψj(hj(x
(n)
a∗ ), hj(x

(n)
b∗ )) + ψ̄a∗j(hj(x

(n)
a∗ )) + ψ̄b∗j(hj(x

(n)
b∗ )) + b (23)

for the LR, where hj is the jth element of the feature extractor h(·), ψj(·, ·) : R2 → R, ψ̄a∗j(·) : R → R, and
ψ̄b∗j(·) : R→ R are some additional nonlinear functions to be learned from the data with universal approximation capacity,
and b is a bias parameter.

Using the definition above and adapting the theory of the aforementioned papers, we obtain the following identifiability
theorem, where instead of requiring the causal structures to be acyclic and different, we require them to be non-quasi-
Gaussian on the specific node-pair:

Theorem 3. Consider a data model where Assumptions 1, 2, and 6 of Theorem 1 hold in addition to
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10. There exists and we have a specific node-pair (a∗, b∗) ∈ E satisfying the following; for all j, the marginal distributions
of two variables (sa∗j , sb∗j) are given as,

pja∗b∗(sa∗j , sb∗j) ∝ q̄a∗j(sa∗j)q̄b∗j(sb∗j) exp (φj(sa∗j , sb∗j)) , (24)

where φj(·, ·) : R2 → R, q̄a∗j(·) and q̄b∗j(·) : R→ R are some nonlinear functions, and are not locally quasi-Gaussian
(Definition 1).

11. (LR) We train LR with the regression function Eq. 23 with universal approximation capability, to discriminate two
datasets {(x(n)

a∗ ,x
(n)
b∗ )}n and {(x(n)

a∗ ,x
∗
b∗)}n.

Then, the latent components are identifiable, in the sense that the feature extractor h(x
(n)
a ) = (h1(x

(n)
a ), . . . , hd(x

(n)
a ))T

gives the latent components s
(n)
a = (saj)

(n)
j , up to permutation and scalar (component-wise) invertible transformations for

all a ∈ V and n.

Proof. From the generative model with Assumption 10, the pairwise marginal distribution of a pair of observations
(ξ1, ξ2) = (f(η1), f(η2)) ∈ Rd×2 on the node-pair (a∗, b∗) ∈ E is given by, using the probability transformation formula,

log pa∗b∗(ξ1, ξ2)

= log pa∗b∗(g(ξ1),g(ξ2)) + log |det Jg(ξ1)|+ log |det Jg(ξ2)|

=

d∑
j=1

log pja∗b∗(gj(ξ1), gj(ξ2)) + log |det Jg(ξ1)|+ log |det Jg(ξ2)|

=

d∑
j=1

φj(gj(ξ1), gj(ξ2)) + log q̄a∗j(gj(ξ1)) + log q̄b∗j(gj(ξ2))

− logZja∗b∗ + log |det Jg(ξ1)|+ log |det Jg(ξ2)|, (25)

where J denotes the Jacobian, g : Rd → Rd is the (true) inverse function of the observational mixing f (Eq. 3), and thus
η1j = gj(ξ1) gives a single component for each j = 1, . . . , d by definition. The second equation comes from the mutual
independence of the latent components, and third equation comes from the pairwise marginal distribution of the latent
components given by Assumption 10. Zja∗b∗ denotes the partition functions (normalization constants) of the marginal
distributions.

On the other hand, the joint distribution of the same observations (ξ1, ξ2) on the shuffled data class is given by the form,

log p∗a∗b∗(ξ1, ξ2)

= log p∗a∗b∗(g(ξ1),g(ξ2)) + log |det Jg(ξ1)|+ log |det Jg(ξ2)|

=

d∑
j=1

log pj∗a∗b∗(gj(ξ1), gj(ξ2)) + log |det Jg(ξ1)|+ log |det Jg(ξ2)|

=

d∑
j=1

log p∗a∗j(gj(ξ1)) + log p∗b∗j(gj(ξ2)) + log |det Jg(ξ1)|+ log |det Jg(ξ2)|, (26)

where p∗a∗j and p∗b∗j are the marginal distributions of the latent variables on nodes a∗ and b∗ on component j, respectively.
This factorization comes from the fact that the two variables are independent here because of the shuffling across samples.

According to well-known theory of LR (Gutmann and Hyvärinen, 2012), when training LR which discriminates the data
with the original combination and the shuffled data, with the regression function Eq. 23, we will asymptotically have

r(ξ1, ξ2) = log pa∗b∗(ξ1, ξ2)− log p∗a∗b∗(ξ1, ξ2), (27)

i.e. the regression function will asymptotically give the difference of the log-probabilities in the two classes. By substituting
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the regression function model Eq. 23 and the distributions Eq. 25 and Eq. 26 into the equation above, we have

d∑
j=1

ψj(hj(ξ1), hj(ξ2)) + ψ̄a∗j(hj(ξ1)) + ψ̄b∗j(hj(ξ2)) + b

=

d∑
j=1

φj(gj(ξ1), gj(ξ2)) + log q̄a∗j(gj(ξ1))− log p∗a∗j(gj(ξ1)) + log q̄b∗j(gj(ξ2))− log p∗b∗j(gj(ξ2))− logZja∗b∗ .

(28)

Consider Eq. 28, and compare it with Eq. (26) of Hyvarinen and Morioka (2017). The functions g and h denote the same
things in the two proofs. The two nodes a∗, b∗ in Eq. 28 formally correspond to the two time points t, t− 1 in Hyvarinen and
Morioka (2017). Thus, we have the equivalent set of terms (Bj , Qj) of Hyvarinen and Morioka (2017) and (ψj , φj) here.
The other terms are immaterial since they depend only on either ξ1 or ξ2, and thus they will disappear later in the proof
anyway. Now, we can proceed with the proof of Hyvarinen and Morioka (2017), taking into account the small correction
pointed out in Hälvä et al. (2021) in their last paragraph of Section 4, and the identifiability is thus proven.

D RELATED WORKS

Causal Discovery by Asymmetricity Bayesian networks (BNs) (Pearl, 2000) represent a causal graph among variables
by a factorization of their joint distribution into some conditional distributions representing the conditional independence of
the variables. Although BNs are flexible, recovering the graph from the joint distribution alone is not generally possible
because many different graphs can have exactly the same joint distribution (Andersson et al., 1997; Spirtes et al., 2001).
Some studies showed that suitable assumptions on the type of the conditional distributions, such as the Poisson distribution
(Park and Raskutti, 2015; Park and Park, 2019b), the generalized hypergeometric distribution (Park and Park, 2019a), and
the zero-inflated Poisson model (Choi et al., 2020), enable identifiability of the causal structure. A very closely related
framework is given by structural equation models (SEMs) (Bollen, 1989). Since SEMs are not generally identifiable (Bollen,
1989; Geiger and Heckerman, 1994; Pearl, 2000), similarly to BNs, further assumptions have been proposed to guarantee the
identifiability: linear acyclic models with non-Gaussian noise (influence) (Shimizu et al., 2006, 2011), additive noise models
excluding linear functions (Hoyer et al., 2008a; Hyvärinen and Smith, 2013; Peters et al., 2014), post-nonlinear models
(Zhang and Hyvärinen, 2009), and so on. The SEMs can be also extended to time series (Gong et al., 2015; Hyvärinen et al.,
2010), and models with latent confounding factors (Hoyer et al., 2008b; Maeda and Shimizu, 2020; Shimizu and Bollen,
2014), for example. More recently, general nonlinear SEMs with non-additive noise have been proven to be identifiable by
assuming nonstationarity of the noise (Monti et al., 2020; Wu and Fukumizu, 2020), though limited to bivariate settings.
Our CCL is similar to those frameworks in that it represents the causal structure by a probabilistic graphical model with
some assumptions on the graph structures and the asymmetricity of the causal relations. However, we consider multimodal
(multidimensional) node observations, with data-driven disentanglements of unknown observational mixing across the
modalities, which are quite new.

As a first approach to dealing with multimodal node observations, one can consider simply stacking multiple DAGs
with the same set of nodes across modalities, and then representing the causal structure as a three-way adjacency tensor
(modality × node × node), as in Chen et al. (2021); Wang et al. (2020). Such an approach assumes the modalities are
mutually independent (there are no connections between the different modalities), thus modelling each adjacency matrix
independently. Some recent studies showed that some assumptions on the similarity (or consistency) across modalities,
in particular concerning the causal order, enable identifiability and consistency of the joint estimator together with better
estimation performance compared to individual estimators (Chen et al., 2021; Wang et al., 2020). In contrast, CCL utilizes
the differences of the causal structures across modalities for the estimation, rather than their similarity (such as the same
causal ordering) which might be too restrictive in some applications. In addition, CCL has a fundamental advantage
compared to such previous works, as performing disentanglements of observational mixings jointly with the causal discovery
on the disentangled latent space.

Disentangled Representation Learning In many applications, there is an unknown process generating the observed data as
a mixing of some underlying latent components. Thus, disentangling (demixing) the observations into the latent components
in an unsupervised data-driven manner, would have great utility for the generalizability, robustness, interpretability, and
explainability of a model. Recently, new frameworks have been proposed based on NICA (Hälvä and Hyvärinen, 2020;
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Hyvärinen and Morioka, 2016; Hyvarinen and Morioka, 2017; Hyvarinen et al., 2019; Khemakhem et al., 2020; Morioka
et al., 2021), which have shown that some assumptions on the latent components, such as mutual independence and temporal
nonstationarity, enable their identifiability. Our framework CCL can be also seen as a novel NICA framework, but it
considers two-dimensional variables (multimodal observations from multiple nodes) and also gives hidden causal structures,
which are both new compared to NICA.

Causal representation learning, which is a combination of representation learning and causal discovery, has been receiving
increasing attention recently (Schölkopf et al., 2021). Methods were proposed to extract a set of latent variables having
causal relations from observational variables, for example by assuming linear causal models (Yang et al., 2021) or discrete
latent variables (Kivva et al., 2021). On the other hand, CCL assumes a two dimensional observation (node × modality)
for each sample, then finds a latent matrix (node × component) by disentangling the observational modalities into latent
components (2nd axis), and jointly estimates component-wise causal structures between node variables (1st axis) with
nonlinear causal relations. Other studies (Lippe et al., 2022; Yao et al., 2022) have used temporal causal relations and are
thus only applicable to time-series data.

Considering that the samples (xai)
(n) has three indices, node a, modality i, and sample n, this model can be seen as a type

of tensorial data analysis. In that domain, related classical methods include frameworks such as PARAFAC/CANDECOMP
or the Tucker decomposition (Harshman and Lundy, 1994; Miwakeichi et al., 2004). Some recent work in deep learning
has started extending such (multi-)linear methods to the nonlinear case, e.g. (Fan, 2022; Hosoya, 2021; Pan et al., 2020;
Zhe et al., 2016), but they generally do not model causal structures. Identifiability of PARAFAC typically requires that the
modalities are sufficiently different from each other, which is something we use in this study as well.

Self-supervised Learning and Contrastive Learning Self-supervised leaning has been receiving attention as a new way
to learn hidden representation of data in a data-driven manner. In contrast to ordinary supervised learning, which explicitly
uses the labels assigned to each data point in advance (such as “dog” or “cat” in the image-classification), self-supervised
leaning instead uses data structures inherent in the data as the target labels. The structure to be used depends on the data type,
and also on what kind of representation we want to extract from the data. Examples include spatial neighboring structures of
images (Doersch et al., 2015), spatial transformation invariance of images (Chen et al., 2020), sequential structure of natural
languages (Devlin et al., 2018), temporal proximity of time-series data (Banville et al., 2021; Hyvärinen and Morioka,
2016; Hyvarinen and Morioka, 2017), and so on. Some studies showed that it can match or even exceeds the performances
achieved by supervised learning frameworks (Chen et al., 2020; Grill et al., 2020).

Self-supervised learning is closely related to the idea of contrastive-learning which takes a contrast of data distributions
on some different conditions for model estimation. Contrastive-learning has theoretical justification as a density-ratio
estimation (Gutmann and Hyvärinen, 2012; Sugiyama et al., 2012). NICA is also based on this idea, and gives identifiability
of the latent components by assuming some temporal (or spatial) structures of the data, and then taking a contrast on
some different observational conditions (Hyvärinen and Morioka, 2016; Hyvarinen and Morioka, 2017; Hyvarinen et al.,
2019). Our new framework CCL learns representation of data (latent components and causal structures) with a novel
contrastive-learning framework, which uses a node-pair index as a target label for every node-paired observations. The
name connectivity-contrastive learning comes from such idea of taking contrast of data distributions across all node-pairs for
its learning.

E IMPLEMENTATION DETAIL FOR SIMULATION 1

We give here more detail on the data generation, training, and evaluation in Simulation 1 (Section 5.1). Also see the
Supplementary Code for the implementation.

Data Generation We generated artificial data based on the generative model described in Section 2. The number of nodes
(p) was fixed to 30, the number of modalities and components (d) was 10, and the number of data points n was fixed to
212 = 4, 096. First, the latent node variables (saj)

(n)
a∈V (j-th column of S(n)) were generated probabilistically for each

sample n and component j, based on the pairwise BN (Eq. 2). The weighted adjacency matrices λj were designed so that
they are DAGs and have distinctive structures across components j (see some examples of the generated causal structures in
Supplementary Fig. 6). More specifically, for each component j, each node b was given three parents (unless there is no
enough number of candidates) randomly selected from nodes a < b within some ranges of indices from the target node. To
avoid the graphs to have small underlying undirected cycles, we selected the parents so that they are not the parents of the
other parents. Although these graphs can have cycles in their underlying undirected graphs and thus do not really satisfy
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Assumption 4, the results show that CCL can still work on this more general type of DAGs. The latent variables were then
sampled based on the following distribution for each component j, node b, and sample n:

s
(n)
bj ∼ exp

 ∑
a∈paj(b)

−
λjab
|paj(b)|

(
s

(n)
bj + |paj(b)|Relu(s

(n)
aj )
)2

 , (29)

where paj(b) is the set of parents of node b on component j, deduced from the adjacency matrix λj , |paj(b)| the number of

parents, and Relu(x) = max(0, x) is a rectified linear unit. This model indicates that the activity s(n)
bj is randomly generated

through a Gaussian distribution with a standard deviation modulated by the inverse of root of summation of λjpa(b)b, and its
average is negatively biased by positive-, but not by negative-, activities of its parents (nonlinear inhibitory connection). The
non-zero values of λj were randomly generated so that the standard deviation parameters (1/

√
2λj) distributed uniformly

on [0.7, 1]. The inverse-scaling of λjab by |paj(b)| was used so that the (conditional) standard deviations of nodes were
approximately the same regardless of the number of parents. This sampling distribution indicates that the function φj in
Eq. 2 is given by, with a simple calculation,

φj(saj , sbj) = sbjRelu(saj) (30)

which is designed to satisfy Assumption 3 due to its asymmetricity and nonlinearity. This model can be also represented by
a (probabilistic) nonlinear SEM;

(saj)a∈V = vec−1(λj)Relu((saj)a∈V) + ε(λj), (31)

where vec−1(·) is the inverse of the vectorization of the vectorized adjacency matrix λj , with row-wise weighting based
on the number of non-zero elements, Relu(·) is an element-wise rectified linear unit, and ε is a p-dimensional orthogonal
Gaussian noise with zero-mean and element-specific variances depending on the graph structure. Note that such translation
of pairwise BN into SEM is not always possible.

For the observation model f : Rd → Rd, we used a multilayer perceptron (MLP) with L layers (excluding the input layer)
with random parameters, which takes a d-dimensional latent component s

(n)
a = (saj)

(n)
j (a-th row of S(n)) and then outputs

a d-dimensional observation x
(n)
a = (xai)

(n)
i (a-th row of X(n)) for each node a ∈ V and sample n. To guarantee the

invertibility, we fixed the number of units of each layer to d, and used leaky ReLU units for the nonlinearity except for the
last layer which has no-nonlinearity. L = 0 means that the latent components are directly given as the observations, without
any observational mixings across modalities (i.e., X(n) = S(n)).

Training (CCL) We train the nonlinear regression function in Eq. 4 with the observed data by CCL. We adopted MLP for
h : Rd → Rd (h-MLP), whose outputs are supposed to represent the latent components after the training (Theorem 1). The
number of layers was selected to be the same as that of the observation model (L), and the number of units in each layer was
2d except for the output (d), so as to make it have enough number of parameters as the demixing model. A maxout unit was
used as the activation function in the hidden layers, which was constructed by taking the maximum across two affine fully
connected weight groups, while no-nonlinearity was applied at the output (last layer). In directly-observed cases (L = 0),
we still used one-layer h-MLP (linear transformation) for CCL, whose parameters need to be learned from the data, though
it is redundant and not necessary in practice. The function ψj : R2 → R was modeled by

ψj(x, y) = max(cj(1)
x (x− djx), cj(2)

x (x− djx))×max(cj(1)
y (y − djy), cj(2)

y (y − djy)), (32)

where cj(1)
x , cj(2)

x , djx, cj(1)
y , cj(2)

y , and djy are trainable scalar parameters. This function is based on the idea of maxout
unit, and has enough degree of freedom to represent φj (Eq. 30). For the functions ψ̄jab, we used a functional form
ψ̄jab(hj(·)) = max(c

j(1)
ab hj(·) + d

j(1)
ab , c

j(2)
ab hj(·) + d

j(2)
ab )2, where cj(1)

ab , cj(2)
ab , dj(1)

ab , and dj(2)
ab are trainable parameters.

Those nonlinear functions were then trained by back-propagation with a momentum term so as to optimize the loss function
of MLR (Eq. 4; Fig. 1), whose feature extractor h(·) is supposed to represent the latent components (Theorem 1), and the
weight parameters (wjab) are supposed to represent the causal structure after the training (Theorem 2; see Supplementary
Fig. 6 for some examples). The initial parameters were randomly drawn from a uniform distribution. The training of a
three-layer model by CCL took about 1.5 hours (Intel Xeon 3.6 GHz 16 core CPUs, 384 GB Memory, NVIDIA Tesla A100
GPU).

The pseudo-code based on a basic stochastic gradient descent (SGD) is given in Supplementary Algorithm. 1, which can be
easily implemented based on ordinary neural network training.
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Training (CCLalt) We train the nonlinear regression function in Eq. 23 with the observed data by CCLalt. We used an
MLP for the feature extractor h : Rd → Rd, similarly to CCL. We modeled ψj and ψ̄a∗j by the same models as ψj and ψ̄jab
in CCL, respectively. We gave the node-pair (1, 2) ∈ E as (a∗, b∗) in Assumption 10 because we know that that node-pair
has causal relations on all of the components, from the data generation process used here (see Supplementary Fig. 6).

Those nonlinear functions were then trained by back-propagation with a momentum term so as to predict whether each
input came from the original paired observations {(x(n)

a∗ ,x
(n)
b∗ )}n or the shuffled ones {(x(n)

a∗ ,x
∗
b∗)}n by LR. The initial

parameters were randomly drawn from a uniform distribution. The training of a three-layer model by CCLalt took about 1
hour (Intel Xeon 3.6 GHz 16 core CPUs, 384 GB Memory, NVIDIA Tesla A100 GPU).

Evaluation We evaluated the estimation performances of the latent components and the causal structures by comparing
the estimations with the true values.

The estimated latent components h(·) were evaluated by their Pearson correlation to the true values. Since the order of the
components j is undetermined (Theorem 1), we performed an optimal assignment of components between the estimations
and the true ones by the Munkres assignment algorithm (Munkres, 1957), maximizing the mean absolute-correlation
coefficients.

For evaluations of the estimated causal structures (wjab), we at first converted them into binary directed (not necessarily
DAG) adjacency matrices by the following procedure: we determined the causal direction on every pairs (a, b) ∈ E on
component j by comparing the absolute values of wjab and wjba; direction is a→ b on j if |wjab| > |w

j
ba|, and vice versa.

We then removed edges whose absolute weights were less than a specific ratio (35% for Simulation 1) of the maximum
values of |wjab| across edges for each component. If both |wjab| and |wjba| are under the threshold, a and b are considered
to have no direct causal relation. The obtained adjacency matrices were then compared with the (binarized) true causal
structure (λjab), and evaluated by precision, recall, and F1-score (= 2 · precision · recall / (precision + recall)). This kind
of hard thresholding is known to be effective to reduce the number of false discoveries (Zheng et al., 2018), and seems
to be especially important for methods like CCL which do not explicitly impose sparseness or DAG structure constraints
for the estimation. The threshold was determined separately for each experiment (simulation 1 and 2, and gene regulatory
network recovery), but it was not changed across the parameter settings or runs within each experiment. Our preliminary
analyses showed that the CCL framework was not so sensitive to the selection of the threshold values, which can be seen
from the ROC curves with varying threshold (Supplementary Fig. 7). Since CCL has indeterminacy of the estimation
of the causal structure with its component-wise matrix-transpose (Theorem 2), we optimally chose either (wjab)(a,b)∈E

or its matrix-transpose (wjba)(a,b)∈E as its final guess of (λjab)(a,b)∈E for each component j. Again, we performed an
optimal assignment of components j between the estimations and the true ones by the Munkres assignment algorithm
(Munkres, 1957) so as to maximize the F1-score because of the indeterminacy of the order of the components. The learning
was performed for 10 runs with changing the parameters of the observation model and the causal structures, for both the
directly-observed case (L = 0) and the nonlinear-observational-mixture case (L = 3).

For comparison, we also applied PC (Spirtes and Glymour, 1991), FGS (Ramsey et al., 2017), GFCI (Ogarrio et al.,
2016), CAM (Bühlmann et al., 2014), DirectLiNGAM (Shimizu et al., 2011), NOTEARS-linear (Zheng et al., 2018),
NOTEARS-MLP (Zheng et al., 2020), and MultiDAG (Chen et al., 2021) to the same data. See Supplementary Material G
for the details of the baselines. Briefly, MultiDAG assumes multimodal causal structures explicitly, while the others focus
on single modalities. FGS, GFCI, DirectLiNGAM, NOTEARS-linear, and MultiDAG are specialized at linear models,
CAM and NOTEARS-MLP are for nonlinear models, and GFCI assumes presence of latent confounder. We used publicly
available implementations of them. Basically, all baselines estimate all of the d-component graphs, and are evaluated based
on the average of the graph-wise evaluations, in the same way as CCL. For the directly-observed case (L = 0), we applied
them separately to each modality i (or jointly in MultiDAG) of the observations. For the nonlinear-observation case (L = 3),
we applied them after linear-ICA (Hyvärinen, 1999) across modalities because they cannot perform representation learning
by themselves. Note that we cannot apply NICA such as Hyvärinen and Morioka (2016); Hyvarinen and Morioka (2017)
for this representation learning because there is no existing consistent NICA frameworks for the generative model of this
study. For the frameworks which output weighted adjacency matrices (DirectLiNGAM, NOTEARS-linear, NOTEARS-MLP,
and MultiDAG), we used the same evaluation criteria to that of CCL (causal direction determination, thresholding, and
component assignments). The threshold was determined separately for each method, so as to maximize the F1-score (see
Supplementary Fig. 7 for the effect of the varying threshold). The other frameworks which output a binarized adjacency
matrix, we directly compared them with the binarized true adjacency matrices. Since some of them output graphs possibly
with some bi-directional (or undetermined) edges, we gave the true directions to them favorably. For a fair comparison,
we optimally chose either the originally estimated adjacency matrix or its transpose as the final guess for each modality.



Connectivity-Contrastive Learning: Combining Causal Discovery and Representation Learning for Multimodal Data

Although we also applied RCD (Maeda and Shimizu, 2020), which assumes a linear SEM model with latent confounders,
we do not report the results here because it eventually estimated that many of the edges were affected by confounders, and
did not give proper estimations of the causal directions.

F ADDITIONAL INFORMATION FOR GENE REGULATORY NETWORK RECOVERY

We used synthetic single-cell gene expression data generated by SERGIO (Dibaeinia and Sinha, 2020), where each gene
expression is governed by a stochastic differential equation (SDE) derived from a chemical Langevin equation, with
activating or repressing causal interactions with the other genes. The gene expression data generated by SERGIO were
shown to be statistically comparable to experimental data (Dibaeinia and Sinha, 2020). We used the same parameters for
the differential equations as in (Dibaeinia and Sinha, 2020), but changed the hill coefficient from 2 to 6 to make the causal
relations more nonlinear. The first (smallest-indexed) 15 genes were assigned as master regulators (MRs), having no parents,
and controlled by basal production rates, randomly selected from [0.25, 0.75]. The maximum contributions (weights of
edges) from parental genes to target genes were set to 0.25 for all edges. For the observation model f : Rd → Rd, we used a
multilayer perceptron (MLP) with L layers (excluding the input layer) similarly to Simulations 1 and 2 because there is no
known realistic settings of the observational mixings in this kind of gene expression data, to the best of our knowledge.

The function ψj : R2 → R was modeled by

ψj(x, y) = y ×
K∑
k=1

ajk tanh(bjkx+ cjk), (33)

where K = 5 is a model order, ajk, bjk, and cjk are trainable scalar parameters.

We omitted some runs of PC for L = 3 because they did not converge within reasonable calculation time.

G DETAILS OF BASELINE METHODS

PC PC algorithm (Spirtes and Glymour, 1991) is a constraint-based method. PC algorithm firstly constructs an undirected
graph by removing edges from a fully connected graph based on independence and conditional independence tests. It then
constructs a DAG by directing the edges based on the information of separation sets and with some additional assumptions
(no new v-structures and directed cycles).

FGS Fast greedy search (FGS) (Ramsey et al., 2017) is a score-based method and assumes DAG, which is an extension of
greedy equivalent search (GES) algorithm (Chickering, 2003). GES starts with an empty graph and iteratively adds directed
edges such that the improvement of Bayesian score (BIC score) is maximized, until no single edge addition increases
the score (forward phase). GES then iteratively removes edges until no more improvements in the score can be made by
single-edge deletions (backward phase). FGS improved performances and speeds of GES with some techniques, such as
parallelization.

GFCI GFCI (Ogarrio et al., 2016) assumes DAG and presences of latent confounders, which is an extension of constraint-
based method FCI (Spirtes et al., 1995), by using a score-based greedy algorithm FGS (Ramsey et al., 2017). GFCI produces
a partial ancestral graph (PAG), which is a representation of a set of causal networks that may include hidden confounders,
and consists of four types of edges; 1) directed, 2) no causal relation but there is an unmeasured variable that is a cause of
both variables, 3) directed or there is an unmeasured variable that is a cause of both variables, or both, 4) directed but the
direction is undtermined or there is an unmeasured variable that is a cause of both variables, or both. For comparisons to the
other methods, we treated 1 and 3 as directed edges and 4 as bi-directed edges. We set the upper bound on the maximum
degree of graphs to 10 to make the computation feasible.

CAM Causal additive model (CAM) (Bühlmann et al., 2014) assumes SEMs specified by DAG and additive Gaussian
errors, which is an extension of linear SEMs by allowing for variable-wise scalar nonlinear functions. CAM at first estimates
the causal order of variables based a greedy search algorithm so as to maximize the likelihood, then non-relevant edges were
removed (pruning) by a sparse regression technique implemented based on significance testing of covariates.

DirectLiNGAM DirectLiNGAM (Shimizu et al., 2011) assumes SEMs with linear DAG and non-Gaussian errors. In the
first step, DirectLiNGAM finds the causal order of variables by iteratively finding a root variable by performing regression
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Algorithm 1 Pseudo-code of connectivity-contrastive learning (CCL) based on stochastic gradient descent (SGD)

Input: A dataset of observational matrices {X(n)}n, hyper-parameters for the optimization by stochastic gradient descend
(SGD).

1: Initialization: Initialize the parameters of the softmax function in Eq. 4 with random values.
2: repeat
3: Randomly select some node-pairs (a, b) ∈ E . Note that those pairs do not necessarily need to have causal relations

behind, as far as the total graphs satisfy Assumption 4.
4: Randomly pick some samples (mini-batch) of paired observations (x

(n)
a ,x

(n)
b ) ∈ Rd×2, which are the a-th and b-th

rows of X(n), for each selected node-pair.
5: Update the parameters of the softmax function in Eq. 4 so as to optimize the objective function with back-propagation

(SGD). This equivalents to make the model better predict the true node-pair label, assigned at step 3, for each input.
6: until the objective function Eq. 4 converges.
7: return The trained nonlinear feature extractor h(·) and the weight parameters (wjab) in Eq. 4.

and independence testing for each pair of nodes, extracting one which is exogenous to the others, and then removing the
effect of the root variable from the other ones. DirectLiNGAM then eliminates unnecessary edges using AdaptiveLasso
(Zou, 2006), and outputs a weighted adjacency matrix.

NOTEARS-linear NOTEARS-linear (Zheng et al., 2018) assumes linear SEMs of DAG. It estimates a weighted adjacency
matrix by minimizing a least-squares loss in scoring DAGs with regularization terms imposing sparseness and DAG-ness
of the adjacency matrix. Since NOTEARS-linear formulates the structure learning problem as a continuous optimization
problem over real matrices, it can effectively avoid the traditional combinatorial optimization problem (NP-hard) of learning
DAGs. We used the default parameters.

NOTEARS-MLP NOTEARS-MLP (Zheng et al., 2020) is an extension of NOTEARS-linear (Zheng et al., 2018) to
general nonparametric DAG models. NOTEARS-MLP models variable-wise nonlinear causal functions by MLPs, which are
learned based on continuous optimization problem with regularizations for the sparseness of the MLP parameters and for
DAG-ness of the causal functions. We used the default parameters.

MultiDAG MultiDAG (Chen et al., 2021) jointly estimates multiple causal structures corresponding to multiple task
conditions. MultiDAG assumes that the causal orders are consistent across tasks, and then estimates multi-task (linear)
adjacency matrices by jointly minimizing reconstruction error of structural equation models, with using DAG-ness constraints
proposed by (Zheng et al., 2018). We used the default parameters.
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Figure 3: Estimation performances of the latent components (Pearson correlation) and the causal structures (precision, recall,
and F1-score) by the proposed framework CCL, with different settings of the complexity of the observation models (the
number of MLP-layers L of the observation function f ) and the number of n, on Simulation 1 (a) and Simulation 2 (b;
with latent confounders). L = 0 indicates that the latent components were directly obtained as the observations, while the
observations were (unknown) nonlinear mixtures of the latent components in L > 0. The values are the averages of 10 runs
for each setting, and the shaded regions show the standard deviations.
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Figure 4: (a) Estimation performances of the latent components (Pearson correlation) and the causal structures (precision,
recall, and F1-score) by CCL, with different settings of the number of modalities and components d, and the number of n,
with fixing the number of nodes p = 30 and L = 3. The values are the averages of 10 runs for each setting, and the shaded
regions show the standard deviations. (b) Same as a, but with changing the number of nodes p, with fixing d = 10. The
large number of nodes causes difficulty of estimations, as expected. In addition, small number of nodes also leads to worse
estimation performances presumably because the modulation of the causal structures across modalities are not enough for
the estimations by CCL (Assumption 4) in our data generation method (Supplementary Material E).
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Figure 5: Causal discovery performances by the baseline frameworks applied to the latent components estimated by CCL
(the output of the feature extractor h). In the nonlinear observation cases (L = 3), the performances of the baselines are
better than those directly applied on the observations (after linear-ICA, Fig. 2) due to the nonlinear demixing by CCL, but
still lower than that of CCL. This result indicates the importance of performing both representation learning and causal
discovery simultaneously, as in CCL.



Hiroshi Morioka, Aapo Hyvärinen

Figure 6: Example of the true causal structures and the estimations by CCL in Simulation 1 (nonlinear-mixture case L = 3).
We showed the weight parameters of MLR (raw values, before threshold) as the estimated causal structures. Note that some
of the estimations were matrix-transposed from the original values so as to match the true one, due to the indeterminacy of
the causal discovery by CCL (see Theorem 2).
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Figure 7: Illustration of the effect of the threshold for CCL, DirectLiNGAM, NOTEARS-linear, NOTEARS-MLP, and
MultiDAG. For each panel, ROC curve shows false positive rate (FPR) and true positive rate (TPR) with varying level of
threshold, from 0% to 100% with interval of 5%, for each method. The values are the averages of 10 runs for each threshold.
This result shows that CCL was not so sensitive to the selection of the threshold values.
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Figure 8: Comparison of the estimation performances of the latent components (Pearson correlation) by CCL and CCLalt,
with different settings of the complexity of the observation models (the number of MLP-layers L of the observation function
f ) and the number of n, on Simulation 1. L = 0 indicates that the latent components were directly obtained as the
observations, while the observations were (unknown) nonlinear mixtures of the latent components in L > 0. The values are
the averages of 10 runs for each setting, and the shaded regions show the standard deviations.
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