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Abstract

Automated AI classifiers should be able to defer
the prediction to a human decision maker to en-
sure more accurate predictions. In this work, we
jointly train a classifier with a rejector, which de-
cides on each data point whether the classifier or
the human should predict. We show that prior ap-
proaches can fail to find a human-AI system with
low misclassification error even when there exists
a linear classifier and rejector that have zero error
(the realizable setting). We prove that obtaining a
linear pair with low error is NP-hard even when
the problem is realizable. To complement this
negative result, we give a mixed-integer-linear-
programming (MILP) formulation that can opti-
mally solve the problem in the linear setting. How-
ever, the MILP only scales to moderately-sized
problems. Therefore, we provide a novel surro-
gate loss function that is realizable-consistent and
performs well empirically. We test our approaches
on a comprehensive set of datasets and compare
to a wide range of baselines.

1 Introduction

AI systems are frequently used in combination with hu-
man decision-makers, including in high-stakes settings like
healthcare (Beede et al., 2020). In these scenarios, ma-
chine learning predictors should be able to defer to a human
expert instead of predicting on difficult or unfamiliar ex-
amples. However, when AI systems are used to provide a
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Figure 1: The learning to defer setting with the
RealizableSurrogate illustrated in the application
of making predictions for chest X-rays.

second opinion to the human, prior work shows that humans
over-rely on the AI when it is incorrect (Jacobs et al., 2021;
Mozannar et al., 2022), and these systems rarely achieve
performance higher than either the human or AI alone (Liu
et al., 2021a, Proposition 1). This motivates deferral-style
systems, where either the classifier or the human predicts,
to avoid over-reliance.

As a motivating example, suppose we want to build an AI
system to predict the presence of pneumonia from a patient’s
chest X-ray, jointly with an human radiologist. The goal
in this work is to jointly learn a classifier that can predict
pneumonia and a rejector, which decides on each data point
whether the classifier or the human should predict. By
learning the classifier jointly with the rejector, the aim is
for the classifier to complement the radiologist so that the
Human-AI team performance is higher. We refer to the error
rate of the Human-AI team as the system error.

Failure of Prior Approaches. Existing literature has fo-
cused on surrogate loss functions for deferral (Madras et al.,
2018; Mozannar and Sontag, 2020; Verma and Nalisnick,
2022) and confidence based approaches (Raghu et al., 2019;
Okati et al., 2021). We give a simple synthetic setting where
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all of these approaches fail to find a classifier/rejector pair
with low system error. In this setting, there exists a halfs-
pace classifier and halfspace rejector that have zero system
error (illustrated in Figure 2), but our experiments in Section
7.2 demonstrate that all prior approaches fail to find a good
classifier/rejector pair in this setting.

To understand possible reasons for this failure, we first study
the computational complexity of learning with deferral us-
ing halfspaces for the rejector and the classifier, which we
call LWD-H. The computational complexity of learning
with deferral has received little attention in the literature.
We prove that even in our simple setting where the data is re-
alizable (i.e., there exists a halfspace classifier and halfspace
rejector achieving zero system error), there is no polynomial-
time algorithm that finds an approximately optimal pair of
halfspaces unless NP = RP . We also extend our hard-
ness result to approximation algorithms and when the data
is not realizable by halfspaces. In contrast, training a lin-
ear classifier in the realizable linear setting can be solved
in polynomial time with linear programming (Boyd and
Vandenberghe, 2004).

Learning with deferral using halfspaces is also of signifi-
cant practical importance. Sample efficiency is critical in
learning with deferral since the training data is expensive to
collect—it requires both human outputs and ground-truth
labels. This motivates restricting to smaller model classes,
and in particular to linear classifiers and rejectors. Linear
models have the benefit of being interpretable with respect
to the underlying features, which can be crucial for a human-
AI deferral system. Additionally, the head tuning or linear
probing paradigm, where only the final (linear) layer of a
pretrained deep neural network is fine-tuned on different
tasks, has become increasingly common as pretrained repre-
sentations improve in quality, and it can be more robust than
full fine-tuning (Kumar et al., 2022). However, as previously
mentioned, existing surrogate approaches fail to find a good
linear classifier and rejector even when one is guaranteed
to exist. This motivates the need for an algorithm for exact
minimization of the system training error.

We show that exact minimization of the system error can
be formulated as a mixed integer linear program (MILP).
This derivation overcomes a naive quadratic formulation of
the problem. In addition to exactly minimizing the training
loss, the MILP formulation allows us to easily incorpo-
rate constraints to govern the human-AI system. We show
that modern commercial solvers such as Gurobi (Gurobi
Optimization, LLC, 2022) are capable of solving fairly
large instances of this MILP, making it a practical algo-
rithm for the LWD-H problem. To obtain similar gains
over prior approaches, but with a more scalable algorithm,
we develop a new differentiable surrogate loss function
LRS , dubbed RealizableSurrogate , that can solve
the LWD-H problem in the realizable setting by virtue of
being realizable-consistent (Long and Servedio, 2013) for a

large class of hypothesis sets that includes halfspace clas-
sifier/rejector pairs. We also show empirically that LRS is
competitive with prior work in the non-linear setting.

In section 3, we formalize the learning with deferral problem.
We then study the computational complexity of LWD-H in
section 4. We introduce our MILP approach in section 5 and
our new surrogate RealizableSurrogate in section 6.
In section 7, we evaluate our algorithms and baselines on a
wide range of benchmarks in different domains, providing
the most expansive evaluation of expert deferral algorithms
to date. To summarize, the contributions of this paper are
the following:

• Computational Complexity of Deferral: We prove
the computational hardness of PAC-learning with de-
ferral in the linear setting.

• Mixed Integer Linear Program Formulation and
RealizableSurrogate : We show how to formu-
late learning to defer with halfspaces as a MILP and
provide a novel surrogate loss.

• Experimental Evaluation: We showcase the per-
formance of our algorithms on a wide array
of datasets and compare them to several exist-
ing baselines. We contribute a publicly avail-
able repository with implementations of existing
baselines and datasets: https://github.com/
clinicalml/human_ai_deferral

2 Related Work

A natural baseline for the learning to defer problem is to first
learn a classifier that minimizes average misclassification
error, then learn a model that predicts the probability that
the human makes an error on a given example, and finally
defer if the probability that the classifier makes an error
is higher than that of the human. This is the approach
adapted by Raghu et al. (2019). However, this does not
allow the classifier to adapt to the human. Another natural
approach is to model this problem as a mixture of experts:
the human and the AI. This is the approach introduced by
Madras et al. (2018) and adapted by Wilder et al. (2020);
Pradier et al. (2021) by introducing mixture of experts
surrogates. However, this approach has been to shown
to fail empirically as the loss is not easily amenable to
optimization. Subsequent work (Mozannar and Sontag,
2020) introduced consistent surrogate loss functions for the
learning with deferral objective, with follow-up approaches
addressing limitations including better calibration (Raman
and Yee, 2021; Liu et al., 2021b). Charusaie et al. (2022)
provides a family of convex surrogates for learning with
deferral that generalize prior approaches, however, our
proposed surrogate does not belong to that family. Another
consistent convex surrogate was proposed by Verma and
Nalisnick (2022) via a one-vs-all approach, it can be shown

https://github.com/clinicalml/human_ai_deferral
https://github.com/clinicalml/human_ai_deferral
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Figure 2: The realizable LWD-H setting illustrated. The task is binary classification with labels {o,+}; the human is perfect
on the green-shaded region, and the data outside the green region is linearly separable. As a result, the optimal classifier and
rejector obtain zero error. Assumption 2 is illustrated graphically as well as the MILP variables of equations (8)-(13).

that it belongs to the family proposed by (Charusaie et al.,
2022). Keswani et al. (2021) proposes a surrogate loss
which is the sum of the loss of learning the classifier and
rejector separately but that is not a consistent surrogate.
De et al. (2020) proved hardness of linear regression (not
classification) where some training points are allocated to
the human (not deferral but subset selection of the training
data). Finally, Okati et al. (2021) proposes a method
that iteratively optimizes the classifier on points where it
outperforms the human on the training sample, and then
learns a post-hoc rejector to predict who between the human
and the AI has higher error on each point. The setting when
the cost of deferral is constant, has a long history in machine
learning and goes by the name of rejection learning (Cortes
et al., 2016; Chow, 1970; Bartlett and Wegkamp, 2008;
Charoenphakdee et al., 2021) or selective classification
(only predict on x% of data) (El-Yaniv and Wiener, 2010;
Geifman and El-Yaniv, 2017; Gangrade et al., 2021; Acar
et al., 2020). Our MILP formulation is inspired by work
in binary linear classification that optimizes the 0-1 loss
exactly (Ustun and Rudin, 2016; Nguyen and Sanner, 2013).

3 Learning with Deferral: Problem Setup

We frame the learning with deferral setting as the task of
predicting a target Y ∈ Y = {1, · · · , C}. The classifier has
access to features X ∈ X = Rd, while the human (also
referred to as the expert) has access to a potentially different
set of features Z ∈ Z which may include side-information
beyond X . The human is modeled as a fixed predictor
h : Z → Y . The AI system consists of a classifier m :
X → Y and a rejector r : X → {0, 1}. When r(x) = 1, the
prediction is deferred to the human and we incur a cost if the
human makes an error, plus an additional, optional penalty

term: ℓHUM(x, y, h) = Ih̸=y+cHUM(x, y, h). When r(x) =
0, then the classifier makes the final decision and incurs a
cost with a different optional penalty term: ℓAI(x, y,m) =
Im ̸=y + cAI(x, y,m). We can put this together into a loss
function for the classifier and rejector:

Ldef(m, r) = EX,Y,Z [ ℓAI
(
X,Y,m(X)

)
· Ir(X)=0

+ ℓHUM(X,Y, h(Z)) · Ir(X)=1 ]. (1)

In this paper we focus mostly on the cost of misclassification
with no additional penalties, the deferral loss becomes a
misclassification loss L0−1

def (m, r) for the human-AI system,
and the optimization problem is:

minimize
m,r

L0−1
def (m, r) := (2)

P [((1− r(X))m(X) + r(X)h(Z)) ̸= Y ] .

Data. We assume access to samples S =
{(xi, h(zi), yi)}ni=1 where h(zi) is the human’s pre-
diction on the example, but note that we do not observe zi,
the information used by the human. We emphasize that
the label yi and human prediction h(zi) are different, even
though yi could also come from humans. For example in
our chest X-ray classification example, yi could come from
a consensus of 3 or more radiologists, while h(zi) is the
prediction of a single radiologist not involved with the label.
Given the dataset S the system training loss is given by:

L̂0−1
def (m, r) :=

1

n

n∑
i=1

Im(xi )̸=yi
Ir(xi)=0+Ih(zi )̸=yi

Ir(xi)=1

(3)

In the following section, we study the computational com-
plexity of learning with deferral using halfspaces, which
reduces to studying the optimization problem (3) when m
and r are constrained to be halfspaces.
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4 Computational Complexity of Learning
with Deferral

The misclassification error of the human-AI team in equa-
tion (2) is challenging to optimize as it requires searching
over a joint set of functions for the classifier and rejector,
in addition to dealing with the nonconvex 0-1 aspect. To
study the computational complexity of minimizing the loss,
we restrict our attention to a foundational setting: linear
classifiers and linear rejectors in the binary label scenario.

We begin with the realizable case when there exists a halfs-
pace classifier and rejector that can achieve zero loss:

Assumption 1 (Realizable Linear Setting). Let X = Rd

and Y = {0, 1}. We assume that for the given expert h
there exists a linear classifier m∗(x) = IM⊤x>0 and a linear
rejector r∗(x) = IR⊤x>0 that achieve 0 error:

E(x,y,z)∼P [ Im∗(x)̸=yIr∗(x)=0 + Ih(z) ̸=yIr∗(x)=1 ] = 0.

This setting is illustrated in Figure 2. Since the decision
regions of m and r are halfspaces, we also use the term
“halfspace” interchangeably. Note that while the classifier
is assumed to be linear, the human can have a non-linear
decision boundary. The analog of this assumption in the
binary classification without deferral setting is to assume
that there exists a halfspace that can correctly classify all the
data points. In that case, we can formulate the optimization
problem as a linear program to efficiently find the optimal
solution (Boyd and Vandenberghe, 2004).

Hardness. In contrast to learning without deferral, we will
prove that in general, it is computationally hard to learn a
linear m and r under Assumption 1. Define the learning
with deferral using halfspaces (LWD-H) problem as that
of finding halfspace m and halfspace r such that the system
error in (2) is approximately minimized.

Theorem 1. Let ϵ > 0 be an arbitrarily small constant.
Under a guarantee that there exist halfspaces m∗, r∗ with
zero system loss (Assumption 1), there is no polynomial-time
algorithm to find a pair of classifier-rejector halfspaces with
error 1/2− ϵ unless NP = RP .

This shows that even in the realizable setting (i.e., there ex-
ists a pair of halfspaces with zero system loss), it is hard to
find a pair of halfspaces that even gets system error 1/2− ϵ.

Corollary 1. There is no efficient proper PAC-learner for
LWD-H unless NP = RP .

Proof Sketch. First, because the true distribution of points
could be supported on a finite set, the LWD-H problem boils
down to approximately minimizing the training loss (3). Our
proof relies on a reduction from the problem of learning an
intersection of two halfspaces in the realizable setting. Let
D = {xi, yi}ni=1 and suppose there exists an intersection of
two half-spaces g1, g2 that achieve 0 error for D. This is an

instance of learning an intersection of two halfspaces in the
realizable setting, which is hard to even weakly learn (Khot
and Saket, 2011). We show that this is an instance of the
realizable LWD-H problem by setting m = g1 and r = ḡ2
and the human H to always predict 0. Hence, an algorithm
for efficiently finding a classifier/rejector pair with error
1
2 − ϵ would also find an intersection of halfspaces with
error 1

2 − ϵ, which is hard unless NP = RP .

All proofs can be found in the Appendix. This hardness
result holds in the realizable setting, with proper learning,
and with no further assumptions on the data distribution.

Extensions. Even if the problem is not realizable and the
goal is to find an approximation algorithm, this is still com-
putationally hard as presented in the following corollary.

Corollary 2. When the data is not realizable (i.e., Assump-
tion 1 is violated), there is no polytime algorithm for finding
a pair of halfspaces with error 1

2 − ϵ unless NP = RP .

Exact Solution. These hardness results motivate the need
for new approaches to solving the LWD-H problem. In
the next section, we derive a scheme to exactly minimize
the misclassification error of the human/AI system using
mixed-integer linear programming (MILP).

5 Mixed Integer Linear Program
Formulation

In the previous section, we saw that in the linear setting it
is computationally hard to learn an optimal classifier and
rejector pair. As discussed in Section 1, we are interested in
the linear setting due to the cost of labeling large datasets for
learning with deferral. Linear predictors can perform simi-
lar to non-linear predictors in applications involving high-
dimensional medical data (Razavian et al., 2015). Moreover,
we can rely on pre-trained representations, which can al-
low linear predictors on top of embedded representations
to attain performance comparable to non-linear predictors
(Bengio et al., 2013).

A First Formulation. As a first step, we write down a
mixed integer nonlinear program for the optimization of the
training loss L̂0−1

def in (3) over linear classifiers and linear re-
jectors with binary labels. For simplicity, let Y = {−1,+1}.
A direct translation of (3) with halfspace classifiers and re-
jectors yields the following:

M∗, R∗, · = argmin
M,R,mi,ri

n∑
i=1

(1− ri)Imi ̸=yi
+ riIhi ̸=yi

(4)

s.t. mi = sign(M⊤xi), ri = IR⊤xi≥0 ∀i ∈ [n], (5)

M ∈ Rd, R ∈ Rd.

The variables mi and ri are simply the binary outputs of the
classifier and rejector. We observe that the objective involves
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a quadratic interaction between the classifier and rejector.
Furthermore, the constraints (5) are indicator constraints
that are difficult to optimize.

Making Objective Linear. We observe that since the ri’s
are binary, the term (1 − ri)Imi ̸=yi

can be equivalently
rewritten as max(0, Imi ̸=yi

− ri). This is a crucial simplifi-
cation that avoids having a mixed integer quadratic program.
Below we use this to create a binary variable ti = Imi ̸=yi

representing the error of the classifier and a second con-
tinuous variable ϕi that upper bounds max(0, ti − ri) and
represents the classifier error after accounting for deferral.

Making Constraints Linear. Constraints (5) make sure
that the binary variables ri and mi are the predictions of
half-spaces R and M respectively. As mentioned above,
we will formulate the problem using the classifier error
variables ti instead of the classifier predictions mi. To
reformulate constraints (5) in a linear fashion, we have to
make assumptions on the optimal M and R:
Assumption 2 (Margin). The optimal solution (M,R) that
minimizes the training loss (3) has margin and is bounded,
meaning that (M,R) satisfy the following for all i ∈ [n] in
the training set and some γm, γr,Km, Kr > 0:

γm ≤ |M⊤xi| ≤ Km − γm, γr ≤ |R⊤xi| ≤ Kr − γr (6)

A similar assumption is made in (Ustun and Rudin, 2016).
The upper bounds in (6) are often naturally satisfied as we
usually deal with bounded feature sets X such that we can
normalize xi to have unit norm, and the norms of M and R
are constrained for regularization.

Mixed Integer Linear Program. With the above ingre-
dients and taking inspiration from the big-M approach of
Ustun and Rudin (2016), we can write down the resulting
mixed integer linear program (MILP):

M∗, R∗, · · · =

argmin
M,R,{ri},{ti},{ϕi}

∑
i

ϕi + riIhi ̸=yi
, s.t.

ϕi ≥ ti − ri, ϕi ≥ 0 ∀i ∈ [n]

Kmti ≥ γm − yiM
⊤xi ∀i ∈ [n]

R⊤xi ≤ Krri + γr(ri − 1),

R⊤xi ≥ Kr(ri − 1) + γrri ∀i ∈ [n]

ri ∈ {0, 1}, ti ∈ {0, 1},
ϕi ∈ R+ ∀i ∈ [n], M,R ∈ Rd

(7)

(8)

(9)

(10)

(11)
(12)

(13)

Please see Figure 2 for a graphical illustration of the vari-
ables. We show that constraints (11) function as intended;
the rest of the constraints are verified in the Appendix. When
ri = 0, then we have the constraints R⊤xi ≤ −γr and
R⊤xi ≥ −Kr: this correctly forces the rejector to be nega-
tive. When ri = 1, we have R⊤xi ≥ γr and R⊤xi ≤ Kr:

which means the rejector is positive. Note that we do not
need to know the margin γr exactly, only a lower bound γ,
0 < γ ≤ γr; the formulation is still correct with γ in place
of γr. However, we cannot set γ = 0 as then the trivial
solution R = 0 is feasible and the constraint is void. The
same statements apply to γm. This MILP has 2n binary
variables, n+ 2d continuous variables and 4n constraints.
Finally, note that the MILP minimizes the 0-1 error even
when Assumption 1 is violated.

Regularization and Extension to Multiclass. We can add
l1 regularization to our model by adding the l1 norm of both
M and R to the objective. This is done by defining two sets
of variables constrained to be the l1 norm of the classifier
and rejector and adding their values to the objective in (8).
Adding regularization can help prevent the MILP solution
from overfitting to the training data. The above MILP only
applies to binary labels, but can be generalized to the multi-
class setting where Y = {1, · · · , C} (see Appendix).

Generalization Bound. Under Assumption 2 and non-
realizability, assume ∥xi∥1 ≤ 1 and constrain the search
of the MILP to M and R with infinity norms of at most
Km and Kr respectively. We can relate the performance
of MILP solution on the training set to the population 0-1
error.

Proposition 1. For any expert h and data distribution P
over X × Y that satisfies Assumption 2, let 0 < δ < 1

2 .
Then with probability at least 1− δ, the following holds for
the empirical minimizers (m̂∗, r̂∗) obtained by the MILP:

L0−1(m̂
∗, r̂∗) ≤ L̂0−1

def (m̂
∗, r̂∗)

+
(Km +Kr)d

√
2 log d+ 10

√
log(2/δ)√

nP(h(Z) ̸= Y )
.

This bound improves on surrogate optimization since the
MILP will achieve a lower training error, L̂0−1

def (m̂
∗, r̂∗),

than the surrogate, which optimizes a different objective.

Adding Constraints. A major advantage of the MILP for-
mulation is that it allows us to provably integrate any linear
constraints on the variables with ease. For example, the con-
straints mentioned in Section 3 can be added to the MILP
as follows in a single constraint:

• Coverage:
∑

i ri/n ≤ β

• Fairness:
∑

i:A=1

(
ϕi + riIhi ̸=yi

)
/|{i : A = 1}| =∑

i:A=0

(
ϕi + riIhi ̸=yi

)
/|{i : A = 0}|.

So far, we have provided an exact solution to the linear
learning to defer problem. However, the MILP requires
significant computational time to find an exact solution for
large datasets. Moreover, we might need a non-linear classi-
fier or rejector to achieve good error. The remaining ques-
tions are (i) how to efficiently find a good pair of halfspaces
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Figure 3: (a) Test performance of the different methods on
synthetic data as we increase the training data size and repeat
the randomization over 10 trials to get standard errors. (b)
Test performance on the semi-synthetic CIFAR-K dataset
vs. the number of classes K for which the expert is perfect.

for large datasets and (ii) how to generalize to non-linear
predictors. In the following section, we give a novel surro-
gate loss function that is optimal in the realizable LWD-H
setting, performs well with non-linear predictors, and can
be efficiently minimized (to a local optimum).

6 Realizable Consistent Surrogate

Most of machine learning practice is based on optimizing
surrogate loss functions of the true loss that one cares about.
The surrogate loss functions are chosen so that optimizing
them also optimizes the true loss functions, and also chosen
to be differentiable so that they are readily optimized. This
first property is captured by the notion of consistency, which
was the main focus of much of the prior work on expert de-
ferral: (Mozannar and Sontag, 2020; Verma and Nalisnick,
2022; Charusaie et al., 2022). We start by giving a formal
definition of the consistency of a surrogate loss function:

Definition 1 (Consistency1). A surrogate loss function
L̃(m, r) is a consistent loss function for another loss

1This is also referred to as Fisher consistency (Lin, 2002) and
classification-calibration (Bartlett et al., 2006).

L0−1
def (m, r) if optimizing the surrogate over all measurable

functions is equivalent to minimizing the original loss.

For example, the surrogates LCE and ΨOvA both satisfy
consistency for L0−1

def (m, r) (Mozannar and Sontag, 2020;
Verma and Nalisnick, 2022). It is crucial to note that con-
sistency only applies when optimizing over all measurable
functions. Conversely, in LWD-H, and in the setting of Fig-
ure 2, when we optimize with linear functions, consistency
does not provide any guarantees, which explains why these
methods can fail in that setting.

Since we normally optimize over a restricted model class,
we want our guarantee for the surrogate to also hold for
optimization under a certain model class. The notion of
realizableH-consistency is such a guarantee that has proven
fruitful for classification (Long and Servedio, 2013; Zhang
and Agarwal, 2020) and was extended by Mozannar and
Sontag (2020) for learning with deferral. We recall the
notion when extended for learning with deferral:

Definition 2 (realizable (M,R)-consistency). A surrogate
loss function L̃(m, r) is a realizable (M,R)-consistent loss
function for the loss L0−1

def (m, r) if there exists a zero error
solution m∗, r∗ ∈ M×R with L0−1

def (m
∗, r∗) = 0. Then

optimizing the surrogate returns such zero error solution:

m̃, r̃ ∈ arg inf
m,r∈M×R

L̃(m, r) =⇒ L0−1
def (m̃, r̃) = 0

Realizable (M,R)-consistency guarantees that when our
data comes from some ground-truth m∗, r∗ ∈ M × R,
then minimizing the (population) surrogate loss will find
an optimal (m, r) pair. We propose a novel, differen-
tiable, and (M,R)-consistent surrogate for learning with
deferral when M and R are closed under scaling. A
class G of scoring functions from X to RC is closed un-
der scaling if g ∈ G =⇒ αg ∈ G for any α ∈ R.
For example, we can let G be the class of linear scor-
ing functions g(x) = G⊤x and G ∈ Rd×C . Our re-
sults hold for arbitrary G that are closed under scaling,
e.g., ReLU feedforward neural networks (FNN). We pa-
rameterize the (m, r) pair with |Y| + 1 dimensional scor-
ing function g : (g1, . . . , g|Y|, g⊥). We define m(x) =
argmaxy∈Y gy(x) and r(x) = Imaxy∈Y gy(x)≤g⊥(x). The
joint classifier-rejector model class (M,R) is thus defined
by G, and we say (M,R) is closed under scaling when-
ever G is closed under scaling. The proposed new surrogate
loss LRS , dubbed RealizableSurrogate, is defined
at each point (x, y, h) as:

LRS(g, ·) = −2 log

(
exp(gy(x)) + Ih=y exp(g⊥(x))∑

y′∈Y∪⊥ exp(gy′(x))

)

The surrogate is illustrated in Figure 1. Notice that when
the human is incorrect, i.e. Ih=y = 0, the loss incentivizes
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Figure 4: Accuracy vs coverage (fraction of points where classifier predicts) plots across the real world datasets showcasing
the behavior of our method and the baselines. On each plot, we showcase the test accuracy of each method with a large marker,
with the curve representing varying the rejector threshold on the test set. To achieve different levels of coverage, we sort
the rejection score for each method on the test set and vary the threshold used, for RealizableSurrogate the rejector
is defined as r(x) = Ig⊥(x)−maxy gy(x)≥c where the optimal solution is at c = 0 and we vary c ∈ R to obtain the curve.

the classifier to be correct, similar to cross entropy loss.
However, when the human is correct, the learner has the
choice to either fit the target or defer: there is no penalty for
choosing to do one or the other. This is what enables the
classifier to complement the human and differentiates LRS

from prior surrogates, such as LCE (Mozannar and Sontag,
2020), that are not realizable-consistent (see Appendix) and
penalize the learner for not fitting the target even when
deferring. This property is showcased by the fact that our
surrogate is realizable (M,R)-consistent for model classes
that are closed under scaling. Moreover, it is an upper
bound of the true loss L0−1

def (m, r). The theorem below
characterizes the properties of our novel surrogate function.

Theorem 2. The RealizableSurrogate LRS is a re-
alizable (M,R)-consistent surrogate for L0−1

def for model
classes closed under scaling, and satisfies L0−1

def (m, r) ≤
LRS(m, r) for all (m, r).

This theorem implies that when Assumption 1 is satisfied
and G is the class of linear scoring functions, mini-
mizing LRS yields a classifier-rejector pair with zero
system error. The resulting classifier is the halfspace
I((G1 − G0)

⊤x ≥ 0) and the form of the rejector is
I((G⊤

⊥x − max(G⊤
1 x,G

⊤
0 x)) ≥ 0), which is an intersec-

tion of halfspaces. However, one can see that by setting
G0 = 0 and optimizing over only G1 and G⊥ we can

recover a linear classifier and linear rejector; in practice we
only do this when we explicitly want a linear rejector.

The surrogate is differentiable but non-convex in g, though
it is convex in each gi. Indeed, a jointly convex surrogate
that provably works in the realizable linear setting would
contradict Theorem 1. In practice, we observe that in
the linear realizable setting, the local minima reached
by gradient descent obtain zero training error despite the
nonconvexity. The mixture-of-experts surrogate in Madras
et al. (2018) is realizable (M,R)-consistent, non-convex
and not classification consistent as shown by Mozannar and
Sontag (2020), however, Mozannar and Sontag (2020) also
showed that it leads to worse empirical results than simple
baselines. We have not been able to prove or disprove
that RealizableSurrogateis classification-consistent,
unlike other surrogates like that of Mozannar and Sontag
(2020). It remains an open problem to find both a consistent
and a realizable-consistent surrogate.

Underfitting the target. Minimizing the proposed loss
leads to a classifier that attempts to complement the human.
One consequence is that the classifier might have high error
on points that are deferred to the human, resulting in possi-
bly high error across a large subset of the data domain. We
can explicitly encourage the classifier to fit the target on all
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points by adding an extra term to the loss:

Lα
RS(g, x, y, h) = −α log

(
exp(gy(x)+Ih=y exp(g⊥(x))∑

y′∈Y∪⊥ exp(gy′ (x))

)
− (1− α) log

(
exp(gy(x))∑

y′∈Y exp(gy′(x))

)
(14)

The new loss Lα
RS with α ∈ [0, 1] (a hyperparameter) is

a convex combination of LRS and the cross entropy loss
for the classifier (with the softmax applied only over the
functions gy rather than including g⊥). Empirically, this
allows the points that are deferred to the human to still help
provide extra training signal to the classifier, which is useful
for sample-efficiency when training complex, non-linear
hypotheses. Finally, due to adding the parameter α, the
loss no longer remains realizable consistent, thus we let the
rejector be r(x) = Ig⊥(x)−maxy gy(x)≥τ and we learn τ with
a line search to maximize system accuracy on a validation
set. In the next section, we evaluate our approaches with an
extensive empirical benchmark.

7 Experiments

7.1 Human-AI Deferral Benchmark

Objective. We investigate the empirical performance of
our proposed approaches compared to prior baselines on
a range of datasets. Specifically, we want to compare the
accuracy of the human-AI team at the learned classifier-
rejector pairs. We also check the accuracy of the system
when we change the deferral policy by varying the threshold
used for the rejector, this leads to an accuracy-coverage plot
where coverage is defined as the fraction of the test points
where the classifier predicts.

Datasets. In Table 1 we list the datasets used in our bench-
mark. We start with synthetic data described below, then
semi-synthetic data with CIFAR-K (Mozannar and Sontag,
2020). We then evaluate on 5 real world datasets with three
image classification domains with multiple tasks per do-
main, a natural language domain and a tabular domain. Each
dataset is randomly split 70-10-20 for training-validation-
testing respectively.

Baselines. We compare to multiple methods from the
literature including: the confidence method from Raghu
et al. (2019) (CompareConfidence), the surrogate Lα

CE from
Mozannar and Sontag (2020) (CrossEntropySurrogate), the
surrogate ΨOvA from Verma and Nalisnick (2022) (OvA-
Surrogate), Diff-Triage from Okati et al. (2021) (Differen-
tiableTriage), mixture of experts from Madras et al. (2018)
(MixOfExps) and finally a selective prediction baseline
that thresholds classifier confidence for the rejector (Se-
lectivePrediction). For all baselines and datasets, we train
using Adam and use the same learning rate and number of
training epochs to ensure an equal footing across baselines,
each run is repeated for 5 trials with different dataset splits.

We track the best model in terms of system accuracy on a
validation set for each training epoch and return the best
performing model. For RealizableSurrogate , we
perform a hyperparameter search on the validation set over
α ∈ [0, 1], and do hyperparameter tuning over Lα

CE .

7.2 Synthetic and Semi-Synthetic Data

Synthetic Data. We create a set of synthetic data distribu-
tions that are realizable by linear functions (or nearly so)
to benchmark our approach. For the input X , we set the
dimension d, and experiment with two data distributions.
(1) Uniform distribution: we draw points X ∼ Unif(0, U)d

where U ∈ R+; (2) Mixture-of-Gaussians: we fix some
K ∈ N and generate data from K equally weighted Gaus-
sians, each with random uniform means and variances. To
obtain labels Y that satisfy Assumption 1, we generate two
random halfspaces and denote one as the optimal classifier
m∗(x) and the other as the optimal rejector r∗(x). We then
set the labels Y on the side where r∗(x) = 0 to be con-
sistent with m∗(x) with probability 1− pm and otherwise
uniform. When r∗(x) = 1, we sample the labels uniformly.
Finally, we choose the human expert to have error ph0 when
r∗(x) = 0 and have error ph1 when r∗(x) = 1. When
pm = 0, ph0 ∈ [0, 1], and ph1 = 0, this process generates
datasets D = {xi, yi, hi}ni=1 that satisfy Assumption 1.

Sample Complexity. For realizable data with a fea-
ture distribution that is mixture of Gaussians (d = 30,
pm = 0, ph0 = 0.3, ph1 = 0), Figure 3a plots the test
accuracy of the different methods on a held-out dataset of 5k
points as we increase the training data size. We observe that
MILP and RealizableSurrogate are able to get close
to zero error, while all other methods fail at finding a near
zero-error solution. We also experiment with non-realizable
data. For example, when pm = 0.1, ph0 = 0.4, ph1 = 0.1
with n = 1000, the optimal test error is 7.5 ± 1.0% for
the generated data: the MILP obtains 11.2 error and
RealizableSurrogate achieves 17.8 ± 1.0 error,
while the best baseline CrossEntropySurrogate achieves
21.4± 1.1 error. In the Appendix, we show results on the
uniform data distribution, which shows an identical pattern,
and we study the run-time and performance of the MILP
as we increase the error probabilities.

CIFAR-K. We use the CIFAR-10 image classification
dataset (Krizhevsky et al., 2009) and employ a simple con-
volution neural network (CNN) with three layers. We con-
sider the human expert models from Mozannar and Sontag
(2020); Verma and Nalisnick (2022): if the image is in the
first K classes the expert is perfect, otherwise the expert
predicts randomly. Figure 3b shows the test accuracy of
the different methods as we vary the expert strength K.
RealizableSurrogate outperforms the second best
method by 0.8% on average and up to 2.8% maximum
showcasing that the method can perform well for non-linear
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Table 1: Datasets used for our benchmark for learning with deferral to humans. We note the total number of samples n, the
target set size |Y|, the number of tasks in each dataset (a task is a set of human and target labels), the human expert where
’random annotator’ means that for each point we have multiple human annotations and we let the target be a consensus and
the human label be a random sample while ’separate human annotation’ means that the human label is completely separate
from the label annotations and finally the model class for both the classifier and rejector.

Dataset n |Y| Number of Tasks Human Model Class
SyntheticData (ours) arbitrary 2 1 synthetic linear
CIFAR-K 60k 10 10 (per expert k) synthetic (perfect on k classes) CNN

CIFAR-10H (Battleday et al., 2020) 10k 10 1 separate human annotation pretrained WideResNet (Zagoruyko and Ko-
modakis, 2016)

Imagenet-16H (Kerrigan et al., 2021) 1.2k 16 4 (per noise version) separate human annotation pretrained DenseNet121 (Huang et al., 2017), fine-
tuning last layer only

HateSpeech (Davidson et al., 2017) 25k 3 1 random annotator FNN on embeddings from SBERT (Reimers and
Gurevych, 2019)

COMPASS (Dressel and Farid, 2018) 1k 2 1 separate human annotation linear
NIH Chest X-ray (Wang et al., 2017;
Majkowska et al., 2020)

4k 2 4 (for different conditions) random annotator pretrained DenseNet121 on non-human labeled
data
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Figure 5: Different metrics: overall accuracy, accu-
racy when we defer, accuracy when we don’t and
coverage, as we vary the hyper parameter α in the
RealizableSurrogate surrogate loss.

predictors.

Hyperparameter α. We show how the behavior of the
classifier and rejector system changes when we modify the
hyperparameter α ∈ [0, 1] in Figure 5. When α is small, the
behavior of the surrogate is the same as selective prediction
which is why we see the lowest accuracy of the human when
we defer. As α increases to 1, we can see that the system
better adapts to the human.

7.3 Realistic Data

Models. In Figure 4, we showcase the test accuracy of
the different baselines on the real datasets in Table 1, and
illustrate their behavior when we constrain our method and
the baselines to achieve different levels of coverage. We
can see that Lα

RS is competitive with the best baseline on
each dataset/task. Moreover, we see that the human-AI
team is often able to achieve performance that is higher
than the human or classifier on their own. The methods

often achieve peak performance at a coverage rate that is
not at the extremes of [0,1], and on each of the six datasets
we notice variability between the peak accuracy coverage
rate indicating tat they are finding different solutions. This
demonstrates that deferral using Lα

RS is able to achieve
complementary human-AI team performance in practice.
In summary, the new surrogate LRS performs as well as
the MILP on synthetic data, and as well as all the baselines
(or better) on real-world data.

8 Discussion

We have shown that properly learning halfspaces with
deferral (LWD-H) is computationally hard and that existing
approaches in the literature fail in this setting. Understand-
ing the computational limits of learning to defer led to the
design of a new exact algorithm (the MILP) and a new sur-
rogate (RealizableSurrogate) that both obtain better
empirical performance than existing surrogate approaches.
Studying (M,R)-consistency in the non-realizable setting,
obtaining conditions under which nonconvex surrogates
like LRS can be provably and efficiently minimized,
and considering online versions of learning to defer are
interesting directions for future work. As human-AI teams
are deployed in real world decision-making scenarios,
better and safer methods for training these systems are
of critical interest. Giving the AI the power to allow the
human to predict or not requires very careful optimization
of the rejector so that we have favorable outcomes, this
motivates the need for exact algorithms with guarantees.
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A Practitioner’s guide to our approach

A.1 MILP

We implement the MILP (8)-(13) in the binary setting using the Gurobi Optimizer Gurobi Optimization, LLC (2022) in
Python.

class MILPDefer:
def __init__(self, n_classes, time_limit=-1, add_regularization=False,

lambda_reg=1, verbose=False):
self.n_classes = n_classes
self.time_limit = time_limit
self.verbose = verbose
self.add_regularization = add_regularization
self.lambda_reg = lambda_reg

def fit(self, dataloader_train, dataloader_val, dataloader_test):
self.fit_binary(dataloader_train, dataloader_val, dataloader_test)

def fit_binary(self, dataloader_train, dataloader_val, dataloader_test):
data_x = dataloader_train.dataset.tensors[0]
data_y = dataloader_train.dataset.tensors[1]
human_predictions = dataloader_train.dataset.tensors[2]

C = 1
gamma = 0.00001
Mi = C + gamma
Ki = C + gamma
max_data = len(data_x)
hum_preds = 2*np.array(human_predictions) - 1
# add extra dimension to x
data_x_original = torch.clone(data_x)
norm_scale = max(torch.norm(data_x_original, p=1, dim=1))
last_time = time.time()
# normalize data_x and then add dimension
data_x = torch.cat((torch.ones((len(data_x)), 1),

data_x/norm_scale), dim=1).numpy()
data_y = 2*data_y - 1 # covert to 1, -1
max_data = max_data # len(data_x)
dimension = data_x.shape[1]

model = gp.Model("milp_deferral")
model.Params.IntFeasTol = 1e-9
model.Params.MIPFocus = 0
if self.time_limit != -1:

model.Params.TimeLimit = self.time_limit

H = model.addVars(dimension, lb=[-C] *
dimension, ub=[C]*dimension, name="H")

Hnorm = model.addVars(
dimension, lb=[0]*dimension, ub=[C]*dimension, name="Hnorm")

Rnorm = model.addVars(
dimension, lb=[0]*dimension, ub=[C]*dimension, name="Rnorm")

R = model.addVars(dimension, lb=[-C] *
dimension, ub=[C]*dimension, name="R")

phii = model.addVars(max_data, vtype=gp.GRB.CONTINUOUS, lb=0)
psii = model.addVars(max_data, vtype=gp.GRB.BINARY)
ri = model.addVars(max_data, vtype=gp.GRB.BINARY)

equal = np.array(data_y) == hum_preds * 1.0
human_err = 1-equal

if self.add_regularization:
model.setObjective(gp.quicksum([phii[i] + ri[i]*human_err[i]
for i in range(max_data)])/max_data + self.lambda_reg * gp.quicksum(

[Hnorm[j] for j in range(dimension)])
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+ self.lambda_reg * gp.quicksum([Rnorm[j] for j in range(dimension)]))
else:

model.setObjective(gp.quicksum(
[phii[i] + ri[i]*human_err[i] for i in range(max_data)])/max_data)

for i in range(max_data):
model.addConstr(phii[i] >= psii[i] - ri[i], name="phii" + str(i))
model.addConstr(Mi*psii[i] >= gamma - data_y[i]*gp.quicksum(

H[j] * data_x[i][j] for j in range(dimension)), name="psii" + str(i))
model.addConstr(gp.quicksum([R[j]*data_x[i][j] for j in range(dimension)]) >=
Ki*( ri[i]-1) + gamma*ri[i], name="Riub" + str(i))
model.addConstr(gp.quicksum([R[j]*data_x[i][j] for j in range(

dimension)]) <= Ki*ri[i] + gamma*(ri[i]-1), name="Rilb" + str(i))
model.update()

if self.add_regularization:
for j in range(dimension):

model.addConstr(Hnorm[j] >= H[j], name="Hnorm1" + str(j))
model.addConstr(Hnorm[j] >= -H[j], name="Hnorm2" + str(j))
model.addConstr(Rnorm[j] >= R[j], name="Rnorm1" + str(j))
model.addConstr(Rnorm[j] >= -R[j], name="Rnorm2" + str(j))

model.ModelSense = 1 # minimize
model._time = time.time()
model._time0 = time.time()
model._cur_obj = float('inf')
# model.write('model.lp')
if self.verbose:

model.optimize()
else:

model.optimize()
# check if halspace solution has 0 error
error_v = 0
rejs = 0
for i in range(max_data):

rej_raw = np.sum([R[j].X * data_x[i][j] for j in range(dimension)])
pred_raw = np.sum([H[j].X * data_x[i][j]

for j in range(dimension)])
if rej_raw > 0:

rejs += 1
error_v += (data_y[i] * hum_preds[i] != 1)

else:
pred = (pred_raw > 0)
error_v += (data_y[i] != (2*pred-1))

self.H = [H[j].X for j in range(dimension)]
self.R = [R[j].X for j in range(dimension)]
self.run_time = model.Runtime
self.norm_scale = norm_scale
self.train_error = error_v/max_data

A.2 Realizable Surrogate

We implement the RealizableSurrogate in PyTorch. We showcase the loss function LRS below:

def realizable_surrogate_loss(outputs, human_is_correct, labels, lambdaa):
'''
outputs (tensor): outputs of model with K+1 output heads (without softmax)
human_is_correct (tensor): binary tensor indicating if human is

correct on each point I_{h=y}
labels (tensor): list of targets y_i
lambdaa (float in [0,1]): trade-off parameter in loss

return: loss (single tensor)
'''
batch_size = outputs.size()[0]
outputs_exp = torch.exp(outputs)
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rs_loss = -torch.log2(( m * outputs_exp[range(batch_size), -1]
+ outputs_exp[range(batch_size),labels] ) /(torch.sum(outputs_exp, dim = 1) +eps_cst

))
ce_loss = -torch.log2(( outputs_exp[range(batch_size),labels] )

/(torch.sum(outputs_exp[range(batch_size),:-1], dim = 1) +eps_cst ))
loss = lambdaa*rs_loss + (1-lambdaa)*ce_loss
return torch.sum(loss)/batch_size

B MILP

B.1 Verification

The MILP in the binary setting is formulated as:

M∗, R∗, . = arg min
M,R,{ri},{ti},{ϕi}

∑
i

ϕi + riIhi ̸=yi
(15)

ϕi ≥ ti − ri, ϕi ≥ 0 ∀i ∈ [n] (16)

Kmti ≥ γh − yiM
⊤xi ∀i ∈ [n] (17)

R⊤xi ≤ Krri + γr(ri − 1), R⊤xi ≥ Kr(ri − 1) + γrri ∀i ∈ [n] (18)
− C ≤ Ri ≤ C, −C ≤Mi ≤ C ∀i ∈ [d] (19)

ri ∈ {0, 1}, ti ∈ {0, 1}, ϕi ∈ R+ ∀i ∈ [n], R,M ∈ Rd (20)

Extension to Multiclass. The above MILP only applies to binary labels but we can generalize it to the multiclass setting
where Y = {1, · · · , C}. In this case, we have a coefficient vector Mj for each class j ∈ Y , and m(x) = argmaxj∈Y M⊤

j x.
Given a labeled point (x, y), we let cj = sign(M⊤

y x −M⊤
j x) for j ̸= y, and let ti = I∑

j ̸=y cj<C−1. Then if m(x) = y,
we must have cj = 1 for all j ̸= y and thus ti = 0 which means that the classifier is correct. Similarly, if there exists a
j ̸= y for which cj = −1, it means the classifier is incorrect and accordingly ti = 1. We can reformulate these indicator
constraints using a similar big-M approach as above. The formulation is below:

M∗, R∗, . = arg min
M,R,{ri},{ti},{cij},{ϕi}

∑
i

ϕi + riIhi ̸=yi
(21)

ϕi ≥ ti − ri, ϕi ≥ 0 ∀i ∈ [n] (22)

(Myi −Mj)
⊤xi ≤ 2Khcij + γh(cij − 1),

(Myi −Mj)
⊤xi ≥ 2Kh(cij − 1) + γhcij ∀i ∈ [n] ∀j ∈ [C] ̸= yi (23)

ti ≥ (C − 1−
∑

j∈[L],j!=yi

cij)/(C − 1) (24)

R⊤xi ≤ Krri + γr(ri − 1), R⊤xi ≥ Kr(ri − 1) + γrri ∀i ∈ [n] (25)
− C ≤ Ri ≤ C, −C ≤M [i, l] ≤ C ∀i ∈ [d] ∀l ∈ [C] (26)

ri ∈ {0, 1}, ti ∈ {0, 1}, cij ∈ {0, 1}, ϕi ∈ R+ ∀i ∈ [n], R,M ∈ Rd (27)

Let us verify the formulations above.

The variable ϕi ≥ max(ti − ri, 0), the RHS takes values either 0 or 1, since ϕi in the objective then the optimal value is
either 0 or 1 as well so that ϕi = max(ti − ri, 0) = (1− ri)ti.

For ti in the binary case: when yiM
⊤xi is positive, then γh − yiM

⊤xi is negative since |M⊤xi| ≥ γh by Assumption
2, so that to satisfy constraint (17) either value of 0 or 1 are valid for ti, however since ti shows up in the objective then
the optimal value is 0. On the other hand, when yiM

⊤xi is negative, then γh − yiM
⊤xi is positive, so that the only valid

option for ti is 1 and since M⊤xi ≤ Km then the constraint can be satisfied. So that we proved that ti = sign(yiM
⊤xi).

We previously verified constraint for ri and R in the body. When ri = 0 then we have the constraints R⊤xi ≤ −γr
and R⊤xi ≥ −Kr: this forces the rejector to be negative which is consistent. When ri = 1, we have R⊤xi ≥ γr and
R⊤xi ≤ Kr: which means the rejector is positive. Thus we proved ri = I(R⊤xi ≥ 0).
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For ti in the multiclass settings: by analogy to the constraints for R and ri it is easy to see that the variable cij =
sign(H⊤

yi
xi − H⊤

j xi). For a given xi, yi, the classification is only correct if cij = 1 for all j ∈ [C] ̸= yi so that
argmaxj H

⊤
i xi = yi. We can then see that we set ti = I(

∑
j ̸=yi

cij/(C − 1) ̸= 1) so that ti denotes the error of our
classifier on example i.

C Experimental Details and Results

C.1 Baseline Implementation

OvASurrogate (Verma and Nalisnick, 2022): We rely on the loss implementation available online at 2.

DifferentiableTriage (Okati et al., 2021): We rely on the implementation in 3. Note that the differentiable triage method
implementation in Okati et al. (2021) relies on having loss estimates of the human, particularly cross entropy loss estimates,
which requires the conditional probabilities P(H = i|X = x) for each i ∈ Y . However, in our setting, we only have
samples of the human decisions mi, not probabilistic estimates. The method can be summarized as a two-stage method: 1)
classifier training: at each epoch, only train on points where classifier loss is lower than human loss, 2) rejector training:
fit the rejector to predict who between the classifier and the human has lower loss. Since we only have samples of human
behavior, we use the 0− 1 loss of the classifier and the human on an example basis for comparison.

CrossEntropySurrogate (Mozannar and Sontag, 2020): We rely on the implementation in 4. We tune the parameter α over
the grid [0, 0.1, 0.5, 1] on the validation set.

CompareConfidence (Raghu et al., 2019): we train the classifier using the cross entropy loss on all the data, we then train a
model to predict if the human is correct or not on each example in the training set. For each test point, we compare the
confidence of the classifier versus the human correctness model and defer accordingly.

SelectivePrediction: we train the classifier using the cross entropy loss on all the data, for the rejector, we learn a single
threshold on the validation set for the classifier confidence (probability of the predicted class) in order to maximize system
accuracy.

C.2 Training Details

Table 2: Training details for each dataset, we use the Adam optimizer (Kingma and Ba, 2014) and AdamW (Loshchilov and
Hutter, 2017)

Dataset Optimizer Number of Epochs Learning Rate

SyntheticData (ours) Adam 300 0.1
CIFAR-K Adam 100 0.001

CIFAR-10H (Battleday et al., 2020) AdamW 20 0.001
Imagenet-16H (Kerrigan et al., 2021) Adam 20 0.001
HateSpeech (Davidson et al., 2017) Adam 50 0.001
COMPASS (Dressel and Farid, 2018) Adam 300 0.1
NIH Chest X-ray (Wang et al., 2017;
Majkowska et al., 2020)

AdamW 3 0.001

C.3 Synthetic Data

Figure 3a in the main body shows the sample complexity of the different methods on the uniform data distribution. We show
in Figure ?? the performance of the different methods with the same setup with the uniform data distribution.

2https://github.com/rajevv/OvA-L2D
3https://github.com/Networks-Learning/differentiable-learning-under-triage
4https://github.com/clinicalml/learn-to-defer

https://github.com/rajevv/OvA-L2D
https://github.com/Networks-Learning/differentiable-learning-under-triage
https://github.com/clinicalml/learn-to-defer
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Figure 6: (Test performance of the different methods on realizable synthetic data as we increase the training data size and
repeat the randomization over 10 trials to get standard errors on uniform data.

We also experiment with making the data unrealizable by setting (d = 10, pm = 0.1, ph0 = 0.4, ph1 = 0.1, Gaussian
distribution with 20 clusters) in Figure 7.
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Figure 7: (Test performance of the different methods on unrealizable (d = 10, pm = 0.1, ph0 = 0.4, ph1 = 0.1, Gaussian
distribution with 20 clusters) synthetic data as we increase the training data size.

We also show average run-times for the MILP on the synthetic data as we increase the dimension in Figure 8a and as we
increase the training data size in Figure 8b. The distribution was uniform and realizable with pm = 0.0, ph0 = 0.3, ph1 = 0.0.
We observe that the run time increases with training set size which is the biggest bottleneck. The runtime also increases with
dimension up until the dimension is of the same order as the number of training points, afterwards it is faster for the MILP
to find a 0 error solution.
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(a) Runtime with increasing dimension, n = 1000
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(b) Runtime with increasing training data size, d = 30

Figure 8: Runtime of the MILP on the realizable synthetic data with uniform data distribution. Note that the test accuracy of
the MILP is demonstrated in Figure 3a and the MILP always reaches 0 training error across the different data dimensions
and training set sizes.
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Figure 9: NIH Chest X-ray results on the two remaining tasks with the baselines and our method and red with circle markers.
We see that all methods aren’t able to obtain a performance of a human-AI team with better performance than the human,
our method on both tasks defers to the human.

D Deferred Proofs and Derivations

D.1 Related Work

We mentioned that the surrogate in Verma and Nalisnick (2022) belongs to the family derived in Charusaie et al. (2022).

This is established by setting lϕ(i, f(x)) as follows 5:

lϕ(i, f(x)) =

{
ϕ(gy) +

∑
y′ ̸=y ϕ(−gy′), if y ∈ Y

ϕ(gy)− ϕ(−gy′),
(28)

5This was established by Yuzhou Cao.
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D.2 Section 4 (Hardness)

D.2.1 Background and Definitions

Realizable Intersection of Halfspaces. For our purposes, an instance I of learning an intersection of halfspaces in the
realizable setting is given by a finite dataset {(xi, yi)}ni=1, with xi ∈ Rd and yi ∈ {0, 1}, such that there exist halfspaces
g∗1 : Rd → {0, 1} and g∗2 : Rd → {0, 1} with zero error on the dataset:

errI(g
∗
1 , g

∗
2) :=

1

n

∑
i

Ig∗
1 (xi)∧g∗

2 (xi )̸=yi
= 0.

We consider two related problems: finding halfspaces (g1, g2) with exact and weak agreement.

Exact agreement. Given an instance I of realizable intersection of halfspaces, the exact agreement problem is to find a
pair of halfspaces (g1, g2) such that g1(xi) ∧ g2(xi) = yi for all i ∈ {1, . . . , n}.

Weak agreement. Given an instance I of realizable intersection of halfspaces, the weak agreement problem is to find a
pair of halfspaces (g1, g2) with error at most 1/2− γ for some γ > 0:

errI(g1, g2) :=
1

n

∑
i

Ig1(xi)∧g2(xi) ̸=yi
≤ 1

2
− γ.

Note that there exists a pair (g∗1 , g
∗
2) with error 0 but the goal is just to obtain error 1/2− γ.

Quite a bit is known about the hardness of the exact and weak agreement problems.

Theorem (Blum and Rivest (1988) Theorem 1, rephrased). The exact agreement problem is NP-hard.

Theorem (Khot and Saket (2011) Theorem 2, rephrased). There is no polynomial-time algorithm for the weak agreement
problem unless NP = RP .

We also consider finite-data versions of LWD-H:

Finite-data realizable LWD-H. An instance J of learning with deferral in the realizable setting is given by a finite
dataset {(xi, yi, hi)}ni=1, with xi ∈ Rd and yi, hi ∈ {0, 1}, such that there exist halfspaces m∗ : Rd → {0, 1} and
r∗ : Rd → {0, 1} with zero error on the dataset:

errJ (m∗, r∗) :=
1

n

∑
i

Ir∗(xi)=1Ihi ̸=yi
+ Ir∗(xi)=0Im∗(xi )̸=yi

= 0.

As with intersection-of-halfspaces, we can consider finding halfspace classifier/rejector pairs (m, r) with exact and weak
agreement.

Exact agreement. Given an instance J of realizable LWD-H, the exact agreement problem is to find a pair of halfspaces
(m, r) such that for all i, if r(xi) = 0, m(xi) = yi, and if r(xi) = 1, hi = yi. That is, the error of the classifier/human
system on the finite dataset is 0.

Weak agreement. Given an instance J of realizable LWD-H, the weak agreement problem is to find a pair of halfspaces
(m, r) with error at most 1/2− γ for some γ > 0:

errJ (m, r) :=
1

n

∑
i

Ir(xi)=1Ihi ̸=yi + Ir(xi)=0Im(xi )̸=yi
≤ 1

2
− γ.

D.2.2 Mapping between learning intersections and LWD-H

We show how to turn an instance I of realizable intersection of halfspaces into an instance of J of (finite-data) realizable
LWD-H. Given an arbitrary instance I on dataset D, Lemma D.1 shows how to construct an instance J of LWD-H and a
bijection (g1, g2)←→ (m, r) such that for arbitrary halfspaces (g1, g2), the error errI(g1, g2) = errJ (m, r). In particular,
since we assumed I is realizable and hence ∃g∗1 , g∗2 with errI(g

∗
1 , g

∗
2) = 0, Lemma D.1 shows how to construct an instance
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J of LWD-H with errJ (m∗, r∗) = 0. This will allow us to reduce an arbitrary instance I of realizable intersection of
halfspaces to an instance J of realizable LWD-H. Additionally, given an arbitrary classifier/rejector pair (m, r) on this J
with error ϵ, Lemma D.1 shows how to map (m, r)→ (g1, g2) with error ϵ on instance I.
Lemma D.1. Consider an arbitrary instance I of learning an intersection of halfspaces on a dataset D = {(xi, yi)}ni=1.
Define D̃ = {(xi, yi, 0)}ni=1. This corresponds to an instance J of LWD-H where the “human expert” always outputs label
0.

Then:

1. Consider two arbitrary halfspaces g1, g2 and set m(x) = g1(x), r(x) = 1 − g2(x). Note that m and r are also
halfspaces. Then errI(g1, g2) = errJ (m, r). That is,

1

n

∑
(xi,yi)∈D

I[g1(xi) ∧ g2(xi) ̸= yi] =
1

n

∑
(xi,yi,hi)∈D̃

(
Ir(xi)=1Ihi ̸=yi + Ir(xi)=0Im(xi) ̸=yi

)
.

2. Suppose I is an instance of realizable intersection of halfspaces. Then the instance J of LWD-H defined by the dataset
D̃ is an instance of realizable LWD-H. That is, there exists (m∗, r∗) with errJ (m∗, r∗) = 0.

Proof. For part 1, recall that by definition:

errJ (m, r) =
1

n

∑
(xi,hi,yi)∈D̃

(
Ir(xi)=1Ihi ̸=yi

+ Ir(xi)=0Im(xi )̸=yi

)
.

Since hi = 0 for all i, this is equal to

1

n

∑
i

(
Ir(xi)=1Iyi=1 + Ir(xi)=0Im(xi )̸=yi

)
.

Using r(x) = 1− g2(x) and m(x) = g1(x), this simplifies further to:

1

n

∑
i

(
Ig2(xi)=0Iyi=1 + Ig2(xi)=1Ig1(xi )̸=yi

)
. (29)

Consider the error of errI(g1, g2). The model makes a mistake if g2(x) = 0 and y(x) = 1, g2(x) = g1(x) = 1 and
y = 0, or g2(x) = 1, g1(x) = 0, and y = 1. The first case is Ig2(x)=0Iy=1 and the latter two cases can be expressed as
Ig2(x)=1Ig1(x)̸=y . Hence

errI(g1, g2) =
1

n

∑
(xi,yi)∈D̃

I[g1(xi) ∧ g2(xi) ̸= yi] =
1

n

∑
i

(
Ig2(xi)=0Iyi=1 + Ig2(xi)=1Ig1(xi) ̸=yi

)
,

which is equal to (29), so errI(g1, g2) = errJ (m, r).

For part 2, we assumed that I was realizable, so there exists g∗1 , g∗2 with errI(g
∗
1 , g

∗
2) = 0. Applying part 1 yields m∗, r∗

such that errJ (m∗, r∗) = 0. Hence J is an instance of realizable LWD-H.

Lemma D.1 takes an instance I of learning an intersection of halfspaces and constructs an instance J of LWD-H such that
there is an error-preserving bijection between solutions of I and solutions of J . This allows us to easily apply the existing
hardness results for learning a realizable intersection of halfspaces, since if I is realizable then so is J .

D.2.3 Hardness results for LWD-H

Theorem D.1. There is no polynomial-time algorithm for solving the exact agreement problem for LWD-H unless P=NP.

Proof. Suppose there exists a polytime algorithmA for solving exact agreement on realizable LWD-H. Consider an arbitrary
instance I of learning a realizable intersection of halfspaces. Lemma D.1 shows how to construct an instance J of realizable
LWD-H. Run Algorithm A on J to obtain halfspaces (m, r) with errJ (m, r) = 0. Set g1 = m, g2 = 1− r. Lemma D.1
guarantees that errI(g1, g2) = 0. Hence, A is a polynomial-time algorithm for exact agreement for realizable intersection
of halfspaces. Blum and Rivest (1988) shows that there is no polynomial-time algorithm for exact agreement for realizable
intersection of halfspaces unless P = NP .
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Corollary D.1. There is no efficient, proper PAC learner for realizable LWD-H unless NP = RP .

Proof sketch. Suppose A is an efficient proper PAC learner for realizable LWD-H, so for any distribution D, any ϵ > 0,
δ > 0, given poly(1/δ, 1/ϵ) samples from D, A outputs a pair of halfspaces (m, r) with (population) system error at most ϵ
in time poly(1/ϵ, 1/δ).

Now let D be the uniform distribution over a dataset of n points {(xi, yi, hi)}ni=1. Set ϵ = 1/(2n) and δ = 1/100 and run
A. With probability at least 1− δ A outputs (m, r) with error at most 1/(2n). Of course, if (m, r) has error at most 1/(2n)
it must have error 0. This gives a randomized algorithm for solving the exact agreement problem for realizable finite-data
LWD-H.

These results show that exact agreement, and thus exact proper PAC learning, are hard. Next we consider the hardness of
weak agreement.

Theorem 1 Let ϵ > 0 be an arbitrarily small constant and suppose we have an instance J of realizable LWD-H. So we
have data D = {(xi, yi, hi)}ni=1, where xi ∈ Rd, yi, hi ∈ {0, 1}, and there exist halfspaces m∗, r∗ with zero loss on D:

errJ (m∗, r∗) :=
1

n

∑
i

(
Ir∗(xi)=1Ihi ̸=yi

+ Ir∗(xi)=0Im∗(xi )̸=yi

)
= 0

Then there is no polynomial-time algorithm to find a classifier-rejector pair (m̂, r̂) with error 1/2− ϵ, i.e.:

1

n

∑
i

(
Ir̂(xi)=1Ihi ̸=yi + Ir̂(xi)=0Im̂(xi) ̸=yi

)
≤ 1

2
− ϵ

unless NP = RP .

Proof. Suppose there exists a polynomial-time algorithmA and a γ > 0 such that given an instance J of realizable LWD-H,
A returns a pair (m̂, r̂) with error errJ (m̂, r̂) at most 1/2− γ. Consider an arbitrary instance I of realizable intersection of
halfspaces. Lemma D.1 shows how to reduce I to an instance J of realizable LWD-H. Run Algorithm A on J to obtain a
pair of halfspace (m̂, r̂) with error at most errJ (m̂, r̂) ≤ 1/2− γ. Lemma D.1 guarantees that g1 = m̂, g2 = 1− r̂ satisfy
errI(g1, g2) ≤ 1/2− γ. Hence A gives a deterministic algorithm for solving the weak agreement problem for realizable
intersection of halfspaces. Khot and Saket (2011, Theorem 4) construct an algorithm/reduction showing that if we can
efficiently solve weak agreement for realizable intersection of halfspaces, then Smooth Label Cover is in RP , but Smooth
Label Cover is an NP-hard problem (Khot and Saket, 2011, Theorem 3). Hence there is no polynomial-time algorithm to
find a classifier-rejector pair (m̂, r̂) with error 1/2− ϵ unless NP = RP .

Corollary D.2. There is no efficient, proper, weak PAC-learner for realizable LWD-H unless NP = BPP .

Proof. Given a distribution D over points (x, y, h), x ∈ Rd, y, h ∈ {0, 1} and halfspaces (m, r), let

errD(m, r) := P(x,y,h)∼D[r(x) = 1 ∧ h ̸= y ∨ r(x) = 0 ∧m(x) ̸= y].

This is identical to the system loss (2) on distribution D. Suppose there exists an efficient, proper, weak PAC-learner for
realizable LWD-H. I.e., there exists some γ such that for any distribution D, under the guarantee that ∃(m∗, r∗) with
errD(m

∗, r∗) = 0, given access to poly(1/δ) samples from D, with probability at least 1− δ, A returns a pair (m, r) with
errD(m, r) ≤ 1

2 − γ in poly(1/δ) time.

By combining Lemma D.1 with the randomized reduction of Khot and Saket (2011), we can use A to construct an algorithm
that implies Smooth Label Cover is in BPP . The definition of Smooth Label Cover is not important for our purposes
beyond the following two results:

Theorem D.2. (Khot and Saket, 2011, Theorem 3) For any constant t and arbitrarily small constants µ, ϑ, η > 0, there
exist constants k and m such that given an instance L of Smooth-Label-Cover(t, µ, ϑ, k,m) it is NP-hard to distinguish
between the following two cases:

• YES Case/Completeness: There is a labeling to the vertices of L which satisfies all the edges.

• NO Case/Soundness: No labeling to the vertices of L satisfies more than η fraction of the edges.
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Theorem D.3. (Khot and Saket, 2011, Theorem 4) For any constant γ > 0 and integer l > 0, there is a randomized polyno-
mial time reduction from an instance L of Smooth-Label-Cover(t, µ, ϑ, k,m) to an instance I of Realizble Intersection of
Halfspaces for appropriately chosen parameters (t, µ, ϑ) and soundness η, such that

• YES Case/Completeness: If L is a YES instance, then there is an intersection of two halfspaces which correctly classifies
all the points in instance I.

• NO Case/Soundness: If L is a NO instance, then with probability at least 9/10, there is no function of up to l halfspaces
that correctly classifies more than 1/2 + γ fraction of points in instance I.

For our case, we can use Lemma D.1 to further reduce the instance I constructed by Theorem D.3 to an instance J of
LWD-H, then run the weak PAC-learner A on J . If A outputs a pair of halfspaces (m, r) with error at most 1/2− γ, we
output YES. Otherwise we output NO.

If I is a realizable instance, A returns a pair of halfspaces with error at most 1/2− γ with probability at least 1− δ. On the
other hand, if I is not weakly realizable (w.r.) (i.e., there is no function of up to l halfspaces that correctly classifies more
than a 1/2 + γ fraction of points in I), then clearly A never returns a good pair of halfspaces, since no such pair exists.
Therefore:

P(YES|L YES) = P(YES|I realizable)P(I realizable|L YES)
= (1− δ) · 1

P(NO|L NO) = P(NO|I w.r.)P(I w.r.|L NO) + P(NO|I not w.r.)P(I not w.r.|L NO)

≥ P(NO|I not w.r.)P(I not w.r.|L NO)

≥ P(NO|I not w.r.)
9

10

=
9

10
.

Hence we can use A to construct an algorithm for a Smooth-Label-Cover instance L that outputs YES when L is a YES
with probability at least (1− δ), and outputs NO when L is a NO with probability at least 9/10. Since we assumed A runs in
poly(1/δ), this implies Smooth Label Cover is in BPP . Together with Theorem D.2, this shows that there is no efficient,
proper, weak PAC learner for realizable LWD-H unless NP = BPP .

Finally, we show that when realizability is violated, there is no efficient algorithm for weak agreement.

Corollary 2 (formal). Let δ, ϵ > 0 be arbitrarily small constants. Then, given a set of points {(xi, yi, hi)} with xi ∈ Rd,
yi, hi ∈ {0, 1} with a guarantee that there is a classifier/rejector pair (m∗, r∗) that classifies a 1 − δ fraction of points
correctly, there is no polynomial time algorithm to find a classifier-rejector pair that classifies 1

2 + ϵ fraction of points
correctly unless P = NP.

Proof. This is a simple reduction from learning a single halfspace in the presence of noise, which is hard by the following
result:

Theorem. (Guruswami and Raghavendra (2009), see also Khot and Saket (2011, Theorem 1)) Let δ, ϵ > 0 be arbitrarily
small constants. Then, given a set of labeled points {(xi, yi)} in Rd with a guarantee that there is a halfspace that classifies
1− δ fraction of points correctly, there is no polynomial time algorithm to find a halfspace that classifies 1/2 + ϵ fraction of
points correctly, unless P = NP.

Suppose we have an algorithm A for solving LWD-H in the presence of noise. In particular, there exists some ϵ > 0, δ > 0
such that under the guarantee that there exists an (m∗, r∗) pair with error at most δ, A returns an (m, r) pair with error at
most 1

2 − ϵ.

Consider an instance I of learning a single halfspace in the presence of noise defined by a dataset D = {(xi, yi)}ni=1, such
that there exists a halfspace c with error at most δ on D. From D, construct the dataset D̃ = {(xi, yi, 1− yi)}ni=1. This is an
instance J of LWD-H where the “human expert” is always wrong. Note that (c, 0) is a classifier/rejector pair with error at
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most δ on D̃, so J is an instance of LWD-H with noise level δ. Run algorithm A on J with parameter ϵ to obtain an (m, r)
pair with errJ (m, r) = 1/2− ϵ. Then:

1/2− ϵ ≥ errJ (m, r) =
1

n

∑
i

Ir(xi)=1Ihi ̸=yi
+ Ir(xi)=0Im(xi )̸=yi

=
1

n

 ∑
i:r(xi)=1

Ihi ̸=yi
+

∑
i:r(xi)=0

Im(xi )̸=yi


≥ 1

n

 ∑
i:r(xi)=1

Im(xi )̸=yi
+

∑
i:r(xi)=0

Im(xi) ̸=yi


=

1

n

∑
i

Im(xi )̸=yi

= errI(m),

where the inequality is because we constructed D̃ such that Ihi ̸=yi = 1 for all i. Therefore, there exists a δ and ϵ for which,
given a dataset and the guarantee that there exists a halfspace with error at most δ, we can output a halfspace with error at
most 1/2− ϵ. Combining this with the Theorem above shows that if A runs in polynomial time, P = NP .

D.3 Section 5 (MILP)

Proposition 1. For any expert H and data distribution P over X × Y that satisfies Assumption 2, let 0 < δ < 1
2 , then with

probability at least 1− δ, the following holds for the empirical minimizers (m̂∗, r̂∗) obtained by the MILP:

L0−1
def (m̂

∗, r̂∗) ≤ L̂0−1
def (m̂

∗, r̂∗)
(Km +Kr)d

√
2 log d+ 10

√
log(2/δ)√

nP(H(Z) ̸= Y )

Proof. We first start by recalling Theorem 2 in Mozannar and Sontag (2020):

L0−1
def (m̂

∗, r̂∗) ≤ L̂0−1
def (m̂

∗, r̂∗) +Rn(M) +Rn(R) +RnP(H(Z )̸=Y )/2(R)

+ 2

√
log (2δ )

2n
+

P(H(Z) ̸= Y )

2
exp

(
−nP(H(Z) ̸= Y )

8

)
(30)

Note that here we avoid going through the optimal solution and just relate distribution performance to the training
performance.

In the bound (30), Rn(M) and Rn(R) denote the Rademacher complexity of a halfspace in d dimensions where the infinity
norm of each element in the halfspace is constrained by Km and Kr respectively. Let us now compute this Rademacher
complexity, inspired by Kakade and Tewari (2008):
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Rn(M) =
1

n
E

[
sup

M :||M ||∞≤Km

n∑
i=1

ϵiM
⊤xi

]

≤ 1

n
E

[
sup

M :||M ||1≤dKm

M⊤
n∑

i=1

ϵixi

]
(since ||M ||1 ≤ d||M ||∞)

=
dKm

n
E

[
n∑

i=1

||ϵixi||∞

]

=
dKm

n
E

[
sup
j

n∑
i=1

ϵi[xi]j

]

≤ dKm

√
2 log d

n
sup
j

√√√√ n∑
i=1

[xi]2j (Massart’s finite lemma on xij)

≤ dKm

√
2 log d√
n

(assume ||xi||1 ≤ 1 for all i )

Let us use the Rademacher complexity calculation in the bound to get:

L0−1
def (m̂

∗, r̂∗) ≤ L̂0−1
def (m̂

∗, r̂∗) +
dKm

√
2 log d√
n

+
dKr

√
2 log d√
n

+
dKm

√
2 log d√

nP(H(Z) ̸= Y )

+ 2

√
log (2δ )

2n
+

P(H(Z) ̸= Y )

2
exp

(
−nP(H(Z) ̸= Y )

8

)

note that P(H(Z) ̸=Y )
2 exp

(
−nP(H(Z )̸=Y )

8

)
is a term that does not depend on the optimization and shrinks much faster than

8√
nP(H(Z )̸=Y )

, so that we can summarize things as:

L0−1
def (m̂

∗, r̂∗) ≤ L̂0−1
def (m̂

∗, r̂∗) +
(Km +Kr)d

√
2 log d+ 10

√
log(2/δ)√

nP(H(Z) ̸= Y )
(31)

D.4 Section 6 (RealizableSurrogate )

Theorem 2. The RealizableSurrogate LRS is a realizable (M,R)-consistent surrogate for L0−1
def for model classes

closed under scaling, and satisfies L0−1
def (m, r) ≤ LRS(m, r) for all (m, r).

Proof. Let us recall the RealizableSurrogate loss pointwise:

LRS(g, x, y, h) = −2 log

(
exp(gy(x)) + Ih=y exp(g⊥(x))∑

y′∈Y∪⊥ exp(gy′(x))

)
(32)

where g = {gi}i∈Y∪⊥. Recall that the classifier and rejector are defined as: m(x) = argmaxy∈Y gy(x) and r(x) =
Imaxy∈Y gy(x)≤g⊥(x).

We first prove that for every point, the RealizableSurrogate loss upper bounds the system 0-1 error:
L0−1
def (m, r, x, y, h) ≤ LRS(g, x, y, h):

1. Case 1: consider r(x) = 0 (classifier predicts):

(a) Case 1a: if the classifier is incorrect, Im(x)̸=y = 1:
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i. Case 1ai: If the human is incorrect, Ih=y = 0:

then the loss is:−2 log
(

exp(gy(x))∑
y′∈Y∪⊥ exp(gy′ (x))

)
, we know since the classifier is incorrect, then it must be that

exp(gy(x))∑
y′∈Y∪⊥ exp(gy′ (x))

≤ 0.5 (since gy is not the max), thus the loss is greater than 2 (log is base 2), and the 0-1
loss is 1 in this case.

ii. Case 1aii: if the human is correct then Ih=y = 1:

then the loss is:−2 log
(

exp(gy(x))+exp(g⊥(x))∑
y′∈Y∪⊥ exp(gy′ (x))

)
, we know since the classifier is incorrect, then it must be that

exp(gy(x))∑
y′∈Y∪⊥ exp(gy′ (x))

+ exp(g⊥(x))∑
y′∈Y∪⊥ exp(gy′ (x))

< 2/3 since gy is not the max neither is g⊥, otherwise if the sum

of these two fractions is greater than 2/3, then maxi
exp(gi(x))∑

y′∈Y∪⊥ exp(gy′ (x))
< 1/3 then the maximum must be

one of y or ⊥ which is a contradiction. Finally, the loss is greater then −2 log(2/3) = 1.17 which is greater
than 1.

(b) Case 1b: if the classifier is correct Im(x)=y = 1, then the 0-1 error is 0, since the RealizableSurrogate
loss is ≥ 0 then it is an upper bound.

2. Case 2: consider r(x) = 1 (human predicts):

(a) Case 2a: if the human is correct then Ih=y = 1:
then the 0-1 error is 0, since the RealizableSurrogate loss is ≥ 0 then it is an upper bound.

(b) if the human is incorrect then Ih=y = 0:

the loss is −2 log
(

exp(gy(x))∑
y′∈Y∪⊥ exp(gy′ (x))

)
, we know since we defer, then it must be that exp(gy(x))∑

y′∈Y∪⊥ exp(gy′ (x))
≤ 0.5

(since gy is not the max), thus the loss is greater than 2 (log is base 2), and the 0-1 loss is 1 in this case.

this concludes the proof of the upper bound.

We now prove that LRS is a realizable-consistent loss function.

Consider a data distribution and a human under which there exists m∗, r∗ ∈M×R that have zero error L0−1
def (m

∗, r∗) = 0.
Associated with m∗, r∗, is a set of functions g∗ ∈ G that give rise to m∗, r∗. Let ĝ be the minimizer of the surrogate loss
LRS and the associated classifier and rejector be m̂, r̂.

We now upper bound the 0-1 loss of the pair m̂, r̂. Let u ∈ R be any real number:

L0−1
def (m̂, r̂)

≤ LRS(m̂, r̂) (loss is upper bound)
≤ LRS(um

∗, ur∗) (since m̂, r̂ is optimal for LRS andM×R is closed under scaling)
= E[LRS(um

∗, ur∗, x, y, h)|r∗ = 1]P(r∗ = 1) + E[LRS(um
∗, ur∗, x, y, h)|r∗ = 0]P(r∗ = 0) (33)

Let us investigate the two terms in equation (33).

The first term is when r∗ = 1, then we must have g∗⊥ > maxy g
∗
y and Ih=y = 1 since the data is realizable and when we

defer the human must be correct. Examining the first term and taking the limit:

lim
u→∞

E[LRS(um
∗, ur∗, x, y, h)|r∗ = 1]P(r∗ = 1)

= lim
u→∞

E[−2 log

(
exp(ug∗y(x)) + Ih=y exp(ug

∗
⊥(x))∑

y′∈Y∪⊥ exp(ug∗y′(x))

)
|r∗ = 1]P(r∗ = 1)

= lim
u→∞

E[−2 log

(
exp(ug∗y(x)) + exp(ug∗⊥(x))∑

y′∈Y∪⊥ exp(ug∗y′(x))

)
|r∗ = 1]P(r∗ = 1)

= E[−2 log (1) |r∗ = 1]P(r∗ = 1) = 0 (applying monotone convergence theorem)

The second term is when r∗ = 0, then we must have g∗y > maxy′∈(Y\y)∪⊥ g∗y′ since the data is realizable. Examining the
second term and taking the limit:
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lim
u→∞

E[LRS(um
∗, ur∗, x, y, h)|r∗ = 0]P(r∗ = 0)

= lim
u→∞

E[−2 log

(
exp(ug∗y(x)) + Ih=y exp(ug

∗
⊥(x))∑

y′∈Y∪⊥ exp(ug∗y′(x))

)
|r∗ = 0]P(r∗ = 0)

= E[−2 log (1) |r∗ = 0]P(r∗ = 0) = 0 (applying monotone convergence theorem)

Thus combining the above two derivations, we obtain:

L0−1
def (m̂, r̂) ≤ 0.

We just proved that the optimal solution from minimizing RealizableSurrogate leads to a zero error solution in
terms of system error which proves that the loss is realizable (M,R)-consistent.

Theorem D.4. The CrossEntropySurrogate LCE (Mozannar and Sontag, 2020) is not a realizable (M,R)-consistent
surrogate for L0−1

def .

Proof. To prove that the surrogate LCE is not realizable-consistent, we will construct an example with a data distribution
and a model class closed under scaling such that: 1) there exists a zero error solution in the model class and 2) the minimizer
of LCE has non-zero error.

Consider the data distribution illustrated and described in Figure 10 consisting of four regions R0,R1,R2 and R3. Each
region respectively has mass 1/4 + α, 1/4, 1/4− α, 1/4 . Each region respectively has label Y = 0, Y = 1, Y = 0, Y = 2.
The Human is perfectly accurate on Region 0 and inaccurate on every other region.

¼+α

Y=0
Y=0

Y=2

Y=1
¼-α

¼

¼

R3

R1
R2 R0

H=Y

Figure 10: Data Distribution for our example: the data consists of four regions R0,R1,R2 and R3. Each region respectively
has mass 1/4 + α, 1/4, 1/4 − α, 1/4 . Each region respectively has label Y = 0, Y = 1, Y = 0, Y = 2. The Human is
only accurate on Region 0.

We consider a hypothesis class F parameterized by a scalar c ∈ R and four indices each in i0, i1, i2, i⊥ ∈ {0, 1, 2, 3}. Let
fi(x) = cI{x ∈ Ri}, a function f ∈ F defines a rejector and classifier as: m(x) = argmax{c ·fi0(x), c ·fi1(x), c ·fi2(x)}
(ties are decided uniformly randomly) and r(x) = I{c · f⊥(x) > max{c · fi0(x), c · fi1(x), c · fi2(x)}. This hypothesis
class is closed under scaling.

The error minimizing function f∗ in this hypothesis class is obtained by setting c > 0, i0 = 2, i1 = 1, i2 = 3, i⊥ = 0 which
obtains zero 0-1 error. No solution with c < 0 is optimal, since the maximum will always coincide with at least two labels
and we break ties in a consistent fashion. This data distribution and hypothesis class is realizable.

Surrogate solution. We will argue that one can obtain a lower LCE loss by deviating from the optimal solution f∗. The
intuition for why this is the case is that the LCE penalizes misclassifying points even when they are deferred. Hence, when
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α is sufficiently large, LCE will try to classify the more probable region R0 as label 0 instead of simply deferring on this
region and classifying region R2 as label 0.

Consider the function f̂ defined with arbitrary c > 0 and i0 = 0, i1 = 1, i2 = 3, i⊥ = 0—note that this function disagrees
with the optimal solution on i0 only. Fixing c, we will compute the difference of LCE loss between f̂ and f∗ with the same
c, this defines only a deviation in terms of i0. We will compute the difference in each region separately.

Region 1 and Region 3: On both region 1 and region 3, the difference will be shown to be zero. In both regions, the human
is incorrect and note that i1 and i2 are identical in both solutions. The loss of f̂ in region 1 is:

−1

4
log

(
ec

3 + ec

)
this is the same as the loss of f∗, by symmetry the loss is the same in region 3.

We will now compute the sum of the difference in region 2 and region 0:

Region 2: In this region the human is also incorrect, the difference in the loss of f̂ and f∗ is:

Ex∈R2[LCE(f
∗)− LCE(f̂)] = (

1

4
− α) ·

(
log

(
1

4

)
− log

(
ec

3 + ec

))
∈ [−(1

4
− α) log(4), 0]

Region 0: In this region the human is correct, the difference is :

Ex∈R0[LCE(f
∗)− LCE(f̂)]

= (
1

4
+ α) ·

(
− log

(
1

3 + ec

)
− log

(
ec

3 + ec

)
+ log

(
ec

2 + 2ec

)
+ log

(
ec

2 + 2ec

))
To compute the difference in the loss between f̂ and f∗, we sum the difference in Region 2 and Region 0:

LCE(f
∗)− LCE(f̂)

=
1

4

(
log

(
1

4

)
− log

(
ec

3 + ec

)
− log

(
1

3 + ec

)
− log

(
ec

3 + ec

)
+ 2 log

(
ec

2 + 2ec

))
+ α

(
− log

(
1

3 + ec

)
+ 2 log

(
ec

2 + 2ec

)
− log

(
1

4

))
= −(1

4
+ α)

(
log

(
1

3 + ec

)
− 2 log

(
ec

2 + 2ec

))
− 1

2
log

(
ec

3 + ec

)
+ (

1

4
− α) log

(
1

4

)
We can simplify this difference to further become:

1

4
(8αc− 2 log(4)− 2(1 + 4α) log(1 + ec) + (3 + 4α) log(3 + ec))

Note that when c = 0, the above difference is 0. Let us set α = 0.125 for concreteness (other values of α also work, in
particular larger values, but not all smaller values). We compute the derivative of the difference with respect to c, obtaining:

d

dc
(LCE(f

∗)− LCE(f̂)) =
1

4

(
3.5ec

ec + 3
− 3ec

ec + 1
+ 1

)
=

0.375(2− ec + e2c))

(1 + ec)(3 + ec)
> 0

We just showed that the difference has derivative strictly larger than 0 with respect to c, moreover the difference is 0 when
c = 0, thus when c > 0 the difference is strictly bigger than 0.

We just proved that with respect to the surrogate loss LCE , the optimal solution with respect to L0−1
def is not optimal, thus the

surrogate is not a realizable (M,R)-consistent surrogate for L0−1
def
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