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Abstract

Language-supervised vision models have re-
cently attracted great attention in computer vi-
sion. A common approach to build such mod-
els is to use contrastive learning on paired
data across the two modalities, as exemplified
by Contrastive Language-Image Pre-Training
(CLIP). In this paper, under linear representa-
tion settings, (i) we initiate the investigation of a
general class of nonlinear loss functions for mul-
timodal contrastive learning (MMCL) including
CLIP loss and show its connection to singular
value decomposition (SVD). Namely, we show
that each step of loss minimization by gradient
descent can be seen as performing SVD on a
contrastive cross-covariance matrix. Based on
this insight, (ii) we analyze the performance of
MMCL. We quantitatively show that the feature
learning ability of MMCL can be better than that
of unimodal contrastive learning applied to each
modality even under the presence of wrongly
matched pairs. This characterizes the robustness
of MMCL to noisy data. Furthermore, when we
have access to additional unpaired data, (iii) we
propose a new MMCL loss that incorporates ad-
ditional unpaired datasets. We show that the al-
gorithm can detect the ground-truth pairs and im-
prove performance by fully exploiting unpaired
datasets. The performance of the proposed algo-
rithm was verified by numerical experiments.
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1 Introduction

Multimodal learning is a broad class of machine learning
algorithms that take advantage of the association of multi-
ple modalities such as text, image, and audio. As the tech-
nology of both data collection and sensors advances, we
have growing access to data with multiple modes. It has
a wide range of applications, including media description,
stock return prediction, and drug discovery (Baltrušaitis
et al., 2018; Lee and Yoo, 2020; Hu et al., 2021).

Focusing on the research of vision-language models,
there have been many breakthroughs in large-scale vision-
language pre-training methods (Li et al., 2019; Lu et al.,
2019; Tan and Bansal, 2019; Li et al., 2020; Radford et al.,
2021; Jia et al., 2021; Li et al., 2022; Yao et al., 2022b;
Du et al., 2022). One of the vision-language models is
Contrastive Language-Image Pre-training (CLIP) (Radford
et al., 2021). Through contrastive loss, CLIP trains dual
encoders in the shared representation space by maximiz-
ing the similarity of the observed pairs of text and images
while minimizing the similarity of the artificially paired
data. Through the flexibility of its architecture, CLIP
successfully achieves outstanding zero-shot learning per-
formance on ImageNet, outperforming other few-shot lin-
ear probes of BiT-M, SimCLRv2, and ResNet50 (Radford
et al., 2021). CLIP and its successors are widely used, for
example, in semantic segmentation, image generation from
captions, and video summarization (Galatolo. et al., 2021;
Narasimhan et al., 2021; Li et al., 2021; Xu et al., 2022;
Wang et al., 2022).

Despite the great success of multimodal contrastive learn-
ing (MMCL), the theoretical understanding of MMCL is
still limited. From the perspective of multimodal learning,
it has been empirically (Ngiam et al., 2011; Radford et al.,
2021) and theoretically (Zadeh et al., 2020; Huang et al.,
2021b) shown that the use of multimodal data produces a
better representation compared to the use of unimodal data
when focused on a single modality. Namely, Huang et al.
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(2021b) showed that the difference in downstream task per-
formance of multimodal learning using different subset of
modalities depends on the term named latent representation
quality. In particular, they showed that multimodal learning
using smaller subset of modalities can perform worse than
multimodal learning with a full set of modalities under lin-
ear representation settings. However, the feature recovery
performance of multimodal learning, as well as the com-
parison with that of unimodal contrastive learning, have not
been considered in previous works.

Additionally, a practical issue in multimodal learning is the
problem of noisy pairs; the collected raw data may not be
correctly aligned due to an error in the data collection pro-
cedure. For example, (Radford et al., 2021; Jia et al., 2021)
uses a dataset collected from various public sources on the
Internet and feeds the collected data directly into the algo-
rithm without cleaning up the noisy association. However,
the quality of association between images and word queries
used for the search depends on the context of the website,
which possibly leads to incorrect alignment of images and
words in the collected dataset. To avoid this problem, Li
et al. (2020) proposed OSCAR that detects object tags in
images and uses them as anchor points for alignment. Al-
though the problem has been recognized in the literature,
the analysis of the effect of noisy pairs in MMCL has not
been addressed.

Furthermore, multimodal learning requires datasets with
specified pair information among modalities. However,
data collection procedures can be very expensive in prac-
tice. If we can combine abundant unpaired dataset in a
semi-supervised manner, we can expect to improve the
quality of representation learning with lower cost.

The purpose of this paper is to provide insights on the fea-
ture learning ability of MMCL. We summarize our con-
tributions as follows. (i) We establish a connection be-
tween the general multimodal contrastive loss and the SVD
analysis. Namely, assuming that representations are lin-
ear, we show that the gradient descent of minimizing mul-
timodal contrastive loss function is equivalent to the gradi-
ent ascent of the SVD objective function with contrastive
cross-covariance matrix. (ii) We analyze the learning ca-
pacity of MMCL under linear loss when there are noisy
paired data and the pairs are assumed to be one-to-one. We
show that as long as the observed pairs contain an inignor-
able portion of ground-truth pairs, MMCL can recover the
core features with a parametric rate. However, in practice,
many-to-many correspondences between modalities are of-
ten observed. We showed by real-data analysis that clean-
ing up pairs by Bipartite Spectral Graph Multi-Partitioning
(Dhillon, 2001) improves the performance of learned rep-
resentations. (iii) We propose a method that incorporates
unpaired data and improves the performance of MMCL in
a linear representation setting. The theoretical concept was
verified by a numerical experiment.

The outline of this paper is as follows. Section 2 estab-
lishes the connection between MMCL and SVD. Based on
the results of Section 2, in Section 3, we provide a theoreti-
cal analysis of MMCL using linear loss on feature learning
ability. In Section 4, we discuss the possible improvement
of MMCL when additional unpaired data is available. In
Section 5, we numerically verify the result of Section 4
that the performance of MMCL improves with additional
unpaired data. We also conduct a real-data analysis that
deals with many-to-many correspondences of multimodal
data. We discuss and conclude our results in Section 6.

1.1 Related Works

Multimodal Learning Due to its applicability and gen-
erality, there has been a large amount of literature on mul-
timodal learning since the 1980s (Yuhas et al., 1989). Re-
cently, the development of deep learning brought many ad-
vances in multimodal representation learning (Sun et al.,
2020). Especially, Ngiam et al. (2011); Srivastava and
Salakhutdinov (2012) proposed multimodal learning algo-
rithms to obtain joint representations. Multimodal con-
trastive representation learning and generative models are
also proposed (Shi et al., 2020; Yuan et al., 2021; Radford
et al., 2021; Jia et al., 2021). The missing modality prob-
lem has been addressed by Ma et al. (2021b,a). From a the-
oretical point of view, multimodal learning has been shown
to outperform unimodal learning focused on one modality
(Zadeh et al., 2020; Subramanian et al., 2021; Huang et al.,
2021b). For an overview of multimodal learning, see Bal-
trušaitis et al. (2018); Zhang et al. (2020); Xu et al. (2022);
Liang et al. (2022).

Self-Supervised Contrastive Learning Another closely
related line of research is unimodal self-supervised con-
trastive learning (SSCL) for unimodal data. SSCL is a
group of self-supervised learning algorithms that learn rep-
resentations by contrasting two views generated by data
augmentation. It has gained popularity in computer vision,
natural language processing, and graph learning (Jaiswal
et al., 2020; Liu et al., 2021). In particular, Chen et al.
(2020b) proposed SimCLR, which uses contrastive loss to
train encoders so that they maximize the similarity of simi-
lar views generated by data augmentation and minimize the
similarity of unrelated views. There have been many works
on the theoretical guarantee of SSCL (Saunshi et al., 2019;
Wang and Isola, 2020; Ash et al., 2021; Wen and Li, 2021;
Huang et al., 2021a; Ji et al., 2021; Tian, 2022; Saunshi
et al., 2022). In particular, Wen and Li (2021) proved that
contrastive learning using shallow neural networks with
appropriate data augmentation can learn the sparse signal
despite the presence of spurious noise. Tian (2022) ana-
lyzed unimodal contrastive learning and showed that gra-
dient descent applied to nonlinear contrastive loss can be
interpreted as gradient ascent of PCA objective function



Ryumei Nakada, Halil Ibrahim Gulluk, Zhun Deng, Wenlong Ji, James Zou, Linjun Zhang

under game-theoretical formulation. Ji et al. (2021) proved
that contrastive learning is equivalent to diagonal-deletion
PCA under linear loss settings. They also showed the supe-
riority of contrastive learning over autoencoders under con-
stant signal-to-noise regime. Ko et al. (2022) established a
connection between contrastive learning and neighborhood
component analysis (Goldberger et al., 2004) which learns
Mahalanobis distance metrics.

SVD analysis and CCA The goal of SVD analysis is to
find projections that maximize the variance between two
projected variables. A closely related method is canoni-
cal correlation analysis (CCA) (Harold, 1936; Kettenring,
1971). In CCA, the goal is to find linear projections such
that correlation between two projected variables is maxi-
mized, so that the learned projections fully exploit the as-
sociation of two datasets. To deal with nonlinear data sets,
artificial neural networks were applied to transform data
(Lai and Fyfe, 1998, 1999) and kernels were used to allow
flexibility in representation space (Akaho, 2006; Hardoon
et al., 2004). In particular, Deep CCA (Andrew et al., 2013;
Benton et al., 2017; Wang et al., 2016) learns nonlinear
embeddings using deep neural networks. Deep CCA was
shown to identify latent variables shared between multiple
modalities (Lyu and Fu, 2020, 2022). For an overview of
CCA-related methods, see Yang et al. (2019).

1.2 Notation

For two sequences of positive numbers (ak)k and (bk)k in-
dexed by k ∈ K, we write ak ≲ bk if and only if there
exists a constant C > 0 independent of the index k such
that supk∈K ak/bk < C holds. We also write ak = O(bk)
if ak ≲ bk holds and ak = Ω(bk) if ak ≳ bk holds. We
write ak ≍ bk when ak ≲ bk and ak ≳ bk holds simul-
taneously. For any matrix A, let ∥A∥ and ∥A∥F denote
the operator norm and Frobenius norm of A, respectively.
Od,r ≜ {O ∈ Rr×d : O⊤O = Ir} is a set of orthog-
onal matrices of order d × r. For any positive integer I ,
let [I] = {1, 2, · · · , I}. We write a ∨ b and a ∧ b to de-
note max(a, b) and min(a, b), respectively. For any ma-
trix A, let Pr(A) be the top-r right singular vectors of
A. When the right singular vectors are not unique, we
choose arbitrary singular vectors. For any matrix A, let
λj(A) be the j-th largest singular value of A. Let λmin(A)
and λmax(A) be the minimum and maximum singular val-
ues of A, respectively. For any mean zero random vari-
ables X and X̃ , we define the covariance matrix of X as
ΣX ≜ E[XX⊤], and the cross-covariance matrix ofX and
X̃ as ΣX,X̃ ≜ E[XX̃⊤]. For any square matrix A, define
its effective rank r(A) as r(A) = Tr(A)/∥A∥.

2 Multimodal Contrastive Learning and
SVD

In this section, we establish the connection between
MMCL and SVD. In the following sections, we focus on
MMCL with two-modality data.

Suppose that we have n pairs of observations
{(xi, x̃i)}ni=1 ⊂ Rd1+d2 , where xi ∈ Rd1 and x̃i ∈ Rd2 .
The multimodal contrastive loss maximizes the similarity
of observed pairs, while minimizing the similarity of
generated pairs to learn the encoders g1 : Rd1 → Rr and
g2 : Rd2 → Rr that share the same representation space.
As in the previous literature, we adapt inner product of
the representation space as a measure of the similarity
of two representations for theoretical brevity; Given two
encoders g1 and g2 for each modality, we measure the
similarity of the pair (x, x̃) by ⟨g1(x), g2(x̃)⟩. This inner
product measure has been widely used in the literature (He
et al., 2020; Ji et al., 2021; Wang and Liu, 2021; Radford
et al., 2021; Jia et al., 2021).

In this paper, we consider linear representation settings,
that is, g1(x) = G1x and g2(x̃) = G2x̃ for G1 ∈ Rr×d1
and G2 ∈ Rr×d2 . The linear representation setting has
been widely adapted in the machine learning literature
(Jing et al., 2021; Tian et al., 2021; Ji et al., 2021; Wu et al.,
2022; Tian, 2022).

2.1 Minimizing Nonlinear Loss via Gradient Descent

Here, we consider a general class of nonlinear loss func-
tions1, which includes linearized loss, CLIP loss (Rad-
ford et al., 2021) or ALIGN loss (Jia et al., 2021). Let
ϕ, ψ : R→ R be differentiable and non-decreasing smooth
functions. The non-decreasing property of ϕ and ψ ensures
that the loss becomes small when the encoders align only
with observed pairs. Define the loss function as follows:

L(G1, G2) ≜
1

2Cn

∑
i

ϕ

ϵψ(0) + ∑
j:j ̸=i

ψ(sij − sii)

 (2.1)

+
1

2Cn

∑
i

ϕ

ϵψ(0) + ∑
j:j ̸=i

ψ(sji − sii)

+R(G1, G2),

where sij ≜ ⟨G1xi, G2x̃j⟩, ϵ ≥ 0, Cn is a normalizing
constant depending only on n, and R(G1, G2) is a suffi-
ciently smooth regularization term. We note that regular-
ization techniques have been widely adapted in unimodal
SSCL practice (Chen et al., 2020a; He et al., 2020; Grill
et al., 2020).

We consider gradient descent as an optimization method
under linear representation settings. The following propo-

1A similar class of loss functions in SSCL is considered in
Tian (2022), where the similarity is measured for augmented
views.
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sition states that the gradient of loss equation 2.1 with re-
spect to Gk equals to the negative gradient of the SVD ob-
jective function minus the penalty term. Thus, if we op-
timize the loss in equation 2.1 via gradient descent, the
search direction of the parameter is exactly the direction
that maximizes the SVD objective function with the con-
trastive cross-covariance matrix2. A similar result holds
for smooth nonlinear representations, which is deferred to
Appendix 8.1.

Proposition 2.1 (Informal). Let β = β(G1, G2) ≜
((βi)i, (βij)i,j), where βi and βij also depend on
the choice of ϕ, ψ, ϵ and ν. Define the con-
trastive cross-covariance S(β) ≜ C−1

n

∑n
i=1 βixix̃

⊤
i −

C−1
n

∑
i̸=j βijxix̃

⊤
j . Consider minimizing the nonlinear

loss function L defined above. Then, for k ∈ {1, 2},

∂L
∂Gk

= −
∂ tr

(
G1S(β)G

⊤
2

)
∂Gk

∣∣∣∣∣
β=β(G1,G2)

+
∂R(G1, G2)

∂Gk
.

The formula of βi and βij is available in Appendix 8.1. In
the case of (unimodal) SSCL, it has been shown that gradi-
ent descent of minimizing the contrastive loss is equivalent
to the gradient ascent of the PCA objective function, where
the target matrix to apply PCA is given by the contrastive
covariance matrix (Tian, 2022). We can consider Proposi-
tion 2.1 as an analogy to this result.
Remark 2.1. If Cn = n(n − 1) and the loss function is
linear, that is, ϕ and ψ are identity functions, then S =
(1/n)

∑
i xix̃

⊤
i − 1/(n(n − 1))

∑
i ̸=j xix̃

⊤
j = 1/(n −

1)
∑
i(xi − x̄)(x̃i − ¯̃x)⊤, which is the centered cross-

covariance matrix of x and x̃. For InfoNCE loss, Cn = n
and ϕ and ψ are set to ϕ(x) = τ log(x) and ψ(x) =
exp(x/τ) for some ϵ ≥ 0, where τ > 0 is the tempera-
ture parameter. Setting ϵ = 1 gives the CLIP and ALIGN
loss.

To encourage the encoders to learn diverse features and
prevent the collapse of representations, we simultaneously
regularize by tr

(
G1G

⊤
1 G2G

⊤
2

)
. A similar penalty has been

considered in unimodal SSCL (Ji et al., 2021). This is es-
pecially beneficial when the loss is linear, that is, ϕ and ψ
are identity functions, since we can easily make the first
two terms in equation 2.1 very small by choosing large G1

and G2. For this reason, we consider the regularization
term R(G1, G2) = (ρ/2)∥G⊤

1 G2∥2F for ρ > 0. For this
regularization, we have the following result, which directly
follows from Eckart-Young-Mirsky theorem.

Lemma 2.1. Fix any A ∈ Rd1×d2 and ρ > 0. Let
the SVD of A be

∑d
j=1 cjU1,jU

⊤
2,j , where d is the rank

2A closely related notion is the contrastive covariance, which
is the covariance matrix of data subracted by the covariance ma-
trix of background noise, introduced in Abid et al. (2017). In the
work, authors proposed contrastive principal component analysis,
where PCA is applied to contrastive covariance, aiming to elimi-
nate the effect of background noise from the data.

of the sum, c1 ≥ c2 ≥ · · · ≥ cd > 0 and
(U1,1, . . . , U1,d), (U2,1, . . . , U2,d) ∈ Or,d. Then,{

(G1, G2) ∈ Rr×d1 × Rr×d2 : G⊤
1 G2 =

1

ρ

r∑
j=1

cjU1,jU
⊤
2,j

}
= argmax

G1∈Rr×d1 ,G2∈Rr×d2

tr
(
G1AG

⊤
2

)
− (ρ/2)∥G⊤

1 G2∥2F . (2.2)

In particular, the right singular vectors of G1 and G2 are
uniquely determined (up to orthogonal transformation) in-
dependent of the choice of ρ > 0.

Using Lemma 2.1, Proposition 2.1 implies that, at each step
of gradient descent during minimization of the of the reg-
ularized CLIP loss, the increment of parameter is in the
direction of top-r singular vectors of S. Therefore, our re-
sult shows the equivalence between the minimization of the
loss function 2.1 through gradient descent and top-r SVD
with cross-covariance matrix.

3 Robustness of Multimodal Contrastive
Learning to Data Noise

In this section, we investigate the robustness of MMCL
against noisy pairs. We analyze the following linear loss,
which is the loss function in 2.1 with ϕ(x) = x, ψ(x) = x
and Cn = n(n− 1).

L(G1, G2) =
1

n(n− 1)

∑
j ̸=i

(sij − sii) +R(G1, G2). (3.1)

Note that this loss function can be rewritten as
tr
(
G1S̄G2

)
+R(G1, G2), where S̄ ≜ (n− 1)−1

∑
i(xi−

x̄)(x̃i − ¯̃x)⊤ and thus in this case the minimizer of the
loss function is exactly the maximizer of the SVD objec-
tive function tr

(
G1S̄G2

)
−R(G1, G2).

The linear loss function for analyzing representation learn-
ing has been used in metric learning (Schroff et al., 2015;
He et al., 2018), contrastive learning (Ji et al., 2021) and
MMCL (Won et al., 2021; Alsan et al., 2021). Analysis
on MMCL using InfoNCE loss is deferred to the Appendix
7.3.

3.1 Data Generating Process

For each modality, we consider the spiked covariance
model (Bai and Yao, 2012; Yao et al., 2015; Zhang et al.,
2018; Zeng et al., 2019; Ji et al., 2021) as the data gen-
eration process. Suppose that we have n observed pairs
{xi}i∈[n] and {x̃i}i∈[n] drawn from the following model:

xi = U∗
1 zi + ξi, x̃i = U∗

2 z̃i + ξ̃i, (3.2)

zi = Σ1/2
z wi, z̃i = Σ

1/2
z̃ w̃i, ξi = Σ

1/2
ξ ζi, ξ̃i = Σ

1/2

ξ̃
ζ̃i,

where wi, w̃i, ζi, and ζ̃i have i.i.d. coordinates, each of
which follows sub-Gaussian distribution with parameter σ
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and unit variance. Notice that in model 3.2, U∗
1 and zi are

only identifiable up to orthogonal transformation. Thus,
we can assume that Σz is a diagonal matrix with (Σz)1,1 ≥
(Σz)2,2 ≥ · · · ≥ (Σz)r,r without loss of generality. A
similar argument holds for U∗

2 and z̃i, and we assume that
Σz̃ is also a diagonal matrix with (Σz̃)1,1 ≥ (Σz̃)2,2 ≥
· · · ≥ (Σz̃)r,r. Furthermore, without loss of generality, we
assume ∥Σz∥ = ∥Σz̃∥ = 1.

Since the data are multimodal, we additionally assume the
following (noisy) matches between two modalities. Recall
that we have n observed pairs (x1, x̃1), . . . , (xn, x̃n). De-
fine the set of observed indices as C ≜ {(1, 1), . . . , (n, n)}.
Let E ⊂ [n] × [n] be the set of n pairs. For the pairs
(i1, j1) ∈ E , assume that wi1 = w̃j1 while ξi1 and ξ̃j1
are independent. For pairs (i1, j1) ∈ [n]2 \ E , assume the
independence between wi1 and w̃j1 , and between ξi1 and
ξ̃j1 . We note that we can regard the set of pairs as the sub-
set of the edges of the bipartite graph {(i, j) : i, j ∈ [n]}.
Hereafter, we sometimes call the pairs in E ground truth
edges and the pairs in C observed edges.

Letm ≜ |C∩E| ∈ {0, 1, . . . , n} be the number of observed
ground-truth edges, and we define pn = 1 −m/n ∈ [0, 1]
as the distortion rate of the bipartite graph. When pn is
small, the information of association in collected data is
highly reliable, while when pn is large, the data contains
many noisy pairs, which do not have the valid information
between each modality.

We measure the “goodness” of pre-trained encoders by
the quality of right-singular vectors of the encoders, since
the fine-tuned predictors in downstream tasks only depend
on the right-singular vectors in many cases. To see this,
we decompose G1 ∈ Rr×d by SVD as G1 = V CU⊤,
where U ∈ Or,d, V ∈ Or,r and C is diagonal. Suppose
that we have a sample (y, x) ∈ R1+d in the downstream
task with some metric D. Through fine-tuning, we ob-
tain f∗ = argminf∈F D(y, f(G1x)). For linear bench-
marks, F = {f : f(z) = w⊤z, w ∈ Rr} and f∗ does
not depend on V and C. This also holds for neural net-
works with a similar argument. To measure the quality of
Pr(G1) (or Pr(G2), we employ sinΘ distance; For two
orthogonal matrices U1, U2 ∈ Od,r, the distance is defined
as ∥ sinΘ (U1, U2) ∥F ≜ ∥U⊤

1⊥U2∥F for any orthogonal
compliment U1⊥ of U1.

3.2 Analysis on Multimodal Contrastive Loss
Function

Before formalizing the previous argument, we introduce
several assumptions.
Assumption 3.1. Assume that the condition numbers of
Σz and Σz̃ are bounded; ∥Σz∥/λmin(Σz) ≤ κ2z and
∥Σz̃∥/λmin(Σz̃) ≤ κ2z̃ for some constants κ2z, κ

2
z̃ > 0.

Assumption 3.2. Assume that the signal-to-noise ratio is
bounded below; ∥Σz∥/∥Σξ∥ ≥ s21 and ∥Σz̃∥/∥Σξ̃∥ ≥ s22

for some constants s21, s
2
2 > 0.

Assumption 3.1 imposes regularity conditions on covari-
ance matrices, and Assumption 3.2 assumes the signal-to-
noise ratio is not too small. Similar assumptions have been
commonly used in the machine learning theory literature,
e.g., Cai et al. (2019); Yan et al. (2021); Cai et al. (2021);
Ji et al. (2021); Wen and Li (2021).

For this setting, we have the following result.
Theorem 3.1. Suppose that we have a collection of pairs
(xi, x̃i)

n
i=1 generated according to the model 3.2. Suppose

Assumptions 3.1 and 3.2 hold. Let G1 and G2 be the so-
lution to minimizing the loss 3.1. If pn ≤ 1 − η for some
constant η > 0, then, with probability 1 − O(n−1), we
have

∥ sinΘ(Pr(G1), U
∗
1 )∥F ∨ ∥ sinΘ(Pr(G2), U

∗
2 )∥F

≲
√
r ∧ 1

η

√
r(r + r(Σξ) + r(Σξ̃)) log(n+ d1 + d2)

n
.

From Theorem 3.1, as long as 1 − pn is strictly bounded
away from 0, the feature recovery ability attains square root
convergence. In other words, MMCL can learn represen-
tations even in the presence of noisy pairs whenever there
are inignorable portion of observed ground-truth pairs. The
case where pn ↑ 1 is treated in Section 8.3 in the appendix.

In the following, we compare the performance of MMCL
with (unimodal) SSCL applied to each modality separately.
SSCL aims to learn representations by contrasting pairs
generated by data augmentation (Jaiswal et al., 2020; Liu
et al., 2021; Yao et al., 2022a). In particular, we consider
SSCL similar to SimCLR (Chen et al., 2020b), where en-
coders are trained to have similar representations for aug-
mented views from the same sample and to discriminate
augmented views from different samples.

Consider minimizing the unimodal linear contrastive loss
using the first-mode data {xi}ni=1. Let A be the random
masking augmentation defined as A = diag(a1, . . . , ad1),
where ai follows i.i.d. Ber(1/2) distribution. Given A,
positive pairs are generated as (Axi, (I − A)xi)

n
i=1. Let

Lc(G1) ≜ L(G1, G1; (xi, x̃i)i∈[n]) be the linear loss in 3.1
fed with generated positive pairs. Let Gc1 be the solution to
minimizing the expected loss EA[Lc], where expectation
is taken with respect to the data augmentation A. For the
learned representation, Ji et al. (2021) showed that when
Σξ and Σξ̃ are bounded above, then

E ∥sinΘ(U⋆
1 , Pr(G

u
1 ))∥F ≲

r3/2

d
log d+

√
dr

n
.

The detailed statement is available in Appendix 7. Note
that the assumption that the condition numbers of Σξ and
Σξ̃ are bounded above implies that r(Σξ) ≳ d1 and
r(Σξ̃) ≳ d1. Ignoring the logarithmic term, and provided
that d1 ≍ d2, we notice that the bound in Theorem 3.1
improves the rate by reducing the bias term r3/2 log d/d,
while the variance term remains the same. The bias term is
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due to the fact that core feature U∗
1 loses its information

when the random masking data augmentation is applied
to the original data. Ji et al. (2021) also provably showed
that when the noise covariance shows strong heteroskedas-
ticity, the feature recovery performance of the representa-
tions obtained by autoencoders stays constant, while con-
trastive learning can mitigate the effect of heteroskedastic-
ity. Therefore, under strong heteroskedasticity, MMCL can
learn representations better than autoencoders applied to
each modality separately.

3.3 Extension to Many-to-Many Correspondence
Case

For the analysis in Section 3.2, we assumed one-to-one
matches between the modalities and showed that MMCL
can learn representations regardless of the distortion rate
as long as there is an inignorable portion of ground-truth
pairs in observed pairs. However, in practice, the perfor-
mance of MMCL can be improved by eliminating noisy
pairs. In addition, we face a multimodal dataset with
many-to-many correspondence. To detect noisy pairs in the
many-to-many correspondence case, we employ the Bipar-
tite Spectral Graph Multi-Partitioning algorithm (BSGMP)
(Dhillon, 2001). BSGMP is a generalization of the spectral
graph partitioning algorithm by which we can detect and
eliminate wrongly aligned edges in a bipartite graph that
we expect to have a clustered shape.

Consider applying BSGMP first to the dataset generated
by matching the MNIST and Fashion-MNIST datasets us-
ing labels. Then, we perform MMCL with InfoNCE loss
defined as the loss function in equation 2.1 with ϕ(x) =
τ log(x) and ψ(x) = exp(x/τ). Details of the algorithm
and results are deferred to Section 5.1.

Figure 1 shows that if we apply BSGMP with parameter
k = 10, the performance of the downstream prediction task
improves with moderate distortion rate.

Figure 1: The downstream task performance of MMCL
versus the distortion rate p′. The orange curve indicates
MMCL without BSGMP, whereas the blue curve indicates
MMCL with BSGMP with parameter k = 10.

4 Improving Multimodal Learning by
Incorporating Unpaired Data

In this section, we propose a modification of CLIP loss to
incorporate additional unpaired data and investigate its the-
oretical property. Due to the abundance of unpaired data in
practice, this would greatly improve multimodal learning
with the paired training data is limited.

Since MMCL projects the data into the shared represen-
tation space, we can explicitly calculate the similarity of
any pair using given initial representations. This infor-
mation, in turn, can be used to test whether a new pair
is actually associated or not. More specifically, we con-
sider a setting in which we have access to both the paired
dataset (xi, x̃i)ni=1 and the unpaired datasets (xui )

N
i=1 and

(x̃ui )
N
i=1. Since we can regard the information on asso-

ciation between modalities as labels of pairs, we refer to
this setting as a semi-supervised setting and call additional
datasets unpaired data. We define the data generation pro-
cess as follows. Suppose that the paired data (xi, x̃i)ni=1 are
generated according to the model equation 3.2 described in
Section 2. For the unpaired datasets (xui )

N
i=1 and (x̃ui )

N
i=1,

we assume the same spiked covariance model. We further
assume the matches between two modalities as in Section
3.2. To avoid confusion of notation, let Eu ⊂ [N ]2 de-
note the set of N ground-truth pairs for unpaired data. We
continue to use the linear representation settings. Define
the similarity between xui and x̃uj as suij = suij(G1, G2) ≜
⟨G1x

u
i , G2x̃

u
j ⟩. We consider the following loss function

Lu = Lu(G1, G2; Ēu) with respect to any set of pairs
Ēu ⊂ [N ]2 to incorporate the unpaired data:

Lu ≜ − ν

N

∑
(i,j)∈Ēu

suij +
τ

2N

∑
i∈[N ]

log
∑
j∈[N ]

es
u
ij/τ

+
τ

2N

∑
i∈[N ]

log
∑
j∈[N ]

es
u
ji/τ +R(G1, G2), (4.1)

where ν ≥ 1. Note that this loss is exactly the InfoNCE
loss function when Ēu = {(1, 1), . . . , (N,N)}, ϵ = 1 and
ν = 1. Setting ν > 1 corresponds to choosing different
temperature parameters for the similarity of positive pairs
and negative pairs.

Given the loss function, we propose the semi-supervised
MMCL in Algorithm 1.

Similar to Proposition 2.1, we can connect the gradient
of the loss function and the negative gradient of the SVD
objective. Define the contrastive cross-covariance matrix
given some set of pairs Ēu as Su = Su({βuij}i,j ; Ēu) ≜
νN−1

∑
(i,j)∈Ēu xix̃

⊤
j − N−1

∑
i,j∈[N ] β

u
ijxix̃

⊤
j , where

the formula for βuij is available in Appendix 8.2. Then,
for k ∈ {1, 2},

∂Lu

∂Gk
= −

∂ tr
(
G1S

uG⊤
2

)
∂Gk

∣∣∣∣∣
βu
ij=βu

ij(G1,G2)

+
∂R(G1, G2)

∂Gk
. (4.3)

Observe that each step of the gradient descent corresponds
to the gradient ascent of the SVD objective with the nega-
tive cross-covariance matrix Su.
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Algorithm 1 Semi-supervised MMCL

Input: Labeled pairs (xi, x̃i)i∈[n], unlabeled data
(xui )i∈[N ], (x̃i)i∈[N ], rank r ≥ 1, parameters τ, ν > 0.
Obtain the initial representations G(0)

1 and G
(0)
2 from

the paired dataset (xi, x̃i)i∈[n] by minimizing InfoNCE
loss given by the loss in equation 3.1 with ϕ(x) =
τ log(1 + x) and ψ(x) = ex/τ . Calculate the similar-
ity of pairs by suij = ⟨G

(0)
1 xui , G

(0)
2 x̃uj ⟩.

Estimate the set of ground truth pairs Eu by

Êu ≜ {(i, j) ∈ [N ]2 : suij ≥ su(N)}, (4.2)

where su(N) is the N -th largest value of {suij : i ∈
[N ], j ∈ argmaxj′ s

u
ij′} ∪ {(i, j) : j ∈ [N ], i ∈

argmaxi′ s
u
i′j}.

Output: G1 and G2 obtained by minimizing the loss
Lu(G1, G2; Êu).

Motivated by Lemma 2.1, we consider the following two-
step procedure to analyze the performance of Algorithm 1.

Step 1. Obtain the initial representations G(0)
1 and G(0)

2

from the paired dataset (xi, x̃i)i∈[n] by minimizing the lin-
ear loss in equation 3.1.

Step 2. Estimate the set of ground truth pairs Eu by Êu
as in Algorithm 1. Solve the following maximization prob-
lem, as an approximation to the minimization of the loss in
equation 4.1 with Ŝu ≜ Su

(
{βu(0)ij }i,j ; Êu

)
.

max
G1∈Rr×d1 ,G2∈Rr×d2

tr
(
G1Ŝ

uG⊤
2

)
−R(G1, G2), (4.4)

where βu(0)ij = βuij(G
(0)
1 , G

(0)
2 ) is obtained using initial

representations G(0)
1 and G(0)

2 .

Although this is a two-step procedure, we note that an iter-
ative version of this procedure can also be considered. The
details and results are deferred to the Appendix 8.8.

To ensure that the obtained initial representations are accu-
rate enough to detect ground truths, we assume the follow-
ing assumptions.
Assumption 4.1. Suppose that the number of labeled pairs
n satisfies

n ≥ C

ρ2
(r + r(Σξ) + r(Σξ̃))

3

r
logN · log(n+ d1 + d2),

where C > 0 is some constant depending on σ, s1, s2, κ2z
and κ2z̃ .
Assumption 4.2. Assume that r and n satisfy log n ≤
cr, where c > 0 is some constant depending only on
σ, s1, s2, κ

2
z and κ2z̃ .

Assumption 4.1 ensures that ∥G(0)⊤
1 G

(0)
2 −

ρ−1U∗
1Σ

1/2
z Σ

1/2
z̃ U∗⊤

2 ∥2 = O((r log n)−1) occurs

with high probability, allowing one to detect ground truth
pairs precisely with high probability. Assumption 4.2 is
required to ensure that the similarity of ground truth pairs
increases larger than the similarity of uncorrelated pairs.
If r ≪ log n, it is more likely that two of n independent
random vectors in Rr are close to each other, making the
false positive rate in edge detection intolerably high.

For the estimation of ground-truth pairs, we have the fol-
lowing lemma.
Lemma 4.1. Suppose Assumptions 3.1, 3.2, 4.1, and 4.2
hold. Fix any γ > 0. Then, with probability 1−O(N−1 ∨
n−1), Êu = Eu and

min
(i,j)∈Êu

β
u(0)
ij = 1−O

(
1

Nγ

)
, max

(i,j)̸∈Êu
β
u(0)
i ≲

1

N1+γ
.

Lemma 4.1 states that the cross-covariance matrix Ŝu be-
haves as if Ŝu ≈ (ν−1)N−1

∑
(i,j)∈Eu xix̃

⊤
j . Thus, when

ν > 1, Algorithm 1 has the ability to exploit ground-truth
pairs, even if they are not observed. Notice that Assump-
tion 4.1 is mild in the sense that it only requires Ω̃(r2) num-
ber of samples when r(Σξ)∨r(Σξ̃) ≲ r. Taking advantage
of this result, we can improve the performance of feature
learning by incorporating unpaired data, as summarized in
the next result.
Theorem 4.1. Suppose Assumptions 3.1, 3.2, 4.1, and
4.2 hold. Fix any γ > 1 and ν > 1. Choose τ ≤
C(1 + γ)−1

√
r/ log n, where C > 0 is some constant de-

pending on σ, s1, s2, κ2z, κ
2
z̃ . Let G1 and G2 be the solution

to the maximization problem in equation 4.4. Then, with
probability 1−O(N−1 ∨ n−1),

∥ sinΘ(Pr(G1), U
∗
1 )∥F ∨ ∥ sinΘ(Pr(G2), U

∗
2 )∥F

≲
√
r ∧

√
r(r + r(Σξ) + r(Σξ̃)) log(N + d1 + d2)

N
.

Theorem 4.1 suggests that our proposed procedure is able
to process the unpaired data as if they are paired, greatly
improving the multimodal learning performance.

5 Numerical Experiments

In this section, we show that cleaning the noisy pairs us-
ing the BSGMP algorithm (Dhillon, 2001) helps MMCL
improve the downstream task performance in the many-to-
many correspondence case. In addition, we show that we
can improve the performance of MMCL by incorporating
the unpaired data. 3

5.1 Eliminating Noisy Pairs

As briefly mentioned in Section 3.3, we use the BSGMP
algorithm to eliminate incorrectly aligned edges from the

3The code is available at https://github.com/nswa17/MMCL.

https://github.com/nswa17/MMCL
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training data and compare the performance for different
distortion rates.

Algorithm 2 Bipartite Spectral Graph Multi-Partitioning

Input: two-modal dataset E ′. The number of clusters k.
Calculate an adjacency matrix A of the bipartite graph.
Let An ≜ D

−1/2
1 AD

−1/2
2 , where D1 and D2 are diago-

nal matrices with (D1)ii = |{j ∈ [N ] : (xi, x̃j) ∈ E ′}|
and (D2)ii = |{j ∈ [N ] : (xj , x̃i) ∈ E ′}|.
Let u2, .., ul+1 be the left singular vectors and v2, .., vl+1

be the right singular vectors of An, where l ≜ log2 k.

Define Z ≜

[
D

−1/2
1 U

D
−1/2
2 V

]
, where U ≜ [u2, .., ul+1] and

V ≜ [v2, .., vl+1].
Apply k-means algorithm to columns of the matrix Z.
Output: E ′ without all intercluster pairs.

In this experiment, we use MNIST and Fashion-MNIST
datasets as different modalities. We pair images if they
belong to the same class in each modality. For example,
all digit-2 images in MNIST and all pullover images in
Fashion-MNIST are connected. Note that, apart from the
settings in Sections 3.2 and 4, we have a bipartite graph
with many-to-many edges. In experiments, the number of
training samples is set n = 500 for each modality, and
the samples are equally distributed among different classes.
For the MNIST side, we have fully-connected neural net-
works, while we use convolutional neural networks for the
Fashion-MNIST side. The dimension of the latent space is
chosen to be r = 128. After creating our dataset, we dis-
tort the pairs in the following way. For all 1 ≤ i, j ≤ n, if
xi and x̃j are paired, we remove this pair with probability
p′. Similarly, if xi and x̃j are not paired, we pair them in
our dataset with probability p′. Note that due to this distor-
tion, our bipartite graph loses its clustered structure, which
we try to regain with Algorithm 2. Although we know the
true number of clusters k = 10, we treat k as unknown and
try a different number of clusters k = 5, 7, 10, 13, 15. We
also perform MMCL without applying algorithm 2. The
performance of the learned representations is measured by
a downstream classification accuracy as in Radford et al.
(2021) using test data, which is generated in the same way
as the training data. That is, for each test datum x on the
Fashion-MNIST side, the most similar test datum x̃ on the
MNIST side is chosen. We then measure the accuracy by
the rate of x and x̃ whose labels are equal. The experiment
was performed for different k and p′.

The result is reported in Table 1. When the distortion rate
is p′ = 0.1, the naive use of MMCL (”No Partitioning”)
performs the best. As p′ increases, the downstream task
performance decreases if no partitioning is applied. How-
ever, applying algorithm 2 with k = 10 yields the highest
accuracy for p′ = 0.2 and p′ = 0.3. Note that this allows
one to choose the number of clusters k by cross-validation.

Table 1: Downstream task classification accuracy with dif-
ferent distortion rates p′.

Partitioning p′ = 0.1 p′ = 0.2 p′ = 0.3
k = 5 0.370 0.407 0.353
k = 7 0.438 0.482 0.481
k = 10 0.675 0.672 0.662
k = 13 0.667 0.669 0.596
k = 15 0.650 0.612 0.579
No Partitioning 0.684 0.628 0.159

5.2 Incorporating Unpaired Data

Figure 2: Performance of feature recovery ability measured
by ∥ sinΘ(Pr(G1), U

∗
1 )∥F with additional unpaired data

with different n = 100, 200, 500.

In this experiment, we show that we can improve the
performance of MMCL by incorporating unpaired data.
Specifically, we generate a synthetic dataset with d1 =
40, d2 = 39, n = 300, r = 10 according to the model
in equation 3.2. U∗

1 ∈ Od1,r and U∗
2 ∈ Od2,r are random

orthonormal matrices, and zi and z̃i are sampled from the
standard Gaussian distribution for i ∈ [n]. Similarly, ξi and
ξ̃i are sampled from the zero-mean Gaussian distribution
with standard deviation 0.3. The unpaired data are gener-
ated in the same way as the paired data with N number of
samples for each modalities. We first train the initial lin-
ear encoders by minimizing InfoNCE loss with the paired
data. Then we train the linear encoders using the proce-
dure described in Section 4 with unpaired data. The perfor-
mance of the obtained representations is measured by the
sinΘ distance between U∗

1 and Pr(G1). We consider dif-
ferent ratios N/n with n = 100, 200, 500, and the results
are summarized in Figure 2.

As the ratio of unpaired data with labeled data N/n in-
creases, we can observe that the sinΘ distance decreases,
which validates our theory in the sense that if the model is
initialized with relatively good accuracy, having more and
more unpaired data improves the performance.

5.3 Application to Real Datasets

In this experiment, we show that semi-supervised CLIP im-
proves the performance for real data. The dataset is created
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by artificially pairing images from MNIST and Fashion-
MNIST datasets based on their labels. Namely, we gener-
ate pairs (xi, x̃i)

n
i=1 so that the digit in MNIST is paired

with a random image in Fashion-MNIST with the corre-
sponding digit. Similarly, we generate validation pairs
(xvi , x̃

v
i )
v
i=1 with some v, the details of which are explained

later. We use random data from each modality as unlabeled
datasets (xui )

N
i=1 and (x̃ui )

N
i=1.

In CLIP and ALIGN (Jia et al., 2021; Radford et al.,
2021), pre-trained encoders such as Vision Transformers
and BERT are used. To speed up the learning process, we
first reduce the dimension of data; we train autoencoders
consisting of 2-dimensional multilayer convolutional neu-
ral networks on datasets (xui )

N
i=1 and (x̃ui )

N
i=1 separately.

Let the encoders obtained be E1 : R282 → R16 and
E2 : R282 → R16 for MNIST and Fashion-MNIST, re-
spectively.

We first train the initial representations for the dataset
(E1(xi), E2(x̃i))

n
i=1 while fixing the parameters ofE1 and

E2. Then, we train the semi-supervised CLIP with another
set of data whose association is unknown. The initial rep-
resentations consist of two two-layer neural networks.

We call the representations used to estimate the ground-
truth pairs anchor representations. Given anchor represen-
tations Ga1 and Ga2 , we estimate the ground-truth pairs by
Êu as in equation 4.2.

Let the initial representations trained on the dataset
(E1(xi), E2(x̃i))

n
i=1 be initial anchor representations.

Since the performance of semi-supervised CLIP is re-
stricted by the performance of anchor representations, we
update anchor representations when the learned represen-
tations outperform the current anchor representations by a
certain ratio. The performance of representations is mea-
sured on validation pairs (xvi , x̃

v
i )
v
i=1.

We employ the AdamW algorithm and use mini-batch op-
timization with batch size 64 to reduce the load of calculat-
ing the similarity matrix. The number of epochs for initial
training and training with labeled data is set 100.

We compare the performance of semi-supervised CLIP
with CLIP trained with unknown association. Figure 3
shows the improvement of test accuracy when we addition-
ally train CLIP with unlabeled data. The parameters are set
asN = 59000, n = v = 500, τ = 1 and η = 1.1. The gray
curve indicates the test accuracy of initial representations
against the number of epochs. The orange curve indicates
the accuracy of representations when we additionally feed
the ground-truth pairs of unlabeled data. The blue curve in-
dicates the accuracy of representations with additional un-
labeled data. From this result, we can see the improvement
in test accuracy with additional unlabeled data.

Figure 3: The comparison of the downstream task perfor-
mance of semi-supervised CLIP and oracle CLIP. The gray
curve indicates the performance when training initial rep-
resentations. The orange curve indicates the performance
of semi-supervised CLIP and the blue curve indicates the
performance of oracle CLIP.

6 Discussion

In this paper, we provide a theoretical understanding of
MMCL in linear representation settings with two-modal
data. We showed that for a general class of non-linear
MMCL loss performing gradient descent on the loss func-
tion is equivalent to gradient ascent of the SVD objective
function with contrastive cross-covariance matrix. Using
this result, we analyze the feature recovery ability of the
approximated algorithm under linear loss in the presence
of noisy pairs. We note that the feature recovery ability
of MMCL attains a better theoretical bound compared to
that attained by SSCL applied separately to each modal-
ity. For data with many-to-many correspondence, we nu-
merically show that we can improve the performance of
MMCL by eliminating incorrectly paired edges using BS-
GMP. We also proposed a semi-supervised framework that
incorporates the unpaired dataset to enhance the perfor-
mance of MMCL. Given a small number of labeled data,
it can successfully detect the ground-truth alignment for
unpaired data and improve the representations. The im-
provement in performance with linear encoders is verified
by numerical experiment. To the best of our knowledge,
this is the first work on the theoretical analysis of MMCL
that incorporates the unpaired data. We emphasize that our
main contribution is to provide theoretical analysis and in-
sights on MMCL. The analysis of other multimodal pre-
train learning algorithms remains a future work. While
we verified our theory with proof-of-concept experiments,
systematic experiments with non-linear representations on
larger datasets is a good direction of future work. It is also
possible to extend two-modal contrastive learning to more
than three modalities by summing up the loss equation 2.1
for all pairs of modalities. As an analogy to the results of
Section 2, we can interpret loss minimization via gradient
descent as maximizing the sum of the SVD objective func-
tions (Corollary 7.1.) An analysis of its feature recovery
ability remains a future work.
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In this appendix, we define the following notations. Let 1{A} be an indicator function that takes 1 when A is true,
otherwise takes 0. For any square matrix of the same order A and B, we write A ≺ B if u⊤(B − A)u ≥ 0 holds for all
unit vector u. Define the set of pairs in [n]2 \ E containing xi as E⊥i,· ≜ {(i, j) ∈ E⊥ : j ∈ [n]} and similarly the pairs
containing x̃j as E⊥·,j ≜ {(i, j) ∈ E⊥ : i ∈ [n]}. For any matrix A, let SVDr(A) be the rank-r approximation of A. Let
Sd−1 ≜ {x ∈ Rd : x⊤x = 1} be a sphere on Rd.

7 Omitted Contents

7.1 Numerical Experiments

Here is the algorithm used in the experiment in Section 5.3.

Algorithm 3 Semi-supervised MMCL

Input: Labeled pairs (xi, x̃i)
n
i=1, validation pairs (xvi , x̃

v
i )
n
i=1, unlabeled data (xui )

N
i=1, (x̃

u
i )
N
i=1, temperature τ > 0,

update ratio η > 0.
Obtain the initial representations G(0)

1 and G(0)
2 from the paired dataset (E1(xi), E2(x̃i))i∈[n] by minimizing CLIP loss.

Let Ga1 = G
(0)
1 and Ga2 = G

(0)
2 .

repeat
Calculate the similarity of all possible unlabeled pairs by suij = ⟨G

(0)
1 E1(x

u
i ), G

(0)
2 E2(x̃

u
j )⟩ for i, j ∈ [N ].

Estimate the set of ground truth pairs according to equation 4.2.
Obtain G1 and G2 by minimizing CLIP loss with artificially paired dataset (E1(x

u
i ), E2(x̃

u
j ))(i,j)∈Êu .

if G1 and G2 outperforms Ga1 and Ga2 on validation set (E1(x
v
i ), E2(x̃

v
i ))

n
i=1 by η, then

Set Ga1 = G1 and Ga2 = G2.
end if

until convergence
Output: G1 and G2.

7.2 Feature Recovery via SSCL

Define the incoherent constant, which measures the closeness between the standard basis and orthonormal column vectors
of a matrix U ∈ Od,r as I(U) ≜ maxi∈[d] ∥e⊤i U∥2. For the learned representation, we invoke the following theorem from
Ji et al. (2021).
Lemma 7.1 (Theorem 3.11 from Ji et al. (2021)). Suppose that n > d ≫ r and the condition number of Σξ and Σξ̃ are
bounded above, and I(U⋆) = O(r log d/d). Consider applying random masking augmentation. Then,

E ∥sinΘ(U⋆
1 , Pr(G

u
1 ))∥F ≲

r3/2

d
log d+

√
dr

n
.

Note that the assumption that the condition numbers of Σξ and Σξ̃ are bounded above implies that r(Σξ) ≳ d1 and
r(Σξ̃) ≳ d1. Ignoring the logarithmic term, and provided that d1 ≍ d2, we notice that the bound in Theorem 3.1 improves
the rate in Lemma 7.1 by reducing the bias term r3/2 log d/d, while the variance term remains almost the same.
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The bias term appearing in the bound in Lemma 7.1 is due to the fact that core feature U∗
1 loses its information when

the random masking data augmentation is applied to the original data. Also, note that our result 7.1 does not require the
incoherent constant assumption, because we can separate core features from noise using the fact that the core features
are highly correlated, while noises are not correlated between two modalities. Ji et al. (2021) provably showed that when
the noise covariance shows strong heteroskedasticity, the feature recovery performance of representations obtained by
autoencoders stays constant, while contrastive learning can mitigate the effect of heteroskedasticity. Therefore, under
strong heteroskedasticity, MMCL can learn representations better than autoencoders applied to each modality separately.

7.3 Analysis on Multimodal Contrastive Loss Function with InfoNCE Loss

Before going to the proof, we modify the multimodal contrastive loss with InfoNCE loss with ϵ = 1 as

L(G1, G2) ≜ −
τ

2n

∑
(i,j)∈Eu

log
eνs

u
ii/τ∑

j∈[n] e
suij/τ

− τ

2n

∑
(i,j)∈Eu

log
eνs

u
ii/τ∑

i∈[n] e
suij/τ

+R(G1, G2), (7.1)

where ν ≥ 1. Setting ν > 1 corresponds to choosing different temperature parameters for positive pairs and negative pairs.

Similar to the argument in Proposition 2.1, each step of the gradient descent of minimizing the loss in equation 7.1 cor-
responds to performing gradient ascent to the objective function tr

(
G1SG

⊤
2

)
− (ρ/2)∥G⊤

1 G2∥2F with the matrix S given
by

S =
1

n

∑
i∈[n]

βixix̃
⊤
i −

1

n

∑
i ̸=j

βijxix̃
⊤
j , (7.2)

where

βi = ν − 1 +
1

2

∑
j′:j′ ̸=i exp(sij′/τ)∑
j′:j′∈[n] exp(sij′/τ)

+
1

2

∑
j′:j′ ̸=i exp(sj′i/τ)∑
j′:j′∈[n] exp(sj′i/τ)

,

βij =
1

2

exp(sij/τ)∑
j′:j′∈[n] exp(sij′/τ)

+
1

2

exp(sij/τ)∑
i′:i′∈[n] exp(si′j/τ)

. (7.3)

From this observation and Lemma 2.1, we study the following loss minimization problem as an approximation to MMCL.

Algorithm 4 Approximated Multimodal Contrastive Learning

Input: Data (xi)i∈[n] and (x̃i)i∈[n], rank r ≥ 1, temperature τ > 0, parameter ν ≥ 1, initial representations G(0)
1 ∈

Rr×d1 and G(0)
2 ∈ Rr×d2 .

Calculate the similarity of pairs by sij = ⟨G(0)
1 xi, G

(0)
2 x̃j⟩. Also calculate βi and βij for i ̸= j according to equation 7.3.

Compute

S =
1

n

∑
i∈[n]

βixix̃
⊤
i −

1

n

∑
i ̸=j

βijxix̃
⊤
j .

Perform SVD on S and write S =
∑d1∧d2
j=1 λju1ju

⊤
2j so that λ1 ≥ · · · ≥ λd1∧d2 . Let G1 ∈ Rr×d1 and G2 ∈ Rr×d2

satisfy G⊤
1 G2 =

∑r
j=1 λju1ju

⊤
2j .

Output: G1 and G2.

We introduce an assumption for initial representations.
Assumption 7.1. Assume that there exist a constant q > 0 and some small constant cq = cq(σ, s1, s2, κ

2
z, q) > 0 such that

the initial representations G(0)
1 and G(0)

2 satisfy

∥G(0)⊤
1 G

(0)
2 − qU∗

1Σ
1/2
z Σ

1/2
z̃ U∗⊤

2 ∥2 ≤ cq
r

(r + r(Σξ))(r + r(Σξ̃)) log n
.

The following lemma states that when the initial representations are good enough, then Algorithm 4 can detect the unob-
served ground-truth pairs.
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Lemma 7.2. Suppose Assumptions 3.1, 3.2, 4.2, and 7.1 hold. Fix any γ > 0 and ν ≥ 1. Choose τ ≤ C(1 +
γ)−1

√
r/ log n, where C > 0 is some constant depending on σ, s1, s2, κ2z, κ

2
z̃ . Assume that n satisfies

n ≥ Cq
cq

(r + r(Σξ) + r(Σξ̃))
5/2 log n

√
log(n+ d1 + d2)

r
, (7.4)

where Cq = Cq(σ, s1, s2, κ
2
z, κ

2
z̃, q) > 0 is some constant. Consider applying Algorithm 4 to the data generated from the

model 3.2. Then, with probability 1−O(n−1),

min
(i,j)∈E\C

βij = 1−O
(

1

nγ

)
, max

(i,j)̸∈E∪C
βij ≲

1

n1+γ
,

min
(i,i)∈E∩C

βi = ν − 1 +O

(
1

nγ

)
, max

(i,i)∈C\E
βi = ν −O

(
1

nγ

)
.

Based on Lemma 7.2, we can show that Algorithm 4 can recover the core features:
Theorem 7.1. Suppose that Assumptions 3.1, 3.2, 4.2, and 7.1 hold. Suppose that pn ≤ 1 − η for some constant η > 0.
Fix any γ > 1, ν ≥ 1.1η−1. Choose τ as in Lemma 7.2. Let G1 and G2 be the representations obtained from Algorithm 4
applied to the data generated from equation 3.2. Suppose that n satisfies equation 7.4. Then, with probability 1−O(n−1),

∥ sinΘ(Pr(G1), U
∗
1 )∥F ∨ ∥ sinΘ(Pr(G2), U

∗
2 )∥F ≲

√
r ∧

√
r(r + r(Σξ) + r(Σξ̃)) log(n+ d1 + d2)

n
,

and

∥G⊤
1 G2 − (ν − 1− νpn)U∗

1Σ
1/2
z Σ

1/2
z̃ U∗⊤

2 ∥ ≤ cq
r

(r + r(Σξ))(r + r(Σξ̃)) log n
. (7.5)

It is noted that approximated multimodal contrastive learning can learn representations even in the presence of noisy
pairs. equation 7.5 implies that we can further iterate the procedure by obtained representations G1, G2 to obtain the same
theoretical guarantee.

7.4 Extension to More Than Three Modalities

Here we discuss the extension of MMCL to the case where data have more than three modalities. Specifically, we observe
n data (xµi )

n
i=1 ⊂ Rdµ from µ-th modality for all µ ∈ [M ], where M is the number of modalities. As in the main body,

we focus on linear representations. We train M linear representations Gµ ∈ Rr×dµ for each modality. Since the loss 2.1 is
designed to contrast two modalities, one possible extension to multiple modalities is to sum up the contrastive loss for all
pairs of modalities; we define the additive multimodal contrastive loss as follows:

LM (G1, . . . , GM ) ≜
∑

1≤µ1<µ2≤M

L(Gµ1
, Gµ2

), (7.6)

where sµ1,µ2

ij ≜ ⟨Gµ1
xµ1

i , Gµ2
xµ2

j ⟩ and

L(Gµ1
, Gµ2

) =
1

2Cn

∑
i

ϕ

ϵψ(0) + ∑
j:j ̸=i

ψ(sµ1,µ2

ij − sµ1,µ2

ii )


+

1

2Cn

∑
i

ϕ

ϵψ(0) + ∑
j:j ̸=i

ψ(sµ1,µ2

ji − sµ1,µ2

ii )

+R(Gµ1
, Gµ2

).

Since this is a simple addition of the contrastive loss, its gradient is also a sum of the gradients. We minimize the loss 7.6
via coordinate descent; given the set of G(t)

1 , . . . , G
(t)
M at step t, we obtain G(t+1)

1 , . . . , G
(t+1)
M by

G(t+1)
µ = G(t)

µ − ι
∂LM
∂Gµ

∣∣∣∣
G1=G

(t)
1 ,...,GM=G

(t)
M

,

where ι > 0 is the learning rate.

Then, we have the following result as a corollary from Proposition 8.1.
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Corollary 7.1 (Corollary of Proposition 2.1). Consider minimizing the nonlinear loss function LM defined in equation 7.6
by coordinate descent. Suppose that the regularizer R is symmetric, i.e., R(Gµ1 , Gµ2) = R(Gµ2 , Gµ1) for any µ1 ̸= µ2.
Then,

∂LM
∂Gµ

= − ∂

∂Gµ

∑
µ′ ̸=µ

tr
(
GµSµ,µ′(β)G⊤

µ′

)∣∣∣∣∣∣
β=β(G1,...,GM )

+
∂

∂Gµ

∑
µ′ ̸=µ

R(Gµ, Gµ′), µ ∈ [M ],

where the contrastive cross-covariance Sµ,µ′(β) is given by:

Sµ,µ′(β) =
1

Cn

n∑
i=1

βµ,µ
′

i xµi x
µ′

i −
1

Cn

∑
i ̸=j

βµ,µ
′

ij xµi x
µ′

j ,

βµ,µ
′

ij ≜
αµ,µ

′

ij + ᾱµ,µ
′

ji

2
, βµ,µ

′

i ≜ ν
∑
j∈[n]

αµ,µ
′

ij + ᾱµ,µ
′

ij

2
− 1,

with

αµ,µ
′

ij = ϵijϕ
′

∑
j′∈[n]

ϵijψ(s
µ,µ′

ij′ − νs
µ,µ′

ii )

ψ′(sµ,µ
′

ij − νsµ,µ
′

ii ),

ᾱµ,µ
′

ij = ϵijϕ
′

∑
j′∈[n]

ϵijψ(s
µ,µ′

j′i − νs
µ,µ′

ii )

ψ′(sµ,µ
′

ji − νs
µ,µ′

ii ),

where ν ≥ 1 and ϵij = 1 for i ̸= j and ϵij = ϵ for i = j.

Corollary 7.1 shows that when R(Gµ, Gµ′) = ∥G⊤
µ1
Gµ2
∥2F , each step of gradient descent in minimizing the additive

contrastive loss 7.6 can be interpreted as maximizing the sum of SVD objectives, which is an analogy of the results in
Section 2.

8 Proofs

8.1 Proof of Lemma 2.1

Here we prove Lemma 2.1.

Proof. Observe that

− 2 tr
(
G1SG

⊤
2

)
+ ρ∥G⊤

1 G2∥2F =

∥∥∥∥ρ1/2G⊤
1 G2 −

1

ρ1/2
S

∥∥∥∥2
F

− 1

ρ
∥S∥2F .

Eckart-Young-Mirsky theorem (see, for example, Theorem 2.4.8 in Golub and Van Loan (2013)) concludes the proof.

8.2 Proof of Proposition 2.1

Before going to the proof, we restate Proposition 2.1 in a slightly generalized way. Suppose that we have parameters θ1
and θ2 such that G1 = G1(θ1) and G2 = G2(θ2) are smooth functions of θ1 and θ2, respectively.

Define the loss function L′ as

L′(θ1, θ2) ≜
1

2Cn

∑
i

ϕ

∑
j∈[n]

ϵijψ(sij − νsii)

+
1

2Cn

∑
i

ϕ

∑
j∈[n]

ϵijψ(sji − νsii)

+R(θ1, θ2), (8.1)

where ν ≥ 1 and ϵij = 1 for i ̸= j and ϵij = ϵ for i = j. Recall that sij = ⟨G1(θ1)xi, G2(θj)x̃j⟩. The loss in equation 2.1
corresponds to the loss in equation 8.1 with ν = 1 and Gk = θk ∈ Rr×dk for k = 1, 2. Setting ν > 0 corresponds to
choosing different temperature parameters for positive pairs and negative pairs.
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Proposition 8.1 (Restatement of Proposition 2.1). Consider minimizing the nonlinear loss function L′(θ1, θ2) defined in
equation 8.1. Then,

∂L′

∂θk
= −

∂ tr
(
G1S(β)G

⊤
2

)
∂θk

∣∣∣∣∣
β=β(G1,G2)

+
∂R(G1, G2)

∂θk
, k ∈ {1, 2},

where the contrastive cross-covariance S(β) is given by:

S(β) =
1

Cn

n∑
i=1

βixix̃
⊤
i −

1

Cn

∑
i̸=j

βijxix̃
⊤
j , βij =

αij + ᾱji
2

, βi = ν
∑
j∈[n]

αij + ᾱij
2

− 1,

with

αij = ϵijϕ
′

∑
j′∈[n]

ϵijψ(sij′ − νsii)

ψ′(sij − νsii), ᾱij = ϵijϕ
′

∑
j′∈[n]

ϵijψ(sj′i − νsii)

ψ′(sji − νsii).

Proof. Let θ2,ℓ be the k-th component of θ2. Observe that

∂θ2,ℓL′ =
1

2Cn

n∑
i=1

ϕ′

 n∑
j=1

ϵijψ(sij − νsii)

 n∑
j=1

ϵijψ
′(sij − νsii)(∂θ2,ℓsij − ν∂θ2,ℓsii)

+
1

2Cn

n∑
i=1

ϕ′

 n∑
j=1

ϵijψ(sji − νsii)

 n∑
j=1

ϵijψ
′(sji − νsii)(∂θ2,ℓsji − ν∂θ2,ℓsii) + ∂θ2,ℓR.

Define αij ≜ ϵijϕ
′(
∑
j′∈[n] ϵij′ψ(sij′ − νsii))ψ′(sij − νsii) and ᾱij ≜ ϵijϕ

′(
∑
j′∈[n] ϵij′ψ(sj′i − νsii))ψ′(sji − νsii).

Then,

∂θ2,ℓL′ =
1

2Cn

n∑
i=1

n∑
j=1

αij(∂θ2,ℓsij − ν∂θ2,ℓsii) +
1

2Cn

n∑
i=1

n∑
j=1

ᾱij(∂θ2,ℓsji − ν∂θ2,ℓsii) + ∂θ2,ℓR.

This further gives

−∂θ2,ℓL′ =
1

2Cn

∑
i,j∈[n]

[
ν(αij + ᾱij)∂θ2,ℓsii − αij∂θ2,ℓsij − ᾱij∂θ2,ℓsji

]
+ ∂θ2,ℓR

=
1

Cn

∑
i

ν ∑
j∈[n]

αij + ᾱij
2

− 1

∂θ2,ℓsii − 1

Cn

∑
i̸=j

αij + ᾱji
2

∂θ2,ℓsij + ∂θ2,ℓR

=
1

Cn

∑
i

βi∂θ2,ℓsii −
1

Cn

∑
i̸=j

βij∂θ2,ℓsij + ∂θ2,ℓR.

Since ∂θ2,ℓsij = ∂θ2,ℓ tr
(
G1xix̃

⊤
j G

⊤
2

)
, when βi and βij do not depend on θ1 and θ2,ℓ, we obtain

−∂θ2,ℓL′ = ∂θ2,ℓ tr

(
G1

(
1

Cn

∑
i

βixix̃
⊤
i

)
G⊤

2

)
− ∂θ2,ℓ tr

G1

 1

Cn

∑
i ̸=j

βijxix̃
⊤
j

G⊤
2

+ ∂θ2,ℓR.

This yields the claim for k = 2 case. By symmetry, we have a similar result for k = 1.

8.3 Proof of Theorem 3.1

We restate Theorem 3.1.
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Theorem 8.1 (Restatement of Theorem 3.1). Suppose that we have a collection of pairs (xi, x̃i)ni=1 generated according
to the model 3.2. Suppose Assumptions 3.1 and 3.2 hold. Let G1 and G2 be the solution to minimizing the loss 3.1. Then,
with probability 1−O(n−1), there exists some constant C = C(σ, s1, s2, κ

2
z, κ

2
z̃) > 0 such that

∥∥∥∥G⊤
1 G2 −

1

ρ
U∗
1Σ

1/2
z Σ

1/2
z̃ U∗⊤

2

∥∥∥∥ ≤ C

ρ

√
(r + r(Σξ) + r(Σξ̃)) log(n+ d1 + d2)

n
,

and

∥ sinΘ(Pr(G1), U
∗
1 )∥F ∨ ∥ sinΘ(Pr(G2), U

∗
2 )∥F

≲
√
r ∧

√
r

1− pn

√
(r + r(Σξ) + r(Σξ̃)) log(n+ d1 + d2)

n

1 +
1

1− pn

√
(r + r(Σξ) + r(Σξ̃)) log(n+ d1 + d2)

n

.
Let εn ≜

√
(r + r(Σξ) + r(Σξ̃)) log(n+ d1 + d2)/n. From Theorem 8.1, we can see that the feature recovery bound

becomes a trivial bound
√
r when 1 − pn ≲ εn. Otherwise the feature recovery ability is bounded by (1 − pn)−1

√
rεn.

This implies that even if the portion of noisy pairs grows, MMCL can still recover the core features as n → ∞ as long as
the growth is mild.

Corollary 8.1. Assume the same conditions as in Theorem 8.1. If pn ≤ 1− η for some η ∈ (0, 1], then

∥ sinΘ(Pr(G1), U
∗
1 )∥F ∨ ∥ sinΘ(Pr(G2), U

∗
2 )∥F ≲

√
r ∧ 1

η

√
r(r + r(Σξ) + r(Σξ̃)) log(n+ d1 + d2)

n
.

Proof. Since the loss function 2.1 can be rewritten as

− tr

(
G1

(
1

n− 1

n∑
i=1

(xi − x̄)(x̃i − ¯̃x)⊤

)
G⊤

2

)
+ (ρ2/2)∥G⊤

1 G2∥2F

= (ρ2/2)

∥∥∥∥∥G⊤
1 G2 −

1

ρ2
1

n− 1

n∑
i=1

(xi − x̄)(x̃i − ¯̃x)⊤

∥∥∥∥∥
2

F

− 1

2ρ2

∥∥∥∥∥ 1

n− 1

n∑
i=1

(xi − x̄)(x̃i − ¯̃x)⊤

∥∥∥∥∥
2

F

,

where x̄ = (1/n)
∑
i xi and ¯̃x = (1/n)

∑
i x̃i. By Eckart-Young-Mirsky theorem (see, for example, Theorem 2.4.8 in

Golub and Van Loan (2013)), we have G⊤
1 G2 = SVDr(ρ−1(n − 1)−1

∑n
i=1(xi − x̄)(x̃i − ¯̃x)⊤). For notational brevity,

define Σ = Σ
1/2
z Σ

1/2
z̃ and S̄ ≜ (n− 1)−1

∑n
i=1(xi − x̄)(x̃i − ¯̃x)⊤. Observe that∥∥SVDr(S̄)− U∗

1ΣU
∗⊤
2

∥∥ ≤ ∥∥SVDr(S̄)− S̄
∥∥+ ∥∥S̄ − U∗

1ΣU
∗⊤
2

∥∥
= λr+1

(
S̄
)
+
∥∥S̄ − U∗

1ΣU
∗⊤
2

∥∥
≤ λr+1

(
U∗
1ΣU

∗⊤
2

)
+ 2
∥∥S̄ − U∗

1ΣU
∗⊤
2

∥∥ (8.2)

= 2
∥∥S̄ − U∗

1ΣU
∗⊤
2

∥∥. (8.3)

Note that

1

n− 1

n∑
i=1

(xi − x̄)(x̃i − ¯̃x)⊤ =
1

n− 1

n∑
i=1

xix̃
⊤
i −

n

n− 1
x̄¯̃x⊤.

Since xi is independent sub-Gaussian random vectors with parameter
√
σ2
z + σ2

ξ , from Hoeffding bound (see, for example,

Proposition 2.5 in Wainwright (2019)), it holds with probability 1−O(n−1) that

∥x̄∥ ≤

√
2(σ2

z + σ2
ξ ) log(nd1)

n
≲

√
log(nd1)

n
, (8.4)

where the last inequality follows from Assumption 3.2 and σ2
z + σ2

ξ ≤ σ(1 + s−1
1 ). A similar bound holds for ¯̃x.
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For the term (n− 1)−1
∑
i xix̃

⊤
i , observe that

1

n

∑
i∈[n]

xix̃
⊤
i =

1

n

∑
(i,i)∈C∩E

xix̃
⊤
i +

1

n

∑
(i,i)∈C\E

xix̃
⊤
i ≜ T1 +Q1.

Suppose for a moment that 0 < m < n.

For the term T1, note that

T1 = U∗
1

 1

n

∑
(i,i)∈C∩E

ziz̃
⊤
i

U∗⊤
2 +

1

n

∑
(i,i)∈C∩E

U∗
1 ziξ̃

⊤
i +

1

n

∑
(i,i)∈C∩E

ξiz̃
⊤
i U

∗⊤
2 +

1

n

∑
(i,i)∈C∩E

ξiξ̃
⊤
i .

Using Proposition 9.1 and Assumption 3.2, the following bound holds with probability 1−O(n−1):

∥ 1
m

∑
(i,i)∈C∩E

ziz̃
⊤
i − Σ1/2

z Σ
1/2
z̃ ∥ ≲ (∥Σz∥ ∨ ∥Σz̃∥)

√
r log(nr)

m
,

∥ 1
m

∑
(i,i)∈C∩E

ziξ̃
⊤
i ∥ ≲ ∥Σz∥1/2∥Σz̃∥1/2

√
(r + r(Σξ̃)) log(nr + nd2)

m
,

∥ 1
m

∑
(i,i)∈C∩E

ξiz̃
⊤
i ∥ ≲ ∥Σz∥1/2∥Σz̃∥1/2

√
(r + r(Σξ)) log(nr + nd1)

m
,

∥ 1
m

∑
(i,i)∈C∩E

ξiz̃
⊤
i ∥ ≲ ∥Σz∥1/2∥Σz̃∥1/2

√
(r(Σξ) + r(Σξ̃)) log(nd1 + nd2)

m
.

Thus, with probability 1−O(n−1),

∥T1 − (1− pn)U∗
1Σ

1/2
z Σ

1/2
z̃ U∗⊤

2 ∥ ≲
√
1− pn

√
(r + r(Σξ) + r(Σξ̃)) log(nd1 + nd2)

n
. (8.5)

Next we bound ∥Q1∥. Note that Q1 is a sum of n−m independent random variables. Using Proposition 9.1,

∥ n

n−m
Q1∥ ≲ (tr(Σx̃)∥Σx∥ ∨ tr(Σx)∥Σx̃∥)1/2

√
log(nd1 + nd2)

n−m
(8.6)

≤
(
∥Σz̃∥(r + s−2

2 r(Σξ̃))
1/2(1 + s−2

2 )1/2 ∨ ∥Σz∥(r + s−2
1 r(Σξ))

1/2(1 + s−2
1 )1/2

)
(8.7)

×
√

log(nd1 + nd2)

n−m
(8.8)

≲

√
(r + r(Σξ) + r(Σξ̃)) log(nd1 + nd2)

n−m
(8.9)

holds with probability at least 1− n−1, where the last inequality holds from Assumption 3.2.

Therefore, combined with equation 8.4,

∥∥S̄ − (1− pn)U∗
1ΣU

∗⊤
2

∥∥ ≲

√
(r + r(Σξ) + r(Σξ̃)) log(nd1 + nd2)

n
+

1− pn
n− 1

+

√
log(nd1)

n

≲

√
(r + r(Σξ) + r(Σξ̃)) log(nd1 + nd2)

n

holds with probability at least 1−O(n−1). If m = 0 or m = n, a similar argument gives the same bound with probability
1−O(n−1). From equation 8.3, we obtain∥∥∥∥G⊤

1 G2 −
1

ρ
U∗
1ΣU

∗⊤
2

∥∥∥∥ ≲
1

ρ

√
(r + r(Σξ) + r(Σξ̃)) log(nd1 + nd2)

n
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with probability at least 1−O(n−1).

Define Σ′ ≜ (1− pn)U∗
1ΣU

∗⊤
2 . Since λmax(Σ) ≤ (1− pn) and λmin(Σ

′) ≥ (1− pn)λmin(Σ
1/2
z Σ

1/2
z̃ ), from Theorem 3

in Yu et al. (2015) with s← r, r ← 1,

∥ sinΘ(Pr(G1), U
∗
1 )∥F ∨ ∥ sinΘ(Pr(G2), U

∗
2 )∥F ≤

√
r ∧ 2(2(1− pn)λmax(Σ

1/2
z Σ

1/2
z̃ ) + ∥S̄ − Σ′∥)r1/2∥S̄ − Σ′∥

(1− pn)2λ2min(Σ
1/2
z Σ

1/2
z̃ )

≲
√
r ∧
√
r

(
1 +
∥S̄ − Σ′∥
1− pn

)
∥S̄ − Σ′∥
1− pn

.

where in the second inequality we used Assumption 3.1. log(nd1 + nd2) ≲ log(n+ d1 + d2) concludes the proof.

8.4 Proof of Lemma 7.2

Before going to the proof of Lemma 7.2, we introduce the following result.

Lemma 8.1. Suppose Assumptions 3.1, 3.2, 4.2 and 7.1 hold. Let (xi, x̃i)ni=1 be the paired data generated from the model
described in Section 3. Let E be the set of ground-truth pairs. Let sij = ⟨G(0)

1 xi, G
(0)
2 x̃i⟩ be the similarity evaluated by

the initial representations. Then, there exists some constant C ′ = C ′(σ, s1, s2, κ
2
z, κ

2
z̃, q) > 0 satisfying

min
(i1,j1)∈E

(
si1j1 − max

j:(i1,j)̸∈E
si1,j ∨ max

i:(i,j1 )̸∈E
si,j1

)
≥ C ′

√
r log n.

Using Lemma 8.1, we prove Lemma 7.2.

Proof. Fix any (i1, j1) ∈ E \ C. From equation 7.3,

βi1j1 =
1

2

exp(si1j1/τ)∑
j′:j′∈[n] exp(si1j′/τ)

+
1

2

exp(si1j1/τ)∑
i′:i′∈[n] exp(si′j1/τ)

.

Taking any δ ≤ C ′√r log n/(γ + 1) and choosing the temperature parameter as τ = δ/ log n gives,

esi1j1
/τ∑

j′:j′∈[n] e
si1j′/τ

≥ nsi1j1
/δ

nmaxj′:j′ ̸=j1
si1j′/δ+1 + nsi1j1/δ

=
1

n−(si1j1
/δ−maxj′:j′ ̸=j1

si1j′/δ−1) + 1
.

From the above argument, we can see that

si1j1/δ − max
j′:j′ ̸=i1

si1j′/δ ≥ γ + 1

with probability 1−O(n−1). Hence

esi1j1/τ∑
j′:j′∈[n] e

si1j′/τ
= 1−O(n−γ)

holds uniformly over all (i1, j1) ∈ E \ C. Similarly, we have

exp(si1j1/τ)∑
i′:i′∈[n] exp(si′j1/τ)

= 1−O(n−γ)

holds uniformly over all (i1, j1) ∈ E \ C. These give min(i1,j1)∈E\C βi1j1 = 1−O(n−γ).

For any (i1, j1) ̸∈ E ∪ C, take another node j2 satisfying (i1, j2) ∈ E \ C. Then, by a similar argument

esi1j1
/τ∑

j′:j′∈[n] e
si1j′/τ

≤ nsi1j1
/δ+1n−1

nsi1j2
/δ

≤ 1

n1+γ
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holds with probability 1−O(n−1). Similarly,

exp(si1j1/τ)∑
i′:i′∈[n] exp(si′j1/τ)

≲ n−γ .

Since this bound is uniform over all (i1, j1) ̸∈ E ∪ C, we obtain max(i1,j1) ̸∈E∪C βi1j1 ≤ n−(1+γ).

For βi1 , note that we can rewrite it as

βi1 = ν − 1 +
1

2

(∑
j:j ̸=i1 e

si1j/τ∑
j:j∈[n] e

si1j/τ
+

∑
j:j ̸=i1 e

sji1/τ∑
j:j∈[n] e

sji1/τ

)
.

Similar to the above arguments, if (i1, i1) ∈ E ,∑
j:j ̸=i1 e

si1j/τ∑
j:j∈[n] e

si1j/τ
≲
nmaxj:j ̸=i1

si1j/δ+1

nsi1i1
/δ

≲ n−γ .

Similarly, ∑
j:j ̸=i1 e

sji1/τ∑
j:j∈[n] e

sji1/τ
≲ n−γ .

Thus βi1 = ν − 1 +O(n−γ). If (i1, i1) ̸∈ E , there exists some j1 ̸= i1 such that∑
j:j ̸=i1 e

si1j/τ∑
j:j∈[n] e

si1j/τ
≥ esi1j1

/τ

esi1i1
/τ +

∑
j:j ̸=i1 e

si1j/τ
≥ nsi1j1

/δ

nsi1i1
/δ + nmaxj:j ̸=i1

si1j/δ+1
= 1−O(n−γ).

By a similar argument, we obtain βi1 = ν −O(n−γ).

8.5 Proof of Lemma 8.1

Here we prove Lemma 8.1.

Proof. We first prove

min
(i1,j1)∈E

(
si1j1 − max

j:(i1,j)̸∈E
si1,j

)
≥ C ′

√
r log n.

Fix any (i1, j1) ∈ E \ C. Define Σ = Σ
1/2
z Σ

1/2
z̃ for notational brevity. Recall that ∥Σz∥ = ∥Σz̃∥ = 1. Since x̃j1 =

U∗
2 z̃j1+ξ̃j1 is a sub-Gaussian random vector with parameter

√
σ2
z̃ + σ2

ξ̃
, x⊤i1U

∗
1ΣU

∗⊤
2 x̃j1 is a sub-Gaussian random variable

with parameter
√
σ2
z̃ + σ2

ξ̃
∥U∗⊤

1 xi1∥ conditioned on xi1 . Note that since (i1, j1) ∈ E \ C, (xi1 , x̃j1) is independent of

{(xi1 , x̃j : (i1, j) ̸∈ E}. By Lemma 9.2 applied to independent sub-Gaussian random variables (x⊤i1U
∗
1ΣU

∗⊤
2 x̃j)j:(i1,j)̸∈E

conditioned on xi1 and x̃j1 ,

P
(
x⊤i1U

∗
1ΣU

∗⊤
2 x̃j1 − max

j:(i1,j)̸∈E
x⊤i1U

∗
1ΣU

∗⊤
2 x̃j ≤ t∥U∗⊤

1 xi1∥
∣∣∣∣xi1 , x̃j1)

= P

(
max

j:(i1,j) ̸∈E
x⊤i1U

∗
1ΣU

∗⊤
2 x̃j −

√
2(σ2

z̃ + σ2
ξ̃
) log(n− 1)∥U∗⊤

1 xi1∥

≥ x⊤i1U
∗
1ΣU

∗⊤
2 x̃j1 − t∥U∗⊤

1 xi1∥ −
√
2(σ2

z̃ + σ2
ξ̃
) log(n− 1)∥U∗⊤

1 xi1∥

∣∣∣∣∣xi1 , x̃j1
)

≤ exp

(
− 1

2(σ2
z̃ + σ2

ξ̃
)∥U∗⊤

1 xi1∥2
(
x⊤i1U

∗
1ΣU

∗⊤
2 x̃j1 − t∥U∗⊤

1 x̃j1∥ −
√

2(σ2
z̃ + σ2

ξ̃
) log(n− 1)∥U∗⊤

1 xi1∥
)2)

= exp

− 1

2(σ2
z̃ + σ2

ξ̃
)

(
x⊤i1U

∗
1ΣU

∗⊤
2 x̃j1

∥U∗⊤
1 xi1∥

− t−
√
2(σ2

z̃ + σ2
ξ̃
) log(n− 1)

)2
. (8.10)
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Set t ← t0 ≜
√
log n. We further bound the far right hand side in equation 8.10. Note that by Assumption 3.2 and

∥Σz∥ = ∥Σz̃∥ = 1, √
(σ2
z̃ + σ2

ξ̃
) log(n− 1) ≤ σ

√
(1 + s−2

2 )t0.

From Lemma 9.1, there exists an eventE with P(E) = 1−O(n−1) such that on the eventE the following holds uniformly
for all (i1, j1) ∈ E : there exists a constant C1 = C1(σ, s1, s2) > 0 satisfying

x⊤i1U
∗
1ΣU

∗⊤
2 x̃j1

∥U∗⊤
1 xi1∥

− t0 −
√
2(σ2

z̃ + σ2
ξ̃
) log(n− 1)

≥
z⊤i1Σz̃j1 −max(i,j)∈E |ξ⊤i U∗

1Σz̃j + z⊤i ΣU
∗⊤
2 ξ̃j + ξ⊤i U

∗
1ΣU

∗⊤
2 ξ̃j |

maxi∈[n] ∥U∗⊤
1 xi∥

− t0 −
√
2(σ2

z̃ + σ2
ξ̃
) log(n− 1)

≥ C1

(
tr
(
Σ

1/2
z ΣΣ

1/2
z̃

)
− ∥Σz∥1/2∥Σ∥∥Σz̃∥1/2

√
r log n

√
r∥Σz∥1/2

−
√
r log n∥Σz∥1/2∥Σ∥∥Σz̃∥1/2√

r∥Σz∥1/2
−
√
log n

)
≥ C1(

√
r/(κ2zκ

2
z̃)− 3

√
log n)

≥ C1

√
r

(
1

κ2zκ
2
z̃

− 3
√
c

)
,

where in the third inequality, we used

tr
(
Σ1/2
z ΣΣ

1/2
z̃

)
≥ rλmin(Σz)λmin(Σz̃) ≥ r∥Σz∥∥Σz̃∥/(κ2zκ2z̃),

which holds by Assumption 3.1. Retaking c← c ∧ 2−1(3κ2zκ
2
z̃)

2, we obtain

x⊤i1U
∗
1ΣU

∗⊤
2 x̃j1

∥U∗⊤
1 xi1∥

− t0 −
√
2(σ2

z̃ + σ2
ξ̃
) log(n− 1) ≥ C2

√
r

2
(8.11)

for some constant C2 = C2(c, σ, s1, s2, κ
2
z, κ

2
z̃) > 0.

Since

σ2
z̃ + σ2

ξ̃
≤ σ2∥Σz̃∥(1 + s−2

2 ),

equation 8.10 becomes

exp

− 1

2(σ2
z̃ + σ2

ξ̃
)

(
x⊤i1U

∗
1ΣU

∗⊤
2 x̃j1

∥U∗⊤
1 xi1∥

− t0 −
√
2(σ2

z̃ + σ2
ξ̃
) log(n− 1)

)2
 ≤ exp

(
− C2

2r

8σ2(1 + s−2
2 )

)
.

Retaking c← c ∧ 2C2
2/(8σ

2(1 + s−2
2 )), we have

exp

(
− C2

2r

8σ2(1 + s−2
2 )

)
≤ exp(−2 log n) = 1

n2
.

Therefore, by Lemma 9.1,

x⊤i1U
∗
1ΣU

∗⊤
2 x̃j1 − max

j:(i1,j) ̸∈E
x⊤i1U

∗
1ΣU

∗⊤
2 x̃j ≥ t0∥U∗⊤

1 xi1∥ ≥

√
r log n

2κ−2
z

holds uniformly for all (i1, j1) ∈ E with probability 1−O(n−1).

Furthermore,

x⊤i1G
⊤
1 G2x̃j1 − max

j:(i1,j)̸∈E
x⊤i1G

⊤
1 G2x̃j

= x⊤i1(G
⊤
1 G2 − qU∗

1ΣU
∗⊤
2 )x̃j1 + qx⊤i1U

∗
1U

∗⊤
2 x̃j1

− max
j:(i1,j)̸∈E

[x⊤i1(G
⊤
1 G2 − qU∗

1ΣU
∗⊤
2 )x̃j + qx⊤i1U

∗
1ΣU

∗⊤
2 x̃j ]

≥ −2 max
i,j∈[n]

Rij + q(x⊤i1U
∗
1ΣU

∗⊤
2 x̃j1 − max

j:(i1,j) ̸∈E
x⊤i1U

∗
1ΣU

∗⊤
2 x̃j),
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where Rij ≜ x⊤i (G
⊤
1 G2 − qU∗

1ΣU
∗⊤
2 )x̃j . Note that

max
i,j∈[n]

Rij ≤ ∥G⊤
1 G2 − qU∗

1ΣU
∗⊤
2 ∥max

i∈[n]
∥xi∥max

i∈[n]
∥x̃i∥.

From Lemma 9.1 and by assumption, there exists a constant C3 = C3(σ, s1, s2) satisfying

max
i,j∈[n]

Rij ≤ C3∥G⊤
1 G2 − qU∗

1ΣU
∗⊤
2 ∥∥Σz∥1/2∥Σz̃∥1/2(r1/2 + r1/2(Σξ))(r

1/2 + r1/2(Σξ̃)) log n ≤ C3cq
√
r log n

(8.12)

on the event E, where the last inequality follows from the assumption on ∥G⊤
1 G2 − qU∗

1ΣU
∗⊤
2 ∥. We can take cq small

enough so that C3cq ≤ qκz/(4
√
2). Then,

x⊤i1G
⊤
1 G2x̃j1 − max

j:(i1,j) ̸∈E
x⊤i1G

⊤
1 G2x̃j ≥ qκz

√
r log n

2
− qκz

1

2

√
r log n

2
= qκz

1

2

√
r log n

2
.

Fix C̄ > 0 and let Hi1,j1(C̄) be the event defined as

Hi1,j1(C̄) ≜

{
x⊤i1G

⊤
1 G2x̃j1 − max

j:(i1,j)̸∈E
x⊤i1G

⊤
1 G2x̃j ≤ C̄

√
r log n

}
.

Then, from above arguments, there exists a constant C ′ = C ′(σ, s1, s2, κ
2
z, κ

2
z̃, q) > 0 and a universal constant c′ > 0 such

that

max
(i1,j1)∈E

P(Hi1,j1(C
′)|xi1 , x̃j1) ≤ cn−2

holds in the event E. Observe

P

 ⋃
(i1,j1)∈E

Hi1,j1(C
′)

 = P

E ∩ ⋃
(i1,j1)∈E

Hi1,j1(C
′)

+ P

Ec ∩ ⋃
(i1,j1)∈E

Hi1,j1(C
′)


≤

∑
(i1,j1)∈E

P(Hi1,j1(C
′) ∩ E) + P(Ec).

Note that

P(Hi1,j1(C
′) ∩ E) ≤ P(Hi1,j1(C

′) ∩ {P(Hi1,j1(C
′)|xi1 x̃j1) ≤ c′n−2})

= E[E[1Hi1,j1
(C′)1{P(Hi1,j1(C

′)|xi1 , x̃j1) ≤ c′n−2}|xi1 , x̃j1 ]]
= E[1{P(Hi1,j1(C

′)|xi1 , x̃j1) ≤ c′n−2}P(Hi1,j1(C
′)|xi1 , x̃j1)]

≤ c′n−2.

Therefore P(
⋃
i1,j1

Hi1,ji(C
′)) ≲ n−1 and thus

min
(i1,j1)∈E

(
si1j1 − max

j:(i1,j)̸∈E
si1,j

)
= min

(i1,j1)∈E

(
x⊤i1G

⊤
1 G2x̃j1 − max

j:(i1,j)̸∈E
x⊤i1G

⊤
1 G2x̃j

)
≥ C ′

√
r log n

holds with probability 1−O(n−1). A similar argument gives min(i1,j1)∈E
(
si1j1 −maxi:(i,j1 )̸∈E si,j1

)
≥ C ′√r log n.

8.6 Proof of Theorem 7.1

Here we prove Theorem 7.1.
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Proof. By Lemma 7.2, we can rewrite S in Algorithm 4 as

S =
1

n

∑
(i,i)∈C∩E

βixix̃
⊤
i +

1

n

∑
(i,i)∈C\E

βixix̃
⊤
i −

1

n

∑
(i,j)∈E\C

βijxix̃
⊤
j −

1

n

∑
(i,j)̸∈E∪C

βijxix̃
⊤
j

=
ν − 1

n

∑
(i,i)∈C∩E

xix̃
⊤
i +

ν

n

∑
(i,i)∈C\E

xix̃
⊤
i −

1

n

∑
(i,j)∈E\C

xix̃
⊤
j +

1

n

∑
(i,j)∈E\C

(1− βij)xix̃⊤j

− 1

n

∑
(i,i)∈C∩E

(ν − 1− βi)xix̃⊤i −
1

n

∑
(i,i)∈C\E

(ν − βi)xix̃⊤i −
1

n

∑
(i,j)̸∈E∪C

βijxix̃
⊤
j

≜ T1 +Q1 − T2 +R1 −R2 −R3 −R4.

We first bound R1, R2, R3 and R4. For the term R1, from Lemma 9.1 and Lemma 7.2,

∥R1∥ ≤
n−m
n

max
(i,j)∈E\C

(1− βij)max
i∈[n]
∥xi∥max

i∈[n]
∥x̃i∥

≲
n

n1+γ
∥Σz∥1/2∥Σz̃∥1/2(r + r(Σξ))

1/2(r + r(Σξ̃))
1/2 log n

≲
1

nγ
(∥Σz∥ ∨ ∥Σz̃∥)(r + r(Σξ) + r(Σξ̃)) log n

holds with probability at least 1−O(n−1). Similary,

∥R2∥ ≤
m

n
max

(i,i)∈C∩E
(ν − 1− βi)max

i∈[n]
∥xi∥max

i∈[n]
∥x̃i∥

≲
1

nγ
∥Σz∥1/2∥Σz̃∥1/2(r + r(Σξ))

1/2(r + r(Σξ̃))
1/2 log n

≲
1

nγ
(∥Σz∥ ∨ ∥Σz̃∥)(r + r(Σξ) + r(Σξ̃)) log n,

∥R3∥ ≤
n−m
n

max
(i,i)∈C\E

(ν − βi)max
i∈[n]
∥xi∥max

i∈[n]
∥x̃i∥

≲
1

nγ
∥Σz∥1/2∥Σz̃∥1/2(r + r(Σξ))

1/2(r + r(Σξ̃))
1/2 log n

≲
1

nγ
(∥Σz∥ ∨ ∥Σz̃∥)(r + r(Σξ) + r(Σξ̃)) log n,

∥R4∥ ≤
n2 − 2n+m

n
max

(i,j) ̸∈E∪C
βij max

i∈[n]
∥xi∥max

i∈[n]
∥x̃i∥

≲
1

nγ
(∥Σz∥ ∨ ∥Σz̃∥)(r + r(Σξ) + r(Σξ̃)) log n

holds with probability at least 1−O(n−1). We can bound the terms T1 and Q1 as in equation 8.5 and equation 8.9.

Similar to the argument in equation 8.9, with probability 1−O(n−1),

∥∥∥∥T2 − n−m
n

U∗
1Σ

1/2
z Σ

1/2
z̃ U∗⊤

2

∥∥∥∥ ≲
n−m
n

(∥Σz∥ ∨ ∥Σz̃∥)

√
(r + r(Σξ) + r(Σξ̃)) log(nd1 + nd2)

n−m
.
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Therefore,∥∥∥S − (νm
n
− 1
)
U∗
1Σ

1/2
z Σ

1/2
z̃ U∗⊤

2

∥∥∥ (8.13)

≤
∥∥∥T1 − (ν − 1)

m

n
U∗
1Σ

1/2
z Σ

1/2
z̃ U∗⊤

2

∥∥∥+ ∥∥∥∥T2 − n−m
n

U∗
1Σ

1/2
z Σ

1/2
z̃ U∗⊤

2

∥∥∥∥+ ∥Q1∥+ ∥R1∥+ ∥R2∥+ ∥R3∥+ ∥R4∥

(8.14)

≲
(r + r(Σξ) + r(Σξ̃)) log n

nγ
(8.15)

+

[(
1− m

n

)1/2
+
(m
n

)1/2
+
(
1− m

n

)1/2]√ (r + r(Σξ) + r(Σξ̃)) log(nd1 + nd2)

n

≲
(r + r(Σξ) + r(Σξ̃)) log n

nγ
+

√
(r + r(Σξ) + r(Σξ̃)) log(nd1 + nd2)

n
. (8.16)

Let Σ′ ≜ (νm/n−1)U∗
1Σ

1/2
z Σ

1/2
z̃ U∗⊤

2 = (ν−1−νpn)U∗
1Σ

1/2
z Σ

1/2
z̃ U∗⊤

2 . Then λr(Σ′) = |ν−1−νpn|λmin(Σ
1/2
z Σ

1/2
z̃ )

and λmax(Σ
′) = |ν − 1− νpn|λmax(Σ

1/2
z Σ

1/2
z̃ ). From Theorem 3 in Yu et al. (2015) with s← r, r ← 1,

∥ sinΘ(Pr(G1), U
∗
1 )∥F ∨ ∥ sinΘ(Pr(G2), U

∗
2 )∥F

≤
√
r ∧ 2(2|ν − 1− νpn|λmax(Σ

1/2
z Σ

1/2
z̃ ) + ∥S − Σ′∥)r1/2∥S − Σ′∥

(ν − 1− νpn)2λ2min(Σ
1/2
z Σ

1/2
z̃ )

≲
√
r ∧
√
r

 (r + r(Σξ) + r(Σξ̃)) log n

nγ
+

√
(r + r(Σξ) + r(Σξ̃)) log(nd1 + nd2)

n


≲
√
r ∧

√
r(r + r(Σξ) + r(Σξ̃)) log(nd1 + nd2)

n
, (8.17)

where in the second inequality we used Assumption 3.1 and ν − 1− νpn ≥ νη − 1 ≥ 0.1.

Furthermore, from equation 8.16 and since G⊤
1 G2 = SVDr(S), there exists a constant Cq = Cq(σ, s1, s2, κ

2
z, κ

2
z̃, q) > 0

satisfying

∥G⊤
1 G2 − (ν − 1− νpn)Σ∥ = ∥SVDr(S)− Σ′∥

≤ λr+1(S) + ∥S − Σ′∥
≤ λr+1(Σ

′) + 2∥S − Σ′∥

≤ Cq

√r ∧
√

(r + r(Σξ) + r(Σξ̃)) log(nd1 + nd2)

n

.
Thus, the condition in equation 7.4 implies that ∥G⊤

1 G2 − (ν − 1− νpn)Σ∥ ≤ cqr/((r + r(Σξ))(r + r(Σξ̃)) log n).

8.7 Proof of equation 4.3

Here we restate the result of 4.3, which follows by a similar argument in the proof of Proposition 2.1.
Proposition 8.2. Consider minimizing the nonlinear loss function Lu defined in equation 4.1. Then,

∂L
∂Gk

= −
∂ tr
(
G1S(β)G

⊤
2

)
∂Gk

∣∣∣∣∣
βu=βu(G1,G2)

+
∂R(G1, G2)

∂Gk
, k ∈ {1, 2},

where the contrastive cross-covariance S(βu) is given by:

S(βu) =
1

N

∑
(i,j)∈Ēu

βui xix̃
⊤
j −

1

N

∑
(i,j)̸∈Ēu

βuijxix̃
⊤
j ,
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with

βui = ν − 1 +
1

2

es
u
ij/τ∑

j′∈[N ] e
su
ij′/τ

+
1

2

es
u
ij/τ∑

i′∈[N ] e
su
i′j/τ

,

βuij =
1

2

es
u
ij/τ∑

j′∈[N ] e
su
ij′/τ

+
1

2

es
u
ij/τ∑

i′∈[N ] e
su
i′j/τ

.

8.8 Proof of Lemma 4.1

Here we consider Algorithm 1. We restate Lemma 4.1.

Lemma 8.2 (Restatement of Lemma 4.1). Suppose Assumptions 3.1, 3.2, 4.1, and 4.2 hold. Fix any γ > 0 and ν ≥ 1.
Choose τ ≤ C(1 + γ)−1

√
r/ logN , where C > 0 is some constant depending on σ, s1, s2, κ2z, κ

2
z̃ . Consider applying

Algorithm 1 to the data generated from the model 3.2. Then, with probability 1−O(N−1 ∨ n−1), Êu = Eu and

min
(i,j)∈Eu\Ēu

β
u(0)
ij = 1−O

(
1

Nγ

)
, max

(i,j)̸∈Eu∪Ēu
β
u(0)
ij ≲

1

N1+γ
,

min
(i,i)∈Eu∩Ēu

β
u(0)
i = ν − 1 +O

(
1

Nγ

)
, max

(i,i)∈Ēu\Eu
β
u(0)
i = ν −O

(
1

Nγ

)
.

Proof. Since the initial representations G(0)
1 and G(0)

2 are the solution to the minimization of the loss 3.1 with the dataset
(xi, x̃i)

n
i=1, Theorem 8.1 and Assumption 4.1 give∥∥∥∥G(0)⊤

1 G
(0)
2 −

1

ρ
U∗
1Σ

1/2
z Σ

1/2
z̃ U∗⊤

2

∥∥∥∥ ≤ cq r

(r + r(Σξ))(r + r(Σξ̃)) logN
(8.18)

with probability 1−O(n−1).

From Lemma 8.1, with probability 1−O(N−1 ∨ n−1),

min
(i1,j1)∈Eu

(
si1j1 − max

j:(i1,j)̸∈Eu
si1,j ∨ max

i:(i,j1 )̸∈Eu
si,j1

)
≥ C ′

√
r logN.

This implies that {(i, j) ∈ [N ]2 : i ∈ [N ], j ∈ argmaxj′ s
u
ij′} = {(i, j) ∈ [N ]2 : j ∈ [N ], i ∈ argmaxi′ s

u
i′j} = Eu with

high probability.

The conclusion directly follows by Lemma 7.2 with substitution C ← Ēu and E ← Eu, since (xi, x̃i)
n
i=1 and (xui , x̃

u
i )
N
i=1

are independent.

8.9 Proof of Theorem 4.1

We restate Theorem 4.1.

Theorem 8.2 (Restatement of Theorem 4.1). Suppose Assumptions 3.1, 3.2, 4.1 and 4.2 hold. Fix any γ > 2 and ν ≥ 1.1.
Choose τ as in Lemma 8.2. Consider applying Algorithm 1 to the data (xui , x̃

u
i )
N
i=1 generated from equation 3.2, whose

association is unknown. Then, with probability 1−O(N−1 ∨ n−1),

∥ sinΘ(Pr(G1), U
∗
1 )∥F ∨ ∥ sinΘ(Pr(G2), U

∗
2 )∥F ≲

√
r ∧

√
r(r + r(Σξ) + r(Σξ̃)) log(N + d1 + d2)

N
.

Proof. From Lemma 8.2, we have Êu = Eu with high probability. Thus we treat Eu as known for brevity and let Eu =
{(1, 1), . . . , (N,N)} without loss of generality. Since the loss function in 4.1 is exactly the same as the loss function in
7.1 when Eu = {(1, 1), . . . , (N,N)}, the conclusion follows by Theorem 7.1 applied to (xui , x̃

u
i )
N
i=1 with pn ≡ 0.
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9 Auxiliary Results

Here, we list the auxiliary results that are used in the proofs.

Lemma 9.1. Suppose Assumptions 3.1 and 3.2 hold. Fix any Σ ∈ Rr×r. There exists some constant c = c(σ, s1, κ
2
z) ∈

(0, 1] such that if log n ≤ cr, the following inequalities hold with probability 1−O(n−1):

max
i∈[n]
∥xi∥ ≤ C1∥Σz∥1/2(r1/2 + r1/2(Σξ))

√
log n,

max
i∈[n]
∥x̃i∥ ≤ C2∥Σz̃∥1/2(r1/2 + r1/2(Σξ̃))

√
log n,

max
(i,j)∈E

|ξ⊤i U∗
1Σz̃j + z⊤i ΣU

∗⊤
2 ξ̃j + ξ⊤i U

∗
1ΣU

∗⊤
2 ξ̃j | ≤ C3

√
r log n∥Σz∥1/2∥Σ∥∥Σz̃∥1/2,

max
(i,j)∈E

∣∣∣z⊤i Σz̃j − tr
(
Σ1/2
z ΣΣ

1/2
z̃

)∣∣∣ ≤ C4∥Σz∥1/2∥Σ∥∥Σz̃∥1/2
√
r log n,

max
i∈[n]
∥U∗⊤

1 xi∥ ≤ C5

√
r∥Σz∥,

min
i∈[n]
∥U∗⊤

1 xi∥ ≥

√
r∥Σz∥
2κ−2

z

,

where C1 = C1(σ, s1), C2 = C2(σ, s2), C3 = C3(σ, s1, s2), C4 = C4(σ) and C5 = C5(σ, s1) > 0 are some constants.

Proof of Lemma 9.1. Let

c = 2−1(2C ′′′(σ)(1 ∨ s−1
1 )κ2z)

−2 ∧ 1.

From Corollary 9.1, Assumption 3.2, and by the union bound argument,

max
i
∥xi∥ ≤ max

i
∥zi∥+max

i
∥ξi∥

≤ tr1/2(Σz) + tr1/2(Σξ) + C(σ)(∥Σz∥1/2 + ∥Σξ∥1/2)
√

2 log n

≤ ∥Σz∥1/2(r1/2 + s−1
1 r1/2(Σξ))(1 + C(σ)

√
2 log n)

≤ C1(σ, s1)∥Σz∥1/2(r1/2 + r1/2(Σξ))
√
log n

holds with probability at least 1− 2n−1, where C1(σ, s1) ≜ (1 ∨ s−1
1 )(1 ∨ C(σ)). Similarly,

max
i
∥x̃i∥ ≤ C2(σ, s2)∥Σz̃∥1/2(r1/2 + r1/2(Σξ̃))

√
log n

holds with probability at least 1− 2n−1, where C2(σ, s2) ≜ (1 ∨ s−1
2 )(1 ∨ C(σ)).

By Lemma 9.3 and the union bound argument, there exists some constant C ′(σ) > 0 such that

max
(i,j)∈E

|ξ⊤i U∗
1 Σ̃zj | ≤ C ′(σ)(∥Σ1/2

ξ U∗
1ΣΣ

1/2
z̃ ∥F

√
2 log n ∨ 2∥Σ1/2

ξ U∗
1ΣΣ

1/2
z̃ ∥ log n)

≤ C ′(σ)(tr1/2(U∗⊤
1 ΣξU

∗
1ΣΣz̃)

√
2 log n ∨ 2∥Σξ∥1/2∥Σ∥∥Σz̃∥1/2 log n)

≤ C ′(σ)∥Σξ∥1/2∥Σ∥∥Σz̃∥1/2(
√

2r log n ∨ 2 log n)

holds with probability at least 1 − n−1. Since log n ≤
√
r log n, the far right-hand side can be further bounded by

2C ′(σ)s−1
1 ∥Σz∥1/2∥Σ∥∥Σz̃∥1/2

√
r log n. By a similar argument combined with Assumption 3.2, there exists some con-

stant C3(σ, s1, s2) > 0 such that

max
(i,j)∈E

|ξ⊤i U∗
1Σz̃j + z⊤i ΣU

∗⊤
2 ξ̃j + ξ⊤i U

∗
1ΣU

∗⊤
2 ξ̃j |

≤ max
(i,j)∈E

|ξ⊤i U∗
1Σz̃j |+ max

(i,j)∈E
|z⊤i ΣU∗⊤

2 ξ̃j |+ max
(i,j)∈E

|ξ⊤i U∗
1ΣU

∗⊤
2 ξ̃j |

≤ C3(c, σ, s1, s2)∥Σz∥1/2∥Σ∥∥Σz̃∥1/2
√
r log n
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holds with probability at least 1− 3n−1, where we used Cauchy-Schwarz inequality in the last inequality.

Fix any (i, j) ∈ E . Since Σ
−1/2
z zi = Σ

−1/2
z̃ z̃j , applying Lemma 9.4 with X ← Σ

−1/2
z zi, A ← Σ

1/2
z ΣΣ

1/2
z̃ , and

t← log n2 yields the following. There exists a constant C ′′(σ) > 0 such that∣∣∣z⊤i Σz̃j − tr
(
Σ1/2
z ΣΣ

1/2
z̃

)∣∣∣ ≤ C ′′(σ)
(
∥Σ1/2

z ΣΣ
1/2
z̃ ∥F

√
log n2 ∨ ∥Σ1/2

z ΣΣ
1/2
z̃ ∥ log n

2
)

≤ C4(σ)∥Σ1/2
z ΣΣ

1/2
z̃ ∥

√
r log n

holds with probability at least 1 − n−2, where the last inequality is again from log n ≤
√
r log n. By the union bound

argument, we obtain

max
(i,j)∈E

∣∣∣z⊤i Σz̃j − tr
(
Σ1/2
z ΣΣ

1/2
z̃

)∣∣∣ ≤ C4(σ)∥Σ1/2
z ∥∥Σ∥∥Σ

1/2
z̃ ∥

√
r log n

with probability at least 1− n−1.

From Corollary 9.1, Assumption 3.2 and by the union bound argument,

max
i
∥U∗⊤

1 xi∥ ≤ max
i
∥zi∥+max

i
∥U∗⊤

1 ξi∥

≤ tr1/2(Σz) + tr1/2(U∗⊤
1 ΣξU

∗
1 ) + C(σ)(∥Σz∥1/2 + ∥Σξ∥1/2)

√
2 log n

≤ (
√
r + C(σ)

√
2 log n)∥Σz∥1/2(1 + s−1

1 )

≤ C5(σ, s1)
√
r∥Σz∥1/2

holds with probability at least 1− 2n−1, where C5 > 0 is some constant.

Since ∥zi∥2 = ∥U∗⊤
1 xi∥2 − 2z⊤i U

∗⊤
1 ξi − ∥U∗⊤

1 ξi∥2 ≤ ∥U∗⊤
1 xi∥2 − 2z⊤i U

∗⊤
1 ξi, there exists some constant C ′′′(σ) > 0

such that

min
i
∥U∗⊤

1 xi∥2 ≥ min
i
∥zi∥2 − 2max

i
|z⊤i U∗⊤

1 ξi|

≥ tr(Σz)− C ′′′(σ)(∥Σz∥1/2 tr1/2(Σz)
√
2 log n ∨ 2∥Σz∥ log n)

− C ′′′(σ)∥Σξ∥1/2∥Σz∥1/2(
√

2r log n ∨ 2 log n)

≥ r∥Σz∥
λmin(Σz)

∥Σz∥
− 2C ′′′(σ)(1 ∨ s−1

1 )∥Σz∥
√
r log n

= r∥Σz∥
λmin(Σz)

∥Σz∥

(
1− 2C ′′′(σ)(1 ∨ s−1

1 )
∥Σz∥

λmin(Σz)

√
log n

r

)

holds with probability at least 1− 2n−1, where the second inequality follows from Lemma 9.4 and Assumption 3.2. From
Assumption 3.1 and the definition of c,

min
i
∥U∗⊤

1 xi∥2 ≥ r∥Σz∥κ−2
z

(
1− 2C ′′′(σ)(1 ∨ s−1

1 )κ2z
√
c
)
≥ (1/2)r∥Σz∥κ−2

z .

Lemma 9.2. Suppose X1, . . . , Xn are i.i.d. sub-Gaussian random variables with parameter σ. Then,

P(max
i
Xi −

√
2σ2 log n ≥ t) ≤ exp

(
− t2

2σ2

)
holds for all t ≥ 0.
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Proof. Observe that

P(max
i
Xi −

√
2σ2 log n ≥ t) = P

(⋃
i

{Xi ≥ t+
√
2σ2 log n}

)
≤ nP(X1 ≥ t+

√
2σ2 log n)

≤ n exp

(
− (t+

√
2σ2 log n)2

2σ2

)

≤ exp

(
− t2

2σ2

)
.

Lemma 9.3. Let X = (X1, . . . , Xd1) and X̃ = (X̃1, . . . , X̃d2) be mean zero random vectors taking values in Rd. Let
A ∈ Rd1×d2 be a non-random matrix. Suppose Σ

−1/2
X X and Σ

−1/2

X̃
X̃ are independent and have i.i.d. sub-Gaussian

coordinates with parameter σ. Then, there exists a constant C = C(σ) > 0 such that with probability at least 1− e−t,

|X⊤AX̃| ≤ C
(
∥Σ1/2

X AΣ
1/2

X̃
∥F
√
t ∨ ∥Σ1/2

X AΣ
1/2

X̃
∥t
)
.

holds for all t > 0.

Proof of Lemma 9.3. The proof follows by a similar argument as in the proof of Theorem 6.2.1, Lemma 6.2.2 and Lemma
6.2.3 in Vershynin (2018).

We also use the following Hanson-Wright inequality. See, for example, Theorem 6.2.1 in Vershynin (2018).
Lemma 9.4. Let X = (X1, . . . , Xd1) be mean zero random vectors taking values in Rd. Let A ∈ Rd1×d1 be a non-
random matrix. Suppose Σ

−1/2
X X have i.i.d. sub-Gaussian coordinates with parameter σ. Then, there exists a constant

C = C(σ) > 0 such that with probability at least 1− e−t,

|X⊤AX − tr(AΣX)| ≤ C
(
∥Σ1/2

X AΣ
1/2
X ∥F

√
t ∨ ∥Σ1/2

X AΣ
1/2
X ∥t

)
.

holds for all t > 0.

The following corollary is adapted from the proof of Theorem 6.3.2 in Vershynin (2018).

Corollary 9.1. Let X be a random vector in Rd. Suppose Σ−1/2
X X has i.i.d. sub-Gaussian coordinates with parameter σ.

Let A ∈ Rr×d be any non-random matrix. Then, there exists a constant C = C(σ) > 0 such that

|∥AX∥ − tr1/2(AΣXA
⊤)| ≤ C(σ)∥AΣXA⊤∥1/2

√
t

holds with probability at least 1− e−t for all t > 0.
Assumption 9.1. Let X and X̃ be mean zero random vectors taking values in Rd1 and Rd2 , respectively. Assume the
following

• E[(u⊤X)2] ≥ c1∥u⊤X∥2ψ2
holds for any u ∈ Rd1 ,

• E[(v⊤X̃)2] ≥ c2∥v⊤X̃∥2ψ2
holds for any v ∈ Rd2 .

Proposition 9.1. Let X and X̃ be mean zero random vectors taking values in Rd1 and Rd2 , respectively. Suppose X and
X̃ satisfy Assumption 9.1. Let (ai)i be a bounded sequence of positive numbers such that maxi ai ≤ a. Let {(Xi, X̃i)}i
be independent copies of (X, X̃) and Σ̂a

X,X̃
≜ (1/n)

∑n
i=1 aiXiX̃

⊤
i . Let Σa

X,X̃
= (1/n)(

∑n
i=1 ai)E[XX̃⊤]. Then, there

exists a constant C = C(c1, c2) > 0 such that with probability at least 1− e−t,

∥Σ̂a
X,X̃
− Σa

X,X̃
∥

≤ Ca

[
(tr(ΣX̃)∥ΣX∥ ∨ tr(ΣX)∥ΣX̃∥)

1/2

√
t+ log(d1 + d2)

n
∨ (tr(ΣX) tr(ΣX̃))1/2

t+ log(d1 + d2)

n

]
.

holds for all t > 0.
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Notice that when X = X̃ , we recover the bound given in Theorem 2.2 of Bunea and Xiao (2015).

Proof of Proposition 9.1. Let Bi ≜ XiX̃
⊤
i − ΣX,X̃ . Define symmetric matrices Ai of order d1 + d2 as

Ai ≜

(
O Bi
B⊤
i O

)
.

Since A2k
1 = diag((B1B

⊤
1 )k, (B⊤

1 B1)
k) for k ≥ 2, ∥E[A2k

1 ]∥ ≤ ∥E[(B1B
⊤
1 )k]∥ ∨ ∥E[(B⊤

1 B1)
k]∥ and A2k

1 is positive
semi-definite. From Lemma 9.5, for k ≥ 1,

∥E[A2k
1 ]∥ ≤ (2k)!

2
R2k−2σ2,

where σ2 andR are defined in Lemma 9.5. Fix any u ∈ Sd1+d2−1. By Cauchy-Schwarz inequality and Jensen’s inequality,
for k ≥ 2,

E[u⊤A2k−1
1 u] ≤ E[

√
u⊤A2k−2

1 uu⊤A2k
1 u] ≤

√
u⊤E[A2k−2

1 ]uu⊤E[A2k
1 ]u ≤

√
(2k)!(2k − 2)!

2
R2k−3σ2.

Observe that √
(2k)!(2k − 2)!

(2k − 1)!
=

√
2k

2k − 1
≤ 2√

3
.

Therefore, substituting σ2 ← (4/3)1/2σ2, we obtain the bound ∥E[Ak1 ]∥ ≤ (k!/2)Rk−2σ2 for all k ≥ 2. Applying
Theorem 6.2 in Tropp (2012) to (1/n)

∑n
i=1 aiAi, and using ∥Bi∥ = ∥(Id1Od1×d2)Ai(Od2×d1Id2)⊤∥ ≤ ∥Ai∥ and

∥E(aiAi)
k∥ ≤ (k)!(aR)k−2(aσ)2/2, we obtain the following bound: there exists a constant C > 0 only depending on c1

and c2 such that

∥Σ̂a
X,X̃
− Σa

X,X̃
∥

≤ Ca

[
(tr(ΣX̃)∥ΣX∥ ∨ tr(ΣX)∥ΣX̃∥)

1/2

√
t+ log(d1 + d2)

n
∨ (tr(ΣX) tr(ΣX̃))1/2

t+ log(d1 + d2)

n

]
.

holds with probability at least 1− e−t for all t > 0.

Lemma 9.5. Let X and X̃ be mean zero random vectors taking values in Rd1 and Rd2 , respectively. Suppose X and X̃
satisfy Assumption 9.1. Then, for k ≥ 1,

∥E[((XX̃⊤ − ΣX,X̃)(XX̃⊤ − ΣX,X̃)⊤)k]∥ ∨ ∥E[((X̃X⊤ − ΣX̃,X)(X̃X⊤ − ΣX̃,X)⊤)k]∥ ≤ (2k)!

2
L2k−2σ2,

where

σ2 ≜
65 · 16e2

c1c2 ∧ 1
(tr(ΣX̃)∥ΣX∥ ∨ tr(ΣX)∥ΣX̃∥)

L ≜
8e

(c1c2 ∧ 1)1/2
(tr(ΣX) tr(ΣX̃))1/2.

Proof of Lemma 9.5. Define B ≜ XX̃⊤ − ΣX,X̃ . To use the matrix bernstein inequality, we bound ∥E[(BB⊤)k]∥. Fix
any u ∈ Sd1−1. Then

u⊤(BB⊤)ku ≤ ∥B∥2k−2u⊤BB⊤u.

Since for any matrices C and D, 2CC⊤ + 2DD⊤ − (C − D)(C − D)⊤ = (C + D)(C + D)⊤, we obtain 0 ⪯ (C −
D)(C − D)⊤ ⪯ 2CC⊤ + 2DD⊤ ⪯ 2CC⊤ + 2∥D∥2I . Also, ∥C − D∥2k−2 ≤ 22k−3(∥C∥2k−2 + ∥D∥2k−2). These
results give

u⊤(BB⊤)ku ≤ ∥B∥2k−2u⊤BB⊤u

≤ 22k−1(∥XX̃⊤∥2k−2 + ∥ΣX,X̃∥
2k−2)(u⊤XX̃⊤X̃X⊤u+ ∥ΣX,X̃∥

2)

= 22k−1(∥XX̃⊤∥2k−2u⊤XX̃⊤X̃X⊤u+ ∥XX̃⊤∥2k−2∥ΣX,X̃∥
2)

+ 22k−1(∥ΣX,X̃∥
2k−1u⊤XX̃⊤X̃X⊤u+ ∥ΣX,X̃∥

2k).
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E[u⊤(BB⊤)ku] ≤ 22k−1(E[∥XX̃⊤∥2k−2u⊤XX̃⊤X̃X⊤u] + E[∥XX̃⊤∥2k−2]∥ΣX,X̃∥
2)

+ 22k−1(∥ΣX,X̃∥
2k−2E[u⊤XX̃⊤X̃X⊤u] + ∥ΣX,X̃∥

2k).

Notice that

E[∥XX̃⊤∥2k−2u⊤XX̃⊤X̃X⊤u] ≤
√
E[∥XX̃⊤∥2(2k−2)]E[(u⊤XX̃⊤X̃X⊤u)2],

where the first inequality follows from Cauchy-Schwarz inequality. By Lemma A.2 from Bunea and Xiao (2015) and
Assumption 9.1,

E[∥XX̃⊤∥2(2k−2)] ≤
√

E[∥X∥4(2k−2)]E[∥X̃∥4(2k−2)] ≤ (4(2k − 2))2(2k−2)

c2k−2
1 c2k−2

2

(tr(ΣX))2k−2(tr(ΣX̃))2k−2,

E[(u⊤XX̃⊤X̃X⊤u)2] = E[(u⊤X)4∥X̃∥4] ≤
√
E[(u⊤X)8]E[∥X̃∥8] ≤

(
64

c1c2
tr(ΣX̃)∥ΣX∥

)2

.

Thus

E[∥XX̃⊤∥2k−2u⊤XX̃⊤X̃X⊤u] ≤ 64(4(2k − 2))2k−2

ck1c
k
2

(tr(ΣX) tr(ΣX̃))(2k−2)/2 tr(ΣX̃)∥ΣX∥.

Similarly,

E[∥XX̃⊤∥2k−2] ≤
√

E[∥X∥2(2k−2)]E[∥X̃∥2(2k−2)] ≤ 2(2k − 2)2k−2

ck−1
1 ck−1

2

(tr(ΣX) tr(ΣX̃))(2k−2)/2,

E[u⊤XX̃⊤X̃X⊤u] ≤
√

E[(u⊤X)4]E[∥X̃∥4] ≤ 16

c1c2
tr(ΣX̃)∥ΣX∥.

Also, for any (u, v) ∈ Sd1−1 × Sd2−1,

u⊤ΣX,X̃v = E[u⊤XX̃⊤v] ≤
√
E[(u⊤X)2]E[(v⊤X̃)2] ≤

√
∥ΣX∥∥ΣX̃∥ ≤

√
tr(ΣX̃)∥ΣX∥.

This gives ∥ΣX,X̃∥2 ≤ tr(ΣX̃)∥ΣX∥ ≤ tr(ΣX̃) tr(ΣX). Therefore,

E[u⊤(BB⊤)ku] ≤ 22k−1 64(4(2k − 2))2k−2

ck1c
k
2

(tr(ΣX) tr(ΣX̃))(2k−2)/2 tr(ΣX̃)∥ΣX∥

+ 22k−1 (2(2k − 2))2k−2

ck−1
1 ck−1

2

(tr(ΣX) tr(ΣX̃))(2k−2)/2∥ΣX,X̃∥
2

+ 22k−1∥ΣX,X̃∥
2k−2 16

c1c2
tr(ΣX̃)∥ΣX∥+ 22k−1∥ΣX,X̃∥

2k

≤ 22k−1

(
(4(2k − 1))2k−1

ck−1
1 ck−1

2

(tr(ΣX) tr(ΣX̃))(2k−2)/2 + ∥ΣX,X̃∥
2k−2

)
× tr(ΣX̃)∥ΣX∥

(
64

c1c2
+ 1

)
≤ 22k

(4(2k − 1))2k−1

ck−1
1 ck−1

2 ∧ 1
(tr(ΣX) tr(ΣX̃))(2k−2)/2 tr(ΣX̃)∥ΣX∥

65

c1c2 ∧ 1
.

Hence

∥E[(BB⊤)k]∥ ≤ (2k)!

2

2

(2k)!
22k

(4(2k − 1))2k−1

ck−1
1 ck−1

2 ∧ 1
(tr(ΣX) tr(ΣX̃))(2k−2)/2 tr(ΣX̃)∥ΣX∥

65

c1c2 ∧ 1
.
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Using the Stirling’s formula k! ≥
√
2ρkk+1/2e−ke1/(12k+1) ≥ 2kk+1/2e−k,

∥E[(BB⊤)k]∥

≤ (2k)!

2

e2k

(2k)2k+1/2
22k

(4(2k − 1))2k−1

ck−1
1 ck−1

2 ∧ 1
(tr(ΣX) tr(ΣX̃))(2k−2)/2 tr(ΣX̃)∥ΣX∥

65

c1c2 ∧ 1

≤ (2k)!

2

(
65 · 16e2 1

c1c2 ∧ 1
tr(ΣX̃)∥ΣX∥

)(
8e(tr(ΣX) tr(ΣX̃))1/2

1

c
1/2
1 c

1/2
2 ∧ 1

)2k−2

.

By symmetry of X, X̃ , this concludes the proof.
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