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Abstract

Two important aspects of machine learning, un-
certainty and calibration, have previously been
studied separately. The first aspect involves
knowing whether inaccuracy is due to the epis-
temic uncertainty of the model, which is theoret-
ically reducible, or to the aleatoric uncertainty in
the data per se, which thus becomes the upper
bound of model performance. As for the second
aspect, numerous calibration methods have been
proposed to correct predictive probabilities to
better reflect the true probabilities of being cor-
rect. In this paper, we aim to obtain the squared
error of predictive distribution from the true dis-
tribution as epistemic uncertainty. Our formula-
tion, based on second-order Rényi entropy, in-
tegrates the two problems into a unified frame-
work and obtains the epistemic (un)certainty as
the difference between the aleatoric and predic-
tive (un)certainties. As an auxiliary loss to or-
dinary losses, such as cross-entropy loss, the
proposed collision probability matching (CPM)
loss matches the cross collision probability be-
tween the true and predictive distributions to the
collision probability of the predictive distribu-
tion, where these probabilities correspond to ac-
curacy and confidence in confidence calibration,
respectively. Unlike previous Shannon-entropy-
based uncertainty methods, the proposed method
makes the aleatoric uncertainty directly measur-
able as test-retest reliability, which is a summary
statistic of the true distribution frequently used in
scientific research on humans. We provide math-
ematical proof and strong experimental evidence
for our formulation using both a real dataset con-
sisting of real human ratings toward emotional
faces and simulation.
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1 Introduction

With the advances in machine learning techniques,
computational power, and data availability, the per-
formance of machine classifiers/regressors has dra-
matically improved in various tasks such as object
recognition and speech recognition [Zhang et al., 2017,
Zhao et al., 2019b]. However, accuracy depends not only
on modeling imperfections but also on the uncertainty in
the data [Mukhoti et al., 2021]. For tasks that inherently
involve uncertainty and difficulty in determining a single
ground truth [Kramer et al., 2018], even advanced neural
models have difficulty achieving high performance. Con-
sequently, without further examination it is unclear whether
low performance stems from model imperfections or uncer-
tainty of the ground truth.

One example is the prediction of human subjective
judgments, such as emotion recognition and medi-
cal diagnosis. Human judgments are known to be
ambiguous [Truong et al., 2009, Flexer and Lallai, 2019,
Marmpena et al., 2018], meaning that the same person
does not necessarily give the same label to the same
item [Kramer et al., 2018]. Therefore, in scientific studies
on humans, it is crucial to rigorously measure such intrap-
ersonal (un)certainty, which is called intrarater reliability or
test-retest reliability. Test-retest reliability is typically cal-
culated using labels of the same item from the same person
at two time points. Such measures include, for example,
the percentage of their observed agreement, i.e., a kappa
statistic [Sim and Wright, 2005] or Pearson’s and intraclass
correlations [Koo and Li, 2016]. Imperfect test-retest reli-
ability implies that it is difficult to develop a model with an
accuracy of 100%. In fact, in the task of personalized facial
emotion perception recognition, i.e., the prediction of how
a target respondent judges the emotional state of a target
face, accuracy remains around 0.5 in five-class classifica-
tion [Zhou et al., 2021].

In the artificial intelligence community, recent
research has focused on two types of uncer-
tainty to better understand the causes of model
inaccuracies [Hüllermeier and Waegeman, 2021,
Abdar et al., 2021]. The first is aleatoric uncertainty,
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which is essentially the variability of data due to inherent
randomness. The other is epistemic uncertainty due to the
lack of knowledge about the true model, i.e., model imper-
fection. When modeling human impressions and emotions,
the ambiguities contained in the target of modeling are
regarded as aleatoric uncertainties. By definition, aleatoric
uncertainty is model-agnostic and forms the upper bound
of model performance1. Accordingly, no matter how much
the modeling performance is improved, it is impossible to
reduce the aleatoric uncertainty.

The predictive uncertainty of model is usually treated as
the summation of two uncertainties [Ghahramani, 2015].
For instance, in a pioneering work, Smith and
Gal [Smith and Gal, ] defined epistemic uncertainty
as the information gain or mutual information (MI)
between model and data, and they derived the following:
predictive uncertainty (entropy) = epistemic uncertainty
(MI) + aleatoric uncertainty (entropy). Their aleatoric
entropy is defined as the expected predictive entropy over
Monte-Carlo dropout samples. However, their definition
of aleatoric uncertainty unfavorably depends on the model.
Actually, their aleatoric uncertainty becomes zero when
all Monte-Carlo dropout samples give the same predictive
distribution. This contradicts the model-agnostic nature of
aleatoric uncertainty.

Another separately tackled yet related topic is confidence
calibration. Confidence is commonly defined as the proba-
bility that the decision maker’s answer is correct. By cali-
brating the probability of the predicted label, the final prob-
ability output from the model can be measured as a pre-
dictive uncertainty [Ovadia et al., 2019]. Although some
training methods themselves produce well, though not per-
fectly, calibrated results [Thulasidasan et al., 2019], post-
hoc methods are often used, including temperature scal-
ing [Guo et al., 2017] and intra order-preserving, which are
applicable to neural networks with softmax layers as output
layers.

Confidence calibration is a straightforward solution if
the ground truth of a respondent’s confidence, i.e., the
true confidence level, is available in judgment tasks.
In such cases, the epistemic uncertainty can be quanti-
fied by simply subtracting the true confidence from the
calibrated predictive uncertainty. Unfortunately, this is
not always the case in practice. As metacognitive re-
searchers have demonstrated, people cannot accurately re-
port their own confidence in two-alternative forced-choice
(2AFC) tasks [Jogan and Stocker, 2014]. Consequently,
self-reported confidence does not necessarily reflect the

1In terms of whether aleatoric uncertainty is indepen-
dent of the model, it is not completely model indepen-
dent [Hüllermeier and Waegeman, 2021]. For example, respon-
dent’s affective state (e.g., boredom) is considered as a source of
aleatoric uncertainty in the this paper, but it can be partly modeled
and removed in our definition.

probability of their judgment being correct. This discrep-
ancy has been observed even more clearly in three-class
settings [Li and Ma, 2020].

Therefore, we propose collision probability matching
(CPM), or κ-matching (kappa matching), to measure how
close the current model performance is to the upper bound
as the squared error of the predictive distribution from the
true distribution, which is our definition of epistemic un-
certainty. We obtain aleatoric uncertainty as the differ-
ence between the mean likelihood of data, which equals
the collision probability of predictive distribution, as shown
later, and the directly measured aleatoric uncertainty as
the test-retest reliability, i.e., kappa statistic. We demon-
strate that our formulation can be viewed as a second-
order Rényi-entropy version of the conventional maximum-
probability-based confidence calibration. The clear inter-
pretability of epistemic uncertainty is of particular impor-
tance in human-oriented science, which often relies on
squared-error-based hypothesis testing such as analysis of
variance (ANOVA) or intraclass correlations. This perspec-
tive would be suitable for the relevant interdisciplinary ar-
eas, including affective computing. It fills in the gap be-
tween AI and human-oriented scientific fields by exploiting
kappa-statistic-based (i.e., choice-behavior-based, neither
self-reported nor model-predicted) test-retest reliability as
a direct measurement of aleatoric uncertainty.

In this paper, we provide a mathematical proof of our pro-
posal and evaluate the epistemic uncertainty of a neural
model by applying our method to the contents of a facial
emotion judgment dataset as targets with high aleatoric un-
certainty and simulated data as targets with true confidence
distribution. The main contributions of this study can be
summarized as follows:

• We propose collision probability matching (CPM)
loss as a way to accurately measure epistemic uncer-
tainty by taking the difference from aleatoric uncer-
tainty calculated for the data themselves using test-
retest reliability.

• We give a proof showing that through CPM, the epis-
temic uncertainty as the squared error of the predictive
distribution from the (unknown) true distribution can
be quantified as the difference between the test-retest
reliability and mean data likelihood.

• We experimentally verify the effectiveness of the pro-
posed method using a real dataset and simulation 2.

2 Related work

The distinction between the two types of uncertainty,
aleatoric and epistemic uncertainties, has been studied in

2A sample code of CPM is available at
https://github.com/nttcslab/collision-probability-matching.
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the machine learning community. Aleatoric uncertainty is
regarded as uncertainty due to overlapping class distribu-
tions, and it involves quantifying such uncertainties based
on binary or multi-class classification within the frame-
work of fuzzy preference relations [Senge et al., 2014,
Nguyen et al., 2018]. However, these studies assumed it
was possible to obtain the probability of each class label,
and thus it is difficult to adapt them to our target, where the
ground truth of the confidence is not available.

Other researchers have attempted to quantify aleatoric and
epistemic uncertainties based on model output. In the field
of Bayesian neural networks [Denker and LeCun, 1990],
Gal and Ghahramani claimed that sampling methods with
dropout nodes could be used to estimate a model’s uncer-
tainty because model uncertainty is regarded as a probabil-
ity distribution over outputs [Gal and Ghahramani, 2016].
To extend other models, Smith and Gal proposed a
method to measure the epistemic uncertainty for de-
tecting adversarial examples by calculating the infor-
mation gain or mutual information between model and
data [Smith and Gal, ]. They formulated epistemic en-
tropy as the difference between predictive entropy and
aleatoric entropy based on Shannon’s entropy. In their
study, aleatoric uncertainty was approximated as the mean
predictive entropy over Monte-Carlo dropout samples. Shi
et al. focused on decomposing the predicted entropy over
multiple classes into two distinct sources of uncertainty
from the viewpoint of evidence types, and they defined
second-order uncertainty using Dirichlet probability distri-
bution functions [Shi et al., 2020]. Jain et al. proposed a
method to directly predict intrinsic uncertainty, and they
mentioned the special case where the aleatoric uncertainty
is constant and can be estimated using the mean squared er-
ror of two predicted values as the oracle [Jain et al., 2021].
One advantage of these methods is that no extra data
are needed. Of particular note is that in these methods
aleatoric uncertainty is model-dependent. However, we de-
fine aleatoric uncertainty as a model-independent criterion,
which results in a different formulation.

Predictive uncertainty is closely related to calibration meth-
ods [Guo et al., 2017]. Since confidence calibration aims
to match the probability of the model’s answer, which
is usually the maximum probability class, to the rep-
resentative of the true correctness likelihood, the cali-
brated confidence can be regarded as the predictive un-
certainty. Confidence calibration has been explored in
Bayesian binning [Zadrozny and Elkan, 2001] and in an in-
termediary approach between sigmoid fitting and binning,
named isotonic regression [Zadrozny and Elkan, 2002].
With the aim of easily adapting a calibration method
to a variety of models, including deep neural net-
work models, Guo et al. proposed a simple approach
named temperature scaling [Guo et al., 2017]. Tem-
perature scaling is an extended method of Plat scal-

ing [Niculescu-Mizil and Caruana, 2005]. Since it only in-
creases or decreases the output entropy in post-processing,
it does not affect the model’s accuracy. Therefore, if the
model’s accuracy and the output entropy are matched, it
can be said that the (distribution of the) confidence or accu-
racy represents the predictive entropy of the model, which
is regarded as the predictive uncertainty. Although confi-
dence calibration focuses only on the predicted class, class-
wise and multi-class calibration methods attempt to cali-
brate all classes. For example, Kull et al. [Kull et al., 2019]
proposed a Dirichlet calibration method for multi-class cal-
ibration. However, none of the above calibration methods
has significantly incorporated aleatoric uncertainty. There-
fore, in this paper, to exploit aleatoric uncertainty directly
measured from the dataset itself, we reformulate the cali-
bration problem based on second-order Rényi entropy.

3 Collision Probability Matching (CPM)

Here, we clarify the problem setting of this study. We con-
sider multi-class classification, which aims to find a func-
tion f , given a data point x ∈ Rd, that returns a predic-
tive distribution q ∈ ∆C−1, where ∆C−1 is a (C − 1)-
dimensional simplex satisfying

∑
c qc = 1. Predictive

class ŷmax is assumed to be the class with the maximum
probability in the predictive distribution q. If the ground
truth class is assumed to exist, the classical goal of clas-
sification is to find a function that returns ŷmax that is
as close as possible to the ground truth class. However,
the data generation process usually includes uncertainties,
such as interpersonal difference or even intrapersonal vari-
ability in cognitive judgment, so it is reasonable to assume
that there exists no single ground-truth class; instead, it is
necessary to find a function that yields predictive distribu-
tion q as close as possible to the ground truth distribution
p ∈ ∆C−1. Therefore, we attempt to quantify the squared
error of the predictive distribution q from the true distri-
bution p as the epistemic (un)certainty of the model, i.e.:

ϵ =
∑
c

(pc − qc)
2. (1)

If it were possible to ask people to judge the same item
many times, we could obtain an accurate estimate of the
true distribution p, and thus we could directly minimize
ϵ. Unfortunately, this is difficult for practical and reliabil-
ity reasons; for the latter, their judgment may be altered
by being exposed to the same item repeatedly. Therefore,
we intend to minimize the number of repetitions of rat-
ing for each pair of respondent and item, i.e., two. Ac-
tually, although not common in the machine learning com-
munity, the repetition of rating is a common procedure in
human behavior studies to measure test-retest reliability as
the probability of the same item receiving the same rat-
ing from the same person on two separate occasions. We



Collision Probability Matching Loss for Disentangling Epistemic Uncertainty from Aleatoric Uncertainty

Dist. to be used Prob.-dist.-based measure Max-prob.-based measure

True distribution p
True collision prob. (True-CP)∑

c p
2
c

Aleatoric certainty
(Test-retest reliability)

≤ True confidence (TC)
pymax

(hard to obtain)

≤ ≤

True dist. p and
predictive dist. q

Cross collision prob. (Cross-CP)∑
c pcqc

Data likelihood
(≤) Machine accuracy (MA)

pŷmax

= ( ≃)

Predictive dist. q
Predictive collision prob. (Pred-CP)∑

c q
2
c

Predictive certainty
≤ Machine confidence (MC)

qŷmax

Table 1: Important measures for describing our concept. Here, dist. and prob. represent distribution and probability,
respectively. The proposed collision probability matching (CPM) matches predictive collision probability Pred-CP to
cross collision probability Cross-CP (indicated by “=”). As a side effect, it also makes machine confidence MC close
to machine accuracy MA (indicated by “≃”), which is the goal of confidence calibration. The equations and inequalities
in black without parentheses are mathematically valid, but those with parentheses are also approximately achieved by the
proposed CPM.

demonstrate that approximated epistemic uncertainty ϵ is
measurable using the proposed collision probability match-
ing and the test-retest reliability.

3.1 Measuring epistemic uncertainty ϵ and the
proposed collision probability matching loss

Our idea for approximating epistemic (un)certainty ϵ is to
use the probability-distribution measures based on second-
order Rényi entropy, i.e., collision probabilities (or, more
accurately, the exponential of second-order Rényi entropy
× -1), listed in the middle column of Table 1: 1) collision
probability of the true distribution p, i.e.,

∑
c p

2
c , which we

call true collision probability (True-CP); 2) cross collision
probability between the true distribution p and predictive
distribution q, i.e.,

∑
c pcqc, which we call cross collision

probability (Cross-CP); and 3) collision probability of pre-
dictive distribution q, i.e.,

∑
c q

2
c , which we call predictive

collision probability (Pred-CP). Since collision probabil-
ity is entropy × -1, it is a measure of certainty. In what
follows, however, we refer to certainty indiscriminately as
uncertainty, except where necessary, because uncertainty is
used much more frequently in the literature.

Now, let us clarify the main point of the proposed method.
In our formulation, when we restrict q to satisfy the con-
dition that its predictive collision probability (Pred-CP)
matches to the cross collision probability (Cross-CP), the
epistemic uncertainty ϵ is obtained as the difference be-
tween the true collision probability (True-CP) and the pre-
dictive collision probability (Pred-CP), namely:

ϵ = True-CP− Pred-CP, if Pred-CP = Cross-CP,
(2)

which is proven as follows. We call the constraint of

Pred-CP = Cross-CP collision probability matching
(CPM), and we call the squared difference of the two terms,
i.e. (Pred-CP− Cross-CP)2, the CPM loss.

If Pred-CP (
∑

c q
2
c ) is forced to be equal to Cross-CP

(
∑

c pcqc), the difference between True-CP (
∑

c p
2
c) and

Pred-CP becomes identical to the definition of ϵ in (1),
namely the Euclidean distance of q to p:

ϵ =
∑
c

p2c −
∑
c

q2c

=
∑
c

p2c −
∑
c

q2c + 2(
∑
c

q2c −
∑
c

pcqc)

(∵
∑
c

q2c −
∑
c

pcqc = 0)

=
∑
c

(p2c − 2pcqc + q2c )

=
∑
c

(pc − qc)
2

≥ 0. (3)

As explained below, True-CP is obtained as the test-retest
reliability, i.e., the percentage of observed agreement of
two ratings that the same person gives to the same item
at two time points. True-CP is the aleatoric certainty by
definition. Cross-CP represents the mean data likelihood,
the greater value of which indicates higher performance.
Pred-CP is predictive certainty, and it is easy to obtain by
definition. Since ϵ is the squared error, it becomes 0 if and
only if the predictive distribution q is identical to the true
distribution p, and positive otherwise. Therefore, the test-
retest reliability is the upper bound of the mean likelihood.

The need for multiple ratings (even though only twice) to



Hiromi Narimatsu, Mayuko Ozawa, Shiro Kumano

measure test-retest reliability is the major limitation of the
proposed method. However, the CPM constraint per se
needs no secondary labels, and our Pred-CP remains an
interpretable, relative fit measure for model comparison.
However, our method is most useful when secondary labels
are available making it to be a fully interpretable, absolute
measure upper bounded by test-retest reliability. This is
the advantageous property over other related criteria: such
as Cohen’s kappa, which can be viewed as (True-CP −
Cross-CP) / (1 − Cross-CP), and Akaike/Bayesian Infor-
mation Criteria (AIC/BIC), which are based on mean log
likelihood, though neither is CPM-constrained nor upper-
bounded.

We hereinafter consider the expected Euclidean distance
under empirical data distribution as:

Ex∼pdata
[ ϵ] = Ex∼pdata

[
∑
c

p2c −
∑
c

q2c ]

= Ex∼pdata
[
∑
c

p2c ] − Ex∼pdata
[
∑
c

q2c ].

(4)

3.2 True collision probability True-CP

We obtain True-CP as the expected collision probability of
the true distribution p, i.e., the expectation of

∑
c p

2
c under

the empirical data distribution. This means the probability
that two random samples from the distribution p are iden-
tical if they are derived independently. We obtain it as the
expected probability that the same respondent chooses the
same class twice over multiple items.

Suppose that a target person judges each of M images
twice, namely that we have two sets of ratings, Y =
{y(1), · · · , y(M)} and Y ′ = {y′(1), · · · , y′(M)}, for the
first and second ratings, respectively, of M images. The
expected collision probability under the empirical distribu-
tion given by the data is obtained as

True-CP := Ex∼pdata
[
∑
c

p(y = c|x)2]

=
1

M

∑
m

∑
c

p(y = c|x(m))2 (5)

≈ 1

M

∑
m

∑
c

1(y(m) = c)1(y′(m) = c) (6)

=
1

M

∑
m

1(y(m) = y′(m)),

where the conversion from (5) to (6) is based on the as-
sumption that there is a pair of random ratings drawn for
x(m). The last form means the frequency that the rating
scores in both sequences Y and Y ′ are identical; this is re-
garded as the test-retest reliability of data.

Collision probability is a measure of certainty, not un-
certainty, and True-CP is defined solely on the data it-

self. Therefore, it can be considered the aleatoric certainty.
However, if a measure of uncertainty is preferable, we can
use 1 − True-CP. Since collision probability ranges from
1/C (in the case of flat distribution) to 1 (when one class
has the probability of 1 and the rest have 0), it represents
an uncertainty ranging from 0 to 1− 1/C.

Moreover, the collision probability is equal to or less than
True Confidence, as shown in Table 1 and proven in Sup-
plemental A. In addition, to minimize the impact of the sec-
ondary ratings, we use Y ′ only to calculate True-CP.

3.3 Cross collision probability Cross-CP

We obtain Cross-CP as the expected cross collision prob-
ability between the true distribution p and predictive distri-
bution q, i.e., the expectation of

∑
c pcqc under the empiri-

cal distribution. The expected cross collision probability is
expressed as

Cross-CP := Ex∼pdata
[
∑
c

p(y = c|x)q(y = c|x)]

=
1

M

∑
m

∑
c

p(y = c|x(m))q(y = c|x(m))

(7)

≈ 1

M

∑
m

∑
c

1(y(m) = c)q(y = c|x(m)) (8)

=
1

M

∑
m

q(y = y(m)|x(m)),

where the conversion from (7) to (8) is based on the as-
sumption that there are N random ratings drawn for x(m)

but N = 1. Since q(y = y(m)|x(m)) is the likelihood of
data point x(m) for the given label y(m), the expected cross
collision probability is obtained as the mean likelihood of
observed dataset Y . Note that the expected cross collision
probability consequently gives the mean likelihood for all
data points, while the ordinary cost function uses the prod-
uct of the likelihood based on the joint probability of the
dataset.

3.4 Predictive collision probability Pred-CP

We obtain Pred-CP, i.e., the expected predictive distribu-
tion q or the expectation of

∑
c q

2
c under the empirical data

distribution, in a way similar to True-CP, i.e.,

Pred-CP := Ex∼pdata
[
∑
c

q(y = c|x)2]

=
1

M

∑
m

∑
c

q(y = c|x(m))2.

Here, Pred-CP is defined solely on the model, and it may
contain both aleatoric and epistemic uncertainties.
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3.5 Comparison with conventional definition and
confidence calibration

The form of (2) is reasonable when compared with
the conventional definition of epistemic uncertainty
in the literature. For example in one previous
work [Mukhoti et al., 2021, Smith and Gal, ], based on
Shannon’s entropy, i.e., first-order Rényi entropy, epistemic
uncertainty (defined as mutual information) is obtained by
subtracting the aleatoric uncertainty (entropy) from the pre-
dictive uncertainty (entropy). Concisely, this is expressed
as epistemic uncertainty = aleatoric uncertainty - predictive
uncertainty. By replacing uncertainty with - certainty, we
obtain epistemic certainty = aleatoric certainty - predictive
certainty. This is the form of (2).

From the perspective of confidence calibration, the three
collision probabilities (True-CP, Cross-CP and Pred-CP)
correspond to maximum-probability-based measures: true
confidence (TC), machine accuracy (MA), and ma-
chine confidence (MC), respectively, as listed in the
rightmost column of Table 1. MA and MC are set
as the targets to match in ordinary confidence calibra-
tion [Guo et al., 2017]. Machine accuracy is expressed as
MA = pŷmax

. When the prediction is ŷmax under the true
distribution p, this indicates the probability of the predic-
tion being correct, namely the common definition of ac-
curacy. Machine confidence is obtained as MC = qŷmax

.
This is the probability of the predicted label ŷmax in the
predictive distribution q. True (human) confidence (TC) is
the ground truth of the machine confidence, and it is ex-
pressed as pymax . Since pymax is the maximum probability
of p, it is obvious that pymax ≥ pŷmax . Therefore, if true
confidence is available, we can consider TC as the upper
bound of machine accuracy, i.e., aleatoric uncertainty in
the data, and the difference between TC and MA as pos-
sible room for improvement, i.e., the epistemic uncertainty
of the machine. Unfortunately, as explained in Section 1,
it is difficult to obtain the true confidence (TC) regarding
human cognition. On the other hand, the test-retest reli-
ability is a choice-behavior-based criterion, which can be
measured directly from given labels and thus is arguably
more reliable.

The predictive collision probability Pred-CP, like machine
confidence, may be very high when the machine is over-
confident. In the extreme case, when the predictive distri-
bution has a probability of 1 for one class and 0 for the rest,
Pred-CP becomes 1. It exceeds True-CP when aleatoric
uncertainty exists, i.e., True-CP < 1. The CPM constraint
suppresses such overconfidence.

4 Evaluation

To measure the effect of incorporating the proposed method
as a cost function for training and that of the model’s epis-

temic uncertainty, we evaluated the change in measures us-
ing practical data and simulated data. For the practical data,
we used actual human rating data for emotion targets from
Dataset-REA, a real dataset using a facial emotion judg-
ment task [Kumano and Nomura, 2019]. In the simulation,
we first fitted an item-response model commonly used in
the psychological literature on Dataset-REA, and then con-
sidered the fitted probability distribution for each respon-
dent to each item as the true distribution p. Then we cal-
culated each measure and evaluated the effects using the
dataset.

Note that although there are various affective
datasets, including IAPS [Lang et al., 1997] and OA-
SIS [Kurdi et al., 2017], only a very limited number of
datasets contain ratings given by individual respondents
twice, while most publicly available datasets include only
summary statistics, such as mean and variance, and do not
include test-retest reliability, as partly summarized in an
earlier work [Zhao et al., 2019a].

Dataset-REA This is the facial emotion judgment dataset.
Here, N = 50 participants gave 5-point Likert ratings of
valence (positive vs. negative) and arousal (high vs. low)
emotional dimensions [Russell, 1980] to 120 artificial fa-
cial images showing one or two (mixture) of neutral and
six basic emotions (i.e., anger, disgust, fear, sadness, sur-
prise, and happiness). For measuring test-retest reliabil-
ity, each respondent rated a randomly selected 25% por-
tion of the 120 images twice; accordingly, M was 120 for
Cross-CP and Pred-CP but 30 for True-CP. True-CP
is person-dependent and was calculated as the mean test-
retest reliability of the 50 individuals. As the core af-
fect [Russell, 2003], the above two emotional dimensions
have frequently been used in the fields of social psychol-
ogy, metacognition, and affective computing to capture im-
portant components of emotions.

Dataset-SIM This dataset includes the distribution of arti-
ficially created TC distributions. Since these data are used
to verify that our method can accurately calculate the epis-
temic uncertainty and TC is difficult to obtain, we artifi-
cially generated the distribution TC based on Dataset-REA
to avoid synthetic data that could not occur in reality. We
first set the ground truth distribution p as the predictive
distribution of a much simpler model. We used a graded
response model, from a family of item-response theory,
which has more commonly been used in psychological lit-
erature, and fitted the model on Dataset-REA, using the
Stan programming language with the Hamiltonian Monte
Carlo (HMC). Then, all rating data for N = 50 persons
and M = 120 images were generated by randomly sam-
pling from the fitted categorical distribution p. The test-
retest reliability was calculated using the generated second
rating for each image in 25% of the images randomly se-
lected from M images for each person.
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Training methods. As methods for learning the predictive
distribution of personalized cognitive judgment, i.e., those
output probability distributions that explain how likely an
individual person is to give a particular label to a target, we
compared two training losses.

One is the CE Only as a baseline method only using con-
ventional Cross-Entropy loss for the loss function, and the
other is our CE+CPM loss, which introduces CPM for CE
loss. To compare CE Only and CE+CPM, we built a three-
layer neural network. Specifically, the input layer had 85
nodes and took a 35-dimensional vector, including the in-
tensities of 17 AUs and the presence of 18 AUs detected us-
ing OpenFace [Baltrusaitis et al., 2018], concatenated with
a 50-dimensional one-hot vector, each element of which
represents the target person, as xi. The middle layer had
4,608 nodes. The final layer was a softmax layer that out-
puts a C-d vector, each element of which represents the
probability of the corresponding rating score. Here, C = 5
in the experiments. The model was trained by minimizing
the weighted sum of the standard cross-entropy loss and
the respondent-wise squared difference between Cross-CP
and Pred-CP as follows:

L1 = − 1

MN

∑
m

∑
n

∑
c

y(mn)
c log(q(mn)

c )

+ w
1

N

∑
n

(Cross-CP(n) − Pred-CP(n))2,

where n is the index of respondent and w is set to 100 to
balance the two losses for CE+CPM. As for the CE Only,
we simply cut off the CPM loss by setting w = 0.

The model was trained at the learning rate of the Adam op-
timizer with 2e-4. The mini-batch size was set to its maxi-
mum, i.e., 6,000. These methods were assessed in a leave-
one-image-out cross-validation scenario, that is, trained us-
ing M − 1 images for the entire N persons ((M − 1)×N
samples) and tested on the remaining 1 image for the N
persons (N samples) as test data. Although this neural
model is relatively small in terms of the number of input di-
mensions and intermediate layers, it is reasonable for eval-
uating the proposed method because the method is model-
independent. Furthermore, the other reason to use a simple
neural model is that its well-studied features are known in
dealing with the target data, and they also perform reason-
ably well.

To calculate the machine accuracy and confidence, the pre-
dicted labels were determined to be the maximum probabil-
ity class. We implemented these methods ourselves due to
their simplicity. The lack of existing deep neural networks
for personalized cognitive judgment makes it difficult to
compare the proposed method with previous ones, such as
those using dropout samples. Moreover, the requirement
for additional data, i.e., secondary ratings, would make the
proposed method less suitable for test data. Therefore, we
consider the proposed method to be more meaningful for

use on training data, and we performed the evaluation us-
ing the entire dataset (6,000 samples) both for training and
test sets.

Results-REA We first verified the effectiveness of CPM
using CE+CPM loss. Figure 1 shows how the model was
trained when the proposed loss function CE+CPM was
used for training. All scores that changed by training in-
creased as the number of epochs increased on both va-
lence and arousal data. Furthermore, the results show
that True-CP and Pred-CP got closer as training pro-
gressed, and MA and MC also got closer as a corollary.
This indicates that the CPM produced the effect of confi-
dence calibration. In addition, the machine accuracy MA
(
∑

c pcqc = pŷmax ) exceeded the score of the test-retest
reliability True-CP on the arousal dataset at around 600
epochs, although the model used in this evaluation is a sim-
ple model without much elaboration. However, the effect
of CPM brought MA and MC closer together, resulting in
MA converging around the test-retest reliability score.

Then, we compared the measures obtained with the CE
Only and CE+CPM losses, which represent the condi-
tions before and after the introduction of the proposed
CPM to CE loss (Table 2). The results show that both
Cross-CP and Pred-CP are lower than True-CP in our
CE+CPM, while they are equal or higher than CP in CE
Only. These results indicate that the relationships between
the three collision probabilities shown in Table 1 were sat-
isfied in the experiment for both valence and arousal di-
mensions.　 In addition, the epistemic uncertainty of the
methods, which can be calculated as the difference be-
tween the test-retest reliability (True-CP) and the matched
True-CP and Pred-CP, was 0.14 (= 0.61 − 0.47) for va-
lence and 0.11 (= 0.50−0.39) for arousal. These measures
are verified in the simulation results and further discussed
in Section 5.

Results-SIM To verify the correctness of epistemic uncer-
tainty calculated by our method, we compared the ground
truth epistemic uncertainty using Dataset-SIM. To see the
impact of the number of items (images), we randomly se-
lected n images from Dataset-SIM. Sampling was done 10
times with different random seeds for each n, then training
and testing were also done 10 times respectively. Figure 2
shows the results of ϵ error, calculated by mean value of
the ground truth ϵ minus estimated ϵ̂, |ϵ̂− ϵ|, of the 50 per-
sons, where the number of items increases. The results in-
dicate that the error mostly converges and approaches zero
as the number of data increases. These results support the
relationship in (3), indicating that our method correctly es-
timates the true epistemic uncertainty. (See Supplemental
B for other comparison results of ϵ and ϵ̂ according to w.)
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CE+CPM CE Only
Full prob.-dist. Max-prob. Full prob.-dist. Max-prob.
True-CP: 0.61 TC: – True-CP: 0.61 TC: –

≤ ≥

Cross-CP: 0.47 MA: 0.60 Cross-CP: 0.61 MA: 0.62

= ̸=

Pred-CP: 0.47 MC: 0.59 Pred-CP: 0.94 MC: 0.96

(a) CE+CPM vs. CE Mode in Valence dataset.　

CE+CPM CE Only
Full prob.-dist. Max-prob. Full prob.-dist. Max-prob.
True-CP: 0.50 TC: – True-CP: 0.53 TC: –

≤ ≥

Cross-CP: 0.39 MA: 0.50 Cross-CP: 0.55 MA: 0.54

= ̸=

Pred-CP: 0.39 MC: 0.50 Pred-CP: 0.90 MC: 0.93

(b) CE+CPM vs. CE Mode in Arousal dataset.　

Table 2: Results when the model was trained using our CE+CPM loss and those with CE Only. For CE Only, Cross-CP
and Pred-CP were equal to or greater than True-CP, and it was clearly overconfident. On the other hand, CE+CPM
successfully satisfied that Cross-CP and Pred-CP do not exceed True-CP. As a side effect, MC was also well calibrated,
and this resulted in MA=MC.

Cross-CP

Pred-CP

True-CP

(a) Valence

True-CP

Cross-CP
Pred-CP

(b) Arousal

Figure 1: Training progress of CE+CPM with respect to
the five performance measures listed in Table 1, excluding
the unknown true confidence (TC). For both emotion di-
mensions, the training progressed rapidly at first (< 300
epochs) but then suddenly slowed. These values nearly
converged at an epoch between 2,000 and 3,000; at the final
epoch, Cross-CP = 0.47 vs. Pred-CP = 0.47 and MA =
0.60 vs. MC = 0.59 for valence, and Cross-CP = 0.39
vs. Pred-CP = 0.39 and MA = 0.50 vs. MC = 0.50
for arousal. Note that although we only brought Cross-CP
(orange) close to Pred-CP (green), confidence calibration,
namely MA (blue) = MC (red), was almost achieved as
well.

5 Discussion

Reliability of True-CP. True-CP is person-dependent and
it was calculated as the mean test-retest reliability of N in-
dividuals, depending on the total number of secondary la-
bels (i.e. ∝ MN ). We also calculated the test-retest relia-
bility error as the difference between the True-CP, and the
mean proportion of matched pairs between two randomly
selected labels for each p. The mean absolute error was as
small as 0.0044±0.0036 (SD). This suggests that True-CP
is reliable.

Independence of test-retest pairs. The test-retest pairs
may not be fully independent, but their impact looks lim-
ited, as demonstrated in Fig. 2. Memory is a major fac-
tor of their dependence [Müller et al., 2012], but the influ-
ence has been shown to be limited in visual tasks with some
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Figure 2: The epsilon error is the difference between the
estimated epistemic uncertainty and true epistemic uncer-
tainty calculated as the mean of |ϵ̂ − ϵ| of the 50 persons,
where CE+CPM loss was used. x-axis represents the num-
ber of images used. Each plot shows the epsilon error of 10
trials. The lines show the regression curves obtained by a
logarithmic approximation. For both valence and arousal,
the error tended to converge and approach zero gradually
as the number of data increased.

intra-pair intervals [McKelvie, 1992]. Further, in order to
minimize their influence on evaluation, we used the sec-
ondary labels only to determine test-retest reliability and
not to train the model.

Handling small data. We defined the problem based on
the expected values of both true and predictive collision
probabilities as well as cross collision probability. This is
a natural choice for extending the binary observation, i.e.,
match or mismatch, for each data point to a continuous
measure (test-retest reliability). However, this means that
the limited sample size may bias the test-retest reliability
(True-CP) and the cross collision probability Cross-CP.
Therefore, for small sizes, a Bayesian approach such as hi-
erarchical models, in which respondents (or items) are han-
dled as a random factor, would be useful for measuring the
test-retest reliability.

Necessity of the CPM during training. In terms of
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methodology, the proposed CPM, which brings Cross-CP
and Pred-CP closer together, can also be achieved post-
hoc, e.g. by using the temperature scaling, with decou-
pling from model training. However, in our preliminary
experiment, the temperature scaling was not able to esti-
mate epistemic uncertainty ϵ accurately (see Supplemental
C for details). This suggests that the CPM is needed during
training.

Difficulties in comparison with existing uncertainty
methods. This paper focuses on showing the proof of
the proposed CPM and its experimental verification, while
comparisons of uncertainty values, which are calculated by
conventional methods, are beyond the scope of this paper.
Direct comparison with popular methods is hard due to the
different definition of aleatoric uncertainty. In MC-dropout
literature [Smith and Gal, ], aleatoric uncertainty is defined
as Ep(ω|D)H[p(y|x, ω)], where the expectation is approxi-
mated using dropout samples from p(ω|D); p is a standard
notation here. This means that the uncertainty depends on
model parameter ω (as in ensemble and variational infer-
ence methods), unlike ours. In fact, when we used the
code of [Gal and Ghahramani, 2016] for our data, the un-
certainty decreased (though slightly) as the dropout rate is
lower (Pearson’s r=.66), as expected. We expect various
models to be evaluated with our method in the future, and
this will contribute to improving model performance not
only apparently but also truly.

Advantages compared to direct confidence rating ap-
proaches. In terms of both data collection and mod-
eling, our approach is better suited for larger data and
thus for deep learning than confidence annotations. Our
choice-based approach provides unbiased measures based
on central limit theory, but needs some interval between
first and second labeling (though the pairs and their inter-
vals can be overlapped with each other) to minimize the
memory effect. Confidence assessment works even for
small datasets, but suffer from people’s overconfidence or
bias [Lichtenstein et al., 1982].

Applicability to binary and multi labels. Since the pro-
posed method is in a general mathematical formulation,
another important direction would be to validate its effec-
tiveness on other various uncertain/difficult tasks, such as
human-preference estimation, aesthetic/ethical/moral judg-
ment, and medical diagnosis. For example, the proposed
method would also be applicable for modeling binary re-
sponses as well as multiclass responses, and those of each
individual (yn) and their mean (ŷ) (by ignoring n and con-
sidering each individual’s response as a single measure-
ment of a randomly selected individual from the popula-
tion). This would work if individual difference is small
enough compared to item (image) variability. While hu-
man judgment covers a wide range of applications, such as
classification, prediction, and decision making, examples
outside this range would be death/survival of living organ-

isms (e.g., under chemical dose, stress) for binary cases and
DNA replication (normal, insertion, or deletion) for multi-
class cases. See Supplemental Material D for more details.

The CPM also may work for multilabel approach when
each multilabel is normalized to be unit-sum. However,
it appears to be problematic in measuring True-CP. It can
be assumed that each class label follows an independent
Bernoulli distribution and that reliability=1 if the multil-
abel has a single true label, and reliability=0 otherwise. For
binary classes, the reliability equals the True-CP. But, for
C > 2 classes, they matched neither mathematically nor
experimentally in our preliminary simulation analysis.

Potential insights that our method may provide. Cu-
riously, the proposed method revealed a similarity be-
tween valence and arousal dimensions in the epistemic
uncertainty of the models used in this study, although
the literature has repeatedly reported different perfor-
mances between the two dimensions on various mod-
els without distinguishing the two types of uncertain-
ties [Gunes and Pantic, 2010]. This suggests that their dif-
ference in predictive performance may stem from their dif-
ference in aleatoric uncertainty in the data. This would pro-
vide some insight for future studies in affective computing
and related areas, such as social/cognitive psychology.

6 Conclusion

In this paper, we proposed collision probability matching
(CPM) loss, which integrates the problems of epistemic un-
certainty measurement and calibration into a unified frame-
work based on second-order Rényi entropy. We defined
epistemic uncertainty as the squared error of predictive dis-
tribution from the true distribution and obtained it as the
difference between aleatoric uncertainty and predictive un-
certainty. In our formulation, aleatoric uncertainty is equal
to the standard definition of test-retest reliability, namely
the probability of the same item receiving the same rating
from the same person on two separate occasions, whereas
predictive uncertainty is constrained such that the cross col-
lision probability between the true and predictive distribu-
tions matches the collision probability of predictive distri-
bution. We provided a proof of the methodology as well as
supporting results on real and simulated dataset.
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Supplementary Material:
Collision Probability Matching Loss for Disentangling Epistemic Uncertainty

from Aleatoric Uncertainty

A Confidence upper-bounds collision probability

Confidence upper-bounds collision probability, namely:∑
c

p2c ≤ pymax
.

Confidence pymax is the maximum probability of p, and thus pc ≤ pymax . Since pc ≥ 0 as a probability, it follows
p2c ≤ pc · pymax

. Therefore, ∑
c

p2c ≤
∑
c

pc · pymax

= 1 · pymax

= pymax
,

where the first equation uses
∑

c pc = 1.

B Impact of the weight of CPM loss w on the estimation of aleatoric uncertainty ϵ

To evaluate how estimated ϵ is close to the ground truth with difference w, we performed a simulation study in which label
data was pseudo-generated. In the simulation, we first determined the ground truth of target distribution p. Therefore, we
can directly measure ϵ by definition, i.e.,

∑
c(pc − qc)

2. It makes possible to evaluate how the expected ϵ value under
empirical data distribution ((4) in the body) was close to the ground truth ϵ. To obtain the true ϵ, we determine the ground
truth distribution of human rating data by using a simple model.

We set the ground truth distribution p to be the predictive distribution of a graded response model, a family of item-response
models, which has more commonly been used in psychological literature. We fitted the model using Stan programming
language with the Hamiltonian Monte Carlo (HMC) to the original human response data (Dataset-REA) described in
Sec.4. We next re-generated rating data for N = 50 persons and M = 120 images randomly sampled from a categorical
distribution with p. Then, we randomly selected 25% of the images from M images for each person, and generated second
rating for each image to calculate their test-retest reliability. We fitted the same three-layer neural network, which was
used in Sec. 4, using the same CE+CPM loss. Specifically, the input layer had 85 nodes and took a 35-dimensional
vector, including the intensities of 17 AUs and the presence of 18 AUs detected using OpenFace [Baltrusaitis et al., 2018],
concatenated with a 50-dimensional one-hot vector, each element of which represents the target image, as x(m). The
middle layer had 4,608 nodes. The final layer was a softmax layer that outputs a (C − 1)-dimensional simplex, each
element of which represents the probability of the corresponding label.

The model was trained by minimizing CE+CPM loss, i.e. the weighted sum of the standard cross-entropy loss and the
respondent-wise squared difference between Cross-CP and Pred-CP; namely:

L1 = − 1

MN

∑
m

∑
n

∑
c

y(mn)
c log(q(mn)

c ) + w
1

N

∑
n

(Cross-CP(n) − Pred-CP(n))2, (1)

where n is the index of respondent. We compared the differences due to the strength of the restraint conditions with w = 10
and w = 10, 000, respectively.
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The model was trained through the learning rate of the Adam optimizer with 2e-4. The mini-batch size was set to be
maximum, i.e. 6,000.

Table 1 shows the results when w = 10 and w = 10, 000. When w = 10, Cross-CP and Pred-CP are not close, whereas
when w = 10, 000, Cross-CP and Pred-CP are matched because of the strong constraints that bring Cross-CP and
Pred-CP closer together. It was observed that MC was calibrated and get closer to MC when Cross-CP and Pred-CP
were brought closer to each other. Here we compared the both ϵ values of the true distribution with the approximate ϵ which
is the difference of Cross-CP and Pred-CP. At w = 10, ϵ was 0.13 and approximate ϵ was 0.05, whereas at w = 10, 000,
ϵ and approximate ϵ were close, with values of 0.19 and 0.19, respectively. From the results, we showed that ϵ, or epistemic
uncertainty, can be calculated with high accuracy by bringing Cross-CP and Pred-CP closer together.

C Post-hoc approach of collision probability matching using temperature scaling

C.1 Method

As an alternative method that can be applied to models already trained, we also propose post-hoc calibration method
and evaluated if the method named CE→TS satisfies the CPM constraint post-hoc via the temperature scaling, which is
commonly used for confidence matching [Guo et al., 2017]. This method consists of two stages. In the first stage, it was
trained with only the cross-entropy loss, i.e., the first term of (1). In the second stage, the input of the softmax layer,
z ∈ RC , was fed to the temperature scaling, q = σSM (z/t), where σSM is the softmax function. The temperature that
satisfies Cross-CP(n) = Pred-CP(n) was found for each respondent n using a grid search.

C.2 Results

We observed that the collision probability of CPM-constrained predictive collision probability (Pred-CP) did not actually
exceed the test-retest reliability using CE→TS method on Dataset-SIM. Table 2 shows the comparison results of measures
before and after CPM using CE→TS method and the results of CE+CPM method as reference. The measures obtained
using the original predictive distribution of the prediction model (q̂) and the collision-probability-matched one (q) on the
left and right-hand sides of arrows in the results of CE→TS method.

CE→TS method actually yielded the corrected collision probability (0.41) below the test-retest reliability (0.61). There-
fore, the epistemic uncertainty could be meaningfully measured as the difference between the test-retest reliability and the
expected likelihood, i.e., 0.20 (= 0.61− 0.41). Similarly, for arousal, the epistemic uncertainty was 0.20 (= 0.55− 0.35).
The uncorrected machine accuracy for arousal (0.54) was lower than that for valence (0.62) in line with affective com-
puting literature (e.g. [Gunes and Pantic, 2010]), in which the two types of uncertainty have hardly been distinguished.
Curiously, on the other hand, their epistemic uncertainties turned out to be comparable. This suggests that their difference
in accuracy stemmed mainly from the aleatoric uncertainty, but not from the model itself. From another point of view, this
result is reasonable since the structure of the model used to estimate both is the same.

w=10 w=10,000
Full prob.-dist. Max-prob. Full prob.-dist. Max-prob.

True-CP TC True-CP TC
0.56 0.56 0.56 0.56

Cross-CP MA Cross-CP MA
0.49 0.47 0.37 0.36

Pred-CP MC Pred-CP MC
0.52 0.52 0.37 0.37

Table 1: Results of collision probability matching using simulated data depends on the difference of w, i.e., constraint
strength for collision probability matching.



CE→TS method
Full prob.-dist. Max-prob.

True-CP TC
0.61

Cross-CP MA
0.61 → 0.41 0.62
Pred-CP MC

0.94 → 0.41 0.96 → 0.61

(a) Valence

CE→TS method
Full prob.-dist. Max-prob.

True-CP TC
0.53

Cross-CP MA
0.55 → 0.35 0.54
Pred-CP MC

0.90 → 0.35 0.93 → 0.53

(b) Arousal

Table 2: Results of collision probability matching: Uncorrected (left side of arrow) and corrected, in which Cross-CP =
Pred-CP (right side of arrow) in CE→TS method.

Valence Arousal
Full prob.-dist. Max-prob. Full prob.-dist. Max-prob.

True-CP TC True-CP TC
0.47 0.47 0.37 0.37

Cross-CP MA Cross-CP MA
0.43 0.54 0.36 0.47

Pred-CP MC Pred-CP MC
0.43 0.55 0.36 0.47

Table 3: Results of post-hoc collision probability matching using simulated data. The left two columns show the valence
and the right shows the arousal results.

Cross-CP matched Pred-CP at t = 0.51 with the value of 0.41 in valence and at t = 0.6 with 0.35 in arousal, respectively
(see Supplemental B). At the same temperature, MC was also calibrated and close MA for both dimensions. This seems
reasonable, although not necessary, when its probability distribution variant, the cross-collision probability, is already
calibrated. Notice that True-CP (test-retest reliability) is constant since it is model-independent, and the temperature
scaling does not affect the machine accuracy [Guo et al., 2017].

Furthermore, for valence, the accuracy of 0.62 was higher than the test-retest reliability of 0.61, i.e., MA ≥ True-CP. This
could occur because TC ≥ True-CP, as already proven in Section 3.1 and Supplemental A, and TC ≥ MA as explained
in Section 3.5.

C.3 Problems of post-hoc calibration by comparing the ground truth ϵ

We also evaluate how close the estimated ϵ to the ground truth by pseudo-generated dataset as described in Section B. The
estimated ϵ, ie, ϵ̂, is 0.058 while the ground truth ϵ is 0.039 for valence. The difference is 0.019 and it is significantly
larger than the CPM Loss results. As well in arousal results, ϵ̂ is 0.020 while the ground truth ϵ is 0.039, and the difference
(0.019) is also significant larger than the CPM Loss results. Therefore, this method is not an accurate measure of epistemic
uncertainty.
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(a) Valence (b) Arousal

Figure 1: Five measures (in y axis) versus temperature t (in x axis) using CE→TS method. (a, b) on the facial emotion
judgement dataset. For all emotional dimensions, i.e., valence, arousal, and emotional similarity, the proposed CPM and
confidence calibration were achieved at t = 0.51 in valence and t = 0.6 in arousal namely, the light blue and green curves
(Cross-CP and Pred-CP) intersected (i.e., collision-probability-matched), and the dark blue line (MA) and the dark green
curve (MC) intersected (i.e., confidence-matched). More importantly, the crossing point of the light blue and green curves
was below the gray line showing the test-retest reliability (True-CP), and their vertical difference, i.e., 0.20 (= 0.61−0.41)
for valence, and 0.20 (= 0.55− 0.35) for arousal, is considered the epistemic uncertainty of the model on the test data.

Figure 1 shows the five measures versus temperature T using CE→TS Model. In both valence and arousal dataset, al-
though test-retest reliability score exceeds machine accuracy, we can see that the measure where measure of certainty and
likelihood match is lower than the test-retest reliability score.

D Applicability to multi-labels

Some readers may think that multilabel approach will also work for the CPM when each multilabel is normalized to a unit
sum vector. However, there appear to be problems in measuring the True-CP. Suppose that the label for each class follows
an independent Bernoulli distribution and that reliability=1 if the multilabel y has a single true label, and reliability= 0
otherwise. For binary classes, this definition makes it easy to prove that reliability equals True-CP. However, for multiple
classes (C > 2), they do not agree both mathematically and experimentally by simulation.
Verification: As long as the correct answer is a distribution, we can say that the discretization error goes up (information
drops) in the order of multi-label and single-label [Jia et al., 2018]. But with multi-labels, it seems difficult to get the
correct True-CP when there are more than 3 classes. If the generation of multi-labels from the true distribution follows
a class-by-class independent Bernoulli process, multi-labels also have some properties similar to single labels with an
increased number of observations. For example, a normalized histogram of an infinite number of samples will match the
true distribution. However, it seems difficult to obtain test-retest reliability (True-CP) from a single multi-label observation
for more than two classes (C > 2). First, we would consider test-retest reliability = 1 when only one class is labeled,
since it is consistent, and test-retest reliability = 0 otherwise. In the case of binary classes, True-CP can be obtained
correctly with infinite samples (assuming p = (p1, 1 − p1), we can represent probability of a label being (1, 0) = p21 and
probability of a label being (0, 1) = (1− p1)

2, meaning the sum of these probabilities, i.e. p21+(1− p1)
2, equal to

∑
c p

2
c ,

the definition of True-CP. However, when C > 2, such calculation does not necessarily match
∑

c p
2
c . To validate it in

analytically, we ran a simple simulation with a large number of true distributions p generated from Dirichlet distribution.
We observed that this method is often overvalued for three or more classes. After creating 100 Dirichlet distributions and
calculating the test-retest reliability, the mean absolute error for the binary class was small (0.004± 0.004 (SD)), while the
mean absolute error for the multi-class was much larger (0.08± 0.06).
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