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Abstract

The article considers semi-supervised multitask
learning on a Gaussian mixture model (GMM).
Using methods from statistical physics, we com-
pute the asymptotic Bayes risk of each task in the
regime of large datasets in high dimension, from
which we analyze the role of task similarity in
learning and evaluate the performance gain when
tasks are learned together rather than separately.
In the supervised case, we derive a simple algo-
rithm that attains the Bayes optimal performance.

1 INTRODUCTION

Multitask learning (MTL) is a machine learning method in
which multiple tasks are learned simultaneously. It can fa-
cilitate knowledge transfer between tasks and can lead to
more informative data representation (Ruder, 2017). Al-
though learning from related tasks can help disseminate
useful information learned from one task to other tasks, the
presence of unrelated tasks can also be beneficial. With the
prior knowledge that two given tasks are unrelated, the al-
gorithm can learn to ignore irrelevant features of the data
distribution, resulting in better data representation (Paredes
et al., 2012).

In this work, we propose a simple model of MTL based on
Gaussian mixtures that focuses on capturing the transfer of
knowledge between tasks, leaving out the data representa-
tion aspect. Our paper extends the semi-supervised learn-
ing model studied in Lelarge and Miolane (2019a), which
examines the added value of unlabeled data in a one-task
classification. We consider here instead multiple classifi-
cation tasks, for which the data in each task are partially
labeled and come from two classes. Thanks to the simplic-
ity of our model, we can define the correlation between two
tasks as a number in [−1, 1]. We are interested in the per-
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formance gain when correlated tasks are learned together
versus when they are learned separately, assuming the best
algorithm is used. This leads to the concept of Bayes risk,
defined as the minimal feasible probability of misclassify-
ing a new data point not from the training dataset. Despite
the randomness of data, in the limit where both the quantity
and the dimensionality of the data are large with a fixed ra-
tio, the Bayes risk converges towards a deterministic value.

Although the main objective of this study is to compute the
minimum classification error, it is important to emphasize
that the posterior distribution of a signal given the observed
data is a more fundamental object, as it serves as a basis for
deriving optimal estimators with respect to certain criteria.
In the high-dimensional regime, the posterior law of a sig-
nal is a high-dimensional integral, and despite its complex-
ity, it behaves like a simpler law. This property enables the
exact calculations obtained in this work.

Contributions and related works.

As a first contribution, we derive an exact formula for
the asymptotic Bayesian risk, based on a simple argument
that is similar to the cavity method from statistical physics
(Mezard and Montanari, 2009). Although not fully rig-
orous, the paper aims to provide a clear intuition of the
asymptotic equivalence that occurs in high dimensions.
This concept underlies most of the equations presented in
the paper. The paper is designed to be accessible, and no
prior knowledge of physics is required to understand its
contents. Our work aligns with a body of research that
studies the fundamental limit of various high-dimensional
statistical models, including tensor models (Barbier et al.,
2017; Lesieur et al., 2017; Lelarge and Miolane, 2019b),
generalized linear model (Barbier et al., 2019) and Gaus-
sian mixture model (Lesieur et al., 2016; Lelarge and Mi-
olane, 2019a).

Secondly, we analyze the role of task correlations and how
they interact with other elements of the model, such as the
proportion of labeled data in each task. It is well known
that unsupervised learning on a single task with Gaussian
mixture data leads to a phase transition that separates the
high and low noise regimes. We demonstrate that phase
transition persists to the case of multitask and study how
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it is affected by task correlations. In the context of source
task - target task, we identify the conditions in which the
source task is most beneficial to the target task.

Finally, we derive a simple algorithm that achieves the op-
timal performance in the case of supervised learning. Al-
though an optimal performance on a synthetic data set does
not necessarily have a good performance on real data, this
algorithm shows how the optimal algorithms on separate
tasks should be modified when correlations are taken into
account. This could offer useful insights for designing
MTL methods in practice.

Although our focus is different, there is some connection
between our work and theoretical studies that investigate
optimization-based inference on simple data models. These
studies compute the exact asymptotic performance of algo-
rithms, and examine how this performance is influenced
by factors such as choice of loss function, regularization,
and number of model parameters. On the other hand, our
work focuses on investigating the fundamental limit of sta-
tistical problems regardless of any specific algorithm. It is
interesting, however, that in some cases, the optimization-
based methods can nearly reach or achieve the optimal per-
formance (Mai and Couillet, 2021; Thrampoulidis et al.,
2020; Mignacco et al., 2020; Loureiro et al., 2021; Aubin
et al., 2020). For multitask learning on Gaussian mixtures,
Tiomoko et al. (2021b) obtain exact asymptotic results for
least-square support vector machine using random matrix
theory.

There are several reasons to study the GMM. Besides being
amenable to theoretical analysis, it is the simplest model
that captures the elements of MTL that we are interested
in: task correlation and transferring of information. On the
application aspect, it is remarked in Lesieur et al. (2016)
that the Bayesian statistics under GMM as a prior can re-
discover several key methods in machine learning such as
the K-means or spectral clustering algorithms. There ex-
ists a close relationship between Bayesian statistics and al-
gorithms. On one hand, Bayesian interpretations can be
established for well-known algorithms such as PCA and
SVM (Tipping and Bishop, 1999; Polson and Scott, 2011),
which turn out to be standard estimators on fairly simple
data models. On the other hand, by starting with a sim-
ple data model and devising an optimal algorithm based on
specific criteria, one can enhance existing methods or cre-
ate new ones. (Bishop, 1998; Krzakala et al., 2012).

Notation: We use the symbol ⟨·, ·⟩ to denote the scalar
(or inner) product of vectors. If X = (Xij), then Xi· =
(Xij)j and X ·j = (Xij)i. For n ∈ N, we use [n] to de-
note the set {1, 2, . . . , n}. The notation Dx represents the
diagonal matrix with diagonal elements given by the vector
x. If indexed objects such as Xi are given, then X simply
means (Xi)i.

The source code for the simulations in this paper is avail-

able at: https://github.com/Minh-Toan/Bayes-risk

2 MODEL

We consider T classification tasks, where task t consists of
Nt data points in RD. The i-th data point in task t, denoted
by Y ti, is given by

Y ti = VtiU t + σtZti (1)

where σt > 0. The random variables V ,U ,Z are inde-
pendent, with

Vti
i.i.d∼ U({−1, 1}),

Zti
i.i.d∼ N (0, ID),

and U1, . . . ,UT are chosen uniformly randomly on the
unit sphere SD−1 =

{
x ∈ RD, ∥x∥ = 1

}
, conditioned on

the event

⟨U t,U t′⟩ = Ctt′ , t ̸= t′.

The matrix C = (⟨U t,U t′⟩)Tt,t′=1 is called the task-
correlation matrix. It follows from the definition that C
is a positive definite matrix with diagonal entries all equal
to 1. The tasks are said to be connected if for any two tasks
t and t′, there is a sequence of tasks t1, . . . , tk such that
Ctt1 , Ct1t2 . . . Ctkt′ ̸= 0.

In other words, the data in task t comes from two classes
corresponding to two Gaussian distributions centered at
±U t with the same covariance σ2

t ID. The positions of
the centers are not known and can only be estimated from
the data. The class of a data point Y ti is indicated by
Vti, so each data point has probability 1/2 of belonging
to each class. A data point is said to be labeled if we know
which class it belongs to, otherwise it is unlabeled. Inde-
pendently of all other random variables, each data point in
task t is labeled with probability ηt. The cases ηt = 1 and
ηt = 0 correspond to supervised and unsupervised learn-
ing. Ctt′ measures the correlation between tasks t and t′.
The parameters λt = 1/σ2

t are called the signal to noise
ratio (SNR). As the SNR increases, the two classes sepa-
rate and classification is easier. We study the model in the
setting where the dimension and the amount of data in each
task tends to infinity at a fixed rate αt = limD→∞ Nt/D,
called the sampling ratio. Note that the model for semi-
supervised learning studied in Lelarge and Miolane (2019a)
corresponds to the case T = 1.

We have access to the dataset Y = (Y ti), the labels as
well as model parameters (σt), (ηt), (αt) and C. 1 Our job

1σ and C can indeed be estimated with vanishing errors as
D → ∞, given that a positive fraction of labeled data is available
in each task, i.e. ηt > 0 for all t (Appendix D).

https://github.com/Minh-Toan/Bayes-risk
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is to use that available information to classify a new data
point Y new in any given task t

Y new = VnewU t + σtZnew (2)

We are interested in the minimal classification error, i.e. the
Bayes risk

inf
V̂

P(V̂ ̸= Vnew) (3)

where the infimum is taken over all estimators of Vnew.

3 RESULTS

Before presenting the results, we need some definitions that
will aid in formulating our findings in a clear and concise
manner.

Definition 3.1. The inference of X ∈ RD from the data Y
satisfies the replica symmetric (RS) property with overlap
q if in the limit D → ∞,

⟨X,X1⟩, ⟨X1,X2⟩, ⟨X, X̂⟩, ∥X̂∥2 (4)

all converge to the same limit q, where X1,X2 are sam-
pled independently from the posterior of X given Y , and
X̂ = E[X|Y ], called the MMSE estimator of X given Y .
2 In some contexts, we use X̂ to refer to a general estima-
tor of X , while the MMSE estimator of X is denoted as
X̂MMSE.

This property holds for a wide range of inference problems
in the setting where the signal is generated from a known
distribution. We assume that this property holds true for
our model:

Assumption. σ−1
t U t|Y and N

−1/2
t V t|Y satisfies the RS

property for all t ∈ [T ] with the overlaps denoted by qut
and qvt respectively.

The inclusion of the normalizing factor σt in the definition
of qut is for the purpose of convenience.

Later in the paper, we will require the following definition
in order to prove the results:

Definition 3.2. Consider the following Gaussian channels

Yi =
√

λiXi + Zi, i = 1, . . . , n (5)

with inputs Xi, outputs Yi and SNRs λi. Let X̂ =
E[X|Y ]. The overlap functions FX,i : Rn → R are de-
fined as

FX,i(λ) = E[X̂iXi] = E[X̂2
i ] (6)

FX,i is also referred to as the overlap of the signal Xi.

2MMSE stands for minimum mean-squared error.

The main result of the article unfolds as follows.

Result. i) Under the setting of the model, as D → ∞, the
Bayes risk converges to

1− Φ(
√
qut),

where Φ(t) = 1√
2π

∫ t

−∞ e−x2

dx

ii) The overlaps qut, qvt satisfies the following equations

qut = [M −M(I +DM)−1]tt (7a)
qvt = ηt + (1− ηt)F (qut) (7b)

with

M = {Ctt′/σtσt′}Tt,t′=1

D = diag{αtqvt}Tt=1

F (q) = E[tanh(
√
qZ + q)], Z ∼ N (0, 1).

Remark 3.1. When qut = 0, the Bayes risk of task t is
equal to 0.5, which corresponds to the level of classifica-
tion error of a random guess. In this case, we say that the
classification of task t is impossible. On the other hand,
if qut is positive, the classification of task t is said to be
feasible.
Remark 3.2. The fixed point equations (7a) and (7b) may
not uniquely determine the overlaps. Specifically, for unsu-
pervised learning with high SNR, two solutions exist: the
zero solution is unstable while the non-zero solution is sta-
ble, and the stable solution is naturally chosen as overlaps.
In other cases, there is only one solution.

We can perform a sanity check of the result by considering
the following special cases: if the similarity between any
two tasks is zero, the result implies that MTL has the same
asymptotic Bayes risks as learning task separately, which
is obvious since the data from different tasks are indepen-
dent, while if σt = σ and Ctt′ = 1 for all t, t′, i.e. the
data distributions are identical for all tasks, the asymptotic
Bayes risks of all tasks are equal to that of a single task
with parameters α =

∑
t αt and αη =

∑
t αtηt (Appendix

B).

4 CONSEQUENCES

We present in this section some implications of the main
result.

4.1 Supervised learning.

For supervised learning with only one task, the minimal
classification error of a new data point Y new is achieved
by the estimator V̂new = sgn(⟨Y new, Ȳ ⟩), where Ȳ =
N−1

∑
i ViY i (Lelarge and Miolane, 2019a). In the multi-

task case, if Y new is a new data point in task t, the following
algorithm achieves the optimal performance:



Semi-supervised MTL on Gaussian mixture

1. Compute

Ȳ t =
1

Nt

Nt∑
i=1

VtiY ti

2. Compute

Ỹ t =

T∑
s=1

atsȲ s

where A = (ats)
T
t,s=1 = MDα(I +MDα)

−1.

3. The asymptotic Bayes risk is achieved by

V̂new = sgn(⟨Y , Ỹ t⟩). (8)

We can see that the optimal estimator for multiple tasks
modifies the optimal estimators for separated tasks Ȳ t by
taking into account the correlations between tasks as well
as their levels of difficulty and the relative sizes, measured
by C, (σt) and (αt) respectively. Interestingly, this optimal
algorithm coincides with the method proposed in Tiomoko
et al. (2021a) using a different approach.
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FIGURE 1: Bayes risk vs performance of the asymptotic
optimal algorithm. α1 = α2 = 1, σ1 = 1, σ2 = 0.5,
D = 1000.

4.2 Unsupervised learning and phase transition.

A particularly interesting behavior that only occurs in the
case of unsupervised learning is phase transition. One of
the most well-known example of this phenomenon is BBP
phase transition (Baik et al., 2005) which concerns a single
learning task with limD→∞ N/D = 1. When λ = 1/σ2 ≤
1, no estimator can achieve a smaller classification error
than 0.5. In other words, the classification is objectively
impossible since the two classes are statistically identical.
On the other hand, we say that a task is feasible if one can
obtain a classification error smaller than 0.5. It turns out
that phase transition persists to the case of multitask. Fig.

2 shows the performance of task 1 in terms of SNRs in the
case of two tasks with N1 = N2 = D and correlation c =
0.7. The classification is impossible in the region delimited
by the black curve.
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FIGURE 2: Bayes risk of Task 1 in terms of SNR of each
task. Two tasks are unsupervised, with N1 = N2 = D and
correlation c = 0.7. The classification is impossible in the
region delimited by the black curve. The impossible region
is identical for two tasks.

The simulation also shows that the impossible regions are
identical for both tasks. In other words, two correlated
tasks are either feasible or impossible. In the general case
with any number of tasks, tasks are feasible or impossible
together, given that they are connected.

Note that phase transition disappears as soon as a posi-
tive proportion of labeled data is available, since supervised
learning restricted on labeled data already produces a non-
trivial performance.

In the case of two tasks with N1 = N2 = D, the region of
impossible classification is given by{

(λ1, λ2) ∈ [0, 1]2 : (1− λ2
1)(1− λ2

2) ≥ c4λ2
1λ

2
2

}
(9)

as shown in Figure 3. As the task correlation c increases
from 0 to 1, this region shrinks from the unit square [0, 1]2

to a quarter of a disk.

Another special case where an explicit formula for the im-
possible region can be obtained is when there are T tasks
with N1 = · · · = NT = D, with correlation c > 0 between
any two of them, and λt = λ for all t. It can be shown that
the classification is impossible whenever

λ ≤ 1√
1 + (T − 1)c2

. (10)
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FIGURE 3: The region of impossible classification shrinks
as the task correlation increases. When two tasks are un-
correlated (c = 0), the region of impossible classification
is the whole square [0, 1]2. As c increases from 0 to 1, the
impossible region shrinks from the unit square [0, 1]2 to a
quarter of a disk.

4.3 Semi-supervised learning.

To reduce the number of model parameters in the simula-
tion, we here focus on a specific setting consisting of one
source task and one target task. The source task is compar-
atively easy: it can be fully labeled, have a high SNR, or
have a larger dataset. We want to see how the target task
benefits from the source task.

Figure 4 illustrates the effect of task correlation. The task
correlation c ranges from 0 to 1. Note that the correlations
c and −c are essentially the same, since one can be trans-
formed to another by switching labels in one task. The first
task (target task) is composed of a small dataset (α1 = 0.1)
without label (η1 = 0), while the second task (source task)
consists of a fully labeled dataset (η2 = 1) with twice as
much data (α2 = 0.2). If two tasks are highly correlated
(c ≳ 0.5), the performance of the target task can be sig-
nificantly improved. When c is near zero, the decrease in
Bayes risk is slow, in order of O(c2). Note that two tasks
have the same SNR (λ1 = λ2 = 4), so when c = 1 they
have the same data distribution and can be combined into a
single task, yielding a identical performance.

In Figure 5, we compute the rate of error reduction in the
target task as a result of transferring information from the
source task. We found that MTL is most effective when the
SNR of the target task is near the phase transition and is
smaller than that of the source task, while the proportion of
labeled data is low.

Intuitively, there are three reasons for this. Firstly, the la-
beled data from the target task is more valuable than that
of source task, even in this case where two tasks are highly
correlated (c = 0.8). This leads to lower gain when the pro-
portion of labeled data in the target task is high. Secondly,
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FIGURE 4: Two-task setting: Bayes risks as a function
of the task correlation c, with proportions of labeled data
η1 = 0, η2 = 1, oversampling ratios α1 = 0.1, α2 = 0.2
and SNRs λ1 = λ2 = 4. When two tasks are highly cor-
related (c ≳ 0.5), the performance of task 1 is significantly
improved.
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FIGURE 5: Percentage of reduction of Bayes risk in term of
SNR and proportion of labeled data of the target task, with
parameters c = 0.8, N1 = N2 = D, λ1 = 2, 0 ≤ λ2 ≤ 3,
η1 = 1, 0 ≤ η2 ≤ 1.

if the source task is more difficult than the target task, i.e.
the SNR is higher in the target task, then the source task is
not very useful. Finally, near the phase transition where the
target task struggles, labeled data from the source task can
offer valuable help.

5 CAVITY ARGUMENT

The various equations obtained in the paper are under-
pinned by the phenomenon of asymptotic equivalence that
occurs in the high-dimensional limit. In this limit, a fairly
complicated statistical model decouples into independent
components, and the inference can be performed sepa-
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rately in each component. This decoupling phenomenon
is proven using the so-called cavity method. The following
lemma plays a crucial role in the cavity argument presented
in this paper:
Lemma 5.1. Suppose we want to estimate the signal X ∈
R with prior PX from the data Y that can be split into two
parts as follows. The first part, denoted by Y x, consists of
the following observation on X ,

Y x = XU +Z, (11)

where

· U ∈ RD is unknown with prior PU ,

· Z ∼ N (0, ID),

· X , U and Z are independent.

The second dataset, denoted by Y u, is independent of X .
Suppose that the law U |Y u has the RS property with over-
lap q. Then in the limit D → ∞,

i) The posterior of X given Y is asymptotically equivalent
to the law P̄ defined as

dP̄ (x|Y )

dPX(x)
∝ exp

(
x⟨Y x, Û⟩ − 1

2
qx2

)
(12)

where Û = E[U |Y ]. As a consequence, the statistics S =

⟨Y x, Û⟩ is asymptotically sufficient for estimating X from
Y .

ii) S/
√
q converges in law to

√
qX + ξ, where ξ follows

standard normal distribution and is independent of X . As
a result, estimating X from Y is asymptotically equivalent
to estimating X from the output of a Gaussian channel with
SNR q.

Proof. Since X is independent of U and Y u, we have

dP (x|Y )

dPX(x)
=

∫
dP (u|Y u)P (x|u,Y x)

∝
∫

dP (u|Y u) exp
(
x⟨Y x,u⟩ − 1

2
x2∥u∥2

)
:= A

Define

B = exp
(
x⟨Y x, Û⟩ − 1

2
qx2

)
(13)

To prove (i), we will show that E[(A − B)2] → 0 in the
high-dimensional limit D → ∞ for any value of x. To do
this, it is sufficient to show that E[A2], E[B2] and E[AB]
converge to the same limit, using the RS property of U |Y u.
Indeed, E[A2] can be written as

E exp
( 2∑

a=1

x⟨Y x,Ua⟩ − 1

2
x2∥Ua∥2

)

where U1,U2 are sampled independently from U |Y u.
Substituting Y x = XU +Z into the previous expression,
we obtain

E exp
( 2∑

a=1

xX⟨U ,Ua⟩+ x⟨Z,Ua⟩ − 1

2
x2∥Ua∥2

)
Taking the expectation over Z and using the fact that
E[e⟨a,Z⟩] = e

1
2∥a∥

2

, we have

E[A2] = E exp
( 2∑

a=1

xX⟨U ,Ua⟩+ x2⟨U1,U2⟩
)

It follows from RS property of U |Y u that

lim
D→∞

E[A2] = E exp
(
2qXx+ qx2

)
(14)

To calculate the limits of E[AB] and E[B2], we follow ex-
actly the same procedure, which involves substituting the
definition of Y x, taking the expectation over Z, and using
the RS property. This leads us to the same limit as (14),
thereby proving (i).

It follows immediately from the asymptotic equivalence be-
tween P (x|Y ) and P̄ (x|Y ) that the statistics ⟨Y x, Û⟩ is
asymptotically sufficient for estimating X from Y . This
means that all of the relevant information about X can be
extracted from ⟨Y x, Û⟩ instead of from Y , without any
loss of information in high dimensional limit.

Now we have

⟨Y x, Û⟩ = ⟨XU +Z, Û⟩ = X⟨U , Û⟩+ ⟨Z, Û⟩.

Given that ⟨Z, Û⟩ ∼ N (0, ∥Û∥2) and Z is independent
of X , in the limit D → ∞, this inner product converges in
distribution to

√
qξ, where ξ is a standard normal random

variable independent of X . Therefore

⟨Y x, Û⟩
√
q

d−→ √
qX + ξ, D → ∞,

which proves (ii) since the left hand side of the last expres-
sion is also a sufficient statistics of X given Y .

To give an application of Lemma 5.1 and to familiarize
readers with the cavity argument before delving into the
proof of the main results in the paper, we will analyze the
following tensor model studied in Miolane (2017). Our
goal is to estimate the signals U and V from the follow-
ing observations:

Yij =

√
λ

N
UiVj + Zij , i ∈ [Nu], j ∈ [Nv] (15)

Here, we assume that Ui
i.i.d∼ PU , Vj

i.i.d∼ PV and the noises
Zij follow independent standard Gaussian distributions for
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all i, j. We study the model in the limit as N,Nu, Nv tend
to infinity with fixed ratios Nu/N → αu and Nv/N → αv .
Furthermore, we assume that U ,V and Z = (Zij) are
independent. It can be shown that both N

−1/2
u U |Y and

N
−1/2
v V |Y satisfies the replica symmetry property, with

overlaps qu and qv respectively. We will use Lemma 5.1 to
derive the fixed point equations that satisfied by qu, qv .

Let i ∈ [Nu] be fixed. The cavity method involves dividing
the data Y into two parts. The first part, denoted as Y 1,
includes the observations related to Ui, given by

Y i· =

√
λ

N
UiV +Zi· (16)

while the remaining data is denoted as Y 2. Since the
dataset Y 1 only contains an insignificant amount of in-
formation relevant to V (one can see that by comparing
the sizes of Y 1 and Y 2), estimating V from Y is es-
sentially the same as estimating V from Y 2. Therefore,
N

−1/2
v V |Y 2 also satisfies the RS property with overlap qv .

It is easy to check that the Lemma 5.1 is applicable for this
model, with Ui and

√
λ/NV respectively playing the role

of X and U in the lemma. As a result, estimating Ui from
Y is asymptotically equivalent to estimating the signal Ui

from the output of a Gaussian channel with SNR λαvqv .

For distinct i, k ∈ Nu, since Zi· and Zk· are indepen-
dent, it can be seen from the proof of Lemma 5.1-ii that the
noises ξi and ξk of the equivalent Gaussian channels asso-
ciated with Ui, Uk are independent. Therefore Û i, which
depends on ξi and Ui, are asymptotically independent for
all i. By the law of large number

qu = lim
Nu→∞

1

Nu

Nu∑
i=1

Û2
i = FU (λqv) (17)

where FU is the overlap function of the Gaussian channel
with signal U . Repeating the same argument for Vj with
j ∈ Nv , we obtain the fixed point equations for qu, qv:

qu = FU (λαvqv)

qv = FV (λαuqu)

Note that fixed point equations may not uniquely determine
overlaps, as they can have multiple solutions. However,
rigorous methods (Barbier and Macris (2019)) demonstrate
that overlaps can be uniquely determined as the minimax
point of a certain function.

6 PROOFS

6.1 Fixed point equations

Reformulation as a tensor model. Let Ũ t =
√
DU t, it

is shown in Appendix F that in the limit D → ∞, Ũtj are

asymptotically Gaussian with covariance

E[ŨtjŨt′j′ ] = Ctt′δjj′ (18)

Let W t =
√
DU t/σt, the original model can be written

as a collection of one-dimensional Gaussian channels

Yijt =
1√
D
VtiWtj + Ztij (19)

for 1 ≤ t ≤ T, 1 ≤ i ≤ Nt, 1 ≤ j ≤ D. As D → ∞,
the random variables Wtj are asymptotically Gaussian with
covariance

E[WtjWt′j′ ] = Mtt′δjj′ (20)

where Mtt′ = Ctt′/(σtσt′).

Next, the information conveyed by the labels can be ab-
sorbed into the prior distribution of V . Specifically, if the
value of Vti is unknown, then its prior remains uniform over
{−1, 1}. Otherwise, if it is known that Vti = 1, then the
prior of Vti is δ(v− 1). Note that in this case, the posterior
coincides with the prior.

The RS property of σ−2
t U t|Y implies that D−1/2W t|Y

also has the RS property with overlap qut.

In summary, the problem can be cast as a tensor model,
whereby the objective is to estimate the signals V t and
W t based on prior information regarding these vectors and
noisy observations of the tensor products V t ⊗W t.

Cavity argument. A crucial step in the analysis is to show
that in the high-dimensional limit, estimating V t and W t

given Y is asymptotically equivalent to estimating the co-
ordinates of these vectors from Gaussian channels with in-
dependent noises. The original model is thus equivalent to
a much more decoupled model and the inference can be
done separately on each channel.

To obtain the fixed point equations, we follow the same ap-
proach as the example presented in Section 5. We assume
that the proportion of unlabeled data is positive in any task.
By taking the limit of these proportions to zero, we can
derive the result for the supervised case. Fix t ∈ [T ] and
i ∈ [Nt] such that Vti is unknown. We divide the data Y
into two parts: Y 1 consisting of the observations concern-
ing Vti, namely

Y ti =
1√
D
VtiW t +Zti

and the remaining data Y 2. Since the dataset Y 1 only
contains an insignificant amount of information relevant to
W t, estimating W t from Y is essentially the same as es-
timating W t from Y 2. Therefore, D−1/2W t|Y 2 also sat-
isfies the RS property with overlap qu. It is easy to check
that the Lemma 5.1 is applicable, with Vti and D−1/2W t

respectively playing the role of X and U in the lemma. As
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a result, estimating Vti from Y is asymptotically equivalent
to estimating the signal Vti from the output of the Gaussian
channel with SNR qut. For distinct i, k ∈ [Nt], since Zti

and Ztk are independent, it can be seen from the proof of
Lemma 5.1-ii that the noises ξi and ξk of the equivalent
Gaussian channels associated with Vti, Vtk are also inde-
pendent. Therefore Vti, which depends on ξi and Vti, are
asymptotically independent for all i such that Vti is unla-
beled. By the law of large number,

rvt := lim
Nt→∞

1

(1− ηt)Nt

∑
i

V̂ 2
ti

= Fv(qut) (21)

where the sum is over all i ∈ [Nt] such that Vti is unlabeled
and Fv is the overlap function of the Gaussian channel with
Rademacher signal. From Appendix E.1,

Fv(q) = E[tanh(
√
qZ + q)], Z ∼ N (0, 1). (22)

On the other hand, from the definition of rvt, we have

qvt = ηt + (1− ηt)rvt (23)

The fixed point equation (7b) follows from (21), (22) and
(23).

Following exactly the same cavity argument, the estimation
of Wtj given Y is asymptotically equivalent the the estima-
tion of the signal Wtj from the output of the Gaussian chan-
nel with SNR αtqvt. Moreover, the noises corresponding to
the signals Wtj and Wt′j′ are asymptotically independent
for (t, j) ̸= (t′, j′). When j ̸= j′, the signals Wtj and
Wt′j′ are independent. As a result, the inference on the
equivalent Gaussian channels can be performed indepen-
dently on groups of T scalar Gaussian channels (Wtj)

T
t=1.

By the law of large number,

qut = lim
D→∞

1

D

D∑
j=1

Ŵ 2
tj = Fw,t({αtqvt}Tt=1) (24)

where Fw,t are overlap functions of the Gaussian chan-
nel with signal N (0,M). The explicit formula for Fw,t

are computed in Appendix E.2, which gives the fixed point
equation (7a).

6.2 Bayes risk and optimal algorithm

Suppose we want to classify a new data point Y new in task
t

Y new = VnewU t + σtZnew (25)

It is easy to check that Lemma 5.1 can be applied to this
problem, with Vnew,U t playing the role of X,U in the
lemma, as the posterior σ−1

t U t|Y satisfies the RS prop-
erty with overlap qut. As a result, in high dimensional

limit, estimating Vnew given Y ,Y new is essentially the same
as estimating the signal Vnew from the output of the Gaus-
sian channel with SNR qut. This implies that the minimal
classification error of Vnew is given by that of the Gaussian
channel with Rademacher signal and SNR qut, which is
(Appendix E.1)

1− Φ(
√
qut),

According to Lemma 5.1, S = ⟨Y new, Û t⟩/
√
qut is suf-

ficient for estimating Vnew. Moreover, S converges in law
to the output of the Gaussian channel with signal Vnew and
SNR qut. The estimator that minimizes the Bayes risk for
this channel is simply sgn(S), which leads to the optimal
estimator of Vnew as sgn(⟨Y new, Û t⟩). The next step is to
determine the value of Û t. We will take advantage of the
fact that the vectors U t are asymptotically Gaussian, so our
subsequent argument will rely on the reformulation (18) of
the model. We will need the following result

Lemma 6.1. The following collection of Gaussian chan-
nels

Yi = ciXi + Zi, i = 1, . . . , n (26)

with inputs Xi, outputs Yi, SNR c2i and independent stan-
dard Gaussian noises Zi, is equivalent to a single Gaus-
sian channel with signal X , output ⟨c,Y ⟩/∥c∥ and SNR∑n

i=1 c
2
i . Moreover,

Proof. It is straightforward to verify that the statistics S :=
⟨c,Y ⟩/∥c∥ is sufficient for estimating X from Y . More-
over, S = ∥c∥X + ξ where ξ = ∥c∥−1⟨c,Z⟩ is standard
Gaussian and independent of X . This proves the claim of
the lemma.

Remark 6.1. From the proof of Lemma 6.1 we can also see
that the noise ξ of the simplified channel comes from the
noises of the original channels.

The Lemma 6.1 implies that, for each (t, j) fixed, the fol-
lowing Gaussian channels

Ytij =
1√
D
VtiWtj + Ztij , i = 1, . . . , Nt

which share the same signal Wtj , can be simplified into
a single Gaussian channel with output

√
NtȲtj and SNR

Nt/D ≃ αt, where Ȳtj is the j-th coordinate of the vector
Ȳ t in the algorithm.

For (t, j) ̸= (t′, j′), the noises of the simplified Gaussian
channels associated with Wtj and Wt′j′ are independent,
as a consequence of Remark 6.1. Additionally, the signals
Wtj and Wt′j′ are independent if j ̸= j′. Therefore, the
inference on the simplified Gaussian channels can be car-
ried out independently on each group of T channels with
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signals (Wtj)
T
t=1. The MMSE estimator on each of these

groups can be computed explicitly as

(Ŵtj)
T
t=1 = B(

√
NtȲtj)

T
t=1

where

B = MD1/2
α (I +D1/2

α MD1/2
α )−1

(Appendix E.2). Equivalently,

Ŵ t =
∑
s

Bts

√
NsȲ s

Dividing both sides by
√
D and using Nt/D ≃ αt, we have

Ỹ t := σ−1
t Û t ≃

∑
s

AtsȲ s (27)

where Ats = Bts
√
αs. Therefore,

A = MDα(I +MDα)
−1

as given in the optimal algorithm. The optimal estimator
for Vnew is sgn(⟨Y new, Û t⟩) = sgn(⟨Y new, Ỹ t⟩).

7 CONCLUSION

This paper proposed a Gaussian mixture model of multi-
tasking learning, in which each task is a semi-supervised
classification problem. We derived an explicit formula for
the Bayes risk, from which the behaviors of the model is
studied through various numerical simulations.

The model in this paper concerns with Gaussian and
Rademacher random variables. However, our method also
works for more general tensor models with random vari-
ables of finite second moments.
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L. Zdeborová. Statistical and computational phase tran-
sitions in spiked tensor estimation. In 2017 IEEE In-
ternational Symposium on Information Theory (ISIT),
pages 511–515. IEEE, 2017.

B. Loureiro, G. Sicuro, C. Gerbelot, A. Pacco, F. Krza-
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A Setting and main result

We summarize here the general setting and main results of the paper. We consider T tasks, where task t consists in
classifying Nt data points in RD that belong to two different Gaussian clusters with the same covariance σ2

t ID. The
dataset of each task is partially labeled. The model is studied in the high dimensional setting D → ∞ with the following
parameters supposed to be known:

· C = (Ctt′)
T
t,t′=1: task correlations, with Ctt = 1 for all t.

· αt = limD→∞ Nt/D: oversampling ratios

· λt = 1/σ2
t : signal-to-noise ratios (SNRs)

· ηt: proportion of labeled data in task t

We are interested in the minimal probability of misclassifying a new data point in task t, i.e. the Bayes risk of task t.

Result. Under the setting of the model, as D → ∞, the Bayes risk of task t converges to

1− Φ(
√
qut),

where Φ(t) = 1√
2π

∫ t

−∞ e−x2

dx and (qut, qvt)
T
t=1 is the stable solution of the system of equations

qut = [M −M(I +DM)−1]tt (28a)
qvt = ηt + (1− ηt)F (qut) (28b)

with

M = {Ctt′/σtσt′}Tt,t′=1

D = diag{αtqvt}Tt=1

F (q) = E[tanh(
√
qZ + q)], Z ∼ N (0, 1).

B Special cases

We check the main result with the following special cases.

B.1 Uncorrelated tasks

We consider here the case in which Ctt′ = 0 for all t ̸= t′, the matrix M is diagonal and we obtain the following equations
for each t

qut =
1

σ2
1

αtqvt
σ2
t + αqvt

qvt = ηt + (1− ηt)F (qut)

which is the same as the fixed point equations when the tasks are learned separately.

B.2 The data for each task follows the same distribution

We consider here the case in which Ctt′ = 1 and σt = σ for all t, t′ = 1, . . . , T . We have

M =
1

σ2
11T , DM =

u1T

σ2

where u = (αtqvt)
⊤
t=1 and 1 = (1, . . . , 1)⊤︸ ︷︷ ︸

T 1s

. Applying the formula

(I + uvT )−1 = I − uvT

1 + uTv
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for v = 1/σ2, we obtain

(I +DM)−1 = I − u1T

σ2 + uT1

so

M −M(I +DM)−1 =
1

σ2

uT1

σ2 + uT1
11T (29)

It follows from the equation (28a) that for all t,

qut =
1

σ2

uT1

σ2 + uT1
:= qu (30)

Define α, η as

α =
∑
t

αt, αη =
∑
t

αtηt (31)

We have

uT1 =
∑
t

αtqut

=
∑
t

αt(ηt + (1− ηt)F (qu))

= αη + α(1− η)F (qu)

= αqv (32)

where qv is defined as

qv = η + (1− η)F (qu) (33)

then from (30) and (32), we have

qu =
1

σ2

αqv
σ2 + αqv

(34)

Since (33) and (34) are exactly the equations for the case of single task learning with parameters α and η, the multitask
learning problem is reduced to one single task with parameters α, η given by (31).

C Unsupervised learning and phase transition

C.1 Region of impossible recovery

In the unsupervised case, the fixed point equations are

qut = [M −M(I +DM)−1]tt (35a)
qvt = F (qut) (35b)

which always admits (qu, qv) = (0,0) as solution. The classification is impossible if and only if this solution is stable. To
analyze the stability of (35) around zero, let qut, qvt = O(h) where h → 0. For vectors A and B of the same dimension,
we denote A ≃ B if |A−B| ≃ O(h2), where | . | denotes the Euclidean norm. From

F (q) = E[tanh(
√
qZ + q)], (36)

(Appendix E.1), using the Taylor expansion tanh(x) = x− x3/3 + o(x3), we get

qvt = F (qut) ≃ qut
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On the other hand,

qut = [M −M(I +DM)−1]tt

≃ [M −M(I −DM)]tt

= [MDM ]tt

=

T∑
s=1

M2
tsαsqvs

Let

P = (M2
tsαs)

T
s,t=1 =

( C2
ts

σ2
t σ

2
s

αs

)T

s,t=1
= (λsλtC

2
stαs)

T
s,t=1 (37)

In a small neighborhood of (0,0), the system of equations can be approximated up to an error of O(h2) by

qv = qu (38)
qu = Pqv (39)

Therefore the fixed point (0,0) is stable if and only if the module of each eigenvalue of P is not larger than 1. Using
the property that AB and BA has the same eigenvalues for general square matrices A,B, the matrix P has the same
eigenvalues as the following symmetric matrix

R = (
√
αsαtλsλtC

2
st)

T
s,t=1 (40)

Note that R is a positive semidefinite (p.s.d) matrix, since it can be written as Hadamard product of p.s.d. matrices.
Therefore, the classification is impossible if and only if all eigenvalues of R are not greater than 1.

When Ctt′ = c for all t ̸= t′ and λt = λ, αt = 1 for all t, we have

R = λ2(c211T + (1− c2)I) (41)

Note that the matrix 11T has eigenvalues 0, . . . , 0, T , so the largest eigenvalue of R is λ2(1 + (T − 1)c2), from with we
obtain the condition for impossible classification

λ2(1 + (T − 1)c2) ≤ 1 (42)

which becomes λ ≤ 1 for the special case T = 1.

When T = 2 with task correlation c and α1 = α2 = 1, we have

R =

(
λ2
1 c2λ1λ2

c2λ1λ2 λ2
2

)
(43)

It is clear that the (λ1, λ2)-domain of impossible classification is a subset of [0, 1]2, otherwise at least one task is achievable.
All eigenvalues of R are less than 1 if and only if Tr(I − R) ≥ 0 and det(I − R) ≥ 0. The first condition is already
satisfied for (λ1, λ2) ∈ [0, 1]2 while the second condition is equivalent to

(1− λ2
1)(1− λ2

2) ≤ c4λ2
1λ

2
2 (44)

C.2 Connected tasks are either all feasible or impossible

In the unsupervised case, tasks are considered connected if any two tasks are directly or indirectly correlated through other
tasks. We will prove that if tasks are connected, then either all tasks are feasible or all tasks are impossible. As a reminder,
for any task t, the value of qut is always non-negative. If qut = 0, then the task t is impossible; otherwise, it is feasible.

Consider T Gaussian channels with outputs (Yt)
T
t=1, signals (Xt)

T
t=1 having joint distribution N (0,M) and independent

standard Gaussian noises. The SNRs for each channel are (αtqvt)
T
t=1. Then the right-hand side of (35a) corresponds to the

overlap between the signal Xt and its MMSE estimator (Appendix E.2).
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Suppose by contradiction that the tasks can be split into non-empty sets such S and S′ such that qut = 0 for all t ∈ S while
qut > 0 for all t ∈ S′. Since the tasks are connected, there exists correlated tasks t, t′ such that t ∈ S, t′ ∈ S′. Therefore,
there exists t, t′ such that qut = 0, qut′ > 0 and Ctt′ ̸= 0.

Since E[XtXt′ ] = Mtt′ = Ctt′/(σtσt′) ̸= 0, Xt is correlated with Xt′ . Moreover, as qvt′ = F (qut′) and qut′ > 0, we
have qvt′ > 0. Therefore Xt is not independent of Y =

{√
αsqvsXs + Zs

}T

s=1
, leading to qut = E[XtE[Xt|Y ]] > 0, a

contradiction.

D Estimating model parameters from data

Although it is assumed that the model parameters C and (σt) are available for the analysis, we show here that they can
indeed be estimated with vanishing errors as D → ∞, given that a positive fraction of labeled data is available in each
task, i.e. ηt > 0 for all t. First consider the supervised learning case. Let

Ȳ t =
1

Nt

Nt∑
i=1

VtiY ti (45)

Then we have

Ȳ t = U t +

√
σ2
t

Nt
Z̄t (46)

where

Z̄t =
1√
Nt

Nt∑
i=1

VtiZti (47)

It is clear that Z̄t
i.i.d∼ N (0, ID) for t = 1, . . . , T . We consider the following estimator of Ctt′ for t ̸= t′:

Ĉtt′ = ⟨Ȳ t, Ȳ t′⟩ (48)

Insert (46) into the definition of Ĉtt′ and use the fact that ⟨Z̄t, Z̄t′⟩ = O(
√
D), ⟨Ū t, Z̄t′⟩ = O(1), which are direct

consequences of Central Limit Theorem, we obtain Ĉtt′ = Ctt′ +O(D−1/2). Moreover

∥Ȳ t∥2 = 1 +
σ2
t

αt
+O(D−1/2), (49)

from which σt can also be estimated.

In the case where the proportion of labeled data is positive for all tasks, we can restrict the above estimators on the labeled
data and obtain the approximate values of C and (σt) with errors converging to zero when D → ∞.

E Simple Gaussian channels

E.1 Rademacher signal.

Consider the Gaussian channel given by

Y =
√
λX + Z, (50)

where the Rademacher signal X takes values of 1 and −1 with equal probabilities and the standard Gaussian noise Z is
independent of X . We have

P (x|Y ) =
P (x)P (Y |x)

P (Y )

∝ e−(Y−
√
λx)2/2

∝ e
√
λY x, (51)
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from which we obtain the posterior distribution as

P (x|Y ) =
e
√
λY x

2 cosh(
√
λY )

(52)

and the MMSE estimator X̂MMSE = E[X|Y ] as

X̂ =
∑
x=±1

xP (x|Y ) = tanh(
√
λY ). (53)

The overlap between the MMSE estimator and the signal is therefore

E[XX̂MMSE] = E[X tanh(
√
λ(
√
λX + Z)]

=
1

2
E[tanh(λ+

√
λZ)]− 1

2
E[tanh(−λ+

√
λZ)]

=
1

2
E[tanh(λ+

√
λZ)]− 1

2
E[tanh(−λ−

√
λZ)]

= E[tanh(
√
λZ + λ)] (54)

Next, the error P(X̂ ̸= X) for any estimator X̂ of X is minimized by the maximum-likelihood estimator:

X̂ML = argmax
x=±1

P (x, Y )

= argmax
x=±1

e
√
λY x (55)

This gives us the maximum-likelihood estimator as:

X̂ML = sgn(Y ). (56)

The Bayes risk is therefore

P(X ̸= X̂ML) =
1

2
P(X = 1, X̂ML = −1) +

1

2
P(X = −1, X̂ML = 1)

=
1

2
P(X = 1, Y < 0) +

1

2
P(X = −1, Y > 0)

= P(X = −1, Y > 0)

= P(Z >
√
λ)

E.2 Correlated Gaussian signals

Consider T Gaussian channels, where the signals X1, . . . , XT have a joint distribution of N (0,M) and are independent
of Gaussian noises Z1, . . . , ZT that are independently distributed as N (0, 1). Specifically, we have:

Yt =
√
λtXt + Zt, t = 1, . . . , T.

Let X̂t = E[X|Y ] be the MMSE estimator for Xt. Since (Xt, Y1, . . . , YT ) is a Gaussian vector, X̂t is a linear combination
of Y1, . . . , YT . Therefore

MMSEt := E[(Xt − X̂t)
2]

= min
βt∈RT

E
[
(Xt − ⟨βt,Y ⟩)2

]
.
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This can be written as a quadratic optimization problem

MMSEt = min
βt∈RT

{
Mtt − 2aT

t βt + βT
t Aβt

}
with

at = (E[XtYs])
T
s=1 =

(√
λtMts

)T

s=1
= D

1/2
λ Met

A = (E[YsYs′ ])
T
s,s′=1 =

(√
λsλs′Mss′ + δss′

)T

s,s′=1
= I +D

1/2
λ MD

1/2
λ .

This optimization problem admits a unique minimizer βt = A−1at, from which we obtain

X̂ = MD
1/2
λ (I +D

1/2
λ MD

1/2
λ )−1Y (57)

MMSEt = [M(I +DλM)−1]tt (58)

E[XtX̂t] = [M −M(I +DλM)−1]tt. (59)

F The uniform prior is asymptotically Gaussian

To generate (U1, . . . ,UT ) according to the prior distribution specified in the model, we follow these steps:

1. Generate Z1, . . . ,ZT
i.i.d∼ N (0, ID).

2. Orthonormalize Z1, . . . ,ZT using Gram-Schmidt process, we obtain orthonormal vectors S1, . . . ,ST

3. (U1, . . . ,UT ) = (S1, . . . ,ST )C
1/2, where (U1, . . . ,UT ) denotes the D × T matrix with columns U1, . . . ,UT .

In the high dimensional limit, the vector Z1, . . . ,ZT are asymptotically orthogonal, so the orthonormalizing step produces
approximately n−1/2(Z1, . . . ,ZT ), which implies that if W t =

√
DU t, then W t’s are asymptotically Gaussian with

covariance

E[WtiWt′j ] = δijCtt′ (60)

It is worth noting that this is a direct consequence of the equivalence between the canonical and microcanonical ensembles
in statistical physics.


	INTRODUCTION
	MODEL
	RESULTS
	CONSEQUENCES
	Supervised learning.
	Unsupervised learning and phase transition.
	Semi-supervised learning.

	CAVITY ARGUMENT
	PROOFS
	Fixed point equations
	Bayes risk and optimal algorithm

	CONCLUSION
	Setting and main result
	Special cases
	Uncorrelated tasks
	The data for each task follows the same distribution

	Unsupervised learning and phase transition
	Region of impossible recovery
	Connected tasks are either all feasible or impossible

	Estimating model parameters from data
	Simple Gaussian channels
	Rademacher signal.
	Correlated Gaussian signals

	The uniform prior is asymptotically Gaussian

