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Abstract

We consider the problem of defense against
reward-poisoning attacks in reinforcement learn-
ing and formulate it as a game in T rounds be-
tween a defender and an adaptive attacker in an
adversarial environment. To address this problem,
we design two novel defense algorithms. First,
we propose Exp3-DARP, a defense algorithm
that uses Exp3 as a hyperparameter learning sub-
routine, and show that it achieves order-optimal
Θ̃(T 1/2) bounds on our notion of regret with re-
spect to a defense that always picks the optimal
parameter in hindsight. We show that the order
of T in the bounds cannot be improved when the
reward arrival process is adversarial, even if the
feedback model of the defense is stronger. How-
ever, assuming that the environment is stochastic,
we propose OMDUCB-DARP that uses estimates
of costs as proxies to update the randomized strat-
egy of the learner and are able to substantially
improve the bounds proportional to how smoothly
the attacker’s strategy changes. Furthermore, we
show that weaker types of defense, that do not
take into account the attack structure and the poi-
soned rewards, suffer linear regret with respect
to a defender that always selects the optimal pa-
rameter in hindsight when faced with an adaptive
attacker that uses a no-regret algorithm to learn
the behavior of the defense. Finally, we support
our theoretical results with experimental evalua-
tions on three different environments, showcasing
the efficiency of our methods.

1 INTRODUCTION

One of the key aspects of designing novel machine learning
methods is their robustness to adversarial attacks. The vir-
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tual environments of today are increasingly relying on com-
plex learning algorithms for decision-making, thus the study
of security threats to such algorithms is paramount. We
consider training-time reward poisoning attacks to reinforce-
ment learning. Training-time attacks have been previously
studied in supervised learning (Rosenfeld et al., 2020), in
reinforcement learning (Rakhsha et al., 2021a; Zhang et al.,
2020b), and in the simpler bandit setting (Liu and Shroff,
2019; Rangi et al., 2022a). These types of attacks are char-
acterized by their intervention in the training data set. They
can either modify, delete or insert new data points into it.
A naive algorithm that is oblivious to such attacks will in-
evitably adopt a suboptimal behavior and thus, employing
defense strategies against them becomes necessary.

There have been various approaches to the defense prob-
lem against data poisoning attacks. Randomization over the
training/test data, both in reinforcement learning (Kumar
et al., 2021; Wu et al., 2022) and in supervised learning
(Lecuyer et al., 2019; Cohen et al., 2019; Rosenfeld et al.,
2020) is a recently studied technique, where the predic-
tion of the defense corresponds to the one with the highest
probability when random noise is applied to the data point.
Each prediction is associated with a certificate of its cer-
tainty. On the other hand, robust statistics techniques can
be used to detect outliers in the dataset by evaluating their
sample variances against an appropriately chosen threshold
(Zhang et al., 2021b). Furthermore, the utilization of the
specific attack structure to solve an inverse worst-case op-
timization problem (e.g. in offline reinforcement learning
(Banihashem et al., 2021)) is another type of defense that
uses the optimization problem to compute robust policies.

All the techniques mentioned above are first and foremost
parametric in nature, in that the defense takes as input the
dataset and a defense hyperparameter and outputs a pre-
diction. In randomized smoothing, the defense parameter
corresponds to the noise variance, in outlier detection it cor-
responds to the threshold, and in the third described method,
to the attack parameter that the defense uses to solve the
inverse optimization problem. While in certain scenarios,
knowledge of the optimal parameter might be available, it is
usually a strong assumption, even more so when the attack
adaptively changes its strategy.
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Figure 1: Illustration of our attack and defense models. The attacker observes the clean environment, chooses an attack parameter, and
poisons the environment using its attack model. Subsequently, the defender observes the poisoned environment, chooses a defense
parameter, and uses its defense model to compute a robust policy.

Motivated by such examples, we consider parametric de-
fenses against parametric adaptive reward poisoning attacks
in reinforcement learning and propose online learning strate-
gies for defense parameter selection. The attacker poisons
the reward function, according to the attack parameter, in
order to optimize its utility, while the learner observes the
poisoned reward and commits to a robust policy, to opti-
mize its return with respect to the original reward. Figure
1 illustrates both the attack and defense models we use.
We formulate this sequential interaction as a multi-agent
learning problem, in both adversarial and stochastic envi-
ronments, and propose specific online learning strategies for
both cases, that yield sublinear regret bounds with respect to
a defender that always picks the optimal defense parameter
in hindsight. Furthermore, we show that other types of de-
fense that only take into account partial information about
the attack are hopeless against such adaptive attackers.

1.1 Our Contributions.

Our main contributions can be summarized as follows.

• We propose a game-theoretic framework for the problem
of defense against adaptive reward poisoning attacks in
RL and introduce a new notion of regret with respect
to a defense that always selects the optimal parameter
in hindsight. We argue that this notion is stronger than
the standard notion of regret used in the online learning
literature.

• Our attack model is stronger than previously considered,
in that: i) it observes the environment; ii) at the end
of each round, it observes the learner’s policy and its
strategy of selecting the defense parameter; iii) it has
an unlimited budget; iv) it employs a no-regret learning
strategy to select the attack parameter.

• For adversarial environments we propose Exp3-DARP
(Exp3 for Defense Against Reward Poisoning), a de-
fense algorithm that uses Exp3 as a parameter learning
subroutine, and show that it incurs Θ̃(

√
T ) regret in T

rounds. Furthermore, we show that, even when allowed
to observe full information feedback, the learner cannot
improve these bounds in adversarial environments.

• For stochastic environments we propose OMDUCB-
DARP (Optimistic Mirror Descent with Upper Confi-
dence Bounds-DARP), a novel online learning algo-
rithm that achieves Õ(T 1/3), Õ(T 1/4) and O(log T )

regret bounds on our notion of regret, depending on the
rate of change in the attacker’s strategy.

• Moreover, we prove that knowledge of the attack model
and the poisoned reward is critical in achieving sublinear
regret bounds under our notion of regret, by showing
linear lower bounds for weaker types of defenses.

• Finally, we evaluate our methods in three synthetic envi-
ronments and compare them to an agent that is oblivious
to attacks, an agent that uses fixed defense, and a naive
learner that only uses delayed feedback, and show that
our methods are substantially superior to them.

1.2 Other Related Work

Our work is related to the following two strands of machine
learning research.

Adversarial attacks and robustness. Arguably, the clos-
est to this paper is the line of work on adversarial attacks
and robustness against these attacks. In recent years, ad-
versarial attacks have been extensively studied in machine
learning (Szegedy et al., 2013; Biggio et al., 2013; Nguyen
et al., 2015; Papernot et al., 2017; Biggio et al., 2012; Xiao
et al., 2012; Li et al., 2016), including RL (Huang et al.,
2017; Lin et al., 2017; Sun et al., 2020a,b; Ma et al., 2019;
Rakhsha et al., 2021a; Everitt et al., 2017; Wang et al.,
2020; Huang and Zhu, 2019; Rangi et al.). One of the most
common types of adversarial attacks are test-time attacks
that manipulate an already trained ML model or RL pol-
icy (Szegedy et al., 2013; Biggio et al., 2013; Nguyen et al.,
2015; Papernot et al., 2017; Huang et al., 2017; Lin et al.,
2017; Sun et al., 2020a). We focus on poisoning attacks,
which instead manipulate the learning agent during training
by poisoning its input.

Data-poisoning attacks in machine learning have drawn
much attention over the last years (Biggio et al., 2012; Mei
and Zhu, 2015; Xiao et al., 2015; Alfeld et al., 2016; Wang
and Chaudhuri, 2018; Li et al., 2016). Reward poisoning
attacks to RL have been previously considered by Zhang
et al. (2020b); Banihashem et al. (2021); Rakhsha et al.
(2021b), while general data-poisoning attacks that include
transition poisoning have been considered by Rakhsha et al.
(2021a); Zhang et al. (2021a); Rangi et al. (2022b). While
these works primarily focus on studying various types of
attacks in various reinforcement learning settings, we take
the point of view of the defense, while at the same time
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preserving all the characteristics of a strong adaptive attack,
that has full knowledge of the environment.

Furthermore, since our main focus in this work is on de-
fenses, our work also relates to the rich literature on robust-
ness against poisoning attacks in ML (Paudice et al., 2018;
Zhang et al., 2018; Charikar et al., 2017; Diakonikolas et al.,
2019), and more specifically in RL (Lykouris et al., 2021;
Zhang et al., 2021a; Kumar et al., 2021; Wu et al., 2022;
Rangi et al., 2022a). We differ from the latter works in that
we take a meta-optimization perspective in which the learner
utilizes a defense method tailored to a given attack model,
and aims at learning the optimal parameters of the defense.
Additionally, we also take a game-theoretic perspective on
the problem, where the attacker is assigned a utility function,
and can also learn its attack parameters. As is the case for
test-time adversarial attacks, our work broadly relates to
the literature that studies robustness to test-time attacks in
RL (Pattanaik et al., 2017; Zhang et al., 2020a, 2021a).

Adversarial online learning and learning in games. The
adversarial online learning literature is very rich, with sev-
eral no-regret algorithms such as Multiplicative Weights
(Littlestone and Warmuth, 1994; Freund and Schapire, 1997;
Arora et al., 2012), Mirror Descent (Nemirovskij and Yudin,
1983), Follow The Regularized Leader (Kalai and Vempala,
2005) and Exp3 (Auer et al., 2002) for the bandit feedback
case. All of these methods and their theoretical properties
are well-understood (see Cesa-Bianchi and Lugosi (2006)
for an excellent overview). However, the vanilla versions
of such algorithms do not take into account the potential
structure of the data coming from the adversary (Rakhlin
et al., 2011). We model our problem as a multi-agent online
learning problem. When there is more than one player play-
ing a static game using the same family of algorithms, then
it is possible to say something about the sequence of feed-
back vectors that each player observes, an idea explored by
Rakhlin and Sridharan (2013a,b), where the family of Mirror
Descent type algorithms is studied. In this case, it is shown
that we can get faster convergence rates when all players
are playing no-regret algorithms that satisfy some desired
properties, from the Θ̃(

√
T ) in the fully adversarial case, to

Õ(T 1/4) in (Syrgkanis et al., 2015), to O(T 1/6) in (Chen
and Peng, 2020) for two-player games, to the near-optimal
bounds of O(poly(log T )) regret for the Optimistic Hedge
algorithm in general-sum multi-player games (Daskalakis
et al., 2021). However, the full utilization of such features
is impossible in adversarial environments, which implies
worst-case O(

√
T ) bounds.

Time-varying two-player zero-sum games have been con-
sidered by Zhang et al. (2022). Unknown games with cor-
related payoff have been previously considered by Sessa
et al. (2019), where they use learning methods that lever-
age the structure of Gaussian processes, to obtain worst-
case O(

√
T ) bounds, without any assumptions on the other

players. We use the Exp3 procedure for adversarial envi-

ronments, thus incurring worst-case bounds on the regret.
However, utilizing the fact that the second player’s strategy
is changing smoothly, we manage to provide tighter bounds
for the learner when the environment is stochastic, by intro-
ducing a learning algorithm that uses a rationale similar to
Optimistic Mirror Descent (Chiang et al., 2012), tailored for
time-varying stochastic games.

2 PROBLEM SETUP

In this section, we introduce the background of the problem
and lay out the necessary definitions. Then we formalize
the general sequential interaction between the attacker and
defender that will be used throughout the paper.

2.1 Preliminaries

Let M = (S,A, P,R, γ, ν) be an MDP with state space S
and action space A, reward function R : S × A → [0, 1],
transition model P : S × A × S → S, where P (s, a, s′)
denotes the probability of transitioning to state s′ given that
action a is taken when in state s, discount factor γ ∈ [0, 1)
and initial state distribution ν. We assume the state and
action spaces to be finite and thus denote by |S| and |A|
their cardinalities, respectively. We also denote by R =
[0, 1]|S|·|A| the set of all possible reward vectors.

A stochastic policy π is a mapping π : S → P(A), where
P(A) denotes the set of all probability distributions over A.
As usual, π(a|s) denotes the probability of taking action a
in state s. We denote by Π the set of all stochastic policies
on M and by Πdet its subset of all deterministic policies.
Given policy π, we define its score as ρ(π,R) = (1 −
γ)E

[∑∞
τ=1 γ

τ−1R(sτ , aτ )|π, ν
]
, where the expectation is

with respect to the randomness of π and ν. Note that for any
given π ∈ Π, we also have that ρ(π,R) ∈ [0, 1].

Given an MDP M = (S,A,R, P , γ, ν) with the aforemen-
tioned characteristics, a data-poisoning attack to offline RL
is to be understood as a mapping of M to another MDP
M̂ = (Ŝ, Â, R̂, P̂ , γ, ν), with S = Ŝ and A = Â. In other
words, the attack modifies either the reward function, the
transition matrix, or both. Usually, the attack modifies R
and/or P in order to enforce a target policy to the learning
agent (Rakhsha et al., 2021a). The type of attack that only
modifies the reward function, in which case we have P = P̂ ,
is called a reward-poisoning attack.

2.2 Interaction Between Attacker And Defender

We consider reward poisoning attacks in an offline learn-
ing setting. The attacker’s goal is to deceive the learner
into adopting a deterministic target policy π† ∈ Πdet by
poisoning the reward vector R. We assume the attack is a
function A : R× E → R|S|·|A|, parametrized by the finite
set E = {ϵ1, . . . , ϵE} ⊂ Rn1 , for some n1, E ∈ N, where,
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given reward vector R ∈ R and a parameter ϵ ∈ E , it out-
puts the poisoned reward vector R̂ = A(R, ϵ).1 We denote
by A the class of such parametric reward-poisoning attacks.

Similarly, a defense D ∈ D is a mapping D : R|S|·|A|×Θ×
A → Π, parametrized by the finite set Θ = {θ1, . . . , θD} ⊂
Rn2 , for some n2, D ∈ N, such that, given attack model
A ∈ A and parameter θ ∈ Θ, it takes as input the poisoned
reward R̂ ∈ R|S|·|A| and outputs a policy π = D(R̂, θ,A),
hoping that it performs well under the true reward R. When
A and D are fixed, we will abuse notation and write π =
D(R̂, θ), to avoid overloading.

Let A ∈ A and D ∈ D be given. We formulate the in-
teraction between the learner and an adaptive attacker as
a sequential game. Each round t ≥ 1 is characterized by
a new MDP M t = (S,A,Rt, P, γ, ν), where everything
is fixed except the reward vector chosen by the environ-
ment. At the beginning of round t, the attacker and defender
select ϵt ∈ E and θt ∈ Θ according to their randomized
strategies2 ϕA

t and ϕD
t , respectively. The attacker observes

the true environment M t and modifies its reward Rt into
R̂t = A(Rt, ϵt), thus aiming to enforce π† to the learner.

Next, the learner observes the poisoned reward R̂t and uses
its defense model D to compute policy D(R̂t, θt) = πt. The
objective of the learner is to maximize the score ρ(πt, Rt)
of its policy with respect to the true reward Rt. At the end of
the round, the attacker observes θt, ϕD

t and πt and computes
its own cost3, which we denote by σ(πt, R̂t). The learner,
on the other hand, observes only4 the score of policy πt with
respect to the true reward vector Rt. Both players use the
observed feedback to update their randomized strategies ϕA

t

and ϕD
t . Algorithm 1 illustrates the whole interaction.

We model the aforementioned interaction as a multi-agent
learning problem, where the learner’s goal is to maximize its
cumulative utility over a fixed horizon T . We do not make
any further assumptions on the attacker, except assuming
that it learns the defense’s behavior based on previous ob-
servations. We measure the learner’s performance against a
defender that always selects the parameter θ that maximizes
its cumulative utility. To that end, we define regret as

RegD(T ) := max
θ

T∑
t=1

ρ(D(A(Rt, ϵt), θ), Rt)

− E

[
T∑

t=1

ρ(D(A(Rt, ϵt), θt), Rt)

]
, (1)

where the expectation is with respect to any potential ran-
1Note that we do not use π† as a parameter of A, for brevity,

since it is fixed throughout the paper.
2We will specify these strategies, which depend on the feedback

the players observe, in the next section.
3See Section 5 for an instantiated attack cost.
4In Section 3.2 we will consider a stronger feedback model for

the learner in order to achieve tighter bounds.

Algorithm 1 Interaction between attacker and defender.

1: Input: Attack model A; defense model D; attacker’s
strategy; defender’s strategy.

2: for t = 1, 2, 3, . . . , T do:
3: Attacker and defender simultaneously select their

actions, ϵt and θt, respectively, based on their strategies.
4: Rt is chosen by the environment.
5: R̂t = A(Rt, ϵt) is revealed to the defender.
6: πt = D(R̂t, θt) is computed.
7: Attacker observes πt and θt (also has access to the

defender’s strategy) and incurs utility σ(πt, R̂t).
8: Defender observes utility value ρ(πt, Rt).
9: Both players update their strategies.

10: end for

domness coming from the sequence ϕD
1 , . . . , ϕ

D
T .

Remark 1. Note that our problem can be formulated as a
two-player general-sum time-varying game. Zero-sum time-
varying games have been previously considered by Cardoso
et al. (2019) and Zhang et al. (2022), where a unified no-
tion of NE-regret (or Dynamic NE-regret) is used. However,
this notion of regret is tailored for zero-sum games, and
our setting is a general-sum one, thus we cannot apply it.
Furthermore, in our setting, there is no interest in maxi-
mizing social welfare, since the players have a conflict of
interest. Therefore, the metric we consider in our setting is
the individual regret of the defender.

3 LEARNING THE DEFENSE
PARAMETER

In this section, we first introduce Exp3-DARP (Exp3 for De-
fense Against Reward-Poisoning), a defense algorithm that
employs Exp3 as a parameter learning subroutine for adver-
sarial environments. We show order-optimal bounds on its
regret and prove that, even under full information feedback,
the order of T cannot be improved due to the adversarial
nature of rewards. Next, motivated by the rationale of OMD,
we introduce OMDUCB-DARP (Optimistic Mirror Descent
with Upper Confidence Bounds-DARP), a defense learning
algorithm for stochastic environments, and prove tighter
bounds on its regret. Pseudocodes can be found in Section
A, while proofs of stated results are in Sections C and D of
the appendix.

3.1 Exp3-DARP For Adversarial Environments

Assume that the sequence of reward functions R1, R2, . . .
is adversarially chosen by the environment. Furthermore,
assume that the attacker employs a no-regret5 learning algo-
rithm to update ϕA

t at each round t, and uses some learning
factor ηA ∈ (0, 1]. Note that the attacker can pick from a

5We instantiate the regret of the attacker in Section 5.
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wide range of online learning methods since its feedback
model is very strong. In order to minimize its regret, the
learner needs to learn the optimal defense parameter over
time, that would be efficient against an attacker that adapts
to its behavior.

We consider the bandit feedback case, where the learner
only observes the score of the policy it commits to with re-
spect to the true reward function. One might hope to utilize
the potentially benign sequence of scores that depends on
the attacker’s strategy, and use refined methods of online
learning in regularized games (e.g. Optimistic Mirror De-
scent) in order to incur better than worst-case regret bounds.
However, as Theorem 2 shows, this is not possible, as long
as the environment is adversarial. Thus, we will use the
Exp3 algorithm of Auer et al. (2002), designed for adver-
sarial environments with bandit feedback, as the parameter
learning subroutine, to update the strategy of the learner.

We initialize ϕD
1 as the uniform distribution, fix step-size

ηD ∈ (0, 1], and feed them both to Algorithm 1. Then, for
every t ≥ 1, the strategy ϕD

t+1 is updated using Exp3. We
provide the update rules and the pseudocode of Exp3-DARP
in the appendix for completion. We state the following
result that gives order-optimal bounds for this setting.

Theorem 1. (Bubeck and Cesa-Bianchi, 2012) Let A ∈
A and D ∈ D. Moreover, given T,D ∈ N, set
ηD = min{1,

√
(D lnD)/((e− 1)T )}. Then, we have

RegD(T ) ≤ O(
√
TD lnD). On the other hand, there

exists an attack A ∈ A and a distribution β of rewards
R1, . . . , RT , such that, for any defense D ∈ D, the ex-
pected regret EβRegD(T ) is at least Ω(

√
TD).

Remark 2. In the case of compact action spaces, instead
of Exp3, one can use the Adversarial Zooming algorithm
of Podimata and Slivkins (2021) as a learning subroutine.
We believe that, under the additional assumption of Lips-
chitz continuity of the defense parameters with respect to
the learner’s utilities, one would still be able to achieve
sublinear regret bounds.

Next, we answer the question: Can we get better bounds (in
terms of T ) if the defense is made stronger and uses more
information about the attack? Unfortunately, the answer is
no. One can always find a reward sequence that makes the
regret at least Ω(T ), irrespective of the learning method and
the attack structure. That is what our next result shows.

Theorem 2. Assume that, at the end of round t, the learner
can observe the attacker’s strategy and the true reward
function Rt. Then, for any defense D ∈ D and any sequence
ϕD
1 , . . . , ϕ

D
T , there exists an attack A ∈ A, such that we

have RegD(T ) = Ω(
√
T logD).

3.2 OMDUCB-DARP For Stochastic Environments

The adversarial nature of the environment implies limita-
tions on the regret analysis. However, the environment can

often be stochastic and thus, estimates of it are possible.
Therefore, we now turn our focus to such environments.

We assume that the environment is stochastic, that is, we as-
sume that the reward functions R1, R2, . . . , RT are i.i.d.
random vectors. This, in turn, implies that, for every
θ ∈ Θ and ϵ ∈ E , the scores ρ(D(A(R1, ϵ), θ)R1), . . .
ρ(D(A(RT , ϵ), θ), RT ) are i.i.d. random variables with
mean E

[
ρ(D(A(Rt, ϵ), θ), Rt)

]
, for any t ≤ T . Further-

more, the feedback model of the defense that we consider
now is stronger than the one in the previous section. That
is, at the end of each round t ≥ 1, the learner observes
the true reward function Rt and the attacker’s strategy ϕA

t

at round t. The algorithm that we propose and the results
of this section depend on this assumption. Now let us in-
troduce the cost of the learner with respect to a particular
pair (θ, ϵ) as ω(ϵ, θ, Rt) := 1− ρ(D(A(Rt, ϵ), θ), Rt) and
let ω(ϵ, θ) := E[ω(ϵ, θ, Rt)] denote its expected value. We
will now consider the problem of cost minimization for the
learner, which is equivalent to the problem of utility maxi-
mization when the costs are defined as above. We do this to
avoid unnecessary complications in the analysis.

Let us define Gt = [ω(ϵi, θj , Rt)]
E,D
i=1,j=1 to be the game

matrix at time t and G = [ω(ϵi, θj)]
E,D
i=1,j=1 to be the ex-

pected game matrix. Let G denote the distribution of the
random matrix Gt with mean G. Our goal is to design a
learning method that incurs sublinear expected regret, de-
fined as

Reg∗D(T ) = EGt∼G,ϵt∼ϕA
t ,θt∼ϕD

t

T∑
t=1

Gt[ϵt, θt]

−min
ϕ

EGt∼G,ϵt∼ϕA
t ,θ∼ϕ

T∑
t=1

Gt[ϵt, θ] . (2)

Note that the usual notion of regret in regularized games is
the quantity above inside the expectation with respect to G.
However, this notion of regret is defined when the players
are playing a fixed game. The game matrix in our setting
changes over time. Thus, it is reasonable to take expecta-
tions with respect to the randomness of the environment.

We now introduce OMDUCB-DARP, a novel learning al-
gorithm that is designed to incur tighter than worst-case
bounds on the expected value of our regret. To that end,
let f : [0, 1]D → R be a 1-strongly convex function with
respect to ∥·∥1 and let Bf (·, ·) denote the Bregman diver-
gence with respect to f . Motivated by the rationale of
Optimistic Mirror Descent, tailored to yield better bounds
in regularized games, and by the Upper Confidence Bound
(UCB) paradigm, based on the concentration of the costs
around their mean, we introduce the following update for
the learner, for every t ≥ 1:

ϕ̃D
t+1 = argmin

ϕ
η⟨ϕ, ĜT

t ϕ
A
t ⟩+ Bf (ϕ, ϕ̃

D
t ) , (3)

ϕD
t+1 = argmin

ϕ
η⟨ϕ, G̃T

t+1ϕ
A
t ⟩+ Bf (ϕ, ϕ̃

D
t+1) , (4)
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where G̃t is an E ×D-dimensional matrix with entries

G̃t[ϵ, θ] =
1

t− 1

t−1∑
k=1

Gk[ϵ, θ] ,

and

Ĝt[ϵ, θ] := G̃t[ϵ, θ] +

√
log (π2ED/(3δ))

2(t− 1)
(5)

denotes the optimistic estimate6 on the mean G[ϵ, θ], for
all ϵ ∈ E and θ ∈ Θ, and some δ ∈ (0, 1). As usual,
⟨·, ·⟩ denotes the inner product. We initialize ϕ̃D

1 = ϕD
1 =

argminϕ f(ϕ). Here ϕ̃D
t is an auxiliary update for ϕD

t and
the algorithm selects θt according to ϕD

t . Note that, since the
learner observes the reward function Rt and the attacker’s
strategy ϕA

t at the end of round t, the computation of ϕD
t+1

is possible. The pseudocode is given in the appendix.

Note that the proxy vector ĜT
t ϕ

A
t used by OMDUCB-

DARP in the intermediate update ϕ̃D
t+1 depends on the UCB

game matrix Ĝt, i.e. the E ×D-dimensional matrix com-
posed of Ĝt[ϵ, θ], for every ϵ ∈ E and θ ∈ Θ, and the
attacker’s strategy. Then, the actual update ϕD

t+1 uses sam-
ple averages as proxies in order to compute the strategy of
selection for the next round. This allows us to make use of
the stochasticity of the environment and apply concentration
bounds for the estimates, in order to shift the weight of the
regret to quantities that we can control.

Moreover, note that the UCB term on the right-hand side of
(5) depends on the actual round t, which is different from
its traditional usage in bandit settings, where it depends on
the number of times an action has previously been selected.
In our case though, the feedback model we consider allows
the algorithm to compute these terms in every round, hence
the explicit dependence on t. It is important to emphasize
that our feedback model is stronger than the usual full in-
formation feedback in static games, where only G

⊤
t ϕ

A
t is

observed at the end of round t. In our case, more infor-
mation is needed, in order to account for the time-varying
nature of the game. Now we state the main result of this
section.

Theorem 3. Let A ∈ A, D ∈ D and T ∈ N. Assume
ηD ≤ ηA ∈ (0, 1]. Then, for any δ ∈ (0, 1), the above
algorithm incurs expected regret

Reg∗D(T ) ≤ ηA + ηA
T∑

t=2

∥∥ϕA
t − ϕA

t−1

∥∥2
1
+

1

ηD
fmax

+
ηA

2
log(π2ED/(3δ)) log T ,

with probability at least 1− δ, where fmax = maxϕ f(ϕ).

6Note that the learner can compute both G̃t[ϵ, θ] and Ĝt[ϵ, θ] at
the end of round t since it observes Rt and knows A. We initialize
their values to 0, for all ϵ ∈ E and θ ∈ Θ.

Note that the regret bounds depend on the magnitude of
change in the attacker’s strategy through time. Next, we in-
stantiate these bounds for different online learning methods.

Corollary 1. Under the conditions of Theorem 3, we have

• Reg∗D(T ) ≤ O(log T ), if the attack parameter is fixed.

• Reg∗D(T ) ≤ Õ(T 1/4), if the attacker plays Hedge.

• Reg∗D(T ) ≤ Õ(T 1/3), if the attacker plays an online
learning method that satisfies the RVU property (Syrgka-
nis et al., 2015).

Remark 3. Under oblivious adversaries, that is, when the
sequence of rewards is predictable (up to noise errors),
we obtain order-optimal bounds, which degrade as the at-
tacker’s strategy becomes ’stronger’ (in the sense of using
better learning strategies). Note that OMDUCB-DARP’s
regret analysis is such that one can utilize the structure of
the attacker’s strategy. If we know nothing of the latter, then
we can directly deploy Exp3-DARP, in which case we obtain
the worst case O(

√
T ) bounds.

We have so far given sublinear regret bounds for our pro-
posed methods, with respect to an optimal defense that
knows the attack parameters beforehand. The defense is
here assumed to utilize the poisoned reward and its knowl-
edge of the attack structure (recall that one of the arguments
of the defense function is the attack). However, it is not
clear if such information is necessary for the learner to per-
form well. One can always choose to learn the true reward
function solely based on delayed observations of the scores
(in the bandit feedback case) or the true reward function (in
the full information feedback case) and completely bypass
the attack. Unfortunately, this is not optimal in our setting.
Our results in the next section show that any defense model
that does not utilize the poisoned reward and attack struc-
ture is hopeless when measured against our notion of the
benchmark.

4 CHARACTERIZATION OF WEAK
DEFENSES

In this section, we introduce different types of defense
classes based on how much information they use about the
attack and show that full utilization of the attack structure
is, in fact, necessary in order to incur sublinear regret. All
proofs of stated results can be found in the appendix.

First, let us introduce some additional notation that will help
us quantify how well a given defense is doing compared to
the optimal policy under the true MDP. Let A ∈ A and D ∈
D be given. For every t ≥ 1, let π∗

t denote the optimal pol-
icy under the true MDP M t and let πD

t = D(A(Rt, ϵt), θt)
denote the policy that the defense commits to in round t. Fur-
ther, let θmax = argmaxθ

∑T
t=1 ρ(D(A(Rt, ϵt), θ), Rt)
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Regret∗ Optimality gap
No attack Adaptive No attack Adaptive

D∅ No Reg. Linear 0 ∆π†

D1 Linear Linear Ω(T ) ∆opt +Ω(T )

D2 No Reg. Linear 0 ∆opt +Ω(T )

Exp3 Θ̃(
√
T ) Θ̃(

√
T ) Θ̃(

√
T ) ∆opt + Θ̃(

√
T )

OMDUCB Õ(T 1/3) Õ(T 1/3) Õ(T 1/3) ∆opt + Õ(T 1/3)

Dopt No reg No reg 0 ∆opt

Oracle NA NA 0 0

Table 1: Summary of our results both in terms of regret and op-
timality gap. The Oracle always plays the optimal policy under
the true reward. D∅ represents a naive defense that is oblivious to
the attack; D1 denotes a defense that does not utilize the poisoned
reward and D2 is a defense that does not know the attack model.
The detailed definitions are given in Section 4. Moreover, we only
give the Õ(T 1/3) bounds for OMDUCB-DARP, omitting the other
bounds, for brevity.
∗The notion of regret corresponding to D∅, D1, D2, Dopt is the
one given in (6); the regret of Exp3 is the one given in (1), while
the regret of OMDUCB corresponds to the expected regret as de-
fined in (2).

and let us denote by πopt
t = D(A(Rt, ϵt), θmax) the policy

that the optimal defense commits to at time t. We denote
by ∆D

t = ρ(π∗
t , Rt) − Eρ(πD

t , Rt) the gap between the
optimal policy π∗

t and the one selected by the defense7 at
time t. Moreover, let ∆D =

∑
t≤T ∆D

t denote the cumula-
tive gap of the defense D in T rounds. ∆opt

t and ∆opt are
analogously defined for the optimal defense that commits
to policy πopt

t in round t. Furthermore ∆
π†
t and ∆π† corre-

spond to the target policy π†. Note that, in general, we have
∆opt ≤ ∆π† . Banihashem et al. (2021) show that ∆opt can
be almost two times8 smaller than ∆π† in some examples.

We will use the notion of the gap to compare different types
of defense. Table 1 depicts the contrast in performance (both
in regret and in optimality gap) between different types of
partial information defenses, which we will now introduce,
and our defense.

Note that the regret defined in (1) changes when considering
a defense model different from D (e.g. a non-parametric de-
fense, or one that does not depend on the poisoned reward).
Thus, for a given defense D′, we define the relative regret
of D′ with respect to D as

RegDD′(T ) = max
θ

T∑
t=1

ρ(D(A(Rt, ϵt), θ), Rt)

− E
T∑

t=1

ρ(πD′

t , Rt) . (6)

7The expectation in the score of πD
t is with respect to any

potential randomness in the parameter selection strategy of the
defense.

8Explicit relation between them is less interpretable. We refer
the reader to (Banihashem et al., 2021).

Note that the relative regret of a defense D with respect to
itself is the one given in (1).

No Defense. Let D∅ denote a learning agent that does not
employ a defense strategy against attack model A, but in-
stead, commits to an optimal policy on the poisoned re-
ward function, believing that there is no attack present,
and therefore assumes R̂t to be the true reward, for ev-
ery round t. Under no attack, we have R̂t = Rt, and thus
π
D∅
t = D(Rt, θt) = πopt

t = π∗
t , for some θt ∈ Θ. This

is because, under no attack, the optimal defense would al-
ways select the parameter θ that represents no defense.9

Thus, D∅ incurs no regret in this case and ∆D∅ = 0. On
the other hand, if there is an attack present in round t, and
thus Rt ̸= R̂t, the learner that employs no defense com-
mits to policy π†, since π† is optimal under R̂t. Thus, we
have ∆D∅ =

∑
t≤T ∆π† = T∆π† . In this case, the optimal

defense would incur a gap ∆opt. The regret incurred by
D∅ with respect to an optimal defense that employs D with
optimal parameter θmax is

∑T
t=1 ρ(π

opt
t , Rt) − ρ(π†, Rt),

and there obviously exists a sequence of reward functions
R1, . . . , RT , under which π† is never optimal. Thus, we
obtain RegDD∅

(T ) = Ω(T ).

First Type Defense. Now let D1 denote the class of de-
fenses that bypass R̂t and only learn from past observations
of reward functions. Formally, D1 ∈ D1 is characterized by
a sequence of mappings Dt

1 : Rt−1 → Π, for all t ≥ 1, so
that

πt = Dt
1(R1, . . . , Rt−1).

When no attack is present, we have that R̂t = Rt, for all
t ≥ 1. In that case, the optimal defense would commit
to policy πopt

t = D(Rt, θt) = π∗
t . Any given defense

D1 ∈ D1, on the other hand, would have to compete against
π∗
t based only on past observations. Whatever learning

method D1 employs, it will only minimize the cumulative
regret with respect to the optimal policy in hindsight but
is not guaranteed to minimize our regret. This shows that
our notion is stronger than the usual one. Our next result
shows that D1 is hopeless against an optimal defender that
employs D, both under attack, and when no attack is present,
even if it gets to observe the true reward function Rt at the
end of round t.

Proposition 1. For every D1 ∈ D1, there exists a sequence
of MDPs M1, . . . ,MT and a defense D ∈ D, under which
D1 incurs linear relative regret with respect to D, under
no attack. Moreover, for every D1 ∈ D1, there exists a
sequence of MDPs M1, . . . ,MT , a defense D ∈ D, and an
attack A ∈ A, under which D1 incurs linear relative regret
with respect to D. For such a defense, we have ∆D1 ≥
∆opt + C1T , for some C1 > 0.

Second Type Defense. Next, we consider D2, a class of
defenses that utilize the poisoned reward function and the

9We assume there exists θ ∈ Θ, such that D(Rt, θ) = π∗
t .
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(b) Regrets in the adversarial setting.
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Figure 2: Results for the Navigation environment. (a) One shot attacker-defender interaction, with ρ(π†, R) = −0.26 and ρ(π∗, R) =
0.45. Note that the defense is able to recover a near-optimal policy in almost all scenarios. (b) Comparison of actual regrets in the
adversarial setting for the given methods averaged over 5 runs, where we choose Fixed Defense parameter as 0.5, and No Defense learns
π† directly. (c) Comparison of actual regrets in the stochastic setting for the given methods averaged over 5 runs.

history of utilities, but are not aware of the attack model
being employed by the attacker. A given D2 ∈ D2 is char-
acterized by the sequence Dt

2 : (R|S|·|A|)t × Rt−1 → Π,
for all t ≥ 1, so that πt = Dt

2(R̂1, . . . , R̂t, R1, . . . , Rt−1).

Note that the class D2 is clearly a stronger defense class
than D1 since the poisoned reward is used as an argument.
Under no attack, we similarly have πopt

t = π∗
t , and, due to

its observation of the true reward beforehand, there exists
D2 ∈ D2 that suffers no regret with respect to πopt.

However, suppose the attack model that the attacker employs
is not fixed,10 i.e. At ∈ {A′,A′′} ⊂ A. Furthermore,
assume that the attacker adversarially selects which attack
model to employ in round t. The D2 defense would not
be able to tell whether R̂t is A(Rt, ϵ), for some ϵ ∈ E , or
A′(Rt, ϵ

′), for some ϵ′ ∈ E . Our next result shows that this
can jeopardize the performance of the defense.
Proposition 2. Assume that the attacker can change its
attack model over time. Then, for every D2 ∈ D2, there
exists a sequence of MDPs M1, . . . ,MT , attack models
A1, . . . ,AT ∈ {A′,A′′} ∈ A, and defense D ∈ D, such
that D2 incurs linear relative regret with respect to D. More-
over, we have ∆D2 ≥ ∆opt + C2T , for some positive C2.

The previous results show that the utilization of the attack
model, besides the poisoned reward and the history of util-
ities, is necessary if there is any hope of sublinear bounds
on our notion of regret. We conclude that defense types D∅,
D1 ∈ D1 and D2 ∈ D2 are inefficient against strong adap-
tive attackers that utilize full information about the defense
and modify their behavior accordingly.

5 EXPERIMENTS

We conduct experiments on three different environments,
a bandit environment (Banihashem et al., 2021), a Naviga-

10Note that this does not violate our notion of regret, since
the attack model is given as input to the defense, and thus, the
optimization is only over the parameters. See Section 2.

tion environment (Rakhsha et al., 2021a; Banihashem et al.,
2021), and a Grid World environment (Ma et al., 2019; Ban-
ihashem et al., 2021). However, in this section, we only
discuss the results on the Navigation environment. We refer
the reader to Section B of the Appendix for the rest of the
results.

The Attack and Defense Models. Let us instantiate an
attack model following Rakhsha et al. (2021a). Given true
reward vector R, assume the attacker solves the following
constrained optimization problem in order to obtain R̂, for
a given ϵ ∈ E :

A(R, ϵ) =min
R

∥∥R−R
∥∥
2

(P1)

s.t. ρ(π†, R) ≥ ρ(π
{s,a}
† , R) + ϵ, ∀s, a ̸= π(s) ,

where π{s,a} denotes a policy that chooses a ̸= π(s) in
state s and π(s̃) for all s̃ ̸= s. As shown by Rakhsha et al.
(2021a), this optimization problem is feasible for ergodic
MDPs and has a unique optimal solution. Given defense
model D and parameter θ ∈ Θ, the learner commits to
policy D(R̂, θ). The cost of the attacker with respect to
poisoned reward R̂ and policy π is defined as

σ(π, R̂) := Cnorm ·
(
∥π − π†∥1 + λ

∥∥∥R̂−R
∥∥∥
2

)
,

where Cnorm is a normalization factor which is chosen as
the inverse of the maximum value that the quantity inside the
brackets can have, for a given value of λ, where λ ∈ [0, 1]
is a regularization parameter. Lower values of λ imply a
lower sensitivity of the attacker to the performed reward
poisoning. Given this attack utility, and assuming that the
attacker employs a no-regret algorithm, we define the regret
of the attacker as follows.

RegA(T ) :=

T∑
t=1

σ(D(A(Rt, ϵt), θt),A(Rt, ϵt))

−min
ϵ

T∑
t=1

σ(D(A(Rt, ϵ), θt),A(Rt, ϵ)) .
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On the other hand, similar to the defense strategy in (Ban-
ihashem et al., 2021), we instantiate the defense model as
follows. Given poisoned reward vector R̂, the estimated
reward with respect to θ ∈ Θ is the solution of the following
optimization problem:

D(R̂, θ) = max
π

min
R∈R

ρ(π,R)

s.t R̂ = A(R, θ) . (P2)

The optimal defense here solves (P2) with parameter θ = ϵ,
where ϵ is such that R̂ = A(R, ϵ), given that it knows
the attack parameter (Banihashem et al., 2021). Thus, in
this case, E = Θ. Note that the defender’s optimization
problem depends on the attack model A. Assuming that the
learner knows the attacker’s chosen parameter, it is shown
by Banihashem et al. (2021) that a closed-form solution of
(P2) exists.

Setup and Results. In this attack-defense framework, the
parameter set E = Θ = {0, 0.05, 0.1, 0.15, . . . , 0.95} is the
same for both players. Given the attack parameter ϵ, the
optimal defense parameter is again ϵ since knowledge of
the parameter, in this case, allows the defender to solve the
inverse problem (P2).

In order to evaluate our online learning methods, we need to
generate well-defined reward vectors that are meaningful for
a given environment. In the adversarial setting, we generate
the rewards in the following way. First, we compute the
optimal policy π∗ with respect to the clean environment
using an MDP solver (in our case, Value Iteration). Next,
we compute the set of the neighboring policies of π∗, i.e.
the set N (π∗) = {(π∗){s,a}}s∈S,a ̸=π∗(s). Then, for each
policy π ∈ N (π∗), we solve (P1) in order to generate a
corresponding poisoned reward under which π is optimal.
We use this set of reward vectors for the adversarial setting.

The Navigation environment (Rakhsha et al., 2021a; Bani-
hashem et al., 2021), illustrated in Figure 3b (Section B of
the Appendix), has 9 states and 2 actions. In this example we
have R(s0, ·) = R(s1, ·) = R(s2, ·) = R(s3, ·) = −2.5,
R(s4, ·) = R(s5, ·) = 1 and R(s6, ·) = R(s7, ·) =
R(s8, ·) = 0. Also, in order to ensure ergodicity, we let the
next state be sampled uniformly at random with probability
0.1 and such that follows the environment dynamics with
probability 0.9. The discount factor is γ = 0.99 and the
initial state is fixed as s0. Figure 2a illustrates the one-shot
interaction between the attacker and defender in the Navi-
gation environment, that is, the score ρ(D(A(R, ϵ), θ), R)
with respect to all possible (ϵ, θ).

The scores of target and optimal policies are ρ(π†, R) =
−0.26 and ρ(π∗, R) = 0.45. Note that choosing θ ≥ ϵ is
not the optimal defense, since overestimating the attack is
suboptimal, as shown in Figure 2a. We set λ = 0.01 for the
attack. We compare Exp3-DARP against Naive Exp3, No
Defense, and Fixed Defense. Naive Exp3 is a defense of the
first type, using only delayed feedback. Note that, if policies

are seen as actions, then we have a total of 29 = 512 actions.
Fixed Defense always picks θt = 0.5 (0.5 is selected as the
mean value in Θ). As can be seen in Figure 2b the regret of
No Defense and Fixed Defense is linear, but that of Naive
Exp3 can be seen to show a sublinear tendency, only very
late, due to the high number of actions. On the other hand,
Exp3-DARP only has to find the best among 20 actions, and
thus convergence happens much faster. This example clearly
illustrates the need for defense in complex environments,
when utilizing the defense is much more efficient than only
observing delayed feedback.

We also run experiments on the stochastic setting, where
we showcase the performances of OMDUCB-DARP, No
Defense, and Fixed Defense. The results are shown in Fig-
ure 2c. We sample the reward vectors from the uniform
distribution. Furthermore, we use the negative entropy func-
tion as our regularizer f , thus making the update rules of
OMDUCB-DARP a variation of Multiplicative Weights,
with proxies as defined in Section 3. The attack parameters
are chosen similarly to the adversarial setting. As can be
seen, the convergence of OMDUCB-DARP happens in less
than 100 rounds. We argue that this is attributed to the full
information feedback that is available to the learner and the
small number of actions.

6 CONCLUSIONS AND FUTURE
DIRECTIONS

We proposed a general game-theoretic framework for the
problem of defense against adaptive reward-poisoning at-
tacks in reinforcement learning. Our learning algorithms
Exp3-DARP, and OMDUCB-DARP, designed for adversar-
ial and stochastic environments, respectively, incur sublin-
ear in time bounds on our notion of regret. We proved tight
bounds for the adversarial case and improved the order of
the time horizon in the stochastic case. Finally, we analyzed
various defense strategies that utilize only partial informa-
tion about the attack and showed that knowledge about its
structure is necessary to obtain an efficient defense. This
work initiates the discussion on the game-theoretic aspects
of defenses against poisoning attacks in RL. We deem it
as a starting point in the research direction that explores
such aspects. While we are able to provide tighter than
worst-case bounds on the expected regret for stochastic envi-
ronments, a natural future direction is to investigate whether
these bounds are order-optimal, for the given learning algo-
rithms that the attack deploys. Furthermore, another natural
direction is to consider the Stackelberg game formulation,
where the sequential interaction between the attacker and
defender is turn-based. Here, the defender would lead by
choosing its parameter first, after which the attack would
pick its parameter as the best response to the defense pa-
rameter, thus introducing a stronger attack that observes the
defense before acting itself.
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A ALGORITHMS

First, we give an illustration of the interaction protocol of Algorithm 1.

Rt −−−−−→
A(Rt,ϵt)

R̂t −−−−−−→
D(R̂t,θt)

πt −→ ρ(πt, Rt) (7)

Next, we give the pseudocodes for Exp3-DARP and OMDUCB-DARP. First, let us recall the update rule for Exp3. For any
t ≥ 1, we have

ϕD
t+1(θ) := (1− η)

wD
t+1(θ)∑

θ′ wD
t+1(θ

′)
+

η

D
, (8)

where, for any θ ∈ Θ

wD
t+1(θ) = wD

t (θ) exp (ηρ̃t(θ)/D) ,

and

ρ̃t =

{
ρ(D(R̂t, θ), Rt)/ϕ

D
t (θ) if θ = θt

0 otherwise .

The weights wD
1 (θ) are initialized as 1, for all θ ∈ Θ.

B ADDITIONAL EXPERIMENTS

The environments we consider in this paper are illustrated in Figure 3. We provide experiments on the Bandit and Grid
World environments, both in the adversarial and stochastic settings. We will use the same attack and defense models, as
described in Section 5.
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Algorithm 2 Exp3-DARP

1: Initialize: Attack model A, defense model D; attacker strategy ϕA
1 ; set ϕD

1 to the uniform distribution on Θ.
2: for t = 1, 2, 3, . . . , T do:
3: Attacker samples ϵt ∼ ϕA

t and learner samples θt ∼ ϕD
t .

4: Rt is chosen by the environment.
5: R̂t = A(Rt, ϵt) is computed and revealed to the learner.
6: πt = D(R̂t, θt) is computed.
7: Attacker observes θt, ϕD

t and πt, and incurs cost σ(πt, R̂t).
8: for ϵ ∈ E do:
9: Attacker updates its strategy ϕA

t+1 according to its learning method.
10: end for
11: Learner observes utility ρ(πt, Rt).
12: for θ ∈ Θ do:
13: Update ϕD

t+1 as in (8).
14: end for
15: end for

Algorithm 3 Optimistic Mirror Descent for Stochastic Games

1: Initialize: Attack model A, defense model D; set f to be 1-strongly convex with respect to ∥·∥1 and let ϕ̃D
1 = ϕD

1 =

argminϕ f(ϕ). Also, set G̃1[ϵ, θ] = Ĝ1[ϵ, θ] = 0, for all ϵ ∈ E and θ ∈ Θ.
2: for t = 1, 2, 3, . . . , T do:
3: Attacker samples ϵt ∼ ϕA

t and learner samples θt ∼ ϕD
t .

4: Rt is chosen by the environment.
5: R̂t = A(Rt, ϵt) is computed and revealed to the learner.
6: πt = D(R̂t, θt) is computed.
7: Attacker observes learner’s strategy ϕD

t and πt, and incurs cost σ(πt, R̂t).
8: for ϵ ∈ E do:
9: Attacker updates its strategy ϕA

t+1 according to its learning method.
10: end for
11: Learner observes Rt and ϕA

t and then computes G̃t+1 and Ĝt+1.
12: for θ ∈ Θ do:
13: Update ϕ̃D

t+1 as in (3).
14: Update ϕD

t+1 as in (4).
15: end for
16: end for

B.1 Bandit Environment

In this section we consider a bandit environment, with 7 actions. Figure 4a illustrates the one shot interaction between the
attacker and defender, that is, the score ρ(D(A(R, ϵ), θ), R) with respect to all possible (ϵ, θ). In this particular example,
R = [10, 4, 6, 3, 1, 5, 9] and π† = a4. Furthermore, we have ρ(π†, R) = 2.5 and ρ(π∗, R) = 10. As we can see, if the
learner selects θ ≥ ϵ, then the defense will output a policy which is near-optimal. Otherwise, the learner will inevitably
adopt π†.

Next, we evaluate Exp3-DARP and OMDUCB-DARP in this environment. For the adversarial setting, we compare Exp3-
DARP with No Defense and Fixed Defense, that is, a defender that does not use learning but employs only one defense
parameter, thinking that the attacker is non-adaptive. We choose the fixed parameter 0.5, as the average of the parameter
values. Similar to the Navigation case, the attack regularization parameter is λ = 0.01. The value of λ balances the trade-off
between enforcing π† and minimizing cost. A small value of λ means that the attacker is not sensitive to large amounts
of poisoning. We did not compare with Naive Exp3 which only learns from feedback at the end of the round, since this
particular case favours Naive Exp3, due to the low complexity of the environment (the state-action space is trivially small).

We run the algorithm for 10000 rounds, which takes approximately 10 minutes, since the environment is low-dimensional. As
can be seen from Figure 4b, in both cases Exp3-DARP incurs sublinear regret, while both other methods incur linear regret.
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(a) Bandit environment with 7 arms.
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(b) Navigation environment with 9 states
and 2 actions.
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(c) Grid World environment with 18
states and 4 actions.

Figure 3: Visual illustration of the Bandit and Grid World environments. (a) A graphical representation of the Bandit environment with 7
arms, where π∗ = a1. (b) A visual representation of the Navigation environment with 9 states and 2 actions, where the arrows depict the
optimal trajectory. (c) A visual representation of the Grid World environment with 18 states, initial state S and terminal state G. The idea
is to avoid the grey states because the yield very low reward.
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Figure 4: Results for the Bandit environment. (a) One-shot attacker-defender interaction, with ρ(π†, R) = 2.5 and ρ(π∗, R) = 10. Here
the defense is farther from the optimal policy than in the Navigation environment, possibly due to the large gap between ρ(π†, R) and
ρ(π∗, R). (b) Comparison of actual regrets in the adversarial setting for the given methods, where we choose Fixed Defense parameter as
0.5, and No Defense learns π† directly. (c) Comparison of actual regrets in the stochastic setting for the given methods.

For the stochastic case, we run the algorithm for only 100 rounds, and already observe convergence of OMDUCB-DARP,
due to the stronger feedback model of the defense, and probably the low complexity of the distribution. Figure 4c illustrates
the regret in the stochastic setting.

B.2 Grid World Environment

The Grid World environment (Ma et al., 2019; Banihashem et al., 2021) has 18 non-wall states and 4 actions, up, down, left,
right. We have R(s14, ·) = R(s15, ·) = −10, R(s17, ·) = 2 and for all other states, the reward is −1. Again, ergodicity is
ensured by letting the next state be sampled randomly with probability 0.1. Here we have γ = 0.9 and initial state s0.

The optimal policy in the Grid World is to avoid the states s14 and s15 and go around from s0 to s17. The target policy of
the attacker π† is defined as following precisely these states to reach the terminal state s17. In Figure 5a we can again see
the interaction between both players for a fixed game. Here we have ρ(π†, R) = −1.75 and ρ(π∗, R) = −0.7. Again, it is
obviously the case that the optimal defense parameter lies in the diagonal line of the plot, meaning that θ = ϵ.

Note that we observe similar results here for the adversarial setting, as can be seen in Figure 5b, where we again run the
algorithm for 10000 rounds. We did not even bother to run Naive Exp3 in this environment since the number of arms in this
case is 418 = 68, 719, 476, 736, which makes learning from delayed feedback catastrophically non-efficient.

In the stochastic setting (see Figure 5c), on the other hand, linearity of No Defense and Fixed Defense is even more clear,
due to the high complexity of the environment, while convergence of OMDUCB-DARP happens in around 30 rounds. This
convergence rate, which is even faster than that in the simpler environments, can be attributed, besides the strong feedback
model, also to a higher gap between the scores of the best and runner up policies.
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(b) Regrets in the adversarial setting.
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Figure 5: Results for the Grid World environment. (a) One-shot attacker-defender interaction, with ρ(π†, R) = −1.75 and ρ(π∗, R) =

−0.7. Note that here the defense is again able to recover a near-optimal policy, due to the proximity of ρ(π†, R), to ρ(π∗, R). (b)
Comparison of actual regrets in the adversarial setting for the given methods, where we again let Fixed Defense parameter be 0.5, and No
Defense learns π† directly. Note that convergence in this setting is slower due to high complexity of the environment. (c) Comparison of
actual regrets in the stochastic setting for the given methods.

C PROOFS OF RESULTS IN SECTION 3

In this section, we provide the proofs of Theorem 1, Theorem 2 and Theorem 3.

C.1 Proof Of Theorem 1

Statement. Let A ∈ A and D ∈ D. Moreover, given T,D ∈ N, set

ηD = min{1,
√
(D lnD)/((e− 1)T )}.

Then, we have RegD(T ) ≤ O(
√
TD lnD).

On the other hand, there exists an attack A ∈ A and a distribution β of rewards R1, . . . , RT , such that, for any defense
D ∈ D, the expected regret EβRegD(T ) is at least Ω(

√
TD).

Proof. For the upper bound, first note that in the adversarial scenario, we are not exploiting the structure in the data
coming from the attacker’s strategy. The results hold for any strategy of the attacker. We can thus view the problem as
an adversarial bandit problem, where the arms are the parameters θ ∈ Θ and the reward of pulling arm θ at time t is
ρ(D(R̂t, θ), Rt) ∈ [0, 1]. The optimal arm, which serves as a benchmark for the adversarial bandit, is the optimal defense
parameter that maximizes performance, i.e. θmax. Thus, our notion of regret with respect to the optimal defense corresponds
to the weak regret of Auer et al. (2002) and so Corollary 3.2 of (Auer et al., 2002) gives O(

√
TD lnD) bounds on the regret

of Exp3-DARP.

For the lower bound, we will consider the following construction. Let M = (S,A,R, P, γ, ν) with state space S =
{s0, sterminal}, action space A = {a1, a2}, transitions P (s0, ai, sterminal) = 1, for i ∈ {1, 2}, discount factor γ = 1 and
initial state distribution ν(s0) = 1.

Now let us define the reward vector as R(s0, a1) = X , where X ∼ Ber( 1+α
2 ) and R(s0, a2) = Y , where Y ∼ Ber( 1−α

2 ),
for some α ∈ (0, 1). In this case (since γ = 1) the score of a given policy π is ρ(π,R) = R(so, π). Note that we have
ρ(a1, R) = X and ρ(a2, R) = Y .

Furthermore, let the action space of the attacker be E = {ϵ1, ϵ2, ϵ3, ϵ4}, where we let

A
([

1
0

]
, ϵ1

)
=

[
1
0

]
, A

([
1
1

]
, ϵ2

)
=

[
1
0

]
A
([

0
1

]
, ϵ3

)
=

[
1
0

]
A
([

0
0

]
, ϵ4

)
=

[
1
0

]
Obviously, we have designed the attack so that π† = a1. Note that π† is always optimal under R̂ since, for any R ∈ R and
ϵ ∈ E , we have A(R, ϵ) = R̂ = [1 0]T .

On the other hand, let Θ = {θ1, . . . , θD} denote the action space of the learner. Furthermore, let Θ1 ⊂ Θ be a subset of
Θ such that D(R̂, θ) = a1, for θ ∈ Θ1, and let Θ2 := Θ \ Θ1. We assume neither Θ1 nor Θ2 are empty, without loss of
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generality, since if any of these events were the case, we can always find a fixed attack that imposes π† on the defense since
there is no decision-making for the defense. Hence, we omit the trivial scenarios.

Assume that, in each round t ≥ 1, we have Rt = R. Now if the defender selects θt ∈ Θ1 at round t, we have

ρ(D(A(R, ϵt), θt), R) = ρ(D(R̂, θt), R) = ρ(a1, R) = X ,

for any ϵt ∈ E . On the other hand, if θt ∈ Θ2, we obtain

ρ(D(A(R, ϵt), θt), R) = ρ(D(R̂, θt), R) = ρ(a2, R) = Y ,

for any ϵt ∈ E .

We will use the following result from (Bubeck and Cesa-Bianchi, 2012).

Lemma 1. (Lemma 3.2 of (Bubeck and Cesa-Bianchi, 2012)) Let α ∈ (0, 1] and let Yi,t denote the reward received from
playing action i ≤ D at time t ≥ 1. Let Ei be the expectation with respect to the joint distribution of rewards where all
actions are i.i.d. Bernoulli of parameter 1−α

2 , but action i, which is i.i.d. Bernoulli of parameter 1+α
2 . Then, for any

randomized strategy A, if we denote by It the action played by A at time t, we have

max
1≤i≤D

Ei

T∑
t=1

(Yi,t − YIt,t) ≥ Tα

(
1− 1

D
−
√
α ln

1 + α

1− α

√
T

2D

)
.

Note that all actions θ ∈ Θ1 can be represented with one action, without loss of generality. Also, let us shorten notation and
define

ρ(ϵ, θ, R) = ρ(D(A(R, ϵ), θ), R) .

Now let us denote by θ∗i any parameter from Θi. Lemma 1 implies

max
1≤i≤D

Ei

T∑
t=1

(
ρ(ϵt, θ

∗
i , R)− ρ(ϵt, θt, R)

)
≥ Tα

(
1− 1

D
−
√

α ln
1 + α

1− α

√
T

2D

)
,

since

ρ(ϵt, θt, R) =

{
Ber( 1+α

2 ) if θt = θ∗i
Ber( 1−α

2 ) if otherwise.

Letting α = O(
√
D/T ), we obtain the Ω(

√
TD) bounds.

C.2 Proof Of Theorem 2

Statement. Assume that, at the end of round t, the learner can observe the attacker’s strategy and the true reward function
Rt. Then, there exists an attack A ∈ A, such that, for any defense D ∈ D and any sequence ϕD

1 , . . . , ϕ
D
T , we have

RegD(T ) = Ω(
√
T logD).

Proof. For the full information feedback setting, we can use any algorithm that satisfies the Regret bounded by Variation in
Utilities property (Equation (1) of (Syrgkanis et al., 2015)), such as any variation of Optimistic Mirror Descent procedure.
For the usual adversarial case, when the structure of the other players cannot be exploited, we obtain O(

√
T logD) bound

on the regret.by an appropriate choice of the step-size ηD.

In order to show the lower bound, we will consider the same construction as in the proof of Theorem 1. We use the same
MDP and attack model. Thus, we again have

ρ(D(A(R, ϵ), θt), R) = ρ(D(R̂, θt), R) = ρ(a1, R) = X ,

for all ϵ ∈ E , if θt ∈ Θ1, and

ρ(D(A(R, ϵ), θt), R) = ρ(D(R̂, θt), R) = ρ(a2, R) = Y ,
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for any ϵ ∈ E , if θt ∈ Θ2. However, instead of defining X and Y as Bernoulli random variables with different parameters,
we instead let X = 1/2 and Y = Ber(1/2).

Note that, given any strategy ϕ, we have E[
∑T

t=1⟨ϕ, ρt⟩] =
1
2 , where the expectation is over the reward sequences. Let

us denote by Zi =
∑T

t=1 ρ(ϵt, θ
∗
i , R), where θ∗i is defined as in the proof of Theorem 1. We have Z1 = T/2 and

Z2 ∼ Bin(T, 1/2). We will use the following tail bounds for Binomial random variables.

Lemma 2. Let Z be a Binomial random variable with T trials and success probability 1/2. For k ∈ [0, T/8], we have

P
(
Z ≥ T

2
+ k

)
≥ 1

15
e−16k2/T .

Let k = (1/4)
√
T log(D − 1). The result above implies

P
(
max

i
Zi ≤

T

2
+ k

)
=

E∏
i=2

P
(
Zi ≤

T

2
+ k

)
≤
(
1− 1

15
e−16k2/T

)D−1

≤ 0.95

Thus, we have that P(maxi Zi ≤ T/2 + k) ≤ 0.95 and P(maxi Zi ≥ T/2 + k) ≥ 0.05. Since we always have that
maxi Zi ≥ T/2, we obtain

E[max
i

Zi] ≥ P
(
T

2
≤ max

i
Zi ≤

T

2
+ k

)
T

2
+ P

(
max

i
Zi ≥

T

2
+ k

)(
T

2
+ k

)
= 0.95

T

2
+ 0.05

(
T

2
+ k

)
=

T

2
+

1

80

√
T log(D − 1) .

Thus, for any sequence of randomized strategies of the learner ϕD
1 , . . . , ϕ

D
T , and for any sequence of attack parameters

ϵ1, . . . , ϵT , we obtain

E

[
max

i

T∑
t=1

ρ(ϵt, θ
∗
i , Rt)−

T∑
t=1

⟨ϕD
t , ρt⟩

]
≥ 1

80

√
T log(D − 1) ,

where the expectation is with respect to the distribution of rewards that we defined. Note that RegD(T ) ≤ T . The reverse
Markov inequality gives

P
(
RegD(T ) ≥

1

160

√
T ln(D − 1)

)
≥

ERegD(T )− 1
160

√
T ln(D − 1)

T − 1
160

√
T ln(H − 1)

≥ 1

160

√
ln(D − 1)

T
.

Thus, using the probabilistic method, we can say that there exists a sequence R1, . . . , RT , for which Optimistic Hedge
incurs Ω(

√
T logD) regret.

C.3 Proof Of Theorem 3

Statement. Let A ∈ A, D ∈ D and T ∈ N. Assume ηD ≤ ηA ∈ (0, 1]. Moreover, assume that, at every round t ≥ 1, the
attacker’s randomized strategy ϕA

t is updated via the Optimistic Hedge update rule. Then, for any δ ∈ (0, 1), the above
algorithm incurs expected regret

Reg∗D(T ) ≤ ηA +O(ηA logE) +O
(
(ηA)2 + (ηA)3

)
T +

ηA

2
log(π2ED/(3δ)) log T +

1

ηD
fmax ,

with probability at least 1− δ, where fmax = maxϕ f(ϕ)−minϕ f(ϕ).

Proof. First, we will prove an auxiliary result that gives tail bounds on the deviation of the sample average of the costs from
their mean, for any action pair.
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Lemma 3. Given δ ∈ (0, 1), for every ϵ ∈ E , θ ∈ Θ, and t ≥ 2, we have

P

(∣∣∣G̃t[ϵ, θ]−G[ϵ, θ]
∣∣∣ ≤√ log (π2ED/(3δ))

2(t− 1)

)
≥ 1− δ .

Proof. First, note that we have Gt[ϵ, θ] ∈ [0, 1], ∀ϵ ∈ E , θ ∈ Θ, t ≥ 1. Moreover, given any pair (ϵ, θ) ∈ E × Θ, the
sequence G1[ϵ, θ], G2[ϵ, θ], . . . is i.i.d. with mean G[ϵ, θ]. Then, Hoeffding’s inequality implies

P

⋃
ϵ∈E

⋃
θ∈Θ

⋃
t≥2

{∣∣∣∣∣
t−1∑
k=1

Gk[ϵ, θ]− E
t−1∑
k=1

Gk[ϵ, θ]

∣∣∣∣∣ ≥
√

(t− 1)

2
log

(
π2ED

3δ

)})

≤
∑
ϵ∈E

∑
θ∈Θ

∑
t≥2

P

(∣∣∣∣∣
t−1∑
k=1

Gk[ϵ, θ]− (t− 1)G[ϵ, θ]

∣∣∣∣∣ ≥
√

(t− 1)

2
log

(
π2ED

3δ

))

≤
∑
ϵ∈E

∑
θ∈Θ

∑
t≥2

2 exp

−
2

(√
(t−1)

2 log(π
2ED
3δ )

)2

t− 1


≤ ED

π2

3
exp

(
− log

(
π2ED

3δ

))
= δ .

Thus, for all θ ∈ Θ, ϵ ∈ E and t ≥ 2, the statement of the lemma follows.

Now we are ready to prove the main result. Suppose the event of Lemma 3 holds. Note that we can write the regret as

Reg∗D(T ) = EGt∼G,ϵt∼ϕA
t ,θt∼ϕD

t

T∑
t=1

Gt[ϵt, θt]−min
ϕ

EGt∼G,ϵt∼ϕA
t ,θ∼ϕ

T∑
t=1

Gt[ϵt, θ] (9)

=

T∑
t=1

⟨ϕD
t − ϕD

∗ , G
TϕA

t ⟩ ,

where ϕD
∗ := argminϕ

∑T
t=1 EGt∼G,ϵt∼ϕA

t ,θ∼ϕGt[ϵt, θ]. Given t ≥ 1, Lemma 3 implies

⟨ϕD
t − ϕD

∗ , G
TϕA

t ⟩ = ⟨ϕD
t − ϕ̃D

t+1, G
TϕA

t − G̃T
t ϕ

A
t−1⟩+ ⟨ϕD

t − ϕ̃D
t+1, G̃

T
t ϕ

A
t−1⟩+ ⟨ϕ̃D

t+1 − ϕD
∗ , G

TϕA
t ⟩

≤ ⟨ϕD
t − ϕ̃D

t+1, G
TϕA

t − G̃T
t ϕ

A
t−1⟩+ ⟨ϕD

t − ϕ̃D
t+1, G̃

T
t ϕ

A
t−1⟩+ ⟨ϕ̃D

t+1 − ϕD
∗ , Ĝ

T
t ϕ

A
t ⟩

due to linearity of inner product and the fact that G[ϵ, θ] ≤ Ĝt[ϵ, θ], for any ϵ ∈ E , θ ∈ Θ and t ≥ 2. We will provide upper
bounds for each term on the right-hand side. First, we give upper bounds for the last two terms. Any update of the form
a∗ = argmina⟨a, x⟩+ Bf (a, c) satisfies, for any d ∈ Θ, (Equation 26 of (Rakhlin and Sridharan, 2013a)):

⟨a∗ − d, x⟩ ≤ Bf (d, c)− Bf (d, a
∗)− Bf (a

∗, c) .

Thus, the update equations (3) and (4) imply

⟨ϕD
t − ϕ̃D

t+1, G̃
T
t ϕ

A
t−1⟩ ≤

1

ηD

(
Bf (ϕ̃

D
t+1, ϕ̃

D
t )− Bf (ϕ̃

D
t+1, ϕ

D
t )− Bf (ϕ

D
t , ϕ̃

D
t )
)

,

and

⟨ϕ̃D
t+1 − ϕD

∗ , Ĝ
T
t ϕ

A
t ⟩ ≤

1

ηD

(
Bf (ϕ

D
∗ , ϕ̃

D
t )− Bf (ϕ

D
∗ , ϕ̃

D
t+1)− Bf (ϕ̃

D
t+1, ϕ̃

D
t )
)

.
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On the other hand, denoting by ∥·∥∗ the dual norm of ∥·∥, for the remaining term we have

⟨ϕD
t − ϕ̃D

t+1, G
TϕA

t − G̃T
t ϕ

A
t−1⟩ ≤

∥∥∥ϕD
t − ϕ̃D

t+1

∥∥∥ · ∥∥∥GTϕA
t − G̃T

t ϕ
A
t−1

∥∥∥
∗

≤ 1

2ηA

∥∥∥ϕD
t − ϕ̃D

t+1

∥∥∥2
1
+

ηA

2

∥∥∥GTϕA
t − G̃T

t ϕ
A
t−1

∥∥∥2
∞

,

(10)

by Cauchy-Schwarz and the fact that the dual of ∥·∥1 is ∥·∥∞. The second term of the right-hand side above can be bounded
as

ηA

2

∥∥∥GTϕA
t − G̃T

t ϕ
A
t−1

∥∥∥2
∞

≤ ηA
∥∥GT (ϕA

t − ϕA
t−1)

∥∥2
∞ + ηA

∥∥∥(G− G̃t)
TϕA

t−1

∥∥∥2
∞

≤ ηA
∥∥ϕA

t − ϕA
t−1

∥∥2
1
+ ηA max

ϵ,θ

∣∣∣G[ϵ, θ]− G̃t[ϵ, θ]
∣∣∣2 (11)

≤ ηA
∥∥ϕA

t − ϕA
t−1

∥∥2
1
+ ηA

log(π2ED/(3δ))

2(t− 1)
. (12)

where (11) follows from the fact that ϕA
t is a probability simplex and G[ϵ, θ] ≤ 1, for all ϵ ∈ E , θ ∈ Θ, by assumption; (12)

follows from Lemma 3. Putting everything together, we obtain

Reg∗D(T ) =

T∑
t=1

⟨ϕD
t − ϕD

∗ , G
TϕA

t ⟩

≤
T∑

t=1

⟨ϕD
t − ϕ̃D

t+1, G
TϕA

t − G̃T
t ϕ

A
t−1⟩+ ⟨ϕD

t − ϕ̃D
t+1, G̃

T
t ϕ

A
t−1⟩+ ⟨ϕ̃D

t+1 − ϕD
∗ , Ĝ

T
t ϕ

A
t ⟩

≤
T∑

t=1

(
1

2ηA

∥∥∥ϕD
t − ϕ̃D

t+1

∥∥∥2
1
+ ηA

∥∥ϕA
t − ϕA

t−1

∥∥2
1

)
+ ηA +

T∑
t=2

(
ηA

log(π2ED/(3δ))

2(t− 1)

)

+

T∑
t=1

1

ηD

(
Bf (ϕ̃

D
t+1, ϕ̃

D
t )− Bf (ϕ̃

D
t+1, ϕ

D
t )− Bf (ϕ

D
t , ϕ̃

D
t )
)

+

T∑
t=1

1

ηD

(
Bf (ϕ

D
∗ , ϕ̃

D
t )− Bf (ϕ

D
∗ , ϕ̃

D
t+1)− Bf (ϕ̃

D
t+1, ϕ̃

D
t )
)

≤ ηA + ηA
T∑

t=1

∥∥ϕA
t − ϕA

t−1

∥∥2
1
+ ηA

T∑
t=2

log(π2ED/(3δ))

2(t− 1)

+
1

ηD

T∑
t=1

(
Bf (ϕ

D
∗ , ϕ̃

D
t )− Bf (ϕ

D
∗ , ϕ̃

D
t+1)

)
(13)

≤ O(ηA logE) +O
(
(ηA)2 + (ηA)3

)
T +

ηA

2
log(π2ED/(3δ)) log T +

1

ηD
fmax + ηA (14)

where (13) follows from that fact that Bf (ϕ̃
D
t+1, ϕ

D
t ) ≥ 1

2

∥∥∥ϕ̃D
t+1 − ϕD

t

∥∥∥2
1

by Pinsker’s inequality and the assumption that

ηD ≤ ηA; the first two terms of (14) follow from Lemma 3.2 of (Chen and Peng, 2020), the log T component of the third
term is an upper bound on the (T − 1)th Harmonic number, and the fourth term follows by definition of fmax.

C.4 Proof Of Corollary 1

Before proving Corollary 1, we state and prove an auxiliary lemma that gives upper bounds on the magnitude of change in
strategies, for common online learning methods.

Lemma 4. Let ϕ1(i) = 1/n, for all i ∈ [n], where n ∈ N. Furthermore, let T ∈ N and fix learning rate η ∈ (0, 1]. Then,
assuming an online learning setting with cost vectors σt with entries in [0, 1], for all t ∈ [T ], we have the following:
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•
∑T

t=1 ∥ϕt − ϕt−1∥21 ≤ O(log n/η + η
√
T + η2T ), if ϕt are updated using Optimistic Mirror Descent or Optimistic

Follow the Regularized Leader update rules.

•
∑T

t=1 ∥ϕt − ϕt−1∥21 ≤ O
(
log n+ (η + η2)

)
T if ϕt are updated using Optimistic Hedge update rule.

•
∑T

t=1 ∥ϕt − ϕt−1∥21 ≤ O(η
√
T ), if ϕt are updated using Hedge update rule.

Proof. First, note that the regret is written as

Reg(T ) =

T∑
t=1

⟨ϕt, σt⟩ − min
j∈[n]

T∑
t=1

σt(j) .

For the first point, we will use Proposition 5 and 7 of (Syrgkanis et al., 2015) and the RVU property of OMD and OFTRL.
For both algorithms, we have

T∑
t=1

∥ϕt − ϕt−1∥21 ≤ O

(
log n

η
+ ηReg(T ) + η2

T∑
t=1

∥σt − σt−1∥2∗

)

≤ O

(
log n

η
+ η

√
T + η2T

)
,

where the first inequality follows from Propositions 5 and 7 of (Syrgkanis et al., 2015) and the second one follows from the
reward assumption and the worst-case regret bounds for these methods. The second point follows from Lemma 3.2 of (Chen
and Peng, 2020). For the third point, we use a similar argument as Lemma 3.2 of (Chen and Peng, 2020). We provide the
proof here for completion. For every 2 ≤ t ≤ T , we have

1

2
∥ϕt − ϕt−1∥21 ≤

n∑
i=1

ϕt−1(i) log

(
ϕt−1(i)

ϕt(i)

)

=

n∑
i=1

ϕt−1(i) log

 n∑
j=1

ϕt−1(j) exp (−ησt−1(j))

+ η

n∑
j=1

ϕt−1(j)σt−1(j)

= log

 n∑
j=1

ϕt−1(j) exp (−ησt−1(j))

+ η⟨ϕt−1, σt−1⟩ ,

where the first inequality follows from Pinsker’s inequality; for the first equality we have used the Hedge update rule, given
as

ϕt(i) =
ϕt−1(i) exp(−ησt−1(i))∑

j∈[n] ϕt−1(j) exp(−ησt−1(j))
,

for all i ∈ [n]; the second equality follows from the fact that
∑

i∈[n] ϕt(i) = 1, for all t ≥ 1.

Next, using induction, we will show that, for any k ∈ N, we have

k∑
t=1

log

 n∑
j=1

ϕt−1(j) exp (−ησt−1(j))

 = log

∑
i∈[n]

ϕ1(i) exp(−η

k−1∑
t=0

σt(i))

 .

For k = 1, the equality follows from the fact that σ0 is the 0 vector and the fact that ϕ1(j) = 1/n, for all j ∈ [n]. We
assume the equality holds for k and prove it for k + 1. We have

k+1∑
t=1

log

∑
j∈[n]

ϕt−1(j) exp (−ησt−1(j))

 =

k∑
t=1

log

∑
j∈[n]

ϕt−1(j) exp (−ησt−1(j))


+ log

∑
j∈[n]

ϕk(j) exp (−ησk(j))
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= log

∑
i∈[n]

ϕ1(i) exp(−η

k−1∑
t=0

σt(i))

+ log

∑
j∈[n]

ϕk(j) exp (−ησk(j))


= log

∑
i∈[n]

ϕ1(i) exp(−η

k−1∑
t=0

σt(i))

 ·

∑
j∈[n]

ϕk(j) exp (−ησk(j))


= log

∑
i∈[n]

ϕ1(i) exp

(
−η

k∑
t=1

σt(i)

) ,

where the third inequality follows from the fact that, for all i ∈ [n], we have

ϕt(i) =
ϕ1(i) exp(−η

∑t−1
τ=1 στ (i))∑

j∈[n] exp(−η
∑t−1

τ=1 στ (j))
.

Finally, we have

1

2 ln 2

T∑
t=2

∥ϕt − ϕt−1∥21 ≤
T∑

t=2

log

 n∑
j=1

ϕt−1(j) exp (−ησt−1(j))

+ η

T∑
t=2

⟨ϕt−1, σt−1⟩

= log

∑
i∈[n]

1

n
exp

(
−η

T−1∑
t=1

σt(i)

)+ η

T∑
t=2

⟨ϕt−1, σt−1⟩

≤ η

T∑
t=2

⟨ϕt−1, σt−1⟩ − η min
i∈[n]

T−1∑
t=1

σt(i)

= ηReg(T ) ≤ O(η
√
T ) ,

where the second inequality follows from the fact that the min is less than the average, and the last inequality follows from
the definition of regret and the worst-case bounds for Hedge.

Now we can plug in the results of the previous lemma and prove Corollary 1.
Statement. Under the conditions of Theorem 3, we have

• Reg∗D(T ) ≤ O(log T ), if the attacker plays a fixed strategy.

• Reg∗D(T ) ≤ O(T 1/4), if the attacker plays Hedge.

• Reg∗D(T ) ≤ O(T 1/3), if the attacker plays OMD, OH or OFTRL, or any other online learning method that satisfies the
RVU property (Syrgkanis et al., 2015).

Proof. The first point is obvious. For Hedge, we have from the previous lemma that
∑T

t=1 ∥ϕt − ϕt−1∥21 ≤ O(η
√
T ).

Then, letting ηD = ηA ≤ O(log T/T 1/4), we obtain Reg∗D(T ) ≤ O(T 1/4).

For the rest, we let ηD = ηA ≤ O(log T/T 1/4), in order to obtain the desired bounds.

D PROOFS OF RESULTS IN SECTION 4

In this section we provide the proofs of Proposition 1 and Proposition 2.

D.1 Proof Of Proposition 1

Statement. For every D1 ∈ D1, there exists a sequence of MDPs M1, . . . ,MT and a defense D ∈ D, under which D1

incurs linear relative regret with respect to D, under no attack. Moreover, for every D1 ∈ D1, there exists a sequence of
MDPs M1, . . . ,MT , a defense D ∈ D, and an attack A ∈ A, under which D1 incurs linear relative regret with respect to
D. For such a defense, we have ∆D1 ≥ ∆opt + C1T , for some C1 > 0.
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Proof. Let D1 ∈ D1. We start by proving the first part of the statement. Let M = (S,A,R, P, γ, ν) with state space
S = {s0, sterminal}, action space A = {a1, a2}, transitions P (s0, ai, sterminal) = 1, for i ∈ {1, 2}, discount factor γ = 1
and initial state distribution ν(s0) = 1.

Let R be the reward vector that takes values [1 0]T or [0 1]T , uniformly at random. Let D ∈ D with action set {θ1, . . . , θH}
and let us pick θ∗ ∈ Θ such that D(R, θ∗) = π∗, without loss of generality. Note that we have θmax = θ∗, and thus, for
every sample Rt of R, it holds that πopt

t = argmaxi Rt[i].

On the other hand, since D1 does not depend on R̂1, . . . , R̂T , the best strategy would be to pick each ai with equal
probability. Thus, we have

RegD1
(T ) = max

θ

T∑
t=1

ρ(D(R̂t, θ), Rt)− E
T∑

t=1

ρ(D1(R1, . . . , Rt−1), Rt)

=

T∑
t=1

ρ(πopt
t , Rt)− E

T∑
t=1

ρ(πD1
t , Rt)

=

T∑
t=1

max
i=1,2

Rt[i]−
T∑

t=1

Rt[π
D1
t ]

= T − T

2
=

T

2
.

For the second part of the statement, note that an adaptive attack A ∈ A can always choose not to attack, and thus, the set of
adaptive attacks contains the no attack case. Therefore, any D1 ∈ D1 suffers linear regret under any A ∈ A by extension.

To give a characterization of the optimality gap, first recall that ∆D1 =
∑T

t=1 ρ(π
∗
t , Rt)− Eρ(πD1

t , Rt). Now we can write

∆D1 =

T∑
t=1

ρ(π∗
t , Rt)− Eρ(πD1

t , Rt)

=

T∑
t=1

(
ρ(π∗

t , Rt)− ρ(πopt
t , Rt)

)
+

T∑
t=1

(
ρ(πopt

t , Rt)− Eρ(πD1
t , Rt)

)
= ∆opt +RegD1

(T )

≥ ∆opt +Ω(T ) ,

where the last inequality follows from above.

D.2 Proof Of Proposition 2

Statement. Assume that the attacker can change its attack model over time. Then, for every D2 ∈ D2, there exists a
sequence of MDPs M1, . . . ,MT , attack models A1, . . . ,AT ∈ {A′,A′′} ∈ A, and defense D ∈ D, such that D2 incurs
linear relative regret with respect to D. Moreover, we have ∆D2 ≥ ∆opt + C2T , for some positive C2.

Proof. We will again construct an example to make the case. Let M = (S,A,R, P, γ, ν) with state space S =
{s0, sterminal}, action space A = {a1, a2, a3}, transitions P (s0, ai, sterminal) = 1, for i ∈ {1, 2, 3}, discount factor
γ = 1 and initial state distribution ν(s0) = 1.

Let us define the reward vector as a sample from the set R = {[0.7 0.5 0.3]T , [0.5 0.3 0.7]T }. Assume that, in every
round t, the reward function Rt is a sample from R uniformly at random.

Now let us define attack models A′,A′′ ∈ A, both with action set E = {ϵ1, ϵ2}, such that

A′([0.7 0.5 0.3]T , ϵ1) = A′′([0.5 0.3 0.7]T , ϵ2) = R̂ = [0.5 0.7 0.3]T .

Note that, in this example, π† = a2. Assume that, given horizon T , the attacker employs A′ in T/2 of the rounds and A′′ in
the rest. Also, assume R̂ = R̂t, for all t ≤ T .
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On the other hand, let D ∈ D with action set Θ = {θ}, such that

D(A′([0.7 0.5 0.3]T , ϵ1), θ) = [0.7 0.5 0.3]T ,

D(A′′([0.5 0.3 0.7]T , ϵ2), θ) = [0.5 0.3 0.7]T .

Now let D2 ∈ D2. Note that D2 depends only on past observations of reward functions R1, . . . , Rt−1 and R̂. Furthermore,
by assumption, D2 cannot tell which of the attack models is present at time t. Therefore, since the sequence of reward
functions is selected by the environment uniformly at random and the sequence of attacks is adversarially selected by the
attacker, the best D2 can do is to pick a1 or a3 uniformly at random.

The optimal defense, on the other hand, knowing the attack structure and which attack is employed in round t, can use the
defense parameter θ in order to always recover the true reward function. Thus, using the original definition of the defense D,
where the dependence on At is explicit, we obtain

RegD2
(T ) = max

θ

T∑
t=1

ρ(D(R̂t, θ,At), Rt)− E
T∑

t=1

ρ(D2(R̂, R1, . . . , Rt−1), Rt)

=

T∑
t=1

ρ(πopt
t , Rt)− E

T∑
t=1

ρ(πD2
t , Rt)

=

T∑
t=1

max
i=1,2,3

Rt[i]−
T∑

t=1

Rt[π
D2
t ]

= 0.7T −
(
T

2
0.7 +

T

4
0.3 +

T

4
0.5

)
= 0.55T .

The optimality gap is similarly computed.
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