
Weisfeiler and Leman go Hyperbolic: Learning
Distance Preserving Node Representations

Giannis Nikolentzos Michail Chatzianastasis Michalis Vazirgiannis
LIX, École Polytechnique

IP Paris, France
LIX, École Polytechnique

IP Paris, France
LIX, École Polytechnique

IP Paris, France

Abstract

In recent years, graph neural networks (GNNs)
have emerged as a promising tool for solving
machine learning problems on graphs. Most
GNNs are members of the family of message
passing neural networks (MPNNs). There is a
close connection between these models and the
Weisfeiler-Leman (WL) test of isomorphism, an
algorithm that can successfully test isomorphism
for a broad class of graphs. Recently, much re-
search has focused on measuring the expressive
power of GNNs. For instance, it has been shown
that standard MPNNs are at most as powerful as
WL in terms of distinguishing non-isomorphic
graphs. However, these studies have largely ig-
nored the distances between the representations
of nodes/graphs which are of paramount impor-
tance for learning tasks. In this paper, we define
a distance function between nodes that is based
on the hierarchy produced by the WL algorithm
and propose a model that learns representations
which preserve those distances between nodes.
Since the emerging hierarchy corresponds to a
tree, to learn these representations, we capitalize
on recent advances in the field of hyperbolic neu-
ral networks. We empirically evaluate the pro-
posed model on standard node and graph clas-
sification datasets where it achieves competitive
performance with state-of-the-art models.

1 Introduction

Over the past few years, graph neural networks (GNNs)
have been applied with great success to machine learn-
ing problems on graphs in various application domains.

Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics (AISTATS) 2023, Valencia, Spain.
PMLR: Volume 206. Copyright 2023 by the author(s).

For instance, in chemistry, much attention has been de-
voted to deep learning systems for drug screening or de-
sign where molecules are represented as graphs (Kearnes
et al., 2016). Likewise, in biology, an issue of high inter-
est is the prediction of the functions of proteins modeled
as graphs (You et al., 2021). So far, the field of GNNs has
been largely dominated by message passing architectures.
Indeed, most of these models share the same basic idea and
can be reformulated into a single common framework, so-
called message passing neural networks (MPNNs) (Gilmer
et al., 2017). Specifically, these models follow a message
passing procedure, where each node updates its feature vec-
tor by aggregating the feature vectors of its neighbors. This
iterative scheme runs for a number of steps, and then to
compute a feature vector for the entire graph, MPNNs typ-
ically employ some permutation invariant readout function
such as summing or averaging the feature vectors of all the
nodes of the graph.

Recently, much research has focused on measuring the
expressive power and limitations of MPNNs. One line
of research focused on establishing a connection between
MPNNs and the Weisfeiler-Leman (WL) test of graph
isomorphism (Weisfeiler and Leman, 1968), a powerful
heuristic that can successfully test isomorphism for a broad
class of graphs (Babai and Kucera, 1979). It was shown
that standard MPNNs do not have more power in terms of
distinguishing non-isomorphic graphs than the WL algo-
rithm (Morris et al., 2019; Xu et al., 2019). Based on those
findings, in the past years, considerable effort was devoted
to the development of models that are more powerful than
the WL algorithm (Morris et al., 2019; Maron et al., 2019;
Chen et al., 2019; Morris et al., 2020b). Most of the above
studies investigate the power of GNNs in terms of distin-
guishing non-isomorphic graphs. However, in graph clas-
sification/regression problems, we are not that much inter-
ested in testing whether two (sub)graphs are isomorphic to
each other, and it has been observed that stronger GNNs
(in the aforementioned sense) do not necessarily outper-
form weaker GNNs (Dwivedi et al., 2020). On the other
hand, we would like to learn representations which could
preserve the similarities or distances of subgraphs/graphs.

Weisfeiler and Leman go Hyperbolic: Learning Distance Preserving Node Representations

Deep neural networks are known for being very sensitive
to their input. For instance, it has been reported that GNNs
are extremely vulnerable to adversarial attacks on the graph
structure (Dai et al., 2018). Such adversarial attacks can
mislead a GNN and significantly decrease its performance.
To increase the robustness of standard neural network lay-
ers, previous studies proposed to constrain their local Lips-
chitz constants, i. e., to make their output preserve distances
as much as possible for some given distance function (Vir-
maux and Scaman, 2018). Furthermore, functions that vary
at a slower rate are usually considered simpler and gener-
alize better (Gouk et al., 2021). Thus, in many settings,
it is of paramount importance to learn representations that
preserve the distances of nodes.

Present Work. To achieve that, in this paper, we pro-
pose a new MPNN that learns node representations that
respect the distances between nodes, as those are defined
by the WL algorithm. The WL algorithm iteratively up-
dates a given node’s color (or label) by aggregating the
colors of its neighbors. The color classes produced in a
given iteration of the algorithm are at least as fine as those
produced in the previous iteration. Thus, the sequence of
node colors gives rise to a family of nested subsets, which
can naturally be represented by a hierarchy (i. e., a tree).
It is well-known that trees can be embedded with arbi-
trarily low distortion into the hyperbolic space, while Eu-
clidean space cannot achieve such a low distortion (Sarkar,
2011). Therefore, Euclidean MPNNs cannot encode ac-
curately the information contained in the WL hierarchy.
Thus, in this paper, we propose a MPNN which delivers
the “best of both worlds” from Euclidean space and hy-
perbolic space. Our proposed model, so-called Weisfeiler-
Leman Hyperbolic Network (WLHN), takes into account
the distance of the input nodes according to the hierarchy
induced by WL, but also according to the representations
that emerge from the neighborhood aggregation procedure.
To embed the WL tree hierarchy into the hyperbolic space,
we capitalize on recent advances in hyperbolic represen-
tations using the Poincaré ball model (Ganea et al., 2018b;
Chami et al., 2021). Specifically, we propose an embedding
algorithm (DiffHypCon) which generalizes Sarkar’s algo-
rithm (Sarkar, 2011) such that the model is differentiable
and end-to-end trainable. Experiments on standard bench-
mark datasets demonstrate that the proposed model either
outperforms or achieves performance comparable with that
of state-of-the-art models in node and graph classification
tasks.

2 Related Work

GNNs. The first GNN models were proposed several
years ago (Sperduti and Starita, 1997; Scarselli et al., 2009;
Micheli, 2009). However, it was not until recently that
this family of models attracted significant attention, mainly
due to the advent of deep learning (Bruna et al., 2014; Li

et al., 2015; Defferrard et al., 2016; Kipf and Welling, 2017;
Hamilton et al., 2017; Zhang et al., 2018). Broadly speak-
ing, these models can be categorized into spectral and spa-
tial approaches depending on which domain the convolu-
tions (neighborhood aggregations) are applied to. Interest-
ingly, the majority of these models follow the same princi-
ple and can be reformulated into a single common frame-
work. These models are known as Message Passing Neu-
ral Networks (MPNNs) (Gilmer et al., 2017). These mod-
els employ an iterative message passing procedure, where
each node combines the representations of its neighbors
with its own representation to compute a new representa-
tion. This procedure is typically followed by a readout
(or pooling) phase where a feature vector for the entire
graph is produced using some permutation invariant func-
tion. Several works have proposed extensions and improve-
ments to the message passing procedure of MPNNs. For
instance, some works have proposed more expressive or
learnable aggregation functions (Murphy et al., 2019; Seo
et al., 2019; Dasoulas et al., 2021; Chatzianastasis et al.,
2022), schemes that incorporate different local structures
or high-order neighborhoods (Abu-El-Haija et al., 2019; Jin
et al., 2020; Nikolentzos et al., 2020), approaches that uti-
lize node positional information (You et al., 2019), while
others have focused on efficiency (Gallicchio and Micheli,
2020). Fewer works have focused on the readout phase and
have proposed more sophisticated pooling functions (Such
et al., 2017; Gao and Ji, 2019). Note that there also exist
GNNs that are not MPNNs (Nikolentzos et al., 2022).

Expressive power of GNNs. Recently, a line of research
has started exploring the expressive power of GNNs. Sev-
eral of those studies have investigated how GNNs are re-
lated to the WL test of isomorphism and its higher-order
variants. For instance, it was shown that standard GNNs
are at most as powerful as the WL algorithm in terms
of distinguishing non-isomorphic graphs (Morris et al.,
2019; Xu et al., 2019). Other studies proposed families
of GNNs whose message passing scheme is equivalent to
high-order variants of the WL algorithm, and can thus dis-
tinguish more pairs of non-isomorphic graphs than stan-
dard MPNNs (Morris et al., 2019, 2020b). Maron et al.
(2019) introduced a class of GNNs which are at least as
powerful as the folklore variant of the k-WL graph iso-
morphism test in terms of distinguishing non-isomorphic
graphs, while Chen et al. (2019) also proposed a GNN
that is more powerful than the 2-WL algorithm. Barceló
et al. (2020) characterized the expressive power of GNNs
in terms of classical logical languages based on a connec-
tion between first-order logic and the WL algorithm. Sato
et al. (2021) showed that random features make standard
MPNNs more expressive. Some works propose neighbor-
hood aggregation schemes that take into account all pos-
sible node permutations and produce universal graph rep-
resentations (Murphy et al., 2019; Dasoulas et al., 2020).
However, due to the dramatically high complexity, ap-

Giannis Nikolentzos, Michail Chatzianastasis, Michalis Vazirgiannis

proximation schemes are necessary. For a comprehen-
sive overview of the expressive power of GNNs, the inter-
ested reader is referred to the survey by Sato (2020). The
above studies investigate the power of GNNs in terms of
distinguishing non-isomorphic graphs or in terms of how
well they can approximate combinatorial problems. On the
other hand, the proposed model learns representations that
capture the distance of nodes which is largely ignored by
the above models.

Hyperbolic Embedding Algorithms and Neural Net-
works. In the past years, there has been a growing in-
terest in algorithms that can learn hyperbolic embeddings.
Such algorithms can be very effective in embedding hier-
archical graphs. Nickel and Kiela (2017) proposed a new
algorithm for learning hierarchical representations of sym-
bolic data by embedding them into the hyperbolic space
using the Poincaré-ball model. Later, they proposed a new
optimization approach based on the Lorentz model of hy-
perbolic space for learning, while they found that learn-
ing embeddings in the Lorentz model are more efficient
than in the Poincaré-ball model (Nickel and Kiela, 2018).
Ganea et al. (2018a) proposed an algorithm for embedding
directed acyclic graphs in the Poincaré-ball model, while
Balazevic et al. (2019) proposed an algorithm for embed-
ding hierarchical multi-relational data also in the Poincaré-
ball model. Chami et al. (2020) introduced a class of hy-
perbolic embedding models that can capture both hierarchi-
cal and logical patterns. Some other studies have extended
deep learning methods to the hyperbolic space by deriving
hyperbolic versions of common neural network layers such
as recurrent layers and feed-forward layers (Ganea et al.,
2018b; Shimizu et al., 2021). The works closest to ours are
the ones proposed by Chami et al. (2019) and by Liu et al.
(2019), where the authors generalize Euclidean MPNNs to
the hyperbolic space. However, both these models assume
that there exists a hierarchical structure in the input data,
and they aim to capture such latent hierarchies. On the
other hand, in our setting, we have access to an explicit
hierarchy produced by the WL algorithm and our model
learns representations that respect that hierarchy.

3 Preliminaries

Notation. Let N denote the set of natural numbers, i. e.,
{1, 2, . . .}. Then, [n] = {1, . . . , n} ⊂ N for n ≥ 1. Let
also {{}} denote a multiset, i. e., a generalized concept of
a set that allows multiple instances for its elements. Let
G = (V,E) be an undirected graph, where V is the vertex
set and E is the edge set. We will denote by n the number
of vertices and by m the number of edges, i. e., n = |V |
and m = |E|. Let N (v) denote the the neighborhood of
vertex v, i. e., the set {u | {v, u} ∈ E}. The degree of a
vertex v is deg(v) = |N (v)|. Two graphs G = (V,E) and
G′ = (V ′, E′) are isomorphic (denoted by G ∼= G′) if there
is a bijective mapping f : V → V ′ such that (v, u) ∈ E iff

(f(v), f(u)) ∈ E′.

WL Algorithm. The WL algorithm (also known as color
refinement) has been revisited a lot in the past years since
it found its way into several machine learning applica-
tions (Morris et al., 2021). The algorithm iteratively com-
putes a coloring of the set of nodes of a graph. Formally,
given a graph G = (V,E), a coloring of the set of nodes
V is a mapping c : V → N. In other words, a coloring
c assigns a number (or color) to every node of the graph.
The WL algorithm runs for a number of iterations and is
associated with a sequence of colorings c0, c1, . . . , cT . If
the initial coloring c0 of V is not specified, we either as-
sume a monochromatic coloring, i. e., all vertices have the
same color or we define a coloring that maps nodes to their
degrees, i. e., c0(v) = deg(v). The refinement of a color-
ing ci is a new coloring ci+1 defined as follows. For every
vertex v, collect and lexicographically sort the multiset of
colors of its neighbors {{ci(u)|u ∈ N (v)}}. LetMi(v) de-
note the sequence of colors that emerges from the above
operation. Then, define (ci(v),Mi(v)) and assign a new
color ci+1(v) to node v by employing a one-to-one map-
ping from tuples such as (ci(v),Mi(v)) to new colors. The
new color ci+1(v) of v depends on the colors of its neigh-
bors and the previous color of v. Thus, in iteration i + 1,
vertices v and u receive different colors, if they already had
different colors in iteration i, or if the multisets of colors of
their neighbors in iteration i are different. Observe also that
each coloring c0, c1, . . . , cT partitions V into color classes,
i. e., sets of nodes with the same color. Since the impli-
cation ci(v) ̸= ci(u) ⇒ ci+1(v) ̸= ci+1(u) holds for all
v, u ∈ V and any i ∈ N, the color classes produced in
iteration i + 1 are at least as fine as those produced in it-
eration i. Hence, the sequence of colorings c0, c1, . . . , cT
gives rise to a family of nested subsets, which can naturally
be represented by a hierarchy. Figure 1 illustrates the color
refinement procedure and the hierarchy that emerges from
that procedure.

Poincaré Ball Model. A hyperbolic space is a non-
Euclidean space with constant negative curvature. Specif-
ically, the Poincaré ball model of hyperbolic space corre-
sponds to the Riemannian manifold (Dn, gDx) where Dn =
{x ∈ Rn | ||x|| < 1}, i. e., an open unit ball. A Rie-
mannian manifold is a real and smooth manifold equipped
with an inner product which is called a Riemannian met-
ric. The above manifold is equipped with the metric
gDx = λ2

xg
E where λx = 2

1−||x||2 is known as the
conformal factor and gE is the Euclidean metric tensor
defined as gE = diag([1, 1, . . . , 1]). The distance be-
tween two points x,y ∈ Dn is computed as dD(x,y) =

cosh−1
(
1 + 2 ||x−y||2

(1−||x||2)(1−||y||2)

)
. For any point x ∈ Dn,

let TxDn denote the associated tangent space, which is a
subset of the Euclidean space. We use the exponential map
expx : TxDn → Dn and the logarithmic map logx : Dn →
TxDn to map points from the tangent space to the hyper-

Weisfeiler and Leman go Hyperbolic: Learning Distance Preserving Node Representations

v1

v2 v4
v5

v6

v3

v7v8

(a) A graph G
{v2, v8} {v4, v7} {v1} {v5, v6} {v3}

(b) hierarchy HG

Figure 1: An illustration of (a) a graph G with uniform initial colors c0 and refined colors ci for i ∈ [4], and of (b) its
corresponding WL tree hierarchy HG. The nodes of G are the leaves of the hierarchy.

bolic space and from the hyperbolic space to the tangent
space, respectively. For the tangent vector v ̸= 0, we

have expx(v) = x ⊕
(

tanh
(

λx||v||
2

)
v

||v||

)
. For the point

y ̸= 0, we have logx(y) =
2
λx

arctanh
(
||−x⊕y||

) −x⊕y
||−x⊕y||

where ⊕ is the Mobius addition for any x,y ∈ Dn (hy-
perbolic analogous to vector addition in Euclidean space):
x⊕y = (1+2⟨x,y⟩+||y||2)x+(1−||x||2)y

1+2⟨x,y⟩+||x||2||y||2 . Similar to previous
works, we choose the origin as the point on the manifold in
whose tangent space we operate.

4 Weisfeiler-Leman Hyperbolic Network

4.1 Embedding WL hierarchies

As already discussed, prior GNNs largely ignore the dis-
tance between nodes. It is not thus clear whether two
nodes that have structurally dissimilar neighborhoods will
obtain dissimilar representations. Likewise, there are no
guarantees that two nodes whose neighborhoods are struc-
turally very similar will be mapped close to each other
by the intermediate layers of a model. However, captur-
ing such distances between nodes is of paramount impor-
tance for machine learning applications since in node clas-
sification, similar nodes usually belong to the same class,
while in node regression, similar nodes are associated with
similar target values. A natural question then is: how is
the distance between two nodes defined? Unfortunately,
there is no clear answer to the above question. Several
different similarity and distance functions were proposed
over the past decades for comparing graphs, subgraphs or
nodes (i. e., subgraphs centered at nodes), however, most
of those functions are hard to compute. For instance, the
maximum common subgraph problem is known to be NP-
hard (Garey and Johnson, 1979). Since non-polynomial
time computable functions are of no practical use, we fo-
cus on a distance function of nodes which can be de-
rived from the hierarchy generated by the WL algorithm.
This distance function has already been studied in previ-
ous works (Kriege et al., 2019; Togninalli et al., 2019).
Formally, let H = (V,E) be a rooted tree representing

the hierarchy produced by the WL algorithm. Let also
dWL : V × V → R≥0 denote the WL distance of nodes of
tree H defined as dWL(v, u) =

∑
e∈P (v,u) 1 where P (v, u)

is the unique path from v to u, for all v, u ∈ V . It is trivial
to show that dWL is a metric on V .

Producing representations that preserve the distances be-
tween the nodes of the hierarchy is then equivalent to em-
bedding the hierarchy into some space. Unfortunately, it is
not possible to embed trees into any Euclidean space with
arbitrarily low distortion (Linial et al., 1995). This high-
lights a limitation of Euclidean GNNs which might fail to
accurately encode into the learned node representations the
information contained in the hierarchy produced by the WL
algorithm. On the other hand, it has been shown that trees
can be embedded into the Poincaré disk D2 with arbitrar-
ily low distortion (Sarkar, 2011). This motivates the use
of models that embed nodes into the hyperbolic space and
which can naturally encode the information contained in hi-
erarchical structures. Note, however, that most existing ap-
proaches for learning hyperbolic embeddings assume that
there exists a latent hierarchy in the input data and their ob-
jective is to learn that hierarchy (Liu et al., 2019; Chami
et al., 2019). In our setting, the hierarchy is known in ad-
vance, and the objective is to directly embed the hierarchy
into some space.

Sarkar’s construction and limitations. There exists a
construction proposed by Sarkar (2011) which we can
leverage to embed the nodes of the hierarchy into the
Poincaré disk D2 and preserve the WL distance with ar-
bitrarily low distortion. However, Sarkar’s construction
(more details are given in Appendix C) is purely combi-
natorial and involves no learning (thus cannot be part of
an end-to-end learning model). Furthermore, the num-
ber of bits of precision used to represent components of
the embedded nodes scales linearly with the maximum
path length (Sala et al., 2018). Thus, Sarkar’s construc-
tion might experience numerical instabilities in the case
of trees that contain long paths. Sala et al. (2018) gen-
eralized Sarkar’s construction from the Poincare disk D2

to the Poincare ball Dd to deal with such problems, but

Giannis Nikolentzos, Michail Chatzianastasis, Michalis Vazirgiannis

still, the new construction is also combinatorial. The above
algorithms aim to maintain an equal distance between the
children of a given node. In other words, these algorithms
equally space the children of a node around a circle. How-
ever, in our setting, the hierarchy that is produced by the
WL algorithm is not entirely unordered. For instance, given
three nodes v, u, w, if deg(v) < deg(u) < deg(w), then
the three nodes belong to different color classes and v is
more similar to u than to w. Such relationships between the
different color classes can be captured by a MPNN model
which iteratively updates the representations of the nodes.

Proposed embedding approach. To take into account
both the hierarchy produced by the WL algorithm and the
aforementioned relationships between the nodes, and to
also allow the embedding algorithm to be integrated into
the pipeline of a learning model, we generalize Sarkar’s
algorithm. The proposed construction which is shown in
Algorithm 1 uses a node placement step that is based on
the representations generated by a MPNN (line 4). Specif-
ically, we first normalize those representations such that
they lie on the surface of the unit hypersphere (line 6).
Then, the emerging representations are scaled by τ and
the children are placed in the corresponding positions in
the hypersphere (lines 10 and 12). In contrast to previous
works (Sarkar, 2011; Sala et al., 2018), we do not space
out children of a given node, but we allow them to be
placed close to each other in the hyperbolic space. Un-
fortunately, while angles are preserved between hyperbolic
and Euclidean space, distances are not preserved. Thus, the
distances derived from the Euclidean representations pro-
duced by the MPNN are not preserved. However, as we
show next, relationships between distances are preserved.

Proposition 4.1. Let v1, v2, v3 denote the children of some
node in the WL hierarchy, and let v1, v2, v3 ∈ Rn de-
note some transformation of their Euclidean representa-
tions such that ||v1|| = ||v2|| = ||v3|| < 1. Then, if
||v1 − v2|| ≤ ||v1 − v3|| holds, dD(v1, v2) ≤ dD(v1, v3)
also holds.

Based on the above result, and since isometric reflec-
tions across geodesics preserve hyperbolic distances, the
final hyperbolic representations of the children of a given
node preserve their corresponding distance relations from
the Euclidean space. It is also necessary to separate
the children of a given node from the node’s parent re-
flected representation. We can obtain an angle at least
equal to θ = π

2 between the parent of the node and
each child as follows: we can ensure that the compo-
nents of the Euclidean representations of the children con-
tain non-negative values by applying the ReLU function.
We can then set the representation of the parent equal to
[−1/

√
d,−1/

√
d, . . . ,−1/

√
d]⊤ ∈ Rd and rotate the hy-

persphere so that this vector is located at node’s parent ac-
tual representation (line 8).

Algorithm 1 Proposed Differentiable Hyperbolic Con-
struction (DiffHypCon)

1: Input: Euclidean representations of current iteration
H(t), hyperbolic representations of previous two iter-
ations Z(t−1), Z(t−2), scaling factor τ , vector w =
[−1/

√
d, . . . ,−1/

√
d]⊤

2: for each unique row za of Z(t−1) with parent zb from
Z(t−2) do

3: (0,u)← reflectza→0(za, zb)
4: {hc1 , . . . ,hcdeg(a)−1

} ← childrena(H(t)) { retrieve
representations of children of a }

5: for i = 1 to deg(a)− 1 do
6: h̃ci ← hci/||hci || { project to the surface of the

unit sphere }
7: end for
8: (u,vc1 , . . . ,vcdeg(a)−1

) ←
reflect through zerow→u(w, h̃c1 , . . . , h̃cdeg(a)−1

)
9: for i = 1 to deg(a)− 1 do

10: ṽci ← tanh(τ/2)vci { scale edges by a factor τ
}

11: end for
12: (za, zb, zc1 , . . . , zcdeg(a)−1

) ←
reflect0→za

(0,u, ṽc1 , . . . , ṽcdeg(a)−1
)

13: Z(t) ← {zc1 , . . . , zcdeg(a)−1
} { store hyperbolic

representations in corresponding rows of Z(t) }
14: end for
15: Output: Embedded vectors Z(t) in Dn

4.2 Model Architecture

Neighborhood aggregation. We assume that the initial
feature vectors of the nodes are from a countable universe.
For finite graphs, node representations at deeper layers of a
MPNN are also from a countable universe (Xu et al., 2019).
Thus, each node representation can be mapped to a color.
Then, the node representations that emerge at the different
iterations of the message passing procedure correspond to
different colors and from those colors we can construct a
hierarchy. In this paper, we use the neighborhood aggrega-
tion scheme of the GIN model (Xu et al., 2019) which is
defined as follows:

h(t)
v = MLP(t)

((
1 + ϵ(t)

)
h(t−1)
v +

∑
u∈N (v)

h(t−1)
u

)
For each depth t ∈ [T] of the hierarchy, each node belongs
to one of the color classes of that depth. Two nodes v, u

belong to the same color class of depth t if h
(t)
v = h

(t)
u

holds. Note that the GIN model can be as powerful as the
WL algorithm in terms of distinguishing non-isomorphic
graphs, and thus the emerging hierarchy could potentially
be identical to the one produced by the WL algorithm (i. e.,
in case proper weights are found).

Note that we do not construct a single hierarchy consist-

Weisfeiler and Leman go Hyperbolic: Learning Distance Preserving Node Representations

Algorithm 2 Proposed WLHN Model

1: Input: Adjacency matrix A and matrix of node fea-
tures X of graph G, number of iterations T , scaling
factor τ

2: Z(−1) ← 0 { root of the tree }
3: H(0) ← X
4: Z(0) ← DIFFHYPCON(H(0),Z(−1),Z(−1), τ) {

initial hyperbolic representations }
5: for i = 1 to T do
6: H(i) ← MPNN(A,H(i−1)) { use MPNN to

update node representations }
7: Z(i) ← DIFFHYPCON(H(i),Z(i−1),Z(i−2), τ) {

compute hyperbolic representations }
8: end for
9: Output: Embeddings of nodes Z(T) in Dn

ing of the color classes of all the nodes of all graphs.
Instead, a different hierarchy is constructed and embed-
ded for each batch of samples. This does not pose any
problem since the proposed construction does not space
out children and hence, it does not make any assump-
tions about the number of children of a given node. Let
H(t)

B = {h(t)
v | v ∈ VB} denote the set that contains the

representations of all the nodes of the graphs contained in
a batch B after the t-th iteration of the neighborhood ag-
gregation procedure where VB is the set of nodes of the
graphs contained in B. These representations form the
color classes of the hierarchy produced by the WL algo-
rithm after its t-th iteration. Specifically, there is a one-to-
one mapping between those vectors and the nodes of the
hierarchy whose path distance from the root node is equal
to t (or t+ 1 in the case of non-monochromatic initial col-
oring). Furthermore, |H(t)| ≤ |H(t+1)| holds, and each
representation has a parent. For instance, the parent of h(t)

v

is h(t−1)
v . Therefore, we can use the construction presented

above to embed those representations into the hyperbolic
space: z(t)v = DiffHypCon(h(t)

v , z
(t−1)
v , z

(t−2)
v) where z

(t)
v

is the hyperbolic representation of node v in the t-th iter-
ation of the neighborhood aggregation procedure. Thus,
each neighborhood aggregation operation is followed by
an embedding phase where the emerging node represen-
tations are mapped to the Poincaré ball using the proposed
construction. The proposed method is illustrated in Algo-
rithm 2.

Readout. To perform graph classification, we map the out-
put of the last neighborhood aggregation layer of the model
to the tangent space using the logarithmic map and aggre-
gate the node representations using the sum operator.

hG =
∑
v∈V

log0
(
zTv

)
Then, the graph representation hG is fed to further layers
(e. g., Euclidean multinomial logistic regression) to pro-

duce the output. Alternatively, the rest of the computations
can also be realized in the hyperbolic space, i. e., we can
directly classify samples on the hyperboloid manifold us-
ing the hyperbolic multinomial logistic loss (Ganea et al.,
2018b). In this case, we need to map the tangent vector
back to the hyperbolic space using the exponential map
zG = exp0

(
hG

)
. Thus, this model first maps node rep-

resentations to the tangent space, it performs the node ag-
gregation in the tangent space, and then maps the graph
representation back to the hyperbolic space. In preliminary
experiments, we observed that this approach performs sim-
ilarly to Euclidean classification.

Note that if the generated node representations accurately
capture the distances of nodes, then the emerging graph
representations also capture the distances of graphs.

Proposition 4.2. Let G1 = (V1, E1), G2 = (V2, E2) de-
note two graphs. Without loss of generality, we assume
that the two graphs have the same number of nodes, i. e.,
|V1| = |V2| = n. Let vi,uj , i, j ∈ [n] denote the rep-
resentations of the nodes of the two graphs. Let also hG1

and hG2
denote the vector representations of G1 and G2,

respectively, which emerge by applying the sum operator to
the representations of the nodes of the two graphs. Then,
we have that:

||hG1 − hG2 || <= min
T

n∑
i=1

n∑
j=1

Tij ||vi − uj ||

where T ∈ {0, 1}n×n, T1 = 1 and 1T = 1.

The above Proposition implies that given two sets of vec-
tors, the difference of the output of the sum aggregator for
the two sets can be bounded via the stable matching be-
tween the two sets. Thus, if two graphs consist of similar
nodes (in terms of their representations), the graph repre-
sentations will also be similar to each other.

Model depth. It has been reported that MPNNs usually do
not benefit from more than few neighborhood aggregation
layers. This is attributed to different phenomena such as
over-smoothing (Li et al., 2018). We should note that in
contrast to Euclidean MPNNs, a large number of neighbor-
hood aggregation layers does not have a negative impact on
the performance of the proposed model since the learned
node representations respect the structure of the WL hier-
archy, and thus distances between nodes are preserved no
matter how large the depth of the hierarchy is. Further-
more, no residual connections are required since the final
node representations encode the entire structure of the WL
hierarchy, i. e., the whole history of previous node repre-
sentations.

Computational complexity. The proposed model uses the
neighborhood aggregation mechanism of GIN to update the
representations of the nodes and then uses the DiffHypCon
algorithm to embed the nodes into the hyperbolic space.

Giannis Nikolentzos, Michail Chatzianastasis, Michalis Vazirgiannis

DiffHypCon places points into the unit hypersphere in lin-
ear time. Therefore, the computational complexity of the
model is comparable with that of other standard MPNNs
and is in the order of O(Tmd2) where d denotes the di-
mension of the node features. We empirically measured the
running time of the proposed model on real-world datasets
and we report the results in the Appendix.

5 Experimental Evaluation

5.1 Synthetic Datasets

Qualitative results. To empirically verify that the pro-
posed model can encode the hierarchy HG created by the
WL algorithm, we applied it to the graph shown in Fig-
ure 1. Specifically, we randomly initialized the parame-
ters of the model and we performed a feedforward pass (no
training was performed) to generate the graph representa-
tions that lie in the hyperbolic space (τ was set equal to 1).
Then, given the hyperbolic representations of the nodes of
the hierarchy, we computed the distance between the differ-
ent nodes in the hyperbolic space. The emerging distances
were then compared against the WL distance of nodes dWL
defined in section 4. We computed the Pearson correlation
coefficient which was found to be equal to 0.98. We also
retrieved the Euclidean representations of the nodes (pro-
duced by the GIN model). We computed the Euclidean
distance between those representations and we also com-
pared the emerging distances against the WL distance. In
this case, the correlation turned out to be much smaller and
equal to 0.35. Hence, the emerging hyperbolic representa-
tions lead to distances that are much more correlated with
the distances derived from the WL hierarchy compared to
those that emerge from the Euclidean representations. We
also produced a heatmap (shown in Figure 2) that illustrates
the distances between the nodes of the hierarchy which
were computed based on the nodes’ hyperbolic represen-
tations. We can see that the obtained distances are similar
to the corresponding WL distances, while the structure is
preserved since the nodes closest to a given node are its di-
rect neighbors in the hierarchy. For example, the blue and
the red nodes are neighbors in the hierarchy HG while the
distance of their hyperbolic representations is small.

Quantitative results. We also constructed two node re-
gression datasets where the task is to predict the density
of the nodes’ ego-networks and their effective size, respec-
tively. The first dataset contains 10 Barabási-Albert graphs.
The number of nodes of each graph is set to 1, 000 and
the number of edges to attach from a new node to exist-
ing nodes is set to 5 or 10 (i. e., m = 5 or m = 10). We
compute the target of each node as follows: we extract the
nodes’ ego-networks of radius 2 and compute their densi-
ties (the density of a graph consisting of n nodes and m
edges is equal to m/n). The second dataset contains 10
Erdös-Rényi graphs. The number of nodes is set to 1, 000

4

3

2

1

0

Figure 2: Heatmap that illustrates the distances between
all pairs of nodes of the hierarchy of Figure 1. Distances
were computed between the nodes’ generated hyperbolic
representations.

Table 1: MSE ± standard deviation results of the proposed
model and the baselines in the task of predicting the ef-
fective size and the density of nodes in different types of
graphs.

Density (Barabási-Albert graphs)
m=5 m=10

GCN 0.0193 ± 0.0026 0.0177 ± 0.0023
GIN 0.0113 ± 0.0032 0.0162 ± 0.0031
WLHN 0.0034 ± 0.0004 0.0024 ± 0.0003

Effective Size (Erdös-Rényi graphs)
p=0.008 p=0.01

GCN 0.0088 ± 0.0026 0.0087 ± 0.0028
GIN 0.0017 ± 0.0004 0.0015 ± 0.0006
WLHN 0.0006 ± 0.0003 0.0014 ± 0.0008

and the probability for edge creation is set to either 0.008
or 0.01 (i. e., p = 0.008 or p = 0.01). The target of each
node is set equal to its effective size which for a node v is
defined as e(v) = deg(v)− 2t/deg(v) where t is the num-
ber of edges between neighbors of v. We split the nodes
of each graph into training/validation/test sets with a ratio
of 60%/20%/20%. We trained the models by minimiz-
ing the mean squared error (MSE) loss. We repeated the
whole experiment 10 times and we report in Table 1 the av-
erage MSE and corresponding standard deviation. We can
see that the proposed model outperforms the two baselines
(GCN (Kipf and Welling, 2017) and GIN (Xu et al., 2019))
under all settings. The two predicted properties (i. e., den-
sity and effective size) are related to the structure of the
neighborhood of each node, and thus the experimental re-
sults verify our claim that WLHN can better capture the
structural distance of nodes.

5.2 Real-World Datasets

Datasets. We evaluated the proposed model on five node
classification datasets: Cornell, Texas, Wisconsin, Squirrel,

Weisfeiler and Leman go Hyperbolic: Learning Distance Preserving Node Representations

Table 2: Classification accuracy ± standard deviation of the proposed model and the baselines on the 5 node classification
datasets.

Cornell Texas Wisconsin Squirrel Actor

GCN 60.54 ± 5.30 55.14 ± 5.16 51.76 ± 3.06 53.43 ± 2.01 27.32 ± 1.10
GIN 51.62 ± 7.68 53.24 ± 8.55 50.59 ± 7.98 44.12 ± 2.04 29.67 ± 0.64
GAT 61.89 ± 5.05 52.16 ± 6.63 49.41 ± 4.09 40.72 ± 1.55 27.44 ± 0.89
MixHop 73.51 ± 6.34 77.84 ± 7.73 75.88 ± 4.90 43.80 ± 1.48 32.22 ± 2.34
HGCN (PoincareBall) 53.51 ± 6.02 54.86 ± 6.95 63.53 ± 9.25 50.78 ± 1.52 31.66 ± 1.30
HGCN (Hyperboloid) 55.68 ± 7.76 53.24 ± 8.80 70.20 ± 7.73 44.87 ± 1.89 30.75 ± 4.33
Geom-GCN 60.54 ± 3.67 66.76 ± 2.72 64.51± 3.66 38.15 ± 0.92 34.59
P-GNN 74.32 ± 4.87 81.62 ± 6.60 83.52 ± 5.63 33.54 ± 1.71 34.09 ± 1.00

WLHN 77.29 ± 4.66 75.41 ± 5.98 78.62 ± 3.44 55.76 ± 0.92 36.42 ± 1.42

Table 3: Classification accuracy ± standard deviation of the proposed model and the baselines on the 10 benchmark
datasets. OOR means Out of Resources, either time (>72 hours for a single training) or GPU memory.

MUTAG D&D NCI1 PROTEINS ENZYMES IMDB-B IMDB-M REDDIT-B REDDIT-5K COLLAB

DGCNN 84.0 ± 6.7 76.6 ± 4.3 76.4 ± 1.7 72.9 ± 3.5 38.9 ± 5.7 69.2 ± 3.0 45.6 ± 3.4 87.8 ± 2.5 49.2 ± 1.2 71.2 ± 1.9
DiffPool 79.8 ± 7.1 75.0 ± 3.5 76.9 ± 1.9 73.7 ± 3.5 59.5 ± 5.6 68.4 ± 3.3 45.6 ± 3.4 89.1 ± 1.6 53.8 ± 1.4 68.9 ± 2.0
ECC 75.4 ± 6.2 72.6 ± 4.1 76.2 ± 1.4 72.3 ± 3.4 29.5 ± 8.2 67.7 ± 2.8 43.5 ± 3.1 OOR OOR OOR
GraphSAGE 83.6 ± 9.6 72.9 ± 2.0 76.0 ± 1.8 73.0 ± 4.5 58.2 ± 6.0 68.8 ± 4.5 47.6 ± 3.5 84.3 ± 1.9 50.0 ± 1.3 73.9 ± 1.7
GCN 79.2 ± 9.4 76.6 ± 4.0 76.8 ± 1.6 73.7 ± 2.9 57.2 ± 5.8 70.7 ± 5.3 47.9 ± 4.2 90.1 ± 2.1 55.0 ± 1.7 71.3 ± 2.0
GIN 84.7 ± 6.7 75.3 ± 2.9 80.0 ± 1.4 73.3 ± 4.0 59.6 ± 4.5 71.2 ± 3.9 48.5 ± 3.3 89.9 ± 1.9 56.1 ± 1.7 75.6 ± 2.3
HGCN (PoincareBall) 83.4 ± 6.7 78.0 ± 2.8 74.2 ± 2.4 74.4 ± 3.1 39.7 ± 5.5 73.0 ± 3.2 50.3 ± 3.8 87.9 ± 2.8 49.4 ± 2.6 80.2 ± 1.9
HGCN (Hyperboloid) 83.4 ±6.2 77.8 ±4.3 72.3 ± 4.3 74.7 ± 3.4 32.3 ± 5.4 73.3 ± 3.5 50.3 ± 4.0 86.3 ± 1.6 52.7 ± 2.0 80.3 ± 1.8

WLHN 86.0 ± 7.4 78.5 ± 3.4 79.2 ± 1.1 75.9 ± 1.9 62.5 ± 5.0 73.4 ± 3.7 49.7 ± 3.6 90.7 ± 1.9 55.2 ± 1.2 76.2 ± 2.3

Table 4: Performance of the proposed model and the base-
lines on the ogbg-molhiv and ogbg-molpcba datasets.

ogbg-molhiv ogbg-molpcba
ROC-AUC Avg. Precision

GCN 76.06 ± 0.97 20.20 ± 0.24
GIN 75.58 ± 1.40 22.66 ± 0.28
HGCN (PoincareBall) 76.42 ± 1.75 17.73 ± 0.22
HGCN (Hyperboloid) 75.91 ± 1.48 17.52 ± 0.20

WLHN 78.41 ± 0.31 22.90 ± 0.25

and Actor. The first three datasets are extracted from the
WebKB dataset and the rest of the datasets from Wikipedia,
and have been employed in previous studies (Pei et al.,
2020; Rozemberczki et al., 2021). We also evaluated the
proposed model on standard graph classification datasets
derived from the TUD repository (Morris et al., 2020a). We
employed 5 datasets from bioinformatics and chemoinfor-
matics (MUTAG, D&D, NCI1, PROTEINS, ENZYMES),
and 5 datasets from social networks (IMDB-BINARY,
IMDB-MULTI, REDDIT-BINARY, REDDIT-MULTI-5K,
COLLAB). For datasets that contain graphs whose nodes
are annotated with discrete labels, we map those labels to
one-hot vectors. We also evaluated the proposed model
on two graph classification datasets from the Open Graph
Benchmark (OGB) (Hu et al., 2020), a collection of large-
scale datasets. Specifically, we used the following two
molecular property prediction datasets: ogbg-molhiv and
ogbg-molpcba.

Baselines. In the node classification task, we compare
WLHN against the following models: GAT (Veličković
et al., 2018), GCN (Kipf and Welling, 2017), GIN (Xu
et al., 2019), MixHop (Abu-El-Haija et al., 2019) and
HGCN (Chami et al., 2019). In the graph classification
task, we compare the proposed model against the following
seven GNNs: DGCNN (Zhang et al., 2018), DiffPool (Ying
et al., 2018), ECC (Simonovsky and Komodakis, 2017),
GraphSAGE (Hamilton et al., 2017), GCN (Kipf and
Welling, 2017), GIN (Xu et al., 2019) and HGCN (Chami
et al., 2019). In the case of the OGB datasets, we com-
pare the WLHN model against the last three of the above
models.

Experimental setup. For the node classification datasets,
we randomly split each dataset into training/validation/test
sets with a ratio of 60%/20%/20%, while the whole pro-
cess was repeated 10 times. For the standard graph classifi-
cation datasets, we perform 10-fold cross-validation, where
within each fold a model’s hyperparameters are selected
based on a 90%/10% split of the training set. We use the
evaluation framework from Errica et al. (2020), thus em-
ploying the same split for each evaluated method. For the
two datasets from OGB, we use the standard splits asso-
ciated with those datasets. A detailed description of the
hyperparameter selection approach is given in Appendix E.

Results. Table 2 presents the performance of the differ-
ent models on the five node classification datasets. We
observe that WLHN is the best performing method since
it outperforms the baselines on 3 out of the 5 datasets.

Giannis Nikolentzos, Michail Chatzianastasis, Michalis Vazirgiannis

On these 3 datasets, the proposed model improves signifi-
cantly over the baseline models. Specifically, the proposed
model yields respective absolute improvements of 2.97%,
2.33% and 1.83% in accuracy over the best competitor on
the Cornell, Squirrel and Actor datasets, respectively. Ta-
ble 3 illustrates the average accuracies and corresponding
standard deviations for the TUD datasets. We observe that
the proposed model outperforms the baselines on 6 out of
the 10 datasets. On MUTAG, PROTEINS and ENZYMES,
the proposed model provides significant performance gains
compared to the baseline models. The proposed model em-
beds the WL tree hierarchy produced by the GIN model
into the hyperbolic space to produce expressive node rep-
resentations. On the other hand, our two main competitors,
GIN and HGCN, have some serious limitations. GIN op-
erates in the Euclidean space where hierarchical structures
cannot be accurately captured. HGCN embeds nodes in
the hyperbolic space but it does not have explicit access
to the WL hierarchy, thus leading to less informed repre-
sentations. Finally, Table 4 illustrates the performance of
the proposed model on the two OGB datasets. On ogbg-
molhiv, the proposed model outperforms all the baselines,
most of them by wide margins. On the other hand, on
ogbg-molpcba, while the proposed model is still the best-
performing method, some of the baselines achieve an aver-
age precision close to that of WLHN. Overall, the results
indicate that the proposed model exhibits competitive per-
formance in both node and graph classification tasks.

Additional Experiments. We further investigate the ro-
bustness of WLHN under structural and feature noise. We
observe that noise does not have a very large impact on
the model’s performance, while WLHN also significantly
outperforms the baselines. We also experimentally demon-
strate that WLHN does not suffer from over-smoothing
even if the number of neighborhood aggregation layers is
large, since the proposed hyperbolic embedding algorithm
preserves the distances of the nodes. We present the results
in the Appendix.

6 Conclusion

In this paper, we proposed a new model which preserves
distances of nodes/graphs, a problem that has not been in-
vestigated thoroughly so far. Our model learns node repre-
sentations in the hyperbolic space which respect the hier-
archy generated by MPNNs. We defined a distance func-
tion and proposed a novel GNN model which can accu-
rately capture that distances by embedding the nodes of
the graphs in the hyperbolic space. The emerging dis-
tances also take into account the Euclidean representations
of the nodes produced by the neighborhood aggregation
procedure of a MPNN model. We evaluated the proposed
model on synthetic and real-world datasets. Our results
demonstrate that the proposed model can indeed encode
meaningful distances in the learned representations, while

it achieves high levels of performance in node and graph
classification tasks.

Acknowledgements

G.N. is supported by the French National research agency
via the AML-HELAS (ANR-19-CHIA-0020) project. The
authors would like to thank the anonymous AISTATS re-
viewers for the constructive comments.

References

Abu-El-Haija, S., Perozzi, B., Kapoor, A., Alipourfard, N.,
Lerman, K., Harutyunyan, H., Ver Steeg, G., and Gal-
styan, A. (2019). MixHop: Higher-Order Graph Convo-
lutional Architectures via Sparsified Neighborhood Mix-
ing. In Proceedings of the 36th International Conference
on Machine Learning, pages 21–29.

Babai, L. and Kucera, L. (1979). Canonical labelling of
graphs in linear average time. In 20th Annual Symposium
on Foundations of Computer Science, pages 39–46.

Balazevic, I., Allen, C., and Hospedales, T. (2019). Multi-
relational poincaré Graph Embeddings. In Advances
in Neural Information Processing Systems, volume 33,
pages 4463–4473.

Barceló, P., Kostylev, E., Monet, M., Pérez, J., Reutter, J.,
and Silva, J.-P. (2020). The Logical Expressiveness of
Graph Neural Networks. In 8th International Confer-
ence on Learning Representations.

Borgwardt, K., Ong, C., Schönauer, S., Vishwanathan, S.,
Smola, A., and Kriegel, H. (2005). Protein function
prediction via graph kernels. Bioinformatics, 21(Suppl.
1):i47–i56.

Bruna, J., Zaremba, W., Szlam, A., and Lecun, Y. (2014).
Spectral Networks and Deep Locally Connected Net-
works on Graphs. In 2nd International Conference on
Learning Representations.

Chami, I., Gu, A., Nguyen, D. P., and Re, C. (2021).
HoroPCA: Hyperbolic Dimensionality Reduction via
Horospherical Projections. In Proceedings of the 38th
International Conference on Machine Learning, pages
1419–1429.

Chami, I., Wolf, A., Juan, D.-C., Sala, F., Ravi, S., and
Ré, C. (2020). Low-Dimensional Hyperbolic Knowl-
edge Graph Embeddings. In Proceedings of the 58th An-
nual Meeting of the Association for Computational Lin-
guistics, pages 6901–6914.

Chami, I., Ying, Z., Ré, C., and Leskovec, J. (2019). Hy-
perbolic Graph Convolutional Neural Networks. In Ad-
vances in Neural Information Processing Systems, vol-
ume 33, pages 4868–4879.

Chatzianastasis, M., Lutzeyer, J. F., Dasoulas, G., and
Vazirgiannis, M. (2022). Graph ordering attention net-
works. arXiv preprint arXiv:2204.05351.

Weisfeiler and Leman go Hyperbolic: Learning Distance Preserving Node Representations

Chen, Z., Villar, S., Chen, L., and Bruna, J. (2019). On
the equivalence between graph isomorphism testing and
function approximation with GNNs. In Advances in
Neural Information Processing Systems, volume 33.

Dai, H., Li, H., Tian, T., Huang, X., Wang, L., Zhu, J., and
Song, L. (2018). Adversarial Attack on Graph Structured
Data. In Proceedings of the 35th International Confer-
ence on Machine Learning, pages 1115–1124.

Dasoulas, G., Dos Santos, L., Scaman, K., and Virmaux, A.
(2020). Coloring Graph Neural Networks for Node Dis-
ambiguation. In Proceedings of the 29th International
Joint Conference on Artificial Intelligence, pages 2126–
2132.

Dasoulas, G., Lutzeyer, J., and Vazirgiannis, M. (2021).
Learning Parametrised Graph Shift Operators. In 9th In-
ternational Conference on Learning Representations.

Debnath, A., Lopez de Compadre, R., Debnath, G., Shus-
terman, A., and Hansch, C. (1991). Structure-Activity
Relationship of Mutagenic Aromatic and Heteroaro-
matic Nitro Compounds. Correlation with Molecular Or-
bital Energies and Hydrophobicity. Journal of Medicinal
Chemistry, 34(2):786–797.

Defferrard, M., Bresson, X., and Vandergheynst, P. (2016).
Convolutional Neural Networks on Graphs with Fast Lo-
calized Spectral Filtering. In Advances in Neural Infor-
mation Processing Systems, pages 3844–3852.

Dobson, P. and Doig, A. (2003). Distinguishing En-
zyme Structures from Non-enzymes Without Align-
ments. Journal of Molecular Biology, 330(4):771–783.

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., and
Bresson, X. (2020). Benchmarking Graph Neural Net-
works. arXiv preprint arXiv:2003.00982.

Errica, F., Podda, M., Bacciu, D., and Micheli, A. (2020).
A Fair Comparison of Graph Neural Networks for Graph
Classification. In 8th International Conference on
Learning Representations.

Gallicchio, C. and Micheli, A. (2020). Fast and Deep
Graph Neural Networks. In Proceedings of the 34th
AAAI Conference on Artificial Intelligence, pages 3898–
3905.

Ganea, O., Bécigneul, G., and Hofmann, T. (2018a). Hy-
perbolic Entailment Cones for Learning Hierarchical
Embeddings. In Proceedings of the 35th International
Conference on Machine Learning, pages 1646–1655.

Ganea, O.-E., Bécigneul, G., and Hofmann, T. (2018b).
Hyperbolic Neural Networks. In Advances in Neural In-
formation Processing Systems, volume 32, pages 5350–
5360.

Gao, H. and Ji, S. (2019). Graph U-Nets. In Proceedings of
the 36th International Conference on Machine Learning,
pages 2083–2092.

Garey, M. R. and Johnson, D. S. (1979). Computers and
intractability, volume 174. WH Freeman & Co.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. (2017). Neural Message Passing for Quan-
tum Chemistry. In Proceedings of the 34th International
Conference on Machine Learning, pages 1263–1272.

Gouk, H., Frank, E., Pfahringer, B., and Cree, M. J. (2021).
Regularisation of neural networks by enforcing lipschitz
continuity. Machine Learning, 110(2):393–416.

Hamilton, W., Ying, Z., and Leskovec, J. (2017). Inductive
Representation Learning on Large Graphs. In Advances
in Neural Information Processing Systems, pages 1024–
1034.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu,
B., Catasta, M., and Leskovec, J. (2020). Open Graph
Benchmark: Datasets for Machine Learning on Graphs.
arXiv preprint arXiv:2005.00687.

Jin, Y., Song, G., and Shi, C. (2020). GraLSP: Graph Neu-
ral Networks with Local Structural Patterns. In Proceed-
ings of the 34th AAAI Conference on Artificial Intelli-
gence, pages 4361–4368.

Kearnes, S., McCloskey, K., Berndl, M., Pande, V., and Ri-
ley, P. (2016). Molecular graph convolutions: moving
beyond fingerprints. Journal of computer-aided molecu-
lar design, 30(8):595–608.

Kipf, T. N. and Welling, M. (2017). Semi-Supervised Clas-
sification with Graph Convolutional Networks. In 5th
International Conference on Learning Representations.

Kriege, N. M., Giscard, P.-L., Bause, F., and Wilson,
R. C. (2019). Computing Optimal Assignments in Lin-
ear Time for Approximate Graph Matching. In Proceed-
ings of the 2019 IEEE International Conference on Data
Mining, pages 349–358.

Li, Q., Han, Z., and Wu, X.-M. (2018). Deeper In-
sights into Graph Convolutional Networks for Semi-
Supervised Learning. In Proceedings of the 32nd AAAI
Conference on Artificial Intelligence.

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R.
(2015). Gated graph sequence neural networks. arXiv
preprint arXiv:1511.05493.

Linial, N., London, E., and Rabinovich, Y. (1995). The
geometry of graphs and some of its algorithmic applica-
tions. Combinatorica, 15(2):215–245.

Liu, Q., Nickel, M., and Kiela, D. (2019). Hyperbolic
Graph Neural Networks. In Advances in Neural Informa-
tion Processing Systems, volume 33, pages 8230–8241.

Maron, H., Ben-Hamu, H., Serviansky, H., and Lipman,
Y. (2019). Provably Powerful Graph Networks. In Ad-
vances in Neural Information Processing Systems, vol-
ume 33, pages 2156–2167.

Giannis Nikolentzos, Michail Chatzianastasis, Michalis Vazirgiannis

Micheli, A. (2009). Neural Network for Graphs: A Con-
textual Constructive Approachs. IEEE Transactions on
Neural Networks, 20(3):498–511.

Morris, C., Kriege, N. M., Bause, F., Kersting, K., Mutzel,
P., and Neumann, M. (2020a). TUDataset: A collection
of benchmark datasets for learning with graphs. arXiv
preprint arXiv:2007.08663.

Morris, C., Lipman, Y., Maron, H., Rieck, B., Kriege,
N. M., Grohe, M., Fey, M., and Borgwardt, K. (2021).
Weisfeiler and Leman go Machine Learning: The Story
so far. arXiv preprint arXiv:2112.09992.

Morris, C., Rattan, G., and Mutzel, P. (2020b). Weisfeiler
and Leman go sparse: Towards scalable higher-order
graph embeddings. In Advances in Neural Information
Processing Systems, volume 34.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. (2019). Weisfeiler
and Leman Go Neural: Higher-order Graph Neural Net-
works. In Proceedings of the 33rd AAAI Conference on
Artificial Intelligence, pages 4602–4609.

Murphy, R., Srinivasan, B., Rao, V., and Ribeiro, B. (2019).
Relational Pooling for Graph Representations. In Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, pages 4663–4673.

Nickel, M. and Kiela, D. (2017). Poincaré Embeddings
for Learning Hierarchical Representations. In Advances
in Neural Information Processing Systems, volume 31,
pages 6338–6347.

Nickel, M. and Kiela, D. (2018). Learning Continuous Hi-
erarchies in the Lorentz Model of Hyperbolic Geometry.
In Proceedings of the 35 th International Conference on
Machine Learning, pages 3779–3788.

Nikolentzos, G., Dasoulas, G., and Vazirgiannis, M.
(2020). k-hop graph neural networks. Neural Networks,
130:195–205.

Nikolentzos, G., Dasoulas, G., and Vazirgiannis, M.
(2022). Permute Me Softly: Learning Soft Permutations
for Graph Representations. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence.

Pei, H., Wei, B., Chang, K. C.-C., Lei, Y., and Yang, B.
(2020). Geom-gcn: Geometric graph convolutional net-
works. In 8th International Conference on Learning
Representations.

Rozemberczki, B., Allen, C., and Sarkar, R. (2021). Multi-
scale attributed node embedding. Journal of Complex
Networks, 9(2):cnab014.

Sala, F., De Sa, C., Gu, A., and Ré, C. (2018). Representa-
tion Tradeoffs for Hyperbolic Embeddings. In Proceed-
ings of the 35th International Conference on Machine
Learning, pages 4460–4469.

Sarkar, R. (2011). Low Distortion Delaunay Embedding of
Trees in Hyperbolic Plane. In International Symposium
on Graph Drawing, pages 355–366.

Sato, R. (2020). A survey on the expressive power of graph
neural networks. arXiv preprint arXiv:2003.04078.

Sato, R., Yamada, M., and Kashima, H. (2021). Random
Features Strengthen Graph Neural Networks. In Pro-
ceedings of the 2021 SIAM International Conference on
Data Mining, pages 333–341.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M.,
and Monfardini, G. (2009). The Graph Neural Net-
work Model. IEEE Transactions on Neural Networks,
20(1):61–80.

Seo, Y., Loukas, A., and Perraudin, N. (2019). Discrim-
inative structural graph classification. arXiv preprint
arXiv:1905.13422.

Shimizu, R., Mukuta, Y., and Harada, T. (2021). Hyper-
bolic Neural Networks++. In 9th International Confer-
ence on Learning Representations.

Simonovsky, M. and Komodakis, N. (2017). Dynamic
Edge-Conditioned Filters in Convolutional Neural Net-
works on Graphs. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages
3693–3702.

Sperduti, A. and Starita, A. (1997). Supervised Neural Net-
works for the Classification of Structures. IEEE Trans-
actions on Neural Networks, 8(3):714–735.

Such, F. P., Sah, S., Dominguez, M. A., Pillai, S., Zhang,
C., Michael, A., Cahill, N. D., and Ptucha, R. (2017).
Robust spatial filtering with graph convolutional neural
networks. IEEE Journal of Selected Topics in Signal
Processing, 11(6):884–896.

Togninalli, M., Ghisu, E., Llinares-López, F., Rieck, B.,
and Borgwardt, K. (2019). Wasserstein Weisfeiler-
Lehman Graph Kernels. In Advances in Neural Infor-
mation Processing Systems.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. (2018). Graph attention networks.
In ICLR.

Virmaux, A. and Scaman, K. (2018). Lipschitz regularity of
deep neural networks: analysis and efficient estimation.
In Advances in Neural Information Processing Systems.

Wale, N., Watson, I., and Karypis, G. (2008). Compari-
son of descriptor spaces for chemical compound retrieval
and classification. Knowledge and Information Systems,
14(3):347–375.

Weisfeiler, B. and Leman, A. (1968). The reduction of a
graph to canonical form and the algebra which appears
therein. NTI Series, 2(9):12–16.

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Ge-
niesse, C., Pappu, A. S., Leswing, K., and Pande, V.

Weisfeiler and Leman go Hyperbolic: Learning Distance Preserving Node Representations

(2018). Moleculenet: a benchmark for molecular ma-
chine learning. Chemical Science, 9(2):513–530.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019). How
Powerful are Graph Neural Networks? In 7th Interna-
tional Conference on Learning Representations.

Yanardag, P. and Vishwanathan, S. (2015). Deep Graph
Kernels. In Proceedings of the 21th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining, pages 1365–1374.

Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., and
Leskovec, J. (2018). Hierarchical Graph Representa-
tion Learning with Differentiable Pooling. In Advances
in Neural Information Processing Systems, volume 32,
pages 4800–4810.

You, J., Ying, R., and Leskovec, J. (2019). Position-aware
Graph Neural Networks. In Proceedings of the 36th
International Conference on Machine Learning, pages
7134–7143.

You, R., Yao, S., Mamitsuka, H., and Zhu, S. (2021). Deep-
GraphGO: graph neural network for large-scale, mul-
tispecies protein function prediction. Bioinformatics,
37(Supplement 1):i262–i271.

Zhang, M., Cui, Z., Neumann, M., and Chen, Y. (2018). An
End-to-End Deep Learning Architecture for Graph Clas-
sification. In Proceedings of the 32nd AAAI Conference
on Artificial Intelligence, pages 4438–4445.

Giannis Nikolentzos, Michail Chatzianastasis, Michalis Vazirgiannis

The Appendix is organized as follows. In sections A and B, we prove Proposition 4.1 and Proposition 4.2, respectively. In
section C, we give more details about Sarkar’s construction. In sections D and E, we present a set of additional experiments
we performed (measuring running time, robustness to noise and to the problem of oversmoothing) and describe the hyper-
parameters we used in our experiments, respectively. In section F, we provide statistics and descriptions of the datasets we
used in our experiments.

A Proof of Proposition 4.1

We have that ||v1|| = ||v2|| = ||v3|| and also that ||v1 − v2|| ≤ ||v1 − v3||. Then, we have:

||v1 − v2|| ≤ ||v1 − v3|| =⇒ ||v1 − v2||2 ≤ ||v1 − v3||2

=⇒ ||v1 − v2||2

(1− ||v1||2)(1− ||v2||2)
≤ ||v1 − v3||2

(1− ||v1||2)(1− ||v3||2)

=⇒ 1 + 2
||v1 − v2||2

(1− ||v1||2)(1− ||v2||2)
≤ 1 + 2

||v1 − v3||2

(1− ||v1||2)(1− ||v3||2)

=⇒ cosh−1
(
1 + 2

||v1 − v2||2

(1− ||v1||2)(1− ||v2||2)

)
≤ cosh−1

(
1 + 2

||v1 − v3||2

(1− ||v1||2)(1− ||v3||2)

)
=⇒ dD(v1,v2) ≤ dD(v1,v3)

which concludes the proof.

B Proof of Proposition 4.2

Let G1 = (V1, E1) and G2 = (V2, E2) denote two graphs. Without loss of generality, we assume that the two graphs have
the same number of nodes, i. e., |V1| = |V2| = n. LetH1 andH2 denote the set of vector representations of the nodes of G1

and G2, respectively. Then, H1 and H2 have the same cardinality, thus |H1| = |H2| holds. Let also H1 = {v1, . . . ,vn}
andH2 = {u1, . . . ,un}. Then, we have:

||hG1 − hG2 || =
∣∣∣∣∣∣∣∣ n∑

i=1

vi −
n∑

i=1

ui

∣∣∣∣∣∣∣∣
= ||v1 + v2 + . . .+ vn − u1 − u2 − . . .− un||
= ||v1 − uf(v1) + v2 − uf(v2) + . . .+ vn − uf(vn)||
≤ ||v1 − uf(v1)||+ ||v2 − uf(v2)||+ . . .+ ||vn − uf(vn)||

= min
T

n∑
i=1

n∑
j=1

Tij ||vi − uj ||

s.t.

T ∈ {0, 1}n×n

T1 = 1

1T = 1

which concludes the proof. Note that the right part of the last equality above is the solution of the following bipartite
matching problem. We construct a complete bipartite graph where the first and second partition contain nodes of G1 and
G2, respectively, while the weight of an edge is some positive value inversely proportional to the Euclidean distance of
the vector representations of the two endpoints. Then, matrix T is the solution of the maximum bipartite matching on the
above graph, thus it can be seen as a function that maps nodes of G1 to matched nodes of G2.

C Sarkar’s Construction

There exists a construction proposed by Sarkar which can embed the nodes of a tree into the Poincaré disk D2 and preserve
the distances between nodes with arbitrarily low distortion (Sarkar, 2011). Sarkar’s construction, shown in Algorithm 3,
is purely combinatorial. The inputs to the Algorithm are a scaling factor τ , a node a (of degree deg(a)) from the tree and

Weisfeiler and Leman go Hyperbolic: Learning Distance Preserving Node Representations

Algorithm 3 Sarkar’s Construction

1: Input: Node a with parent b, children to place
c1, c2, . . . , cdeg(a)−1, partial embedding f containing an
embedding for a and b, scaling factor τ

2: (0, z)← reflectf(a)→0(f(a), f(b))
3: θ ← arg(z) { angle of z from x-axis in the plane }
4: for i = 1 to deg(a)− 1 do
5: yi ← expτ +1

expτ −1

(
cos

(
θ + 2πi

deg(a)

)
, sin

(
θ + 2πi

deg(a)

))
6: end for
7: (f(a), f(b), f(c1), f(c2), . . . , f(cdeg(a)−1)) ←

reflect0→f(a)(0, z, y1, y2, . . . , ydeg(a)−1)
8: Output: Embedded D2 vectors f(c1), f(c2), . . . ,

f(cdeg(a)−1)
Figure 3: Embeddings of the nodes of the hierar-
chy of Figure 1 into the Poincaré disk D2 gener-
ated by Sarkar’s construction.

its parent node b. These nodes have already been embedded into D2, and the objective is to to also embed the deg(a) − 1
children of a into that space. Specifically, to place the children c1, c2, . . . , cdeg(a)−1 of node a into D2, the algorithm
performs the following steps: (1) it reflects the embeddings of nodes a and b (f(a) and f(b), respectively) across a
geodesic such that f(a) is mapped onto the origin (i. e., 0) and f(b) is mapped onto some point z; (2) it places the children
of node a to vectors y1, y2, . . . , ydeg(a)−1 equally spaced around a circle with radius exp(τ)−1/exp(τ)+1 (which is a circle of
radius τ in the hyperbolic metric), and maximally separated from node b’s reflected embedding z; and (3) it reflects all of
the points back across the geodesic, thus the origin is mapped back onto f(a), while z is mapped onto f(b). To embed the
entire tree, the algorithm follows a recursive approach: the root is placed at the origin and its children in a circle around it,
and then the children of all nodes are embedded in the space until no more nodes are left to be placed. This complexity of
the entire algorithm in linear in the number of nodes of the tree. Figure 3 illustrates how Sarkar’s construction embeds the
nodes of the hierarchy of Figure 1 into the Poincaré disk D2.

One limitation of Sarkar’s construction is that the number of bits of precision used to represent components of the embedded
nodes scales linearly with the maximum path length (Sala et al., 2018). Thus, Sarkar’s construction might experience
numerical instabilities in the case of trees that contain long paths. Sala et al. (2018) generalized Sarkar’s construction from
the Poincare disk D2 to the Poincare ball Dd to deal with such problems. The new construction can produce embeddings
of higher quality in the case of bushy trees, i. e., trees whose maximum degree is large.

D Additional Experiments

D.1 Comparison to WL Distance

We performed an experiment where we extracted the hierarchy produced by the WL algorithm on the IMDB-BINARY
dataset, and then compared the WL distances of the nodes of the hierarchy against the distances of the embeddings of the
nodes produced by the algorithm of Sala et al. (2018), by the WLHN model and by the GIN model. All nodes are initially
annotated with a single feature equal to 1. We set the number of iterations of the WL algorithm to 2. Thus, the WL distances
are at most equal to 4. We set the dimension of the embeddings to 128 for all approaches. We did not train the WLHN and
GIN models, but we randomly initialized their parameters and performed a feed-forward pass to obtain the embeddings.
There are 2, 997 nodes in the hierarchy, thus we compute 2, 9972 distances in total. We visualize those distances in Figure 4
along with the Pearson correlation coefficients. As expected, the algorithm of Sala et al. (2018) achieves the highest value
of correlation, followed by the proposed WLHN model. GIN achieves the lowest value of correlation. Specifically, the
three methods achieve correlations equal to 0.93, 0.57 and 0.10, respectively. Note that the objective of the proposed model
is not to achieve a very high value of correlation (i. e., very close to 1). Consider the following example: the nodes of the
hierarchy that are directly connected to the root represent the different degrees of the nodes of all graphs of the IMDB-

Giannis Nikolentzos, Michail Chatzianastasis, Michalis Vazirgiannis

0.0 0.2 0.4 0.6 0.8
‖hu −hv‖

0

1

2

3

4
d W

L(u
,v

)

r= 0.93

(a) Algorithm of Sala et al. (2018)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
‖hu −hv‖

0

1

2

3

4

r= 0.57

(b) WLHN model

0 1000 2000 3000 4000
‖hu −hv‖

0

1

2

3

4

r= 0.10

(c) GIN model

Figure 4: WL distances of the nodes of the the hierarchy produced by the WL algorithm on the IMDB-BINARY dataset
vs. distances of the corresponding embeddings of the nodes produced by the algorithm of Sala et al. (2018), the proposed
WLHN model and the GIN model.

Table 5: Average running time per epoch (in seconds).

MUTAG D&D NCI1 PROTEINS ENZYMES IMDB-B IMDB-M REDDIT-B REDDIT-5K COLLAB

GIN 0.09 5.51 0.73 0.24 0.14 0.22 0.34 0.77 2.01 15.30
HGCN

0.13 6.58 1.32 0.44 0.23 0.43 0.63 2.10 7.10 16.20
(PoincareBall)

WLHN 0.18 5.85 2.07 0.61 0.16 0.50 0.73 2.30 6.83 16.55

BINARY dataset. The WL distance between any two of these nodes is equal to 2. However, in practice, we would like the
node that represents a value of degree equal to 1 to be closer to the node that represents a value of degree equal to 3 than
to the node that represents a value of degree equal to 100. The proposed model can achieve that since it takes the nodes’
Euclidean embeddings into account which capture such relationships between nodes.

D.2 Running Time

In Table 5, we present the average running time per epoch of the proposed model and two baselines (GIN (Xu et al., 2019)
and HGCN (Chami et al., 2019)) on the 10 graph classification datasets (experiments performed on an Nvidia Titan Xp
GPU). As discussed in section 4, the time complexity of the model is in the same order of magnitude as those of standard
MPNNs. We observe that the running time of WLHN is comparable with those of GIN and HGCN and thus not prohibitive
for real-world problems.

D.3 Robustness Experiments

We have performed experiments investigating the performance of our model after applying different types of perturbations
on the input. Specifically, we use the Cornell, Texas, Wisconsin datasets and we apply Gaussian noise with µ = 2 and
σ = 0.2 to the node features of the training graphs. We report in Table 6 the mean classification accuracy and the standard
deviation when 10% or 20% of the nodes are affected by the noise, across 10 different splits. We observe that noise has
a slight impact on the performance of all models, while the proposed WLHN model still significantly outperforms the
baselines on all 3 datasets.

We further investigate the performance of the WLHN model after applying structural noise. Specifically, we randomly
sample nodes and we add k edges between nodes associated with different class labels. We report the results in Table 7
for k ≈ 0.1|E| and k ≈ 0.2|E|, where |E| is the number of the edges of the graph, across 10 different random splits.
We compare the performance of WLHN against that of HGCN (Hyperboloid). We observe that structural noise also does
not have a large impact on the performance of the proposed model, and that WLHN is more robust to noise than HGCN
(Hyperboloid). These results partially validate our intuition that the proposed model is more robust to noise than existing
models that do not explicitly capture the nodes’ structural distance in the generated representations.

Weisfeiler and Leman go Hyperbolic: Learning Distance Preserving Node Representations

Table 6: Classification accuracy (± standard deviation) on node classification tasks with feature noise.

Method Cornell Texas Wisconsin

Without Noise
Feature Noise Feature Noise

Without Noise
Feature Noise Feature Noise

Without Noise
Feature Noise Feature Noise

(0.1) (0.2) (0.1) (0.2) (0.1) (0.2)

GCN 52.16 (± 8.20) 48.10 (± 1.16) 50.13 (± 7.64) 56.49 (± 8.83) 54.05 (± 8.29) 55.67 (± 6.41) 48.43 (± 4.38) 48.24 (± 4.65) 49.80 (± 7.08)
GIN 51.62 (± 7.68) 49.73 (± 9.83) 50.81 (± 9.80) 53.24 (± 8.55) 50.81 (± 9.80) 50.15 (± 9.34) 50.59 (± 7.98) 51.17 (± 9.17) 48.23 (± 6.86)
HGCN

64.59 (± 11.10) 61.89 (± 7.30) 58.92 (± 8.27) 61.62 (± 9.34) 60.00 (± 8.35) 58.65 (± 7.05) 70.20 (± 7.73) 68.23 (± 9.71) 67.53 (± 10.46)
(Hyperboloid)

WLHN 75.41 (± 6.67) 67.83 (± 7.78) 67.81 (± 7.33) 74.59 (± 7.60) 70.54 (± 8.23) 67.02 (± 8.00) 77.65 (± 5.56) 75.88 (± 5.48) 77.23 (± 4.59)

Table 7: Classification accuracy (± standard deviation) on node classification tasks with structural noise.

Method Cornell Texas Wisconsin

Without Noise Structural Noise Structural Noise Without Noise Structural Noise Structural Noise Without Noise Structural Noise Structural Noise
(0.1) (0.2) (0.1) (0.2) (0.1) (0.2)

HGCN 64.59 (± 11.10) 58.91 (± 10.31) 54.86 (± 9.97) 61.62 (± 9.34) 57.03 (± 8.33) 58.65 (± 9.05) 70.20 (± 7.73) 69.76 (± 7.95) 67.32 (± 8.47)(Hyperboloid)

WLHN 75.41 (± 6.67) 72.70 (± 6.78) 68.65 (± 8.12) 74.59 (± 7.60) 71.08 (± 6.94) 74.05 (± 5.94) 77.65 (± 5.56) 77.45 (± 6.39) 77.04 (± 5.02)

D.4 Oversmoothing Experiments

From the theoretical point of view, it is known from the proposed construction that the distance between two nodes in the
hyperbolic space cannot decrease as more neighborhood aggregation steps are performed. Thus, over-smoothing cannot
occur, i.e., the node representations of structurally different nodes (according to WL) will never converge to indistin-
guishable vectors. We also experimentally demonstrate that our model can have increased depth without suffering from
over-smoothing. We performed experiments on the MUTAG and PROTEINS datasets and report the results in Figure 5.
We observe that even with a large number of layers, there is no decrease in the performance of our model.

E Hyperparameters

For a fair comparison, we used the same hyperparameters setup between our model and HGCN(Chami et al., 2019). For
all datasets, the hidden dimension size of the GNN layers was chosen from {32, 64, 128}. The number of neighborhood
aggregation layers was chosen from {1, . . . , 5} and we used batch normalization. The emerging graph representations were
fed to a multi-layer perceptron consisting of two hidden layers with a hidden-dimension size of 128 and 64, respectively.
We used the ReLU as an activation function. We used dropout with a ratio chosen from {p = 0.0, 0.5} between the
hidden layers. We trained the model by minimizing the cross-entropy loss. We choose between two optimizers, Adam and
RiemannianAdam, with a learning rate in {10−3, 10−2}. We trained the networks for 300 epochs. The experiments were
run on a Intel(R) Xeon(R) CPU E5-1607 v2 @ 3.00GHz processor with 128GB ram and an Nvidia TITAN Xp GPU.

F Datasets

We evaluated the proposed model on 10 publicly available graph classification datasets including 5 bio/chemo-informatics
datasets: MUTAG, D&D, NCI1, PROTEINS and ENZYMES, as well as 5 social interaction datasets: IMDB-BINARY,
IMDB-MULTI, REDDIT-BINARY, REDDIT-MULTI-5K and COLLAB (Morris et al., 2020a). A summary of the 10
datasets is given in Table 8. MUTAG consists of 188 mutagenic aromatic and heteroaromatic nitro compounds. The task
is to predict whether or not each chemical compound has a mutagenic effect on the Gram-negative bacterium Salmonella
typhimurium (Debnath et al., 1991). ENZYMES contains 600 protein tertiary structures represented as graphs obtained
from the BRENDA enzyme database. Each enzyme is a member of one of the Enzyme Commission top level enzyme
classes (EC classes) and the task is to correctly assign the enzymes to their classes (Borgwardt et al., 2005). NCI1 contains
more than four thousand chemical compounds screened for activity against non-small cell lung cancer and ovarian cancer
cell lines (Wale et al., 2008). PROTEINS contains proteins represented as graphs where vertices are secondary structure
elements and there is an edge between two vertices if they are neighbors in the amino-acid sequence or in 3D space. The
task is to classify proteins into enzymes and non-enzymes (Borgwardt et al., 2005). D&D contains over a thousand protein
structures. Each protein is a graph whose nodes correspond to amino acids and a pair of amino acids are connected by
an edge if they are less than 6 Ångstroms apart. The task is to predict if a protein is an enzyme or not (Dobson and
Doig, 2003). IMDB-BINARY and IMDB-MULTI were created from IMDb, an online database of information related to

Giannis Nikolentzos, Michail Chatzianastasis, Michalis Vazirgiannis

2 4 6 8 10 12 14 16 18 20
Number of Layers

70.0

72.5

75.0

77.5

80.0

82.5

85.0

Ac
cu

ra
cy

WLHN-MUTAG
WLHN-PROTEINS
GIN-MUTAG
GIN-PROTEINS

Figure 5: Test accuracy of WLHN and GIN with respect to the numeber of layers

Table 8: Summary of the 10 datasets that were used in our experiments for graph classification.

Dataset MUTAG D&D NCI1 PROTEINS ENZYMES IMDB IMDB REDDIT REDDIT COLLABBINARY MULTI BINARY MULTI-5K

Max # vertices 28 5,748 111 620 126 136 89 3,782 3,648 492
Min # vertices 10 30 3 4 2 12 7 6 22 32
Average # vertices 17.93 284.32 29.87 39.05 32.63 19.77 13.00 429.61 508.50 74.49
Max # edges 33 14,267 119 1,049 149 1,249 1,467 4,071 4,783 40,119
Min # edges 10 63 2 5 1 26 12 4 21 60
Average # edges 19.79 715.66 32.30 72.81 62.14 96.53 65.93 497.75 594.87 2,457.34
labels 7 82 37 3 – – – – – –
attributes – – – – 18 – – – – –
graphs 188 1,178 4,110 1,113 600 1,000 1,500 2,000 4,999 5,000
classes 2 2 2 2 6 2 3 2 5 3

movies and television programs. The graphs contained in the two datasets correspond to movie collaborations. The vertices
of each graph represent actors/actresses and two vertices are connected by an edge if the corresponding actors/actresses
appear in the same movie. Each graph is the ego-network of an actor/actress, and the task is to predict which genre an
ego-network belongs to (Yanardag and Vishwanathan, 2015). REDDIT-BINARY and REDDIT-MULTI-5K contain graphs
that model the social interactions between users of Reddit. Each graph represents an online discussion thread. Specifically,
each vertex corresponds to a user, and two users are connected by an edge if one of them responded to at least one of
the other’s comments. The task is to classify graphs into either communities or subreddits (Yanardag and Vishwanathan,
2015). COLLAB is a scientific collaboration dataset that consists of the ego-networks of several researchers from three
subfields of Physics (High Energy Physics, Condensed Matter Physics and Astro Physics). The task is to determine the
subfield of Physics to which the ego-network of each researcher belongs (Yanardag and Vishwanathan, 2015).

We also evaluated the proposed kernel on two datasets from the Open Graph Benchmark (OGB) (Hu et al., 2020), a
collection of large-scale and diverse benchmark datasets for machine learning on graphs. They are both molecular property
prediction datasets that are adopted from the MoleculeNet (Wu et al., 2018). ogbg-molhiv consists of 41, 127 molecules
and corresponds to a binary classification dataset where the task is to predict whether a molecule inhibits HIV virus
replication or not. The average number of vertices per graph is equal to 25.5, while the average number of edges is equal to
27.5. The dataset is split into training/validation/test sets with a ratio of 80/10/10. For ogbg-molpcba dataset, the class
balance is very skewed (only 1.4% of data is positive) and the dataset contains 128 classification tasks. Therefore, we use
the Average Precision (AP) averaged over the tasks as the evaluation metric. It contains 437, 929 molecule graphs with an
average number of vertices per graph equal to 26.0, and an average number of edges equal to 28.1. For both datasets, the
molecules in the training, validation, and test sets are divided using a scaffold splitting procedure that splits the molecules
based on their two-dimensional structural frameworks. The scaffold splitting attempts to separate structurally different
molecules into different subsets.

Finally, we evaluated the proposed model on five node classification datasets: Cornell, Texas, Wisconsin, Squirrel, and
Actor. The first three datasets are extracted from the WebKB dataset and the rest of the datasets from Wikipedia, and have

Weisfeiler and Leman go Hyperbolic: Learning Distance Preserving Node Representations

Table 9: Dataset statistics and properties for node-level prediction tasks.

Dataset
Properties

Number of nodes Number of edges Number of node features

CORNELL 183 295 1,703
TEXAS 183 309 1,703
WISCONSIN 251 490 1,703
SQUIRREL 5,201 217,073 2,089
ACTOR 7,600 33,544 931

been employed in previous studies (Pei et al., 2020; Rozemberczki et al., 2021). A summary of the three datasets is given
in Table 9.

