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Abstract

Graph kernels have become a standard approach
for tackling the graph similarity and learning
tasks at the same time. Most graph kernels pro-
posed so far are instances of the R-convolution
framework. These kernels decompose graphs
into their substructures and sum over all pairs
of these substructures. However, considerably
less attention has been paid to other types of
kernels. In this paper, we propose a new ker-
nel between graphs which reorders the adjacency
matrix of each graph based on soft permutation
matrices, and then compares those aligned adja-
cency matrices to each other using a linear ker-
nel. To compute the permutation matrices, the
kernel finds corresponding vertices in different
graphs. Two vertices match with each other if
the Weisfeiler-Leman test of isomorphism as-
signs the same label to both of them. The pro-
posed kernel is evaluated on several graph clas-
sification and graph regression datasets. Our re-
sults indicate that the kernel is competitive with
traditional and state-of-the-art methods. The
code is available at https://github.com/
giannisnik/gawl.

1 Introduction

Graphs have attracted a lot of attention in the past years
since they arise naturally in several disciplines ranging
from social networks, to chemo- and bio-informatics. This
abundance of graph-structured data has created the need
for machine learning algorithms that can operate on graphs.
To date, there exist two major families of such algorithms,
namely graph kernels and graph neural networks.

Kernel methods can be applied to any type of data, pro-
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vided that there exists a kernel that can compare any
two data objects to each other. This led to the devel-
opment of kernels for different kinds of structured data
including graphs. Over the past years 20 years, graph
kernels have received a lot of research interest and have
achieved state of the art predictive performance in sev-
eral classification problems (Kriege et al., 2020; Borgwardt
et al., 2020; Nikolentzos et al., 2021). Most graph ker-
nels are instances of the R-convolution framework (Haus-
sler, 1999). These kernels decompose graphs into substruc-
tures (e. g., paths, subgraphs, walks) which they compare
to each other to compute local similarities that are then ag-
gregated. R-convolution kernels have been applied with
success to several problems, however, they aggregate simi-
larities not only between similar substructures but between
all substructures. Furthermore, these kernels are also prone
to the diagonal dominance problem (Yanardag and Vish-
wanathan, 2015). On the other hand, assignment kernels
compute a matching between substructures of two objects
such that the overall similarity of the two objects is max-
imized. Such a matching can reveal structural correspon-
dences between the two objects. Unfortunately, not all
assignment functions are positive semidefinite (i. e., valid
kernels). This issue emerged early on in the development
of the field of graph kernels, when an optimal assignment
kernel that was proposed to compute a correspondence be-
tween the atoms of molecules (Fröhlich et al., 2005) was
later proven not to always be positive semidefinite (Vert,
2008). This slowed down the development of assignment
kernels. Indeed, it was not until recently that some kernels
of this sort started to emerge (Nikolentzos et al., 2017). In-
terestingly, it was shown that there exists a class of base
kernels used to compare substructures that guarantees posi-
tive semidefinite optimal assignment kernels (Kriege et al.,
2016). Recently, ideas from optimal transport theory are
combined with graph representations derived from graph
kernels (Togninalli et al., 2019).

In this paper, we propose a new kernel between graphs, so-
called Weisfeiler-Leman graph alignment kernel (GAWL).
The kernel aligns a corpus of graphs, i. e., it finds cor-
responding vertices in different graphs, and it produces a
permutation matrix for each graph based on the alignment.
Then, it reorders the adjacency matrix of each graph based
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on those permutation matrices, and compares the aligned
adjacency matrices to each other. Unfortunately, aligning
the vertices of a set of graphs is hard. Therefore, we re-
lax the above problem, and we allow the kernel to match
vertices to each other if the Weisfeiler-Leman test of iso-
morphism assigns the same label to them. We evaluate the
proposed kernel on several benchmark datasets for graph
classification and graph regression tasks. We find that the
proposed kernel leads to performance gains on several of
those datasets. More precisely, our main contributions can
be summarized as follows:

• We present the Weisfeiler-Leman graph alignment
kernel (GAWL), a new kernel between graphs which
capitalizes on the Weisfeiler-Leman test of isomor-
phism to reorder the vertices of the graphs and then,
compares the emerging adjacency matrices to each
other.

• We propose an efficient computation scheme which
calculates the GAWL kernel skipping the costly con-
struction of the new adjacency matrices of the graphs.

• We evaluate the performance of the proposed kernel
on several graph classification and regression datasets
where it achieves performance comparable with state-
of-the-art graph kernels and graph neural networks.

The rest of this paper is organized as follows. Section 2
provides an overview of the related work. Section 3 intro-
duces some preliminary concepts and gives details about
color refinement in graphs. Section 4 presents the proposed
graph kernel. Section 5 evaluates the proposed kernel on
different datasets. Finally, Section 6 concludes.

2 Related Work

Graph kernels have been studied extensively in the past 20
years and have been applied with great success to many
graph classification problems (Kriege et al., 2020; Borg-
wardt et al., 2020; Nikolentzos et al., 2021). A graph ker-
nel is a symmetric positive semidefinite function, which
generates implicitly (or explicitly) graph representations
and enables the application of kernel methods such as the
SVM classifier to graphs. Most graph kernels are instances
of the R-convolution framework. These kernels decom-
pose graphs into substructures which they compare to each
other to compute local similarities that are then aggregated.
Such substructures include random walks (Kashima et al.,
2003; Gärtner et al., 2003; Mahé et al., 2004; Vishwanathan
et al., 2010; Sugiyama and Borgwardt, 2015; Kalofolias
et al., 2021), shortest paths (Borgwardt and Kriegel, 2005;
Feragen et al., 2013), cycles (Horváth et al., 2004), sub-
trees (Ramon and Gärtner, 2003), small subgraphs (Sher-
vashidze et al., 2009; Kriege and Mutzel, 2012; Johansson

et al., 2014), among others. The Weisfeiler-Leman frame-
work builds on ideas from the Weisfeiler-Leman test of
isomorphism and relabels the vertices of the input graphs
which can then be compared to each other using any graph
kernel (Shervashidze et al., 2011). This framework was fur-
ther generalized to higher order variants of the Weisfeiler-
Leman algorithm (Morris et al., 2017). However, the com-
putational cost of the k-dimensional Weisfeiler-Leman al-
gorithm is prohibitive for large values of k, and several re-
cent works focused on improving efficiency by leveraging
the sparse and local nature of graphs (Morris et al., 2020b,
2022). There are also kernels that can capture similarity at
different granularity levels such as the multiscale Laplacian
graph kernel which builds a hierarchy of subgraphs cen-
tered at vertices (Kondor and Pan, 2016). These subgraphs
are then compared to each other to compute the kernel.

Assignment kernels, another family of graph kernels, have
recently received more attention than R-convolution ker-
nels. Those kernels do not compare all substructures of an
object against all substructures of another object. Instead,
they compute a matching between substructures of one ob-
ject and substructures of a second object such that the over-
all similarity of the two objects is maximized. This family
of graph kernels is less studied than that of R-convolution
kernels, mainly because not all assignment functions are
positive semidefinite (Vert, 2008), and thus more effort is
required to design such kind of kernels. Despite those dif-
ficulties, some assignment kernels have been developed so
far such as the pyramid match graph kernel which com-
putes a correspondence between the embeddings of the ver-
tices of graphs (Nikolentzos et al., 2017), and the tran-
sitive alignment kernel which computes correspondences
between substructures that satisfy transitivity (Schiavinato
et al., 2015). More importantly, it has been shown that
there exists a class of base kernels used to compare sub-
structures that guarantees positive semidefinite optimal as-
signment kernels, while three different graph kernels (in-
cluding the Weisfeiler-Leman optimal assignment kernel)
were derived from that methodology (Kriege et al., 2016).

Recently, optimal transport approaches have been widely
used for comparing set-structured data. Since graphs can
be represented as sets of node embeddings, these methods
have also found their way into the problem of graph com-
parison. For instance, the Wasserstein Weisfeiler-Leman
graph kernels compare node embeddings of two graphs
via the Wasserstein distance (Togninalli et al., 2019). Pet-
ric Maretic et al. (2019) map graphs into Gaussian distribu-
tions based on their Laplacian matrices and compare graphs
by computing the Wasserstein distance between their dis-
tributions. To compare graphs to each other, Vayer et al.
(2019) combine the Gromov-Wasserstein distance with the
Wasserstein distance. The proposed approach can take into
account both the graph structure and node feature informa-
tion. Xu et al. (2019a) propose an algorithm that is based
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on optimal transport and which jointly aligns graphs and
learns node embeddings. Kolouri et al. (2021) propose a
method that computes an approximate Euclidean embed-
ding for the Wasserstein distance in a reproducing kernel
Hilbert space. Dong and Sawin (2020) propose a coor-
dinated optimal transport algorithm for comparing graphs
to each other and apply the proposed algorithm to graph
sketching. Ma et al. (2020) first embed the graphs into a
pyramid structure and then use optimal transport to com-
pare two graphs at each level of the pyramid. Wijesinghe
et al. (2021) propose an optimal transport algorithm which
uses two regularization terms that guarantee the conver-
gence and numerical stability in finding an optimal assign-
ment between graphs. Furthermore, they compute feature
similarity matrices to preserve features and their local vari-
ations.

3 Preliminaries

3.1 Notation

Let N denote the set of natural numbers, i. e., {1, 2, . . .}.
Then, [n] = {1, . . . , n} ⊂ N for n ≥ 1. Let also {{}}
denote a multiset, i. e., a generalized concept of a set that
allows multiple instances for its elements. A partition of a
set X is a set P of non-empty subsets of X such that the
union of the sets in P is equal to X , i. e.,

⋃
A∈P A = X ,

and the intersection of any two distinct sets in P is empty,
i. e., for allA,B ∈ P withA 6= B, it holds thatA∩B = ∅.
Given two partitions P and P ′ of the same setX , P ′ is finer
than P (we denote this by P ′ v P ) if every element of P ′

is either a subset or equal to an element of P . If P ′ v P
holds, we can equivalently say that P is coarser than P ′. If
both P v P ′ and P ′ v P hold, we denote this by P ≡ P ′.

LetG = (V,E) be an undirected, unweighted graph, where
V is the vertex set and E is the edge set. We will de-
note by n the number of vertices and by m the number
of edges, i. e., n = |V | and m = |E|. The adjacency ma-
trix A ∈ Rn×n is a symmetric matrix used to encode edge
information in a graph. The element of the ith row and jth

column is equal to 1 if there is an edge between vi and vj ,
and 0 otherwise. Let N (v) denote the neighbourhood of
vertex v, i. e., the set {u | {v, u} ∈ E}. The degree of a
vertex v is deg(v) = |N (v)|. Two graphs G = (V,E) and
G′ = (V ′, E′) are isomorphic (denoted byG ∼= G′) if there
is a bijective mapping f : V → V ′ such that (v, u) ∈ E
iff (f(v), f(u)) ∈ E′. A colored graph is a tuple (G, c),
where G is a graph and c : V → Σ is a function that as-
signs colors (i. e., elements from a particular set Σ) to the
vertices of the graph. We interpret all graphs treated in this
paper as colored graphs and just write G instead of (G, c)
when c is clear from the context. If the coloring is not spec-
ified, we assume either a monochromatic coloring, i. e., all
vertices have the same color or we create one color for each
value of degree. For a graph G endowed with a node color-

ing c, a color class of G is a maximal set of vertices that all
have the same color. Every graph coloring c induces a par-
tition π(c) of V into the vertex color classes with respect to
c.

3.2 Weisfeiler-Leman Algorithm

The Weisfeiler-Leman algorithm and its variants have at-
tracted a lot of attention recently since several kernels
and neural architectures are based on them (Morris et al.,
2021). Next, we present the 1-dimensional Weisfeiler-
Leman (WL) algorithm for colored graphs, also known as
color refinement and naive vertex classification. The al-
gorithm proceeds by iteratively refining a partition of the
vertices of its input graph until the partition is stable with
respect to the refinement criterion.

Let (G, c) be a colored graph, and let also χ0
G = c. The WL

algorithm runs for a number of iterations, and in each iter-
ation, it computes a vertex coloring χiG : V → Σ. Specifi-
cally, for i ∈ N, the coloring χiG computed by WL after i it-
erations onG is defined as χiG(v) =

(
χi−1
G (v), {{χi−1

G (w) |
w ∈ N(v)}}

)
. That is, χiG(v) consists of the color of

v from the previous iteration as well as the multiset of
colors of neighbors of v from the previous iteration. It
is clear that each vertex colouring χiG naturally partitions
V into colour classes, i. e., sets of vertices with the same
colour. Since the refinement takes the colour χi−1

G (v) of
a vertex v into account when computing χiG(v), the im-
plication χi−1

G (v) 6= χi−1
G (u) ⇒ χiG(v) 6= χiG(u) holds

for all u, v ∈ V . Hence, the colour classes induced by
χiG are at least as fine as those induced by χi−1

G , i. e.,
π(χiG) v π(χi−1

G ) holds for every graph G and every
i ∈ N.

Traditionally, the WL algorithm is used to test two graphs
for isomorphism. If for some i ∈ N, the numbers of ver-
tices of color σ ∈ Σ differ in the two graphs, then the
two graphs are non-isomorphic. The algorithm terminates
when the number of colors between two successive itera-
tions does not change, i. e., the cardinalities of the images
of χi−1

G and χiG are equal. Termination is guaranteed af-
ter at most a number of iterations equal to the number of
vertices of the larger of the two graphs. With regards to its
expressive power, it is well-known that there exist pairs of
non-isomorphic graphs that the WL algorithm cannot dis-
tinguish (Arvind et al., 2015). For instance, it cannot dis-
tinguish a cycle with six vertices from two triangles with
three vertices (Kriege et al., 2018). Still, the algorithm is
very useful since it has been shown that it can success-
fully test isomorphism for a broad class of graphs (Babai
and Kucera, 1979). High-dimensional variants of the WL
algorithm can distinguish more pairs of non-isomorphic
graphs. Specifically, the k-dimensional Weisfeiler-Leman
algorithm (k-WL), for k ≥ 2, is a generalization of the
WL which colors tuples from V k instead of nodes. That is,
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the algorithm computes a coloring χiG : V k → Σ. How-
ever, as k increases, the computational complexity of the
algorithm also increases, thus rendering the algorithm inef-
ficient for practical use. Therefore, in this paper, we focus
on the simple WL algorithm presented above. It should be
mentioned though that the proposed kernel can benefit from
higher-order variants of the WL algorithm, since finer node
colorings can be derived from their output.

4 Weisfeiler-Leman Graph Alignment
Kernel

Graph-level machine learning problems are usually con-
cerned with predicting the class labels or the targets val-
ues (in regression tasks) of graphs contained in a finite set
{G1, . . . , GM} ⊂ G where G is the space of graphs. An
interesting question is whether we can somehow align the
graphs contained in this set. A natural idea is to look for a
permutation matrix P∗i for each graph Gi of the dataset
where i ∈ [M ] such that the overall distance between
graphs is minimized. This gives rise to the following prob-
lem:

P∗1, . . . ,P
∗
M = arg min

P1,...,PM∈Π

M∑
i=1

M∑
j=1

||PiAiP
>
i −PjAj P

>
j ||

(1)
where Π is the set of n × n permutation matrices, || · ||
is the Frobenius norm, A1, . . .AM ∈ Rn×n, n being the
number of vertices of the largest graph of the dataset, and
zero rows and columns have been appended to the adja-
cency matrices of the rest of the graphs to match the size
of the largest graph. Once we solve the above problem and
compute matrices P∗1, . . . ,P

∗
M , we can then compute the

following graph alignment kernel:

k(G1, G2) =

n∑
i=1

n∑
j=1

[
P∗1 A1 P

∗>
1 �P∗2 A2 P

∗>
2

]
ij

=

n∑
i=1

n∑
j=1

[√
P∗1 A1 P∗>1 �

√
P∗2 A2 P∗>2

]
ij

(2)

where � denotes elementwise multiplication. Note that
the second equality holds since the input graphs are un-
weighted.

Proposition 1. The graph alignment kernel defined in
Equation (2) is positive semidefinite.

Even though the kernel defined in Equation (2) is a valid
kernel, the kernel is not computable in polynomial time
since solving the alignment problem defined in Equa-
tion (1) is hard. Indeed, the problem defined in Equa-
tion (1) is a more general form of the well-known Frobe-
nius distance which cannot be computed in polynomial
time (Arvind et al., 2012; Grohe et al., 2018). Therefore,

the above kernel is not useful for practical applications.
Even if we relax the objective function of Equation (1)
from permutations to doubly-stochastic matrices, the prob-
lem still remains hard.

4.1 WL-based Vertex Ordering

The problem defined in Equation (1) aligns the graphs’ ad-
jacency matrices and imposes an ordering on their vertices.
However, as discussed above, this problem has no polyno-
mial time solution. We next capitalize on the WL algo-
rithm to impose an ordering on the vertices of each graph
of the input collection of graphs G = {G1, . . . , GM}. A
naive approach would be to impose an arbitrary ordering
on the color classes produced by the WL algorithm, and
then sort the vertices of each graph based on that ordering.
This would be equivalent to applying n × n permutation
matrices to the input graphs, thus resulting into new adja-
cency matrices of dimension n×n. However, this can lead
two vertices (of different graphs) colored differently from
each other into being placed in corresponding positions of
the adjacency matrices, even though these two colors might
represent structurally dissimilar neighborhoods.

Instead, we propose to treat vertices of a given color inde-
pendently. Thus, each vertex is mapped only to identically
colored vertices of other graphs. This leads to adjacency
matrices of size at least equal to that of the largest graph
(but usually of much larger size). Formally, let Σ be the set
of colors that emerge in the tth iteration of the WL algo-
rithm. For clarity of presentation we will next omit the iter-
ation number t (e. g., instead of χtG(v), we just use χG(v))
since the analysis applies to all iterations. Let also |Σ| = s,
and without loss of generality, we impose an arbitrary or-
dering on the colors of the tth iteration of the algorithm,
i. e., {σ1, . . . , σs} = Σ. Then, νσi : G → N is a function
that counts the number of vertices colored σi in a graph,
and is defined as:

νσi(G) =
∣∣{χG(v) | v ∈ V and χG(v) = σi}

∣∣
Then, given a color σi ∈ Σ, there exists at least one graph
in the input set of graphs G that contains the largest number
of vertices colored σi. We denote that number by Nσi , and
is formally defined as:

Nσi = max
G∈G

νσi(G)

Let N denote the sum of the above number for all colors,
i. e., N =

∑s
i=1Nσi . We then define s sets, one set for

each color class, as follows:

Iσi =

{
j ∈ N

∣∣∣∣ i−1∑
k=1

Nσk < j ≤
i∑

k=1

Nσk

}

The sets are pairwise disjoint, i. e., Iσ ∩ Iσ′ = ∅ for all
σ, σ′ ∈ Σ with σ 6= σ′, while

⋃s
i=1 Iσi = [N ] holds. Each
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set contains the indices of the rows and columns of the adja-
cency matrices of the graphs that correspond to each color
class. The vertices that belong to a given color class will
then be mapped to the indices associated with that color
class.

Before comparing the adjacency matrices of the graphs to
each other, they will be first transformed intoN×N matri-
ces. Let G ∈ G be an input graph and n denote its number
of vertices. For each input graph, we construct a rectan-
gular matrix D ∈ RN×n whose columns sum to 1, i. e.,
matrix D satisfies the following constraint 1>N D = 1n.
Each column of matrix D corresponds to one vertex of the
input graph G. Each vertex of the input graph belongs to
some color class σ` ∈ Σ and the νσ`(G) first rows of D
that correspond to that color are set equal to 1/νσ` (G). In
other words, let vj denote the vertex of G that corresponds
to the jth row and column of its adjacency matrix (and thus
the jth column of D). Then, the elements of the jth column
of D are set equal to the following values:

Dij =


1

νσ`(G)
, if χG(vj) = σ` and i ∈ I(σ`)

and i−min
(
I(σ`)

)
< νσ`(G)

0, otherwise

Then, given matrix D, we transform the adjacency matrix
A of input graph G as follows Ã =

√
DAD> ∈ RN×N .

Matrix Ã has the following form:

Ã =


B11 B12 . . . B1s

B21 B22 . . . B2s

...
...

. . .
...

Bs1 Bs2 . . . Bss


where Bij is an Nσi × Nσj matrix whose sum of squared
elements is equal to twice the number of edges between
vertices colored σi and vertices colored σj in G. Let
µσi,σj : G → N be a function that counts the number of
edges from vertices colored σi to vertices colored σj in a
graph. Note that edges between identically colored ver-
tices are considered twice. Then, given the transformed
adjacency matrix Ã of a graph G,

∑Nσi
ı=0

∑Nσj
=0 [Bij ]

2
ı =

µσi,σj (G) holds for all i, j ∈ [s]. In fact, this value is
equally distributed among the elements of the νσi(G) ×
νσj (G) upper left submatrix of matrix B�2

ij (� denotes
Hadamard power). The construction of matrix Ã for some
example graph G is illustrated in Figure 1. The above for-
mulation also admits a probabilistic interpretation since it
measures the probability of a vertex colored σi to be con-
nected to a vertex colored σj .

Finally, given two graphsG,G′ and the respective matrices
D,D′ (produced after t iterations of WL), we can compute

the kernel between the two graphs as follows:

k(t)(G,G′) =

N∑
i=1

N∑
j=1

[√
DAD> �

√
D′A′D′>

]
ij

=

N∑
i=1

N∑
j=1

[
Ã� Ã′

]
ij

(3)

Then the Weisfeiler-Leman graph alignment kernel (with T
iterations of the WL algorithm) is defined as: k(G,G′) =
k(1)(G,G′) + . . . + k(T )(G,G′). In Appendix C, we also
present a variant of the above definition which takes all col-
ors that emerge in the T iterations of the WL algorithm into
account to transform the adjacency matrices of the graphs.
Based on Proposition 1, k(t) is a valid kernel function, and
thus the sum of such kernels for t ∈ {1, . . . , T} is also
a valid kernel. It should be mentioned that the proposed
kernel is closely related to the Weisfeiler-Leman optimal
assignment kernel (Kriege et al., 2016) (more details are
given in the Appendix). However, it addresses one of the
main limitations of the Weisfeiler-Leman optimal assign-
ment kernel, since, as discussed next, it can also handle
vertex and edge attributes.

In case of vertex-attributed graphs, let X ∈ Rn×d denote
the vertex features where d is the feature dimensionality.
The feature of a given vertex vi is stored in the ith row of
X. Then, we can transform the matrix of features X of the
graph as follows X̃ = DX. Given two graphs G and G′,
let X̃, X̃′ denote their new matrices of features. Then, the
following kernel can be added to the one of Equation (3)∑N
i=1

∑d
j=1

[
X̃� X̃′

]
ij

. Note that the kernel puts more

emphasis on the graph structure than on the vertex features
since matrix D has emerged from the WL algorithm which
captures structural properties of vertices. In cases where
edge attributes are available, matrix A is a tensor, i. e., A ∈
Rn×n×d where d is the dimension of the edge attributes.
We can then use matrix D to transform A into a new ten-
sor Ã ∈ RN×N×d. Then, the kernel can be computed as
follows: k(t)(G,G′) =

∑N
i=1

∑N
j=1

∑d
k=1

[
Ã� Ã′

]
ijk

.

4.2 Efficient Computation

Unfortunately, the Wesfeiler-Leman graph alignment ker-
nel is not very efficient. Indeed, N can take large values.
In the worst case, it can be equal to the sum of the num-
ber of vertices of all graphs (typically in the order of hun-
dreds of thousands or millions). Therefore, computing the
transformed adjacency matrix Ã =

√
DAD> ∈ RN×N

of a graph G is impractical even if the emerging matrix is
stored as a sparse matrix. Instead, we show next that the
kernel value between two graphs can in fact be computed
more efficiently.

Given two graphsG,G′, the kernel computes the following
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N = 4

N = 2

N = 2

(a) A graph G and the largest number of
vertices colored with each color

A =


0 1 1 0 1
1 0 0 1 1
1 0 0 1 0
0 1 1 0 0
1 1 0 0 0


(b) The adjacency matrix of G

D =



0 0 1/2 1/2 0
0 0 1/2 1/2 0
0 0 0 0 0
0 0 0 0 0
1/2 1/2 0 0 0
1/2 1/2 0 0 0

0 0 0 0 1
0 0 0 0 0


(c) The permutation matrix associated
with G

Ã =
√
DAD> =



√
1/2

√
1/2 0 0

√
1/2

√
1/2 0 0√

1/2
√

1/2 0 0
√

1/2
√

1/2 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0√
1/2

√
1/2 0 0

√
1/2

√
1/2 1 0√

1/2
√

1/2 0 0
√

1/2
√

1/2 1 0

0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0


(d) The transformed adjacency matrix of G

Figure 1: An illustration of how the transformed adjacency matrix Ã of a graph G is constructed based on the colors
produced by WL.

elementwise product:

Ã�Ã′ =


B11 �B′11 B12 �B′12 . . . B1s �B′1s
B21 �B′21 B22 �B′22 . . . B2s �B′2s

...
...

. . .
...

Bs1 �B′s1 Bs2 �B′s2 . . . Bss �B′ss


For i, j ∈ [s], as mentioned above, the νσi(G) ×
νσj (G) upper left submatrix of Bij contains nonzero el-
ements. Likewise, the νσi(G

′) × νσj (G
′) upper left

submatrix of B′ij contains nonzero elements. There-
fore, only the first min

(
νσi(G), νσi(G

′)
)

rows and first
min

(
νσj (G), νσj (G

′)
)

columns of Bij and B′ij need to
be multiplied to each other since the rest of the elements
end up having values equal to zero (after the elementwise
multiplication). The nonzero elements of Bij are equal
to each other, and the same applies to the nonzero ele-
ments of B′ij . As already mentioned, we also have that∑Nσi
ı=0

∑Nσj
=0 [Bij ]

2
ı = µσi,σj (G) holds. Therefore, each

nonzero element of Bij is equal to
√

µσi,σj
νσi (G) νσj (G) . Based

on the above, the kernel can be computed as follows:

k(t)(G,G′) =
∑
σi∈Σ

∑
σj∈Σ

(√
µσi,σj (G)µσi,σj (G

′)

νσi(G) νσj (G) νσi(G
′) νσj (G

′)

min
(
νσi(G), νσi(G

′)
)

min
(
νσj (G), νσj (G

′)
))

The runtime complexity of the WL algorithm with T iter-
ations is O(Tm). Given a colored graph G, νσi(G) and
µσi,σj (G) can be computed in time linear in the number of
vertices and edges of G, respectively. Therefore, the kernel
can be computed in linear time.

4.3 Expressive Power

We next investigate the expressive power of the Weisfeler-
Leman graph alignment kernel. Since the kernel imposes
an ordering on the vertices of each graph based on the color
classes to which they belong, it is likely that its expressive
power is related to that of WL.

Proposition 2. Let G = (V,E) and G′ = (V ′, E′) be two
graphs where the vertices of both graphs have a degree at
least equal to 1, i. e., deg(v) > 0, ∀v ∈ V ∪ V ′. Then,
if WL decides G and G′ are not isomorphic, the Weisfeler-
Leman graph alignment kernel maps G and G′ to different
embeddings.

5 Experimental Evaluation

5.1 Datasets

For the classification task, we evaluated the proposed ker-
nel on standard datasets derived from bioinformatics and
chemoinformatics (MUTAG, D&D, NCI1, PROTEINS,
ENZYMES), and from social networks (IMDB-BINARY,
IMDB-MULTI, REDDIT-BINARY, REDDIT-MULTI-5K,
COLLAB) (Morris et al., 2020a). Note that the social net-
work graphs are unlabeled, while all other graph datasets
come with vertex labels or vertex attributes. We addi-
tionally evaluated the proposed kernel on the ogbg-molhiv
dataset, a molecular property prediction dataset from the
Open Graph Benchmark (OGB) (Hu et al., 2020), a collec-
tion of challenging large-scale datasets.

For the regression task, we conducted an experiment on
the ZINC 12K dataset (Dwivedi et al., 2020). ZINC is one
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of the most popular molecular datasets where the task is
to predict the constrained solubility of molecules, an im-
portant chemical property for designing generative graph
neural networks for molecules.

5.2 Experimental Setup

In the case of the standard graph classification datasets,
we compare the proposed kernel against the following
five graph kernels: (1) graphlet kernel (GL) (Shervashidze
et al., 2009); (2) shortest path kernel (SP) (Borgwardt
and Kriegel, 2005); (3) Weisfeiler-Leman subtree ker-
nel (WL) (Shervashidze et al., 2011); (4) Weisfeiler-
Leman optimal assignment kernel (WL-OA) (Kriege et al.,
2016); (5) Wasserstein Weisfeiler-Leman graph kernel
(WWL) (Togninalli et al., 2019). For the first four ker-
nels, we use the implementations of the kernels contained
in the GraKeL library (Siglidis et al., 2020), while for the
WWL kernel, we use the implementation provided by the
authors. We also compare the proposed kernel against the
following five graph neural networks: (1) DGCNN (Zhang
et al., 2018); (2) DiffPool (Ying et al., 2018); (3) ECC (Si-
monovsky and Komodakis, 2017); (4) GIN (Xu et al.,
2019b); and (5) GraphSAGE (Hamilton et al., 2017). To
evaluate the different methods, we employ the framework
proposed by Errica et al. (2020). Therefore, we perform
10-fold cross-validation to obtain an estimate of the gener-
alization performance of each method, while within each
fold a model is selected based on a 90%/10% split of the
training set. We use exactly the same splits as the ones
employed by Errica et al. (2020), hence, for the common
datasets, we use the results reported in that paper. For the
remaining datasets, we use the code provided by Errica
et al. (2020) to evaluate the five graph neural networks.
For graph kernels, to perform graph classification, we em-
ployed a C-Support Vector Machine (SVM) classifier. The
parameter C of the SVM and the hyperparameters of the
kernels were optimized on the training set of each fold
only. Specifically, we chose parameters for the graph ker-
nels as follows. For the WL, WL-OA and GAWL kernels,
we chose the number of iterations h from {2, . . . , 8}. For
the GL kernel, we set the number of graphlets to be sam-
pled from each graph equal to 500. For the WWL kernel,
the number of iterations was chosen from {1, . . . , 5} and
the parameter λ from {10−4, . . . , 101}.

In the case of the ogbg-molhiv dataset, we compare the pro-
posed kernel against the following eight graph neural net-
works: (1) GCN (Kipf and Welling, 2017); (2) GIN (Xu
et al., 2019b); (3) GCN-FLAG (Kong et al., 2020); (4)
GIN-FLAG (Kong et al., 2020); (5) PNA (Corso et al.,
2020); (6) GSN (Bouritsas et al., 2020); (7) HIMP (Fey
et al., 2020); and (8) DGN (Beaini et al., 2020). For all
models, we use the results that are reported in the respec-
tive papers. All reported results are averaged over 10 runs.
Finally, in the case of the ZINC 12K dataset, our list of

baselines includes the following eight graph neural network
models: (1) GCN (Kipf and Welling, 2017); (2) Graph-
SAGE (Hamilton et al., 2017); (3) MoNet (Monti et al.,
2017); (4) GAT (Veličković et al., 2017); (5) GIN (Xu et al.,
2019b); (6) GatedGCN (Bresson and Laurent, 2017); (7)
RingGNN (Chen et al., 2019); and (8) 3WLGNN (Maron
et al., 2019). For all models, we use the results reported
by Dwivedi et al. (2020). All reported results are averaged
over 4 runs. More details about the experimental setup are
provided in the Appendix.

5.3 Results and Discussion

Graph Classification. We report in Table 1 average pre-
diction accuracies and standard deviations. We observe
that the proposed kernel outperforms the baselines on 4
out of the 10 datasets, while it provides the second or third
best accuracy on 4 out of the remaining 6 datasets. On
some datasets, the proposed kernel outperforms the other
approaches with quite wide margins. For instance, on the
IMDB-BINARY and COLLAB datasets, our kernel offers
respective absolute improvements of 1.7% and 1.0% in ac-
curacy over the second best approach. WL-OA, WWL and
GIN are the best performing baselines. Each one of these
three methods outperforms all the other approaches on two
datasets. Kernel methods achieve better performance than
graph neural networks on most datasets. In fact, graph
neural networks outperform kernels only on two datasets
(i. e., REDDIT-BINARY and REDDIT-MULTI-5K). This
demonstrates that kernel methods can still achieve high lev-
els of performance on small and medium-sized datasets.
Overall, the proposed kernel exhibits highly competitive
performance on the graph classification datasets, while the
achieved accuracies follow different patterns from all the
baseline methods.

Classification results for the ogbg-molhiv dataset are pre-
sented in Table 2. It is interesting to mention that even
though the proposed kernel does not take into account the
edge attributes of the graphs contained in this dataset, still it
outperforms most of the baselines. Specifically, it achieves
a ROC-AUC score of 78.34 which is comparable to that
of the best performing approach (the DGN model which
achieves a score of 79.70). Overall, the results indicate that
the proposed kernel can generate useful graph representa-
tions even for larger datasets, and that it is very competitive
with the state-of-the-art in the graph classification task.

Graph Regression. Table 3 reports the mean absolute er-
ror achieved by the different approaches on the ZINC 12K
dataset. We observe that the proposed approach achieves
high levels of performance. In fact, it is the second
best performing approach since it is only outperformed by
3WLGNN-E, one of the most expressive graph neural net-
works. It is interesting to mention that in this task, the pro-
posed kernel manages to outperform graph neural network
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Table 1: Classification accuracy (± standard deviation) of the different approaches on the 10 graph classification datasets.
OOR means Out of Resources, either time (> 72 hours for a single training) or GPU memory.

Method MUTAG D&D NCI1 PROTEINS ENZYMES

SP 80.2 (± 6.5) 78.1 (± 4.1) 72.7 (± 1.4) 75.3 (± 3.8) 38.3 (± 8.0)
GL 80.8 (± 6.4) 75.4 (± 3.4) 61.8 (± 1.7) 71.6 (± 3.1) 25.1 (± 4.4)
WL 84.6 (± 8.3) 78.1 (± 2.4) 84.8 (± 2.5) 73.8 (± 4.4) 50.3 (± 5.7)
WL-OA 87.2 (± 5.4) 77.6 (± 3.0) 86.3 (± 1.6) 76.2 (± 3.9) 58.0 (± 5.0)
WWL 86.8 (± 6.7) 79.5 (± 3.0) 85.3 (± 2.0) 72.6 (± 4.8) 72.8 (± 4.8)

DGCNN 84.0 (± 6.7) 76.6 (± 4.3) 76.4 (± 1.7) 72.9 (± 3.5) 38.9 (± 5.7)
DiffPool 79.8 (± 7.1) 75.0 (± 3.5) 76.9 (± 1.9) 73.7 (± 3.5) 59.5 (± 5.6)
ECC 75.4 (± 6.2) 72.6 (± 4.1) 76.2 (± 1.4) 72.3 (± 3.4) 29.5 (± 8.2)
GIN 84.7 (± 6.7) 75.3 (± 2.9) 80.0 (± 1.4) 73.3 (± 4.0) 59.6 (± 4.5)
GraphSAGE 83.6 (± 9.6) 72.9 (± 2.0) 76.0 (± 1.8) 73.0 (± 4.5) 58.2 (± 6.0)

GAWL 87.3 (± 6.3) 78.7 (± 2.8) 85.9 (± 1.2) 74.7 (± 3.0) 67.6 (± 4.2)

Method IMDB IMDB REDDIT REDDIT COLLABBINARY MULTI BINARY MULTI-5K

SP 57.7 (± 4.1) 39.8 (± 3.7) 89.0 (± 1.0) 51.1 (± 2.2) 79.9 (± 2.7)
GL 63.3 (± 2.7) 39.6 (± 3.0) 76.6 (± 3.3) 38.1 (± 2.3) 71.1 (± 1.4)
WL 72.8 (± 4.5) 51.2 (± 6.5) 74.9 (± 1.8) 49.6 (± 2.0) 78.0 (± 2.0)
WL-OA 72.6 (± 5.5) 51.1 (± 4.3) 89.0 (± 1.3) 54.0 (± 1.2) 80.5 (± 2.0)
WWL 71.0 (± 4.9) 50.0 (± 4.6) 86.4 (± 0.9) OOR OOR

DGCNN 69.2 (± 3.0) 45.6 (± 3.4) 87.8 (± 2.5) 49.2 (± 1.2) 71.2 (± 1.9)
DiffPool 68.4 (± 3.3) 45.6 (± 3.4) 89.1 (± 1.6) 53.8 (± 1.4) 68.9 (± 2.0)
ECC 67.7 (± 2.8) 43.5 (± 3.1) OOR OOR OOR
GIN 71.2 (± 3.9) 48.5 (± 3.3) 89.9 (± 1.9) 56.1 (± 1.7) 75.6 (± 2.3)
GraphSAGE 68.8 (± 4.5) 47.6 (± 3.5) 84.3 (± 1.9) 50.0 (± 1.3) 73.9 (± 1.7)

GAWL 74.5 (± 4.1) 51.7 (± 5.2) 88.0 (± 1.4) 53.4 (± 1.3) 81.5 (± 2.0)

Table 2: ROC-AUC score
(± standard deviation) of
the different approaches
on the ogbg-molhiv
dataset.

Method Dataset

ogbg-molhiv

GCN 76.06± 0.97
GIN 75.58± 1.40
GCN+FLAG 76.83± 1.02
GIN+FLAG 76.54± 1.14
GSN 77.99± 1.00
HIMP 78.80± 0.82
PNA 79.05± 1.32
DGN 79.70± 0.97

GAWL 78.34± 0.39

Table 3: Mean absolute er-
ror (± standard deviation)
of the different approaches
on the ZINC 12K dataset.

Method Dataset

ZINC

GCN 0.367± 0.011
GraphSAGE 0.398± 0.002
MoNet 0.292± 0.006
GAT 0.384± 0.007
GIN 0.387± 0.015
GatedGCN 0.435± 0.011
GatedGCN-E 0.282± 0.015
RingGNN-E 0.353± 0.019
3WLGNN 0.407± 0.028
3WLGNN-E 0.256± 0.054

GAWL 0.277± 0.003

models which are considered state-of-the-art for many ma-
chine learning problems on graphs.

Node Attributes. As discussed above, besides discrete
node labels, GAWL can also handle vertex attributes. This
is one of the main improvements the proposed kernel pro-
vides over other kernels such as WL and WL-OA. How-
ever, GAWL puts more emphasis on the graph structure
since matrix D emerges from it. We performed the follow-

ing experiment: we generated 500 graphs. Each graph is ei-
ther a complete graph or an Erdös-Rényi graph Gn,p where
n ∈ {10, 11, . . . , 30} and p ∈ {0.4, 0.5, 0.6, 0.7, 0.8}
(both and randomly sampled). Each vertex is annotated
with a single attribute randomly chosen from (0, 1) with
uniform probability. For some of the generated graphs
(sampled with probability 0.5), the attribute of a randomly
sampled vertex is replaced with a value equal to−1. Those
graphs belong to class 1, while the rest of the graphs (where
the attributes of all vertices are from (0, 1)) belong to class
0. We split the 500 graphs into training, validation and test
sets, compute the kernel matrices (for attributed graphs),
and use SVM to classify them. We achieved an accuracy
equal to 90% (the dataset is almost perfectly balanced),
which demonstrates that the GAWL kernel can perform
well even when vertex attributes are more important than
the graph structure itself.

Runtime Analysis. We next empirically measure the run-
ning time of the proposed kernel and compare it against
those of three baseline kernels, namely WL, WL-OA and
WWL. We report in Table 4 below CPU runtimes for com-
puting each kernel matrix as measured on a Intel Xeon W-
2123 CPU @ 3.60GHz with 64Gb of RAM. We observe
that the WL is the fastest kernel followed by GAWL, WL-
OA and WWL in that order. WWL is the slowest kernel,
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Table 4: CPU runtime for kernel matrix computation of
the proposed kernel and three baseline kernels on 5 graph
classification datasets.

Dataset Method

WL WL-OA WWL GAWL

MUTAG 0.05s 0.54s 13.05s 1.15s
DD 11.99s 1h 32m 55s 8h 27m 43s 10m 10s
NCI1 4s 54m 36s 2h 27m 1s 6m 44s
PROTEINS 1.44s 4m 11s 27m 28s 37.81s
ENZYMES 0.57s 35.08s 5m 23s 25.77s

and on some datasets, its running time is much higher than
that of the other three kernels. It is worth mentioning that
even if the proposed kernel is slower than the WL kernel,
its computing times are by no means prohibitive. Overall,
the experiments demonstrate that the running time of the
proposed kernel is attractive.

Limitations. To deal with learning problems, the proposed
method needs first to construct the Gram matrix, i. e., pre-
compute the kernel value for all pairs of training samples,
which can be done in time quadratic in the number of sam-
ples. Thus, the kernel becomes highly inefficient in case
the number of samples is very large. In such scenarios, ap-
proximation methods can be employed. For instance, on
ogbg-molhiv, we utilized the Nyström method (Williams
and Seeger, 2001).

6 Conclusion

In this paper, we proposed a novel kernel between graphs
which permutes the adjacency matrices of input graphs
such that structurally equivalent vertices are in correspond-
ing positions of the adjacency matrices. The structural
equivalence of vertices is determined based on the output
of the WL algorithm. Then, the kernel compares the adja-
cency matrices of graphs to each other using a linear kernel.
We also proposed an efficient computation scheme which
makes the time complexity of the kernel very attractive.
The effectiveness of the proposed kernel was empirically
tested on standard datasets in the tasks of graph classifi-
cation and graph regression. The obtained results indicate
that the kernel is competitive with traditional and state-of-
the-art methods.

In terms of future directions of research, we would like to
apply the proposed method to align graphs to each other.
Given two graphs G1, G2 and their respective soft permu-
tation matrices D1 ∈ RN×n1 and D2 ∈ RN×n2 (where
n1, n2 denote the number of nodes ofG1 andG2), we could
compute a matrix T = D>1 D2 ∈ Rn1×n2 which contains
the similarities of the nodes of the two graphs. Then, we
could seek for the optimal matching between the nodes of
the two graphs using some optimal transport technique.
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The Appendix is organized as follows. In sections A and B, we prove Propositions 1 and 2, respectively. In section C, we
present a variant of the proposed kernel which takes colors of all iterations into account, while in section D, we discuss
how the proposed kernel is different from the Weisfeiler-Leman optimal assignment kernel. In section E, we provide
further details about the experimental setup. Finally, in section F, we give more details about the datasets we used in our
experiments.

A Proof of Proposition 1

Let vec denote the vectorization operator which transforms a matrix into a vector by stacking its columns. Then, given
a graph Gi, its adjacency matrix Ai ∈ Rn×n and a permutation matrix P∗i ∈ Rn×n, let vi = vec(P∗i AiP

∗>
i ) where

vi ∈ Rn2

. Then, we have:

k(G1, G2) =

n∑
i=1

n∑
j=1

[
P∗i AiP

∗>
i �P∗j Aj P

∗>
j

]
ij

= 〈vi,vj〉

and thus the above function corresponds to an inner product between the vector representations of the two graphs, and is
therefore a valid kernel. The kernel computes an explicit mapping from graphs to vector-valued feature space and thus
corresponds to the dot product of explicitly computed feature maps.

B Proof of Proposition 2

Assume that WL decides G and G′ are not isomorphic. Then, the multiplicity of at least one color in the first graph is
different from the multiplicity of the same color in the second graph. Without loss of generality, suppose that this color is
σi. Then, we have that νσi(G) 6= νσi(G

′). Since, we have assumed that G and G′ are both connected (i. e., each vertex
has a degree at least equal to 1), there exists at least one vertex of G colored σj that is connected to the vertex (or vertices)
colored σi. Therefore, the νσi(G) × νσj (G) upper left submatrix of matrix Bij will contain nonzero values. Likewise,
the νσi(G

′) × νσj (G′) upper left submatrix of matrix B′ij will contain nonzero values (in case at least a vertex colored
σi is connected to a vertex colored σj in G′). The rest of the elements of both Bij and B′ij are equal to zero. Since
νσi(G) 6= νσi(G

′), it turns out that Bij 6= B′ij . Thus, the two graphs have different transformed adjacency matrices, i. e.,
Ã 6= Ã′ since at least one of their blocks (i. e., submatrices) are different from each other. Thus, the kernel maps the two
graphs to different embeddings.

C Using Colors of All Iterations

Let G,G′ be two graphs, and let also D1,D
′
1, . . . ,DT ,D

′
T denote the transformation matrices of the two graphs that

emerge after 1, . . . , T iterations of WL, respectively. Then, Dt,D
′
t ∈ RNt×n, and the kernel between the two graphs is

computed as follows:

k(G,G′) = k(1)(G,G′) + . . .+ k(T )(G,G′) =

T∑
t=1

Nt∑
i=1

Nt∑
j=1

[√
DtAD>t �

√
D′tA

′D
′>
t

]
ij

=

T∑
t=1

Nt∑
i=1

Nt∑
j=1

[
Ãt � Ã′t

]
ij

=

N∑
i=1

N∑
j=1

[
Ãblock diag � Ã′block diag

]
ij

where N = N0 + . . .+NT and Ãblock diag ∈ RN×N is a block diagonal matrix of the following form:

Ãblock diag =


Ã1 0 . . . 0

0 Ã2 . . . 0
...

...
. . .

...
0 0 . . . ÃT





Graph Alignment Kernels using Weisfeiler and Leman Hierarchies

N = 4

N = 2

N = 2

N = 5

N = 5

N = 2

(a) A graph G and the largest number of
vertices colored with each color

A =


0 1 1 0 1
1 0 0 1 1
1 0 0 1 0
0 1 1 0 0
1 1 0 0 0


(b) The adjacency matrix of G

D =



1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5

0 0 1/3 1/3 1/3
0 0 1/3 1/3 1/3
0 0 1/3 1/3 1/3
0 0 0 0 0
0 0 0 0 0
1/2 1/2 0 0 0
1/2 1/2 0 0 0

0 0 1/2 1/2 0
0 0 1/2 1/2 0
0 0 0 0 0
0 0 0 0 0
1/2 1/2 0 0 0
1/2 1/2 0 0 0

0 0 0 0 1
0 0 0 0 0


(c) The permutation matrix associated with G
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(d) The transformed adjacency matrix of G

Figure 2: An illustration of how the transformed adjacency matrix Ã of a graph G is constructed based on the initial colors
and the colors produced by all iterations of WL.

Based on the above, it is clear that given some number of WL iterations T , the proposed kernel takes also the colors of the
previous iterations into account to compute the kernel value.

An alternative computation scheme would be to construct a single transformation matrix D ∈ RN×n by concatenating
vertically matrices D1, . . . ,DT , and then to apply this matrix to the adjacency matrix of the graph (which will give rise to
a matrix Ã ∈ RN×N ), and compute the kernel between two graphs as follows:

k(G,G′) =

N∑
i=1

N∑
j=1

[
Ã� Ã′

]
ij

The above computation scheme is illustrated in Figure 2 and is more expressive than the previous one since it takes into
account relationships between colors that emerge from different iterations of the WL algorithm, but is computationally
more expensive since it leads to transformed adjacency matrices that contain more non-zero elements.
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D Link to Weisfeiler-Leman Optimal Assignment Kernel

The Weisfeiler-Leman optimal assignment kernel (WL-OA) belongs to the family of assignment kernels and its formulation
is similar to the final formulation of the proposed GAWL kernel. However, the motivation behind the proposed kernel is
fundamentally different from that of WL-OA since it deals with the graph comparison problem from a different perspective:
that of graph alignment.

WL-OA maps each graph into a histogram that measures the frequencies (i. e., number of occurrences) of the colors
that emerge in the different iterations of the WL algorithm. Let νσi(G) denote the number of vertices of G colored
σi. Given two graphs G,G′ and the set of colors {σ1, σ2, . . . , σ|Σ|} that are produced by WL, the WL-OA kernel only
needs νσ1

(G), νσ2
(G), . . . , νσ|Σ|(G) and νσ1

(G′), νσ2
(G′), . . . , νσ|Σ|(G

′) to compute the kernel between the two graphs
by histogram intersection. Thus, the kernel compares color frequencies using the histogram intersection kernel. On the
other hand, the proposed kernel is different from WL-OA since it considers pairs of colors instead of single colors and
also the number of edges between vertices of these colors. Indeed, this is clear from the kernel’s definition provided in
subsection 4.2:

k(t)(G,G′) =
∑
σi∈Σ

∑
σj∈Σ

(√
µσi,σj (G)µσi,σj (G

′)

νσi(G) νσj (G) νσi(G
′) νσj (G

′)
min

(
νσi(G), νσi(G

′)
)

min
(
νσj (G), νσj (G

′)
))

Even though the two kernels are similar to each other, it turns out that they perform differently in the experiments of
Table 1.

We also performed an experiment where we computed the kernel matrix for the graphs of the IMDB-BINARY dataset using
WL-OA, WL and the proposed GAWL kernel for different iterations of the WL algorithm (from 1 to 4). We then computed
the Pearson correlation between the kernel values generated by the different kernels. We found that GAWL is more
correlated to WL than to WL-OA (correlations between 0.84 − 0.93 vs. correlations between 0.69 − 0.79). Furthermore,
as discussed above, the proposed kernel can handle node and edge attributes, while its running time is smaller than that of
WL-OA (implementation from GraKeL package (Siglidis et al., 2020)).

E Details about Experimental Setup

For both ogbg-molhiv and ZINC 12K, we used the available predefined splits. For ogbg-molhiv, a different kernel was
computed for each one of the 9 categorical vertex attributes and the emerging values were summed to produce a single
kernel value. Edge attributes were ignored. We used the Nyström method (Williams and Seeger, 2001) to obtain a low-
rank approximation of the kernel matrix. We set the rank equal to 2, 000. For ZINC 12K, we computed the entire kernel
matrix, and we used kernel PCA to obtain a vector of dimension 4, 000 for each graph. The WL algorithm took edge
labels into account while updating vertex colors. For both datasets, the emerging graph representations were fed to a multi-
layer perceptron consisting of two hidden layers with a hidden-dimension size of 1, 024 and 512, respectively. For the
classification and regression tasks, we used the binary cross entropy and l1 loss for the optimization, respectively. We used
a dropout layer with p = 0.6 between the two hidden layers in the case of ogbg-molhiv and no dropout in the case of ZINC
12K. Moreover, we used the Adam optimizer with a learning rate of 10−3 and trained the network for 10 epochs. The
number of WL iterations of the proposed GAWL kernel was chosen from {1, . . . , 4}. The whole training and evaluation
procedure was repeated 10 times in the case of the ogbg-molhiv dataset and 4 times in the case of the ZINC 12K dataset,
respectively.

F Datasets

We evaluated the proposed kernel on 10 publicly available graph classification datasets including 5 bio/chemo-informatics
datasets: MUTAG, D&D, NCI1, PROTEINS and ENZYMES, as well as 5 social interaction datasets: IMDB-BINARY,
IMDB-MULTI, REDDIT-BINARY, REDDIT-MULTI-5K and COLLAB (Morris et al., 2020a). A summary of the 10
datasets is given in Table 5. MUTAG consists of 188 mutagenic aromatic and heteroaromatic nitro compounds. The task
is to predict whether or not each chemical compound has mutagenic effect on the Gram-negative bacterium Salmonella
typhimurium (Debnath et al., 1991). ENZYMES contains 600 protein tertiary structures represented as graphs obtained
from the BRENDA enzyme database. Each enzyme is a member of one of the Enzyme Commission top level enzyme
classes (EC classes) and the task is to correctly assign the enzymes to their classes (Borgwardt et al., 2005). NCI1 contains
more than four thousand chemical compounds screened for activity against non-small cell lung cancer and ovarian cancer
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Table 5: Summary of the 10 datasets that were used in our experiments.

Dataset MUTAG D&D NCI1 PROTEINS ENZYMES
IMDB IMDB REDDIT REDDIT

COLLAB
BINARY MULTI BINARY MULTI-5K

Max # vertices 28 5,748 111 620 126 136 89 3,782 3,648 492
Min # vertices 10 30 3 4 2 12 7 6 22 32
Average # vertices 17.93 284.32 29.87 39.05 32.63 19.77 13.00 429.61 508.50 74.49
Max # edges 33 14,267 119 1,049 149 1,249 1,467 4,071 4,783 40,119
Min # edges 10 63 2 5 1 26 12 4 21 60
Average # edges 19.79 715.66 32.30 72.81 62.14 96.53 65.93 497.75 594.87 2,457.34
# labels 7 82 37 3 – – – – – –
# attributes – – – – 18 – – – – –
# graphs 188 1,178 4,110 1,113 600 1,000 1,500 2,000 4,999 5,000
# classes 2 2 2 2 6 2 3 2 5 3

cell lines (Wale et al., 2008). PROTEINS contains proteins represented as graphs where vertices are secondary structure
elements and there is an edge between two vertices if they are neighbors in the amino-acid sequence or in 3D space. The
task is to classify proteins into enzymes and non-enzymes (Borgwardt et al., 2005). D&D contains over a thousand protein
structures. Each protein is a graph whose nodes correspond to amino acids and a pair of amino acids are connected by
an edge if they are less than 6 Ångstroms apart. The task is to predict if a protein is an enzyme or not (Dobson and
Doig, 2003). IMDB-BINARY and IMDB-MULTI were created from IMDb, an online database of information related to
movies and television programs. The graphs contained in the two datasets correspond to movie collaborations. The vertices
of each graph represent actors/actresses and two vertices are connected by an edge if the corresponding actors/actresses
appear in the same movie. Each graph is the ego-network of an actor/actress, and the task is to predict which genre an
ego-network belongs to (Yanardag and Vishwanathan, 2015). REDDIT-BINARY and REDDIT-MULTI-5K contain graphs
that model the social interactions between users of Reddit. Each graph represents an online discussion thread. Specifically,
each vertex corresponds to a user, and two users are connected by an edge if one of them responded to at least one of
the other’s comments. The task is to classify graphs into either communities or subreddits (Yanardag and Vishwanathan,
2015). COLLAB is a scientific collaboration dataset that consists of the ego-networks of several researchers from three
subfields of Physics (High Energy Physics, Condensed Matter Physics and Astro Physics). The task is to determine the
subfield of Physics to which the ego-network of each researcher belongs (Yanardag and Vishwanathan, 2015).

We also evaluated the proposed kernel on one dataset from the Open Graph Benchmark (OGB) (Hu et al., 2020), a col-
lection of large-scale and diverse benchmark datasets for machine learning on graphs. The ogbg-molhiv dataset is a
molecular property prediction dataset that is adopted from the MoleculeNet (Wu et al., 2018). The dataset consists of
41, 127 molecules and corresponds to a binary classification dataset where the task is to predict whether a molecule in-
hibits HIV virus replication or not. The average number of vertices per graph is equal to 25.5, while the average number
of edges is equal to 27.5. The dataset is split into training/validation/test sets with a ratio of 80/10/10. The molecules
in the training, validation and test sets are divided using a scaffold splitting procedure that splits the molecules based on
their two-dimensional structural frameworks. The scaffold splitting attempts to separate structurally different molecules
into different subsets.

Besides the above graph classification datasets, we evaluated the proposed kernel on the ZINC 12K graph regression dataset
(Dwivedi et al., 2020). The dataset consists of 12, 000 molecules and the task is to predict the constrained solubility of
each molecule, an important chemical property for designing generative graph neural networks for molecules. The average
number of vertices per graph is equal to 23.16, while the average number of edges is equal to 49.83. Vertices are annotated
with the types of heavy atoms, while edges are annotated with types of bonds between their endpoints. The dataset is split
into training/validation/test sets consisting of 10, 000/1, 000/1, 000 graphs, respectively.


