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Abstract

We investigate robust linear regression where data
may be contaminated by an oblivious adversary,
i.e., an adversary that knows the data distribution
but is otherwise oblivious to the realization of the
data samples. This model has been previously
analyzed under strong assumptions. Concretely,
(i) all previous works assume that the covariance
matrix of the features is positive definite; (ii) most
of them assume that the features are centered. Ad-
ditionally, all previous works make additional re-
strictive assumptions, e.g., assuming Gaussianity
of the features or symmetric distribution of the
corruptions.

In this work, we investigate robust regression un-
der a more general set of assumptions: (i) the
covariance matrix may be either positive definite
or positive semi definite, (ii) features may not be
centered, (iii) no assumptions beyond bounded-
ness (or sub-Gaussianity) of the features and the
measurement noise. Under these assumptions we
analyze a sequential algorithm, namely, a natural
SGD variant for this problem, and show that it en-
joys a fast convergence rate when the covariance
matrix is positive definite. In the positive semi
definite case we show that there are two regimes:
if the features are centered, we can obtain a stan-
dard convergence rate; Otherwise, the adversary
can cause any learner to fail arbitrarily.

1 INTRODUCTION

The remarkable recent success of Machine Learning (ML)
models has lead to their wide adoption in numerous fields.
However, a central challenge that is still standing in deploy-
ing ML models in real world scenarios is their robust design.
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That is, the designed model should be immune to data con-
tamination, which may arise due to adversarial corruptions,
extreme events, malfunctioning sensors, and other causes.
Even beyond ML, designing robust models has proven to
be crucial in various applications, including Economics (Za-
man et al., 2001), Computer Vision (Gustafsson et al., 2020),
Biology (Yeung et al., 2002), and Healthcare (Davies et al.,
2004).

In this paper, we investigate the fundamental ML task of ro-
bust linear regression, and concretely, consider the case that
a fraction α of the observations were contaminated by an
adversary. In this context, it is well known that standard re-
gression methods are highly sensitive to outliers, and might
break down even in the presence of a single contaminated
data point. This is illustrated in Appendixes A and B.1.

Past research on robust linear regression roughly falls into
one of two categories, according to the power of the adver-
sary: (i) An adaptive adversary, which is allowed to contam-
inate the data after observing the data samples. This setting
was explored, e.g., in Candes and Tao (2005); Charikar et al.
(2017); Klivans et al. (2018); Liu et al. (2019); Dalalyan
and Thompson (2019); Diakonikolas et al. (2019a,b). It is
well known that adaptive adversaries may cause any learner
to incur a non vanishing error, depending on the fraction of
contaminated samples, irrespective of the number of data
points. Conversely, (ii) an oblivious adversary, which is
not allowed to observe the samples, but may know the true
statistical properties of the data. This setting was explored,
e.g., in Tsakonas et al. (2014); Suggala et al. (2019); Pesme
and Flammarion (2020); Sun et al. (2020); D’Orsi et al.
(2021). These works have remarkably shown that vanishing
error is possible in this model with increased number of data
samples, for any fraction of contamination.

In this paper, we focus on robust linear regression with an
oblivious adversary, with the goal of relaxing some of the
limiting assumptions made in previous works. Concretely:
(i) all previous works assume that the covariance matrix of
the features Σ is (strictly) positive definite; and (ii) most
works assume that the features are centered (i.e., have zero
mean). As we show in Appendix B.2 a naive attempt to
circumvent the centering assumption by taking pairwise dif-
ferences of samples fails. In addition, previous works were
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restricted to Gaussian features, or symmetrically distributed
corruptions.

The results of our work apply to general feature and noise
distributions with bounded (or just sub-Gaussian distribu-
tions, and our main contributions are as follows (see Table
1):

• Σ ⪰ 0: For centered features, we provide an SGD
(Stochastic Gradient Descent) algorithm that ensures
a prediction error rate of O (1/(1−α)

√
T) after observ-

ing T samples. We note that Pesme and Flammarion
(2020) also obtain guarantees for this case, nevertheless
their work heavily relies on the Gaussian assumption
for features and noise. We also show that any algorithm
may completely fail for non-centered features.

• Σ ≻ 0 (strictly positive definite): We provide an
SGD algorithm that ensures an estimation error of
Õ (1/((1−α)ρ)2T), without any assumption on feature
centering.

We mention that we make no further assumptions regarding
the adversary/data, and that the adversary may inject un-
bounded perturbations to the contaminated measurements.
Our main tool is the use of the Huber loss (Huber, 1964),
instead of the standard ℓ2 loss.

Related Work

Robust statistics dates back to the works of Tukey and Hu-
ber (Tukey, 1960; Huber, 1964), with classical works fo-
cusing on asymptotic performance (Huber, 1973; Bassett Jr
and Koenker, 1978; Pollard, 1991; Van der Vaart, 2000;
McMahan et al., 2013), most which are not computable in
polynomial time (Rousseeuw, 1984, 1985). A popular ap-
proach to robust regression with oblivious adversaries relies
on replacing the ℓ2 loss with a more robust loss function,
predominantly either the ℓ1 loss or the Huber loss (Huber,
1964) (which are convex), as well other non-convex robust
losses (Tukey, 1960).

Finite Time Guarantees for Robust regression Non-
asymptotic guarantees for robust regression were recently
explored in several works; All of them rely on employing
a convex robust loss function (either ℓ1 or Huber). More-
over, all previous works assume strictly positive definite
covariance matrix, i.e. Σ ⪰ ρ · I for ρ > 0, and cen-
tered features, in addition to other restrictive assumptions
detailed below. The conditions in the various works is sum-
marized in Table 1 below. With more detail, Tsakonas et al.
(2014), assume that the features x and measurement noise
ϵ have zero-mean Gaussian distribution. Their algorithmic
approach is to apply ERM (Empirical Risk Minimization)
while utilizing the Huber loss. The work of Suggala et al.
(2019) similarly assume that x is Gaussian, yet allows the

measurement noise be sub-Gaussian. They suggest an al-
gorithm, AdaCRR, which makes several passes over the
dataset while thresholding suspicious points. The work of
Pesme and Flammarion (2020) makes the same Gaussianity
assumptions as Tsakonas et al. (2014), and is the first to
provide guarantees for an efficient online algorithm, namely
SGD with ℓ1 loss.

The recent work of D’Orsi et al. (2021) has significantly
improved the theoretical understanding by relaxing the
Gaussian assumptions of previous works, and, similarly
to Tsakonas et al. (2014) provides guarantees to ERM over
the Huber loss. Nevertheless, the results have two limiting
assumptions. First, it is assumed that both the measure-
ment noise and adversarial perturbations are symmetrically
distributed around zero, which highly weakens the adver-
sary. Second, an assumption on the features related to their
spreadness is made (though the features are allowed to be
non-centered). We remark that the work of D’Orsi et al.
(2021) also shows that one cannot obtain guarantees when
the spreadness assumption is violated, which at a first glance
seems to contradict our results. Nevertheless, as we show
in Appendix H, the result of D’Orsi et al. (2021) only holds
when the norm of the optimal solution is unbounded, and
so the impossibility result does not hold in the natural case
for which the norm of the optimal solution is bounded. This
settles the result of this paper with that of D’Orsi et al.
(2021).

2 PROBLEM FORMULATION

We consider a linear model with contamination by an obliv-
ious adversary.

Model 2.1. y = ⟨w∗, x⟩+ ϵ+ b ,

where x ∈ Rd is a feature vector, ϵ ∈ R is a zero-mean
additive noise that is statistically independent of x, and
⟨·, ·⟩ denotes the standard inner product. The corruption
b ∈ R is chosen by an adversary that knows w∗ as well
as the probability distributions of x and ϵ, but is otherwise
oblivious to their realizations. The probability distribution
of the corruption b is constrained to satisfy P (b ̸= 0) = α,
where α ∈ [0, 1) is the nominal fraction of samples the
adversary is allowed to corrupt.

We note that if P is the distribution of the non-corrupted data
samples (x, y) (i.e., b = 0), and Q is the distribution over
corrupted samples (for which b ̸= 0), then the contaminated
samples in Model 2.1 are drawn from the mixture

(x, y) ∼ (1− α)P + αQ .

This model is known as the α-Huber contamination
model (Huber, 1964).

Robust Linear Regression problem setting A learner is
given T independent samples {(xi, yi)}Ti=1 from Model 2.1,



Tom Norman, Nir Weinberger, Kfir Y. Levy

Table 1: Assumptions and Rates of Related Work.

Paper Features Noise & Adversary Rates for Σ ≻ 0 Rates for Σ ⪰ 0

Tsakonas et al. (2014) x ∼ N (0, Id) ϵ ∼ N (0, σ2) Õ (1/(1−α)2T) N /A
Suggala et al. (2019) x ∼ N (0,Σ) ϵ ∼ subG(σ2) Õ (1/(1−α)2T) N /A
Pesme and Flammarion (2020) x ∼ N (0,Σ) ϵ ∼ N (0, σ2) Õ (1/(1−α)2T) O (1/(1−α)

√
T)

D’Orsi et al. (2021)
Spreadness of the
design matrix X

ϵ+ b has a symmetric
distribution around 0 Õ (1/(1−α)2T) N /A

This paper x ∼ subG(κ2) ϵ ∼ subG(σ2) Õ (1/(1−α)2T) O (1/(1−α)
√
T)

and is required to learn a parameter vector w ∈ Rd for either
the prediction problem with respect to the non-corrupted
data

min
w

F (w) := E
(x,y)∼P

[
1
2 (⟨w, x⟩ − y)

2
]
, (1)

or the estimation problem (∥ · ∥ denotes the ℓ2 norm)

argmin
w

∥w − w∗∥2 .

In the ordinary prediction or estimation problems, when
there is no adversary (α = 0), a standard solution method is
least squares (Gauss, 1809), in which the vector w which
minimizes an empirical version of either the prediction error
or estimation error. However, this method is known to be
fragile for α ̸= 0; See Appendix A for a simple example.

Given parameter radius D and noise standard-deviation σ,
we make the following assumptions throughout most of the
paper:
Assumption 2.2 (Bounded Parameter Vector). w∗ ∈ B :={
w ∈ Rd : ∥w∥ ≤ D

}
.

Assumption 2.3 (Bounded Zero-Mean Noise). |ϵ| ≤ σ with
probability 1 and E [ϵ] = 0.

Assumption 2.4 (Bounded Feature Vector). ∥x∥ ≤ 1 with
probability 1.

One may surmise that given Assumption 2.2 and Assump-
tion 2.3, the prior knowledge of D and σ can be used by an
estimator to filter samples which have excessively large mag-
nitude, and thus essentially remove contaminated samples
from the dataset. However, as we show in Appendix B.1,
an application of this method fails even for a rather simple
example (at least a vanilla application of this method). We
also mention that in Section 6.1, we relax the assumptions to
sub-Gaussian features and measurement noise, rather than
strictly bounded.

We denote by Σ the covariance matrix of the feature vector,
Σ := E[(x−E [x])(x−E [x])T ] . In later sections, in order
to obtain guarantees on the estimation error we would also
assume the following:
Assumption 2.5 (Strictly Positive Definite Covariance Ma-
trix of the Feature Vector). Σ ⪰ ρ · I , where ρ > 0 and I is
the identity matrix.

We remark that due to Assumption 2.4 (∥x∥ ≤ 1) and the
dimension d of the problem, it must hold that ρ ≤ 1

d , but
it can also be much smaller. Our bounds will be stated in
terms of ρ, which is more general than setting ρ = 1

d , as
adequate for a vector of i.i.d. features.

We will use Assumption 2.5 to show that the expected loss
is a strongly convex function in B, and this property will be
extensively used. We thus remind the reader the following
properties:
Property 2.6. Let f be twice continuously differentiable.
f is λ-strongly convex in B if and only if ∀w ∈ B :
∇2f(w) ⪰ λ · I .
Property 2.7. Let f be λ-strongly convex over B. Denote
wopt := argminw∈B f(w). Then, ∀w ∈ B : f(w) −
f(wopt) ≥ λ

2 ∥w − wopt∥2.

Finally, we denote the orthogonal projection onto B by
ΠB (·), i.e. ΠB (u) := argminw∈B ∥w − u∥.

3 HUBER LOSS FOR ROBUST
REGRESSION

The ℓ2 loss function is sensitive to outliers, and so a naive
approach to learning in the model Model 2.1 that minimize
the ℓ2 loss while using the contaminated data may com-
pletely fail. Simple examples, such as the one we outline
in Appendix A, show this phenomena. We thus consider
minimizing a robust loss function, and concretely, the Huber
loss (Huber, 1964). This loss function behaves similarly
to the ℓ2 loss in a region around the origin, yet far from
the origin it behaves similarly to the ℓ1 loss, and hence its
gradients are bounded over R. Using the Huber loss is a
popular technique in robust regression (e.g. Tsakonas et al.
(2014); D’Orsi et al. (2021)), however in contrast to previ-
ous works, our analysis is done under a less restrictive set
of assumptions, and our algorithm is a simple variant of
standard SGD.

The Huber loss hR : R 7→ R is a convex function, parame-
terized by a radius parameter R, defined as

hR (s) :=

{
1
2s

2 , if |s| ≤ R

R(|s| − 1
2R) , otherwise

.
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We will also denote ϕR (s) := min {R,max {s,−R}}, so
that ∇whR (⟨w, x⟩) = ϕR (⟨w, x⟩) · x and |ϕR (s) | ≤ R
holds.

Choice of radius R The radius parameter R can be ad-
justed by the learner, and involves a trade-off between un-
necessarily clipping clean gradients vs. limiting corrupted
gradients. Our choice of R is made such that the loss of
non-corrupted observations is in the quadratic regime (so
its gradient is not affected), while the loss for highly cor-
rupted observations is in the linear regime (so its gradient
has bounded norm). Next we detail on how to choose R.
Specifically, for a non-corrupted sample i (bi = 0) and
w ∈ B,

|⟨w, xi⟩ − yi| ≤ |⟨w, xi⟩|+ |⟨w∗, xi⟩|+ |ϵi|
≤ ∥xi∥ · (∥w∥+ ∥w∗∥) + |ϵi|
≤ ∥w∥+ ∥w∗∥+ σ ,

and we limit our search to B since we know that w∗ ∈ B.
Thus, taking R := 6D + σ assures that the gradient of
non-corrupted samples is as for the ℓ2 loss (The choice of
possibly unnecessarily large constant 6 is made here for
consistency with later derivations in Section 5). With this
choice, for any w ∈ B and non-corrupted sample (xi, yi),
we have with probability 1 that

hR (⟨w, xi⟩ − yi) =
1
2 (⟨w, xi⟩ − yi)

2
. (2)

Robust Objective Function The objective function we
choose is the expected Huber loss with respect to the con-
taminated data, given by

LR(w) := E
x,ϵ,b

[hR (⟨w, x⟩ − y)] .

Since LR(·) is defined with respect to the contaminated data
distribution we can efficiently compute unbiased estimates
of its gradients and apply SGD. We will use LR(·) as a proxy
to the true expected loss F (·) appearing in Equation (1). The
next lemma explicitly relates LR(·) to F (·), as follows:

Lemma 3.1. Let R := 6D + σ. Then, ∀w ∈ B :
LR(w) = (1 − α)F (w) + αH(w), where H(w) :=
Ex,ϵ,b[hR (⟨w − w∗, x⟩ − ϵ− b) |b ̸= 0] is the expected Hu-
ber loss of corrupted samples.

The proof is based on the law of total expectation on LR(·)
with respect to b, and can be found in Appendix C.

4 THE GENERAL FEATURE
COVARIANCE MATRIX CASE

In this section, we make no assumptions on Σ, that is, allow
it to have vanishing eigenvalues. We show that there is a
stark difference between centered and non-centered features,
i.e., whether E [x] ̸= 0 or not. For non-centered features,

we provide an example showing that obtaining a low predic-
tion error is generally impossible, even for a known E [x].

For centered features (E [x] = 0), we show that an efficient
predictor can be learned (Theorem 4.2). Our proposed al-
gorithm does not require the knowledge of the corruptions
fraction α.

Low Prediction Error is Generally Impossible Let
α = 1

2 and consider two one-dimensional models with
parameter vectors w∗

1 , w
∗
2 , where w∗

2 = −w∗
1 = 1. For both

models we assume ϵ = 0, x = 1 with probability 1; thus
E[x] is known and equals 1. The adversary chooses his cor-
ruptions for every model m ∈ [1, 2] so b(m) = −2·w∗

m with
probability α = 1

2 and 0 otherwise. Then y(m) = w∗
m+b(m)

and both y(1) and y(2) have the same probability distribution
of y(m) = ±1 with probability α = 1

2 . Since the contam-
inated data has the same distribution in both cases, then
a learner cannot distinguish between these models. Thus,
this adversary can cause any learner to incur a fixed (non-
decreasing) prediction error, irrespective of the number of
available samples. In Appendix K we provide a generaliza-
tion for any α ∈ [0, 1].

A Prediction Error Bound for Centered Features We
next show that if E [x] = 0, then a low prediction error
can be achieved even if Σ has vanishing eigenvalues. The
following is the key lemma which shows that the expected
ℓ2 error can be bounded by expected Huber loss error.

Lemma 4.1. For any w ∈ B : F (w) − F (w∗) ≤
1

1−α (LR(w)− LR(w
∗)) .

Proof. We first show that H(w) ≥ H(w∗) for all w ∈ Rd.
Indeed, for any w ∈ Rd :

H(w) := E
x,ϵ,b

[
hR (⟨w − w∗, x⟩ − ϵ− b)

∣∣∣b ̸= 0
]

(a)

≥ E
ϵ,b

[
hR

(
E
x
[⟨w − w∗, x⟩ − ϵ− b]

) ∣∣∣b ̸= 0
]

(b)
= E

ϵ,b

[
hR

(〈
w − w∗,E [x]

〉
− ϵ− b

) ∣∣∣b ̸= 0
]

(c)
= E

ϵ,b

[
hR (−ϵ− b)

∣∣∣b ̸= 0
]

= E
x,ϵ,b

[
hR (⟨w∗ − w∗, x⟩ − ϵ− b)

∣∣∣b ̸= 0
]

= H(w∗) ,

where (a) follows from Jensen’s inequality applied to the
convex function hR (·), as well as from the independence
assumptions, (b) follows from the linearity of the inner
product, (c) follows from the assumption E [x] = 0.

Using H(w) ≥ H(w∗) together with Lemma 3.1, gives
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Algorithm 1 Huber SGD

Input: D > 0, R > 0, T ∈ N+

w1 := 0
η := D

R
√
T

for t = 1 to T do
Draw (xt, yt) from (the contaminated) Model 2.1
gt := ϕR (⟨wt, xt⟩ − yt) · xt

wt+1 := ΠB (wt − η · gt)
end for
Return: w̄ := 1

T

∑T
t=1 wt

∀w ∈ B,

F (w)− F (w∗) =
1

1− α
(LR(w)− LR(w

∗))

− α

1− α
(H(w)−H(w∗))

≤ 1

1− α
(LR(w)− LR(w

∗)) .

Lemma 4.1 implies that by applying SGD to the expected
Huber loss LR(·) (while using the contaminated data), leads
to guarantees on the true expected prediction error. Al-
gorithm 1 formalizes this observation, and a theoretical
guarantee on its error is formalized in the next theorem.

Theorem 4.2. Given Assumptions 2.2, 2.3 and 2.4, let w̄
be the output of Algorithm 1. Then, E [F (w̄)]− F (w∗) ≤

RD
(1−α)

√
T
.

Proof. Note that LR(·) is convex and B has a finite di-
ameter D. Also, note that for a given wt ∈ B then
gt := ϕR (⟨wt, xt⟩ − yt) ·xt is an unbiased estimate for the
gradient of LR(·) at wt. Moreover, since ϕR (·) is bounded
by R and the features are bounded by 1, then the norm of gt
is bounded by R. Thus, applying projected SGD as is done
in Algorithm 1 ensures that (see e.g. Shalev-Shwartz (2012,
Theorem 14.8)),

E [LR(w̄)]− LR(w
∗) ≤ RD√

T
.

Combining this with Lemma 4.1 concludes the proof.

5 THE STRICTLY POSITIVE DEFINITE
FEATURE COVARIANCE MATRIX
CASE

In this section, we assume that Σ ⪰ ρ · I for some known,
strictly positive, ρ > 0, and show that under this stronger
condition (compared to the general case discussed in Sec-
tion 4), it is possible to obtain guarantees even if E [x] ̸= 0.

We also establish faster convergence rates compared to the
general case.

As a first step, we consider the case in which the expec-
tation of the features E [x] is known to the learner, so it
can perfectly center the features. We show that feeding
these centered samples to an appropriate variant of SGD
leads to an accurate estimation of w∗ with an error rate of
O (1/((1−α)ρ)2T) (Theorem 5.4). Afterwards, we consider
the case of unknown features expectation, and show that an
algorithm that is based on an initial phase of expectation
estimation is effective, and achieves the same estimation
rate, up to logarithmic factors in T (Theorem 5.7).

5.1 The Known Expectation Case

The main difficulty in the analysis of this setting is that
when the features are not centered, the minimizer of LR(·)
might be different from w∗. A natural way to avoid it is to
center the features, i.e. xi − E [x]. In fact, Model 2.1 can
be written with centered feature vectors, as follows,

Model 5.1. y := ⟨w∗, x−E [x]⟩+⟨w∗,E [x]⟩+ϵ+b .

This is still a linear model, albeit it has two differences
compared to the original Model 2.1. First, the norm of the
centered features might be larger than 1. To resolve this we
recall that the radius parameter of the Huber loss was set
to R := 6D + σ, and so for any non-corrupted sample in
Model 5.1∣∣∣⟨w, x− E [x]⟩ − y

∣∣∣ ≤ D
(
∥x∥+ ∥E [x] ∥

)
+ |y|

≤ 2D +D + σ ≤ R ,

where the first inequality follows from the triangle inequality
and the second one follows from Assumption 2.4. Thus,
Equation (2) still applies with probability 1 for any w ∈ B
and non-corrupted sample (xi, yi).

Second, Model 5.1 has an additional unknown quantity, to
wit ⟨w∗,E [x]⟩. As we next show, this additional quantity

does not alter the properties of LR(w) which are essential
to the analysis of the algorithm. To this end, we define, With
slight abuse of notation,

LR(w) = E
x,ϵ,b

[
hR

(〈
w, x− E [x]

〉
− y
)]

. (3)

This expected Huber loss of centered features is also mini-
mized by w∗:

Lemma 5.2. LR(w) is (1− α)ρ-strongly convex in B and
w∗ = argminw∈B LR(w).

The full proof can be found in Appendix D, which estab-
lishes Lemma D.1, a more general version of this lemma.

Huber Loss SGD with Centered Features (Algorithm 2)
Lemma 5.2 is instrumental in achieving fast convergence
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Algorithm 2 Huber SGD for known expectation

Input: R > 0, λ > 0, T ∈ N+, r ∈ Rd

w1 := 0
for t = 1 to T do

Draw (xt, yt) from Model 2.1
ηt := 1/λt
gt := ϕR (⟨wt, xt − r⟩ − yt) · (xt − r)
wt+1 := ΠB (wt − ηt · gt)

end for
Return: w̄ := 2

T

∑T
t=1+T/2 wt

of the Huber loss, and, in turn, for the estimation error
∥w̄ − w∗∥2. As the lemma implies, LR(·) is strongly
convex and maintains the same global optimum w∗ as the
true expected loss F (·). Thus, it is natural to apply an
appropriate version of SGD for strongly-convex functions
to LR(·) while using the contaminated data with centered
features, in order to obtain guarantees to ∥w̄−w∗∥2. This is
formulated in Algorithm 2. Concretely, Algorithm 2 utilizes
a SGD with 1

2 -suffix averaging, which has the following
guarantees:

Lemma 5.3 (Rakhlin et al. (2012, Theorem 5)). Consider
SGD with 1

2 -suffix averaging and with step size ηt := 1/λt.
Suppose f is λ-strongly convex, and that E[∥gt∥2] ≤ G2

for all t. Then for any T , it holds that ∀w ∈ B : E [f(w̄)]−

f(w) ≤ 9G2

λT .

Now, by using Lemma 5.2 we can bound the estimation
error of Algorithm 2 as follows,

Theorem 5.4. Let w̄ be the output of Algorithm 2 with input
(R, (1− α)ρ, T,E [x]). Then,

E
[
∥w̄ − w∗∥2

]
≤ 72R2

((1− α)ρ)2 · T
.

The full proof can be found in Appendix E. At high level,
we use the fact that gt is an unbiased gradient estimate for
∇LR(wt) and is bounded with probability 1. Lemma 5.2
and Lemma 5.3 then lead to the desired result.

5.2 The Unknown Expectation Case

In this section, we present Algorithm 3, which general-
izes the algorithm developed in the previous section to the
unknown E [x] case. The algorithm is based on sample split-
ting, and so we assume, for simplicity, that 2T samples are
provided to the algorithm. Similarly to the previous section,
the learning algorithm is based on centering the features
before feeding them to an SGD with 1

2 -suffix averaging.
The only difference is that in Algorithm 3 we center the
features using the empirical mean based on first T samples,
µ := 1

T

∑T
t=1 zt.

Algorithm 3 Huber SGD for unknown expectation

Input: R > 0, λ > 0, T ∈ N+

Phase 1: Compute µ
Draw T samples {(zi, yi)}Ti=1 from Model 2.1, and esti-
mate the mean, µ := 1/T

∑T
i=1 zi

Phase 2: SGD with 1
2 -suffix averaging given µ

Return: w̄ := output of Algorithm 2 with input
(R, λ, T, µ)

Similarly to the previous section, with this definition,
Model 2.1 can be written as follows,
Model 5.5. y = ⟨w∗, x− µ⟩+ ⟨w∗, µ⟩+ ϵ+ b .

Our proposed Algorithm 3 has two phases, one for each
of its sub-samples. In the first phase, µ is estimated using
T samples, and in the second phase, T steps of SGD are
performed on fresh samples that are centered using µ. Since
the samples used in the SGD algorithm are independent of
the estimator µ (which is a function of different samples),
the analysis of the SGD algorithm can be made conditionally
on µ, without affecting the distribution of the samples.

With slight abuse of notation define

LR(w) = E
x,ϵ,b

[hR (⟨w − w∗, x− µ⟩ − ⟨w∗, µ⟩ − ϵ− b)] .

The key lemma for the analysis is as follows,
Lemma 5.6. ∀µ ∈ Rd : LR(w) is (1−α)ρ-strongly convex
in B.

The proof follows directly from the more general
Lemma D.1 (by setting with v = q = µ), and utilizes
the fact that µ is constant in the second phase (conditioned
on the randomization of the first phase).

We next state error bound guarantees for Algorithm 3. Es-
sentially, similarly to the case of known expectation, Al-
gorithm 3 applies a strongly-convex variant of SGD to the
above defined LR(·). However, we establish this fast error
bound despite the fact that the optimum of LR(·) in B is
not necessarily w∗ (in contrast to the simpler case of known
expectation).
Theorem 5.7. Let w̄ be the output of Algorithm 3 with input
(R, (1− α)ρ, T ). Then,

E
[
∥w̄ − w∗∥2

]
≤ 16R2 · (36 log T + 13)

((1− α)ρ)2 · T
.

A glimpse of the Proof. The main challenge is that now, as
previously mentioned, w∗ is not necessarily the optimum
of LR(·) in B. To circumvent this, we analyze an auxiliary
expected loss function which we define as follows,

L̃R(w) :=

E
x,ϵ,b

[
hR

(〈
w − w∗, x− E [x]

〉
− ⟨w∗, µ⟩ − ϵ− b

)]
.
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This function is not the one minimized by the algorithm,
however, as we show in the appendix it is (1−α)ρ-strongly
convex and minimized by w∗. We then give the following
upper bound:

E
[
L̃R(w̄)− LR(w̄)

]
≤ O

(
E
[
∥w̄ − w∗∥2

]
+

log T

T

)
.

(4)

The proof proceeds by showing that we can bound

∥w̄−w∗∥2 ≤ O
(
L̃R(w̄)− LR(w̄) + LR(w̄)− LR(w

∗)
)
.

Then we utilize Eq. (4) together with the SGD guarantees
to establish the proof. The full proof appears in Appendix F.

6 EXTENSIONS

We present three extensions for the case where Σ ⪰ ρ · I: In
Section 6.1 we go beyond the assumptions of bounded fea-
tures and noise, and extend our results to the sub-Gaussian
norm case. In Section 6.2, we point out to an algorithm
that does not require knowledge of the fraction of contam-
inated samples α, but rather implicitly adapts to it. This
improves over Algorithms 2 and 3 that require α. Finally, in
Section 6.3, we describe an extension that does not require
prior knowledge of ∥w∗∥, but rather implicitly adapts to it.

6.1 Sub-Gaussian Norm Noise and Feature Vectors

We next relax the assumptions that the noise and the norm
of the feature vectors are bounded with probability 1, and
replace them with the following sub-Gaussian norm assump-
tions.

Assumption 6.1 (Sub-Gaussian Norm Feature Vector). The
feature vector x has a sub-Gaussian norm distribution with

variance proxy κ2, that is P (∥x∥ > u) ≤ 2e−
u2

2κ2 for all
u ∈ R.

Assumption 6.2 (Sub-Gaussian Norm Noise). The noise
ϵ has a sub-Gaussian norm distribution variance proxy σ2,

that is P (|ϵ| > u) ≤ 2e−
u2

2σ2 for all u ∈ R.

Assumption 6.1 replaces Assumption 2.4 and Assump-
tion 6.2 replaces Assumption 2.3. We show the following
(The full proof appears in Appendix G).

Theorem 6.3. Under Assumptions 6.1 and 6.2, define,
R = C · (κ D + σ)

√
log T , where C > 0 is

an explicit constant, which depends logarithmically on
κ, ρ, σ. Denote w̄ as the output of Algorithm 3 with input
(R, (1− α)ρ,B, T ), then,

E
[
∥w̄ − w∗∥2

]
≤
(
D2 +

64R2 · (36 log T + 13)

((1− α)ρ)2

)
· 1
T

.

The core idea of the proof is standard, and is based on reduc-
ing the sub-Gaussian feature and noise case to the bounded
case previously analyzed. This is possible since it holds
with a sufficiently high probability under the sub-Gaussian
assumption that the feature and noise are bounded at all
steps of the algorithm. Thus, the convergence analysis of
the algorithm can condition on this high probability event.
In turn, it is also shown that the low probability event that
either the noise or the features have excessively large norm
has a negligible effect on the total error. However, beyond
the various technical details involved (see Appendix G), the
conditioning on the high probability event may alter two
properties that hold without this conditioning (regarding
the minimal eigenvalue of the covariance matrix of the fea-
tures, and the expected value of the noise). The proof of
Theorem 6.3 addresses these delicate differences.

6.2 Adaptivity to Contamination Fraction α

In Section 5 we have assumed that α is known in order to
find an accurate estimation of w∗. Our derivation shows
that the expected Huber loss LR(·) is (1 − α)ρ-strongly-
convex, and we encode this information into the learning
rate of SGD with 1

2 -suffix averaging that we employ. Indeed,
Algorithms 2 and 3 require the strong-convexity parameter
in order to ensure fast convergence.

In practice, it is unrealistic to assume that the fraction of con-
tamination α is known. Fortunately, Cutkosky and Orabona
(2018) have derived a novel and practical first order algo-
rithm for stochastic convex optimization, that enables to
implicitly adapt to the strong-convexity of the problem at
hand. So, if we apply this algorithm instead of SGD with 1

2 -
suffix averaging, then we immediately obtain adaptivity to
both α and ρ. We elaborate on this approach in Appendix M.

6.3 Adaptivity to the norm of w∗

In Section 5 we have assumed that ∥w∗∥ ≤ D is known a
priori to hold, and that knowledge of D was used to deter-
mine the Huber loss radius as R = 6D + σ. This assured
strong convexity of the expected Huber loss LR(·), even
at the origin, and allowed for simple initialization of the
algorithm at w1 = 0. In this section we describe a proper
algorithm for the case in which a tight bound on ∥w∗∥ is
not known a priori. The algorithm implicitly adapts to the
unknown norm ∥w∗∥, and to achieve an estimation error
of ϵ it requires T = Ω̃

(
1

((1−α)ρ)2

(
∥w∗∥2 + 1

ϵ

))
samples

and gradient computations. Next we describe our approach.

Our adaptive variant employs the Huber loss with R := 6 +
σ. While this does not ensure strong-convexity around the
origin, it does ensure the strong-convexity of LR(·) at a ball
of radius 1 around w∗. Then, at a high level, our algorithm
is based on two SGD phases: (i) the first phase is initialized
at the origin, and utilizes a recently developed adaptive
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SGD algorithm Carmon and Hinder (2022) applied to the
expected Huber loss. This algorithm essentially zooms in on
the true norm of w∗ by performing a line-search, and at the
end of its run it is assured to output a solution w̄1 that lies at
the strongly convex region of LR(·), with high probability.
(ii) At the second phase, a version of standard SGD for
strongly convex function is initialized at w̄1. This assures
fast convergence to w∗, and concretely the estimation error
enjoys a convergence rate of Õ(1/T ). The analysis of this
algorithm is based on centered features assumption, and
appears in Appendix I.

7 EXPERIMENTS

Figure 1: Results for α = 0.01.

We perform two experiments under Model 5.5 in d = 5
dimensions. The optimum w∗ is sampled from the unit
ball and is the same for both experiments. We also let
ϵ ∼ Uniform[−0.1, 0.1], and x ∼ Uniform[−1/

√
d, 0]d

such that ∥x∥ ≤ 1 w.p. 1. The adversary picks b = 105

with probability α and 0 otherwise. We test two cases α ∈
{0.01, 0.7} for four algorithms: Centered + Non-Centered
Projected SGD over ℓ2 loss, Huber SGD1 and Centered
Huber SGD (Algorithm 3) with radius parameter R :=
6D + σ for both. All of the methods use the same learning
rate ηt := 1/((1−α)ρt), and are given the same samples and
observations for the gradient computation. We compute the
estimate of E [x] on the fly rather than using extra samples

(i.e., we use µt := 1/t
∑t−1

i=1 xt instead of µ = 1/T
∑T

t=1 zt).
We repeat each experiment 25 times and add confidence
intervals. The experiments, shown in Figures 1 and 2, clearly
demonstrate the benefit of our approach compared to the

1Huber SGD is related to the application of Algorithm 2 directly
to the Huber loss without first centering the features.

Figure 2: Results for α = 0.7.

baselines. A comparison with additional algorithms can be
found in Appendix L.

8 CONCLUSION

In this paper, we have analyzed robust linear regression un-
der general assumptions on the feature vectors, noise and the
oblivious adversary. We have shown that low prediction er-
ror requires either centered features or strict positivity of the
features covariance matrix, and provided efficient SGD-style
algorithms and established error rate convergence bounds.
Finally, we have provided SGD variants that do not require
prior knowledge on the fraction of contamination. Our
work highlights that a combination of two basic techniques,
namely using the Huber loss, together with feature centering
is very powerful, and may find use even for more complex
ML models. While the linear regression model is both ba-
sic and important, an important avenue for future work is
to generalize the algorithms and the error bounds to more
elaborated ML models.
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A Least Squares is Fragile in the Presence of Outliers

As the next simple example demonstrates, for any α ∈ (0, 1) the adversary can make the estimation error of least squares
arbitrarily large, even for infinite number of samples.
Example A.1. Let w∗ ∈ R, assume that ϵ = 0 with probability 1, and that x is distributed uniformly over {0, 2}. Also
consider the following adversary, for C > 0:

bi :=

{
C
α ,with probability α

0 , otherwise
,∀i ∈ [1, . . . , T ] .

Then yi = xi · w∗ + bi and on the population level (with infinite number of samples) the expected ℓ2 loss is

E
x,ϵ,b

[
1
2 (⟨w, x⟩ − y)

2
]
=

1

2
(w − w∗)2 − C · (w − w∗) +

C2

2α
.

Its minimal value is attained for wmin = w∗ + C and may be arbitrarily far from w∗.

B Other Methods Which Might Be Inefficient

B.1 Naive Filtering

If D,σ are known, then the scale of the measurements y is O (D + σ). Thus, one might think of the following naive filtering
approach to robust regression: Set a threshold τ > D + σ (in order not to filter out non-contaminated points), filter out all
data points (xi, yi) such that |yi| ≥ τ , and apply standard linear regression to the remaining points.

We next demonstrate via a simple example that a vanilla application of this approach to robust regression fails.
Example B.1. Assume the following model w∗ = 1, ϵ = 0 with probability 1, and

x =

{
1 , with probability 1

2

−1 , with probability 1
2

,

and assume that the learner uses a threshold τ > 0 for the filtering. Further consider an adversary which chooses its
contamination as follows,

b =

{
τ , with probability α

0 , with probability 1− α
.

The learner knows that E [x] = 0, and a bound D on w∗, taken w.l.o.g. to be D = 1, as well as a bound of 1 on the norm of
the feature vector. The learner uses the naive filtering method, which means that he chooses τ > D and removes any pair
(xi, yi) such that |yi| > τ from the given samples.

It is immediate to show that the filtered data has the following distribution:

(x, y) =


(1, 1) , with probability 1−α

2−α

(−1,−1) , with probability 1−α
2−α

(−1, τ − 1) , with probability α
2−α

.

Hence, an exact solution that minimizes the ℓ2 loss would approach in the limit of large number of samples to

w∗
filtering =

E [x · y]

E [x2]
= 2 · 1− α

2− α
· 1 + α

2− α
· (τ − 1) = 1− ατ

2− α
= w∗ − ατ

2− α
.

Thus, for any τ > D = 1 and α > 0, w∗
filtering ̸= w∗.

Hence, this simple example demonstrates that naive filtering is inefficient, which reinforces the need to design more complex
methods, as the one described in the paper.
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B.2 Centering with Pairwise Differences

An assumption prevailing in other works on this problem is that the features are centered (i.e., have zero mean). In this
paper we remove this assumption by an empirical centering of the features, to wit, reducing the empirical mean from the
samples. An alternative approach, which is seemingly simpler, is to reduce the original model to a model with centered
feature vectors by computing differences of pairs of adjacent samples. Specifically, such an estimator subtracts the first
sample from the second one, the third from the fourth and so on. Formally, ∀i ∈ [1, 2, . . . , T/2] (and even T ) we let

• zi := x2i − x2i−1 be the equivalent feature vector;

• ei := ϵ2i − ϵ2i−1 be the equivalent noise;

• ri := b2i − b2i−1 be the equivalent contamination.

The resulting effective model is y2i − y2i−1 = ⟨w∗, zi⟩+ ei. The effective feature vector zi has zero mean, and so this is a
centered model. An additional benefit of this method is that the distribution of the effective total noise and contamination,
ei + ri, is centered too, and is even symmetric around the origin because of the i.i.d. assumption. Nonetheless, this
method for centering has a major drawback: The contamination probability α is altered by the pairwise difference operation.
Specifically, let us assume that conditioned on the event bi ̸= 0, the corruptions bi have a continuous distribution, and that
α ∈ (0, 1). Then, the probability that the ith sample in the new model is not corrupted is

P (ri ̸= 0) = 1− P (b2i = 0 ∩ b2i−1 = 0) + P (b2i ̸= b2i−1 ∩ b2i ̸= 0 ∩ b2i−1 ̸= 0)

= 1− (1− α)2 + 0

= 2α− α2

> α ,

where the first inequality follows from the continuity of the distribution of the corruptions. The estimation error bounds
derived in this paper (as well as all the other ones we mention in the introduction) attempt to establish an accurate dependence
of the error on the contamination probability α. In this respect, the pairwise difference technique leads to strictly sub-optimal
dependence of the convergence rate of the estimation error with respect to α. Indeed, instead of an error dependence of
multiplicative factor 1

(1−α)2 it will obtain a factor of 1
(1−2α+α2)2 . As α tends to 1 the ratio between these two factors

becomes unbounded. On the other hand, if, say, α < 1
2 , then this ratio is bounded by 4. Hence, up to this constant factor,

the pairwise difference approach leads to an efficient centering technique, and consequently, the noise can be assumed
symmetric. However, the centering technique is just a method to simplify the original problem, and there is still the need to
solve the resulting problem. As said in the introduction, the algorithms proposed in previous works, require assumptions
like spreadness, Gaussianity or positive definite covariance matrix. Our algorithm removes these assumptions.

C Proof of Lemma 3.1

Lemma C.1 (Lemma 3.1). Let R := 6D + σ. Then, LR(w) = (1− α)F (w) + αH(w), for all w ∈ B where

H(w) := E
x,ϵ,b

[
hR (⟨w − w∗, x⟩ − ϵ− b)

∣∣∣b ̸= 0
]

is the expected Huber loss of corrupted samples.

Proof. Take w ∈ B. We use the law of total expectation with respect to b on LR(w). We start with conditioning on b = 0:
For R as stated in the lemma,

E
x,ϵ,b

[
hR (⟨w − w∗, x⟩ − ϵ)

∣∣∣b = 0
]

= E
x,ϵ,b

[
1

2
(⟨w − w∗, x⟩ − ϵ)

2
∣∣∣b = 0

]
= E

x,ϵ

[
1

2
(⟨w − w∗, x⟩ − ϵ)

2

]
= F (w) ,
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where the first equality follows from our choice of R and Equation (2). The second equality follows since b, ϵ and x are
statistically independent and last equality follows from the definition of F (w).
Then, by the law of total expectation

LR(w) = (1− α) E
x,ϵ,b

[
hR (⟨w − w∗, x⟩ − ϵ)

∣∣∣b = 0
]

+ α E
x,ϵ,b

[
hR (⟨w − w∗, x⟩ − ϵ− b)

∣∣∣b ̸= 0
]

= (1− α)F (w) + αH(w) .

D A Generalization of Lemma 5.2, Lemma 5.6 and Lemma F.3

Lemma D.1. Given v, q ∈ Rd such that ∥v∥, ∥q∥ ≤ 1 and R = 6D + σ, let

GR(w) := E
x,ϵ,b

[hR (⟨w − w∗, x− v⟩ − ⟨w∗, q⟩ − ϵ− b)] .

Then, GR(·) is (1− α)ρ-strongly convex. Furthermore, if v = E [x], then w∗ = argminw∈B GR(w).

Proof. We show that GR(·) is a sum of a (1−α)ρ-strongly function and a convex function. As such, it is (1−α)ρ-strongly
convex.

Define
H(w) := E

x,ϵ,b

[
hR (⟨w − w∗, x− v⟩ − ⟨w∗, q⟩ − ϵ− b)

∣∣∣b ̸= 0
]
,

which is a convex function as an average of convex functions. Also define

F (w) := E
x,ϵ,b

[
hR (⟨w − w∗, x− v⟩ − ⟨w∗, q⟩ − ϵ− b)

∣∣∣b = 0
]

(a)
= E

x,ϵ,b

[
1

2
(⟨w − w∗, x− v⟩ − ⟨w∗, q⟩ − ϵ)

2
∣∣∣b = 0

]
(b)
= E

x,ϵ

[
1

2
(⟨w − w∗, x− v⟩ − ⟨w∗, q⟩ − ϵ)

2

]
= E

x,ϵ

[
1

2
⟨w − w∗, x− v⟩2

]
+ E

x,ϵ
[ϵ · ⟨w − w∗, x− v⟩+ ⟨w∗, q⟩ · ⟨w − w∗, x− v⟩] + S ,

where S is a constant independent of w, and where (a) follows from the boundness assumptions on x, v, q, ϵ and R := 6D+σ,
and (b) follows from the assumption that x, ϵ, b are statistically independent.

F (·) is a polynomial and hence twice continuously differentiable. We take the second derivative and show it is positive
definite,

∇2F (w) = E
x

[
(x− v)(x− v)T

]
= E

x

[
(x− E [x] + E [x]− v)(x− E [x] + E [x]− v)T

]
= E

x

[
(x− E [x])(x− E [x])T + (E [x]− v)(E [x]− v)T

]
+ E

x

[
(x− E [x])(E [x]− v)T + (E [x]− v)(x− E [x])T

]
︸ ︷︷ ︸

=0

= Σ+ (E [x]− v)(E [x]− v)T

⪰ Σ ,



Robust Linear Regression for General Feature Distribution

where the last equality follows from the definition of Σ and the fact that v is a fixed vector.

So, Assumption 2.5 and Property 2.6 assure that F (·) is a ρ-strongly convex function. Then, by the law of total expectation
with respect to b:

GR(w) = (1− α)F (w) + αH(w) .

Since H(·) is convex and (1− α)F (·) is (1− α)ρ-strongly convex, GR(·) is (1− α)ρ-strongly convex.

If v = E [x] we can also show that w∗ = argminw∈B GR(w). For any w ∈ B

GR(w) := E
x,ϵ,b

[
hR

(〈
w − w∗, x− E [x]

〉
− ⟨w∗, q⟩ − ϵ− b

)]
(a)

≥ E
ϵ,b

[
hR

(
E
x

[〈
w − w∗, x− E [x]

〉
− ⟨w∗, q⟩ − ϵ− b

])]
(b)
= E

ϵ,b

[
hR

(〈
w − w∗,E

x

[
x− E [x]

]〉
− ⟨w∗, q⟩ − ϵ− b

)]
= E

ϵ,b
[hR (−⟨w∗, q⟩ − ϵ− b)]

= E
ϵ,b

[
hR

(〈
w∗ − w∗, x− E [x]

〉
− ⟨w∗, q⟩ − ϵ− b

)]
= GR(w

∗) ,

where (a) follows from convexity of the Huber loss and Jensen’s inequality and (b) follows from the linearity of the
inner product. Moreover, w∗ is the unique minimizer of GR(w) in B. This is because according to Property 2.7, if
GR(w) = GR(w

∗) for some w ∈ B then

0 = GR(w)−GR(w
∗) ≥ (1− α)ρ

2
∥w − w∗∥2 .

Since (1−α)ρ
2 > 0 is assumed, this implies w = w∗.

E Proof of Theorem 5.4

Theorem E.1 (Theorem 5.4). Let w̄ be the output of Algorithm 2 with input
(
R, (1− α)ρ, T,E [x]

)
, then,

E
[
∥w̄ − w∗∥2

]
≤ 72R2

((1− α)ρ)2 · T
.

Proof. Note that the gt that we employ in Algorithm 2 is an unbiased gradient estimate for the Expected Huber loss
∇LR(wt) (recall the definition in Equation (3)). Also, since ϕR (·) is bounded by R and the features’ norms are bounded by
1, then ∥gt∥ ≤ 2R , for all t. Moreover, Lemma 5.2 implies that LR(·) is (1− α)ρ-strongly-convex with optimum w∗ ∈ B.

Now, since Algorithm 2 applies an SGD algorithm with strongly-convex assumption, and 1
2 -suffix averaging, then Lemma 5.3

with G := 2R yields,

E [LR(w̄)]− LR(w
∗) ≤ 36R2

(1− α)ρ · T
.

Combining the latter with the strong-convexity of LR(·), while using Property 2.7 establishes the theorem.

F Proof of Theorem 5.7

Prior to proving Theorem 5.7 we need to introduce some definitions and establish some auxiliary lemmas.

Lemma F.1. hR (·) is 2R-Lipschitz with probability 1.
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Proof. For any w ∈ B ∥∥∥∇hR

(〈
w − w∗, x− E [x]

〉
− ⟨w∗, µ⟩ − ϵ− b

)∥∥∥
=
∥∥∥ϕR

(〈
w − w∗, x− E [x]

〉
− ⟨w∗, µ⟩ − ϵ− b

)
·
(
x− E [x]

)∥∥∥
≤ 2R ,

where the equality follows from definition and the inequality follows from the definition of ϕR (·) and Assumption 2.4. The
above holds with probability 1.

The following is a version of Hoeffding’s inequality for random vectors,

Lemma F.2 (Kakade (2010, Theorem 2.1)). Assume that
{
xi ∈ Rd

}T
i=1

are random variables sampled i.i.d and ∥xi∥ ≤ K
almost surly. Then with probability ≥ 1− δ,∥∥∥∥∥ 1T

T∑
i=1

xi − E [x]

∥∥∥∥∥ ≤ 6K

√
log 1/δ

T
.

The main challenge is that now w∗ is not necessarily the optimum of LR(·) in B. To circumvent this, we will analyze an
auxiliary expected loss function defined as

L̃R(w) := E
x,ϵ,b

[
hR

(〈
w − w∗, x− E [x]

〉
− ⟨w∗, µ⟩ − ϵ− b

)]
.

This function is not the one minimized by the algorithm, however, it has the following desirable property:

Lemma F.3. ∀µ ∈ Rd : L̃R(w) is (1− α)ρ-strongly convex in B and w∗ = argminw∈B L̃R(w).

Proof. Because µ is given, the proof is immediate from the more general Lemma D.1 with v = E [x] and q = µ.

Now, we can use Property 2.7 to bound the estimation error: for a given µ,

(1− α)ρ

2
∥w̄ − w∗∥2 ≤ L̃R(w̄)− L̃R(w

∗)

= L̃R(w̄)− LR(w̄)

+ LR(w̄)− LR(w
∗)

+ LR(w
∗)− L̃R(w

∗)︸ ︷︷ ︸
=0

,

where the last term equals zero by the definitions of LR(w
∗) and L̃R(w

∗). So, by taking expectation and defining
C = (1−α)ρ

2 , we obtain,

C · E
[
∥w̄ − w∗∥2

]
≤ E

[
L̃R(w̄)− LR(w̄)

]
+ E [LR(w̄)− LR(w

∗)] , (5)

We now bound each of these terms.

For the second term, since Algorithm 3 applies SGD to the strongly-convex function LR(·), then,

E [LR(w̄)− LR(w
∗)] ≤ 36R2

(1− α)ρ · T
,

due to Lemma 5.3, with the parameter choice F = LR, G = 2R, λ = (1− α)ρ.

The first term above can be upper bounded as follows:

Lemma F.4. Let C = (1−α)ρ
2 . Then for a given µ,

E
[
L̃R(w̄)− LR(w̄)

]
≤ C

2
· E
[
∥w̄ − w∗∥2

]
+

2R2

C
· 36 log T + 4

T
.
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Proof. Take C = (1−α)ρ
2 . Then,

L̃R(w̄)− LR(w̄)

(a)
= E

x,ϵ,b

[
hR

(〈
w̄ − w∗, x− E [x]

〉
− ⟨w∗, µ⟩ − ϵ− b

)
− hR (⟨w̄ − w∗, x− µ⟩ − ⟨w∗, µ⟩ − ϵ− b)

]
(b)

≤ 2R ·
∣∣∣〈w̄ − w∗, µ− E [x]

〉∣∣∣
(c)

≤ C · 2R
C

· ∥w̄ − w∗∥ ·
∥∥∥µ− E [x]

∥∥∥
(d)

≤ C

2
∥w̄ − w∗∥2 + 2R2

C

∥∥∥µ− E [x]
∥∥∥2 , (6)

where (a) follows from the definitions of L̃R(·) and LR(·), (b) follows from Lemma F.1, (c) follows from the Cauchy-
Schwarz’s inequality and (d) follows from Young’s inequality: a · b ≤ 1

2 (a
2 + b2) where a = ∥w̄ − w∗∥ and

b = 2R
C ·

∥∥∥µ− E [x]
∥∥∥.

Note that w̄ and µ are random as they depend on {(zi, yi)}Ti=1 and {(xt, yt)}Tt=1. By taking an expectation with respect to
the 2T samples on both sides we have

E
[
L̃R(w̄)− LR(w̄)

]
≤ E

[
C

2
∥w̄ − w∗∥2 + 2R2

C

∥∥∥µ− E [x]
∥∥∥2] .

We conclude the proof by bounding E
[∥∥∥µ− E [x]

∥∥∥2]. We make use of Lemma F.2 by defining U as the event for which∥∥∥µ− E [x]
∥∥∥ ≤ 6

√
log 1/δ

T . Then,

E
[∥∥∥µ− E [x]

∥∥∥2] (a)
= E

z1,z2,...,zT

[∥∥∥µ− E [x]
∥∥∥2]

(b)

≤ P (U) · E
z1,z2,...,zT

[∥∥∥µ− E [x]
∥∥∥2 ∣∣∣U]+ P (Uc) · E

z1,z2,...,zT

[∥∥∥µ− E [x]
∥∥∥2 ∣∣∣Uc

]
(c)

≤ (1− δ) · 36 log
1/δ

T
+ δ · 4

(d)

≤ 36 log T + 4

T
,

where (a) follows from the i.i.d assumption on the features, (b) follows from the law of total expectation, (c) follows from
the definition of U and Lemma F.2 (which is true for every δ ∈ (0, 1)) and a naive upper bound of

∥∥∥µ− E [x]
∥∥∥ ≤ 2 with

probability 1 (which follows from Assumption 2.4) and (d) follows from taking δ = 1
T . Plugging the above into Equation (6)

concludes the proof.

We are now ready to prove Theorem 5.7,
Theorem F.5 (Theorem 5.7). Let w̄ be the output of Algorithm 3 with input (D,R, (1− α)ρ, T ), then,

E
[
∥w̄ − w∗∥2

]
≤ 16R2 · (36 log T + 13)

((1− α)ρ)2 · T
.

Proof. By plugging Lemma 5.3 and Lemma F.4 back into Equation (5), we obtain,

C · E
[
∥w̄ − w∗∥2

]
≤ 36R2

(1− α)ρ · T
+

C

2
· E
[
∥w̄ − w∗∥2

]
+

2R2

C
· 36 log T + 4

T
.

Recalling C = (1−α)ρ
2 , the above implies,

E
[
∥w̄ − w∗∥2

]
≤ 16R2 · (36 log T + 13)

((1− α)ρ)2 · T
,

which establishes the theorem.



Tom Norman, Nir Weinberger, Kfir Y. Levy

G Proof of Theorem 6.3

Prior to proving Theorem 6.3 we need to introduce some definitions and establish some auxiliary lemmas.
Remark G.1. We have stated the sub-Gaussian norm assumptions (Assumption 6.1 and Assumption 6.2) in terms of the
tails of the probability density functions. We refer the reader to Vershynin (2018, Chapter 2) for equivalent definitions
of sub-Gaussian norm variables in terms of their moment generating function, or in terms of integer moments (all these
definitions are essentially equivalent).

We will use the following bounds on the moments of sub-Gaussian norm random variables.

Lemma G.2. Let z be a sub-Gaussian norm random variable with variance proxy λ2, that is P (|z| > u) ≤ 2e−
u2

2λ2 for all
u ∈ R. Then, for any p ≥ 1

E [|z|p] ≤
√
2πλ2 · p · λp 2

p/2Γ(p+1
2 )

√
π

,

where Γ(·) is the Gamma function. Specifically, E [|z|] ≤
√
2πλ, E

[
|z|2
]
≤ 4λ2, and E

[
|z|4
]
≤ 24λ4.

Proof. Let n ∼ N (0, λ2). Then, it holds that

E [∥z∥p] (a)=
∫ ∞

0

pup−1P (∥z∥ ≥ u) du

(b)

≤
∫ ∞

0

p|u|p−12e−
u2

2λ2 du

=
√
2πλ2 · p ·

∫ ∞

−∞
|u|p−1 1√

2πλ2
e−

u2

2λ2 du

=
√
2πλ2 · p · E

[
|n|p−1

]
(c)
=

√
2πλ2 · p · λp 2

p/2Γ(p+1
2 )

√
pi

,

where (a) follows from the tail representation of the absolute moments p ∈ (0,∞) of a non-negative random variable z
(Vershynin, 2018, Exercise 1.2.3), (b) follows from the sub-Gaussian assumption, (c) follows from the known formula of
the central absolute moments of the Gaussian distribution.

Lemma G.3. Let G be an event such that P (G) ≤ δ for some δ ∈
(
0, 1

2

)
. Then,

Σ̃ := E
[(

x− E
[
x
∣∣∣Gc
])(

x− E
[
x
∣∣∣Gc
])T ∣∣∣Gc

]
⪰
(
ρ− 105κ2

√
δ
)
· I .

Proof. Let Σ̃ be the conditional covariance matrix of the features. We first relate it to the unconditional covariance matrix
by the decomposition

Σ̃ = E
[(
xxT

) ∣∣∣Gc
]
− E

[
x
∣∣∣Gc
]
E
[
xT
∣∣∣Gc
]

(a)
=

E
[
xxT

]
− E

[
xxT I(G)

]
P (Gc)

− E
[
x
∣∣∣Gc
]
E
[
xT
∣∣∣Gc
]

(b)
= Σ+

(
1

P (Gc)
− 1

)
E
[
xxT

]
︸ ︷︷ ︸

:=G1

+E [x]E
[
xT
]
− E

[
x
∣∣∣Gc
]
E
[
xT
∣∣∣Gc
]

︸ ︷︷ ︸
:=G2

−
E
[
xxT · I(G)

]
P (Gc)︸ ︷︷ ︸
:=G3

, (7)

where (a) follows from the law of total expectation, (b) follows from the definition of the unconditional covariance matrix
of the features Σ := E

[
xxT

]
− E [x]E

[
xT
]
. For the matrix G1 in Equation (7), the assumptions Σ ⪰ ρ · I and δ ≤ 1

2

imply that
G1 ⪰ 0 . (8)
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We next bound the maximal value of
∣∣vTG2v

∣∣ and
∣∣vTG3v

∣∣ over all unit vectors v ∈ Rd (with ∥v∥ = 1). For G2, we further
decompose to

G2 = E [x]E
[
xT
]
− E

[
x
∣∣∣Gc
]
E
[
xT
∣∣∣Gc
]

(a)
= E [x]

(
E
[
xT
]
− E

[
xT
∣∣∣Gc
])

︸ ︷︷ ︸
:=G2,1

+
(
E [x]− E

[
x
∣∣∣Gc
])

E
[
xT
∣∣∣Gc
]

︸ ︷︷ ︸
:=G2,2

,

where (a) follows by adding and subtracting the common term E [x]E
[
xT
∣∣∣Gc
]
. Now, for any v ∈ Rd with ∥v∥ = 1, it

holds that ∣∣vTG2,1v
∣∣ = ∣∣∣vTE [x]

(
E
[
xT
]
− E

[
xT
∣∣∣Gc
])

v
∣∣∣

(a)

≤
∥∥∥E [x]

∥∥∥ · ∥∥∥E [x]− E
[
x
∣∣∣Gc
]∥∥∥ (9)

(b)
= E [x] ·

∥∥∥(P (Gc)− 1)E [x]− E [x · I(G)]
∥∥∥

P (Gc)

(c)

≤ E [∥x∥] ·

∥∥∥(P (Gc)− 1)E [x]− E [x · I(G)]
∥∥∥

P (Gc)

(d)

≤ E [∥x∥] ·
(1− P (Gc))E [∥x∥] + E [∥x∥ · I(G)]

P (Gc)

(e)

≤ E [∥x∥] ·
(1− P (Gc))E [∥x∥] +

√
E
[
∥x∥2

]
· P (G)

P (Gc)

(f)

≤ 18κ2 ·
√
δ ,

where (a) follows from Cauchy-Schwarz’s inequality, (b) follows from the law of total expectation, (c) follows from
Jensen’s inequality, (d) follows from the triangle inequality and Jensen’s inequality, (e) follows from Cauchy-Schwarz’s
inequality, (f) follows from the assumptions that x is sub-Gaussian with variance parameter κ2 and Lemma G.2, with the
assumption P (G) = δ ≤ 1

2 (and as δ <
√
δ).

For G2,2 we use a similar bounding method, except that now the bound on
∥∥∥E [x]

∥∥∥ is replaced by a bound on
∥∥∥E [x∣∣∣Gc

]∥∥∥
(in Equation (9)). This conditional expectation can be bounded as follows:

∥∥∥E [x∣∣∣Gc
]∥∥∥ (a)

=

∥∥∥E [x] + E [x · I(G)]
∥∥∥

P (Gc)

(b)

≤
E [∥x∥] +

√
E
[
∥x∥2

]
· P (G)

P (Gc)

(c)

≤
√
8πκ+ 4κ

√
δ ,

where (a) follows from the law of total expectation, (b) follows by similar steps in the analysis of G2,1, using the triangle,
Jensen’s and Cauchy-Schwarz’s inequalities, and (c) follows from Lemma G.2 and the assumptions. With this bound, as in
the analysis of G2,1, it holds for any v ∈ Rd with ∥v∥ = 1 that∣∣vTG2,2v

∣∣ ≤ 80κ2
√
δ ,

using δ
√
δ ≤ δ ≤

√
δ.

From the bounds on
∣∣vTG2,1v

∣∣ and
∣∣vTG2,2v

∣∣ we deduce that∣∣vTG2v
∣∣ = ∣∣vT (G2,1 +G2,2)v

∣∣ ≤ ∣∣vTG2,1v
∣∣+ ∣∣vTG2,2v

∣∣ ≤ 98κ2
√
δ . (10)
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For G3 it holds for any v ∈ Rd with ∥v∥ = 1 that

∣∣vTG3v
∣∣ =

∣∣∣E [vTxxT v · I(G)
]∣∣∣

P (Gc)

(a)

≤
E
[
∥x∥2 · I(G)

]
P (Gc)

(b)

≤

√
E
[
∥x∥4

]
· P (G)

P (Gc)

(c)

≤ 7κ2
√
δ , (11)

where (a) follows from Cauchy-Schwarz’s inequality in Rd, (b) follows from Cauchy-Schwarz’s inequality in L2, and (c)
follows from Lemma G.2 and the assumptions. Using the decomposition of Σ̃ in Equation (7) and the bounds on G1, G2, G3

in Equation (8), Equation (10) and Equation (11), respectively, it holds for any v ∈ Rd with ∥v∥ = 1 that

vTΣv ≥ ρ+ 0− 98κ2
√
δ − 7κ2

√
δ ,

which directly implies to the stated claim.

We are now ready to prove Theorem 6.3,

Theorem G.4 (Theorem 6.3). Given Assumption 6.1 and Assumption 6.2. Define

R := 2

√
8κ2 log

((
21κ
√
ρ
+ 8

)
· T
)
·D +

√
8σ2 log

((
21σ
√
ρ
+ 8

)
· T
)
.

Then,

E
[
∥w̄ − w∗∥2

]
≤
(
D2 +

64R2 · (36 log T + 13)

((1− α)ρ)2

)
· 1
T

.

Proof. Let a time T be given, and consider the events

Fx(u) :=

 ⋃
i∈{1,2,...,T}

∥xi∥ > u

 ,

and

Fϵ(u) :=

 ⋃
i∈{1,2,...,T}

|ϵi| > u

 .

Further let u1 :=
√
2κ2 log( 4Tδ ) and u2 :=

√
2σ2 log( 4Tδ ) and set

F := Fϵ(u1) ∪ Fx(u2) .

By a union bound over i ∈ [1, 2, . . . , T ] and computing probabilities over ϵ and x, the sub-Gaussian assumptions implies that
P (F) ≤ δ. We choose δ = min

{
1
2 ,

ρ2

2102κ4 · 1
T 2

}
. Note, that with this choice of δ, and by identifying G = F , Lemma G.3

implies that Σ̃ ⪰ ρ
2 · I for all T ≥ 1.

We next evaluate the error of the SGD algorithm by considering two events – the event Fc in which both ∥xi∥ and |ϵi| are
bounded for all i ∈ {1, 2, . . . , T}, and the event F , which has a vanishing probability δ = O(T−2). Specifically, by the law
of total expectation

E
[
∥w̄ − w∗∥2

]
= P (F) · E

[
∥w̄ − w∗∥2

∣∣∣F]+ P (Fc) · E
[
∥w̄ − w∗∥2

∣∣∣Fc
]
, (12)
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where Fc is the complement of the event F . The first term in Equation (12) is upper bounded as follows:

P (F)E
[
∥w̄ − w∗∥2

∣∣∣F] (a)

≤
√
P (F)) · 4D2

(b)

≤ 4D2ρ

210κ2
· 1
T

(c)

≤ D2

T
, (13)

where (a) follows from the fact that 0 ≤ P (F) ≤ 1 and w̄, w∗ ∈ B, (b) follows since
√
P (F) ≤

√
δ and the choice of δ,

and (c) follows since

ρ ≤ max
v∈Rd : ∥v∥≤1

E
[〈

v, x− E [x]
〉2]

≤ E
[∥∥∥x− E [x]

∥∥∥2] ≤ E
[
∥x∥2

]
≤ 4κ2 .

For the second term in Equation (12), we note that conditioned on Fc the noise and the feature vectors are bounded, that
is ∥xi∥ ≤ u1 and |ϵi| ≤ u2 for all i ∈ {1, 2, . . . , T}. This model is similar to the one discussed in previous sections,
in particular to Model 5.5 in Section 5.2, where the expectation is unknown, with two differences. First, as said, by the
choice of δ the conditional covariance matrix of the features has minimal eigenvalue of ρ

2 , instead of ρ for the unconditional

covariance matrix. The second difference is that E
[
ϵ
∣∣∣Fc
]

may not equal zero. However, it can be easily verified that the

result of Section 5.1 holds, since the noise related terms in the second derivative of the function F (·) therein vanish.

We will follow the same steps as in Section 5.2: computing µ with T samples conditioned on Fc and feed them to
Algorithm 3 with different input, that is because the radius parameter R, is different and will depend on u1 and u2.

The derivation of the new radius parameter R is similar to derivation made in Section 3, that is bounding the norm of the
features and noise by u1 and u2 respectively. By our choice of δ = min

{
1
2 ,

ρ2

2102κ4 · 1
T 2

}
we may further bound

u1 =

√
2κ2 log

(
4 ·max

{
2T,

2102κ4T 3

ρ2

})
≤

√
8κ2 log

((
21κ
√
ρ
+ 8

)
· T
)
,

and similarly

u2 ≤

√
8σ2 log

((
21σ
√
ρ
+ 8

)
· T
)
.

Then, by taking

R := 2

√
8κ2 log

((
21κ
√
ρ
+ 8

)
· T
)
·D +

√
8σ2 log

((
21σ
√
ρ
+ 8

)
· T
)
,

it holds by Theorem 5.7 that

P (Fc)E
[
∥w̄ − w∗∥2

∣∣∣Fc
]
≤ 16R2 · (36 log T + 13)

((1− α)ρ2 )
2 · T

=
64R2 · (36 log T + 13)

((1− α)ρ)2 · T
, (14)

where we use 0 ≤ P (Fc) ≤ 1.

Note that w∗ is deterministic and does not change when conditioned of Fc, then by combining the bounds in Equations (13)
and (14) into Equation (12) completes the proof.

H Discussing Our Results with respect to the Spreadness Assumption

The recent paper of D’Orsi et al. (2021) assumes that the empirical design matrix of the features satisfies a condition
termed spreadness. This condition essentially states that the energy of each vector in the column space of the design matrix
cannot be too concentrated on a small subset of its coordinates. It is stated in D’Orsi et al. (2021, Appendix A.2.1) that
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the spreadness assumption is necessary in order to obtain meaningful guarantees for any algorithm, i.e., a hardness result.
In contrast, our work shows that one can obtain meaningful guarantees without making this assumption. In this section,
we settle the apparent discrepancy between the results, by showing that the worst-case distribution used by D’Orsi et al.
(2021) to establish the hardness result, does not take into account the norm of the optimal solution ∥w∗∥. We then show
when this problem parameter is taken into account, an adversary cannot inflict an arbitrarily large error to a learner, but is
rather limited to an error of O

(
∥w∗∥2

T

)
.

We will not elaborate further on the spreadness assumption since it is unnecessary for establishing our point. Instead, we
will describe worst-case example used in D’Orsi et al. (2021) to prove the hardness result, and show that it is irrelevant
when taking ∥w∗∥ into account.

The Example of D’Orsi et al. (2021): Assume an oblivious contamination as in Model 2.1 such that ϵ = 0 with probability
1, the features are 1 dimensional, i.e. x ∈ R, and the contaminations are distributed as follows,2{

bi ∼ N (0, σ2) ,with probability α

bi = 0 , otherwise
,∀i ∈ [1, . . . , T ] ,

here the fraction of contamination is α, and the adversary injects Gaussian noise with variance σ2; note that the adversary
may choose σ to be arbitrarily large. It is also assumed that the number of non-zero features in the training set is equal to

1
C(1−α) , 3 where C > 0 is a large enough constant that does not depend on α, T . With these assumptions, their hardness
proof is based on the following statement (Lemma A.5 therein):

Lemma H.1. [D’Orsi et al. (2021, Lemma A.5)] Consider the robust linear regression task with the above assumptions.
Then for any estimate ŵ which is based on the contaminated data, there exists an optimal solution w∗ (of the problem with
non-corrupted data) such that the following holds,

1

T

T∑
i=1

∥⟨xi, ŵ − w∗⟩∥2 ≥ Ω

(
σ2

T

)
.

Seemingly, the above Lemma implies that since the adversary can choose σ to be arbitrarily large this means that one cannot
obtain meaningful guarantees in this case.4 Nevertheless, as we show below, by explicitly taking the norm of the optimal
solution into account, we show that the adversary’s power is limited to inflicting a bounded error of O

(
∥w∗∥2

T

)
.

Lemma H.2. Consider the robust linear regression task with the above assumptions. Also assume that the features are
bounded, i.e., ∥x∥ ≤ 1 with probability 1. Then there exists a trivial estimator ŵ such that the following holds,

1

T

T∑
i=1

∥⟨xi, ŵ − w∗⟩∥2 ≤ O

(
∥w∗∥2

(1− α)T

)
. (15)

Conclusion: Importantly, the above lemma implies that for this example there exists an estimator that achieves a vanishing
prediction error that does not depend on σ2, but rather depends on ∥w∗∥2. Moreover, the above lemma implies that in the
worst case example of D’Orsi et al. (2021) (see Lemma H.1 above), the choice of w∗ given σ is such that σ2 ≤ ∥w∗∥2.

Thus, even without the spreadness assumption, an adversary cannot inflict unbounded errors, and meaningful guarantees are
actually possible.

Next we prove the above lemma.

Proof of Lemma H.2. Consider the following trivial predictor ŵ = 0. In this case, since the features are bounded by 1, and

2We stick to the notations in our paper where α is the fraction of contaminated samples. Conversely, D’Orsi et al. (2021) denote the
fraction of contaminated samples by 1− α.

3In the example appearing in (D’Orsi et al., 2021, Appendix A.2.1) there is a typo where they mistakenly write that number of non-zero
features is T

C(1−α)
, but it should actually be 1

C(1−α)
. We validated this with the authors of D’Orsi et al. (2021).

4Note that the choice of the optimal solution w∗ is allowed to depends on the magnitude of the adversary’s noise σ (see D’Orsi et al.
(2021, Fact A.1)).
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only 1
C(1−α) of them are non-zero we obtain,

1

T

T∑
i=1

∥⟨xi, ŵ − w∗⟩∥2 =
1

T

T∑
i=1

∥⟨xi, w
∗⟩∥2

≤ 1

T

T∑
i=1

∥xi∥2 · ∥w∗∥2

≤ ∥w∗∥2

T

T∑
i=1

∥xi∥2

≤ C ∥w∗∥2

(1− α)T
,

here the first line uses ŵ = 0, the second line uses Cauchy-Schwarz’s inequality, and the last line uses ∥xi∥ ≤ 1, and the
fact that only 1/C(1− α) of them are non zero.

Combining Lemma H.1 and Lemma H.2, we obtain

Ω

(
σ2

T

)
≤ 1

T

T∑
i=1

∥⟨xi, ŵ − w∗⟩∥2 ≤ O

(
∥w∗∥2

(1− α)T

)
.

Thus, taking the norm of w∗ into account reveals that the adversary’s power is restricted in this example, and fast rates of
convergence are possible, even without the spreadness assumption.

I Adaptivity to the Norm of the Optimal Solution

In this section, we extend our results to the strongly-convex case (i.e., Σ ⪰ ρ · I) where the norm of the optimal solution
∥w∗∥ is unknown and E [x] = 0. The main result of this section appears in Theorem M.1, and our overall adaptive algorithm
is depicted in Algorithm 6.

The High Level Approach When a bound D on the norm of w∗ was assumed to be known, we had set the radius of the
Huber loss to be R := 6D + σ. This ensured that the expected Huber loss LR(·) is strongly-convex in the ball of radius D
around the origin. This knowledge of D simplified the algorithm’s operation and its analysis.

In this section, we take a slightly different approach. Since we do not have a bound on ∥w∗∥, we take R := 6 + σ. This
ensures that LR(·) is strongly-convex in a ball of radius 1 around w∗. This choice complicates our algorithm and analysis,
yet it enables to obtain adaptivity to ∥w∗∥, as well as to gain better dependence on ∥w∗∥ compared to the analysis in the
main text (i.e. the case where a bound on ∥w∗∥ is known).

At a high level, our algorithmic approach is to apply SGD in two phases (see Algorithm 6):

1. In the first phase we start at w0 = 0 and apply a recent variant of SGD (Algorithm 4) that implicitly adapts to the norm
of the optimal solution (Carmon and Hinder, 2022). At the end of this phase we are ensured to lie in a small enough
ball around w∗ where LR(·) is strongly-convex.

2. In the second phase we apply a variant of SGD for the strongly-convex case (Algorithm 7) that ensures fast convergence
to w∗. This phase is initiated from the output of the first phase.

Next we provide the full details of algorithms and analysis.

Choice of R and strong-convexity of LR(·) As we mentioned, we choose R := 6 + σ. The next lemma shows that in
this case, LR(·) is (1− α)ρ strongly convex in a ball of radius 1 around w∗, that is, in B∗ :=

{
w ∈ Rd : ∥w − w∗∥ ≤ 1

}
,

and that w∗ is its global minimum.

Lemma I.1. Let R := 6 + σ, then, LR(·) is (1− α)ρ-strongly convex in B∗ and w∗ = argminLR(w).
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The proof of the above Lemma appears in Appendix I.1.

Algorithm 4 Parameter-Free SGD

1: Input: ηϵ > 0, T ∈ N+,
{
γ(k), β(k)

}
k=2,4,8,...

2: for k = 2, 4, 8, . . . do
3: if k > T/4 then return w0

4: Tk =
⌊

T
2k

⌋
5: ηo := Algorithm 5 with input

(
ηϵ, 2

2kηϵ;Tk, γ
(k), β(k)

)
6: if ηo < ∞ then return 1

Tk

∑
i<Tk

wi(ηo)
7: end for

Algorithm 5 Root Finding Bisection

1: Input: ηlo, ηhi; τ, γ, β
2: if ηhi ≤ ϕ(ηhi) then return ∞ ▷ ϕ(·) defined in Equation (18)

3: if ηlo > ϕ(ηlo) then return ηlo
4: while ηhi > 2ηlo do
5: ηmid :=

√
ηloηhi

6: if ηmid ≤ ϕ(ηmid) then ηlo := ηmid else ηhi := ηmid

7: end while
8: if r̄τ (ηhi) ≤ r̄τ (ηlo)

ϕ(ηhi)
ηhi

then return ηhi else return ηlo ▷ r̄τ (·) defined in Equation (16)

Phase 1 SGD. In the first phase of the optimization we apply a recent variant of SGD for stochastic convex optimization
problems that implicitly adapts to ∥w0 − w∗∥, where w0 is the initialization point and w∗ is the optimal solution. This
variant is due to Carmon and Hinder (2022), and is depicted in Algorithm 4.

Below we provide a version of Theorem 2 of Carmon and Hinder (2022) that applies to LR(·). We plug in the fact that
w0 = 0, and also use the convexity LR(·), as well as the fact that the stochastic gradients that we employ (based on the
contaminated samples) have a norm bounded by R, which is due to the use of the Huber loss.

Root Finding Bisection: Here we explain the Root Finding Bisection procedure used in Algorithm 4, as well as the notations
therein.

Whenever the function ϕ(η) is mentioned in the algorithm, the following is performed:

• Unconstrained SGD with a learning rate of η is being applied for τ steps starting at w0 = 0. We denote its iterates by
wi(η), and the stochastic gradient that it queries by gi(η). Thus, w0(η) = 0, and,

wi+1(η) := wi(η)− ηgi(η) ,

where gi(η) is a stochastic gradient estimate taken at wi(η).

• Based on this SGD run we compute the following expressions,

r̄τ (η) := max
i≤τ

∥wi(η)∥ . (16)

Gτ (η) :=
∑
i<τ

∥gi(η)∥2 . (17)

ϕ(η) :=
r̄τ (η)√

γGτ (η) + β
for γ, β > 0 . (18)

We are now ready to state the guarantees of Algorithm 4 applied to the Huber loss LR(·) (while using samples from the
contaminated data). The theorem below is a simplification of the more general (Carmon and Hinder, 2022, Theorem 2).

Theorem I.2. Let LR : Rd 7→ R be the expected Huber loss with parameter R > 0. Then applying Algorithm 4 to LR(·)
using T/2 samples, initial point w0 = 0, and with the following choices:
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• ηϵ :=
ϵ

R2T

• γ(k) = 322Ck, and β(k) = (32RCk)
2, where Ck = 2k + log

(
60 log2(3T )/δ

)
ensures that the following holds with probability ≥ 1− δ,

LR(w̄1)− LR(w
∗) ≤ M0

(
R ∥w∗∥√

T
+

ϵ

T

)
· χ2 ,

where M0 is a universal constant, independent of the problem’s parameters, χ := log
(
1
δ log+ (R∥w∗∥T/ϵ)

)
and log+(z) :=

max{2, log(z)}.

The parameter ϵ > 0 can be tuned by the algorithm, and we choose ϵ = 1/T .5 We also remark that Carmon and Hinder
(2022, Theorem 2) is more general, yet above we stated a simplified version that is relevant to our application.

Combing the above Theorem with the strong-convexity of LR(·) in B∗ immediately implies that after phase 1 the iteration is
ensured to lie in a ball radius of 1/3 around w∗. This is formalized below.

Corollary I.3. Assume

T ≥ Ω

√ log2 (log(T∥w∗∥)/δ)

(1− α)ρ
+

∥w∗∥2 log2 (log(T∥w∗∥)/δ)

(1− α)2ρ2

 .

Then, applying Algorithm 4 using T/2 samples with the choices mentioned in Theorem I.2 and ϵ = 1/T , ensures that w̄1, the
output of Algorithm 4, satisfies

∥w̄1 − w∗∥ ≤ 1

3

with probability ≥ 1− δ.

Proof. Part (a). Here we show that for any u such ∥u− w∗∥ = 1/3 then its sub-optimality is bounded from below. Indeed,
since LR(·) is (1− α)ρ-strongly convex in B∗, and its global minimum is w∗ (Lemma I.1), then for any such u we have,

LR(u)− LR(w
∗) ≥ (1− α)ρ

2
∥u− w∗∥2 =

(1− α)ρ

18
.

Part (b). Here we show that the sub-optimality of any w such w /∈ B1/3(w
∗) :=

{
w ∈ Rd : ∥w − w∗∥ ≤ 1/3

}
is bounded

from below. Indeed, for any such w there exists u such that ∥u− w∗∥ = 1/3, and also such that,

w − u = (θ − 1)(u− w∗) , (19)

for some θ > 1. This vector u is actually the point on the line segment [w∗, w] whose distance from w∗ is exactly 1/3. We
can now show that LR(w) ≥ LR(u),

LR(w)− LR(u)
(a)

≥ ⟨∇LR(u), w − u⟩
(b)
= (θ − 1) ⟨∇LR(u), u− w∗⟩
(c)

≥ 0 ,

where (a) follows from the convexity of LR(·), (b) follows from Equation (19) and (c) follows from the optimality of w∗

and the fact that θ > 1.

Part (c). From parts (a) and (b) it follows that

LR(w)− LR(w
∗) ≥ (1− α)ρ

18

5There is nothing special about this choice and we could alternatively take ϵ = 1 or say ϵ = 1/T5 without qualitatively affecting the
result by much.
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for any w /∈ B1/3(w
∗). On the other hand, Theorem I.2 ensures that w̄1 satisfies with probability ≥ 1− δ (taking ϵ = 1/T ),

LR(w̄1)− LR(w
∗) ≤ M0

(
R ∥w∗∥√

T
+

1

T 2

)
· χ2 .

Combining the above immediately implies that

∥w̄1 − w∗∥ ≤ 1

3
,

with probability ≥ 1− δ, for all large enough T , and concretely, for

T ≥ Ω

√ log2 (log(T∥w∗∥)/δ)

(1− α)ρ
+

∥w∗∥2 log2 (log(T∥w∗∥)/δ)

(1− α)2ρ2

 .

Algorithm 6 Diameter Adaptive Huber SGD

Input: ηϵ,
{
γ(k), β(k)

}
k=2,4,8,...

, σ > 0, λ > 0, T ∈ N+

Phase 1: w̄1 := output of Algorithm 4 with input
(
ηϵ,

T
2 ,
{
γ(k), β(k)

}
k=2,4,8,...

)
▷ applied to Huber Loss LR(·), and using

samples from the contaminated model

Phase 2: w̄2 := output of Algorithm 7 with input
(
w̄1, 6 + σ, λ, T

2

)
▷ applied to Huber Loss LR(·), and using samples from the

contaminated model

Return: w̄2

Algorithm 7 SGD for Strongly Convex Function

Input: w1 ∈ Rd, R > 0, λ > 0, T ∈ N+

W :=
{
w ∈ Rd : ∥w − w1∥ ≤ 2

3

}
for t = 1 to T do

Draw (xt, yt) from Model 2.1
ηt := 1/λt
gt := ϕR (⟨wt, xt⟩ − yt) · xt

wt+1 := ΠW (wt − ηt · gt)
end for
Return: w̄ := 1

T

∑T
t=1 wt

Phase 2 SGD. Corollary I.3 ensures that the output of Phase 1, i.e. w̄1, is inside the ball of radius 1/3 around w∗, with
probability ≥ 1− δ. As can be seen from Algorithm 7, in Phase 2 we take a ball of radius 2/3 around w̄1 and apply SGD for
strongly-convex functions constrained to that ball. The constraint to this ball has two desired properties: (i) it contains the
global minimum w∗ (due to the guarantee of phase 1), and (ii) LR(·) is (1− α)ρ-strongly-convex in this ball (since LR(·)
is strongly-convex over B∗). Thus, we have fast convergence to w∗. This is formalized in the next theorem, which is the
main theorem of this section.

Theorem I.4. Denote w̄2 as the output of Algorithm 6, then, with probability ≥ (1− δ) · (1− 4δ log T ), with T as defined
in Corollary I.3, then

∥w̄2 − w∗∥2 ≤ O


R

(√
log T +

√
log 1/δ

)
(1− α)ρ

2
 · 1

T
.

Proof. For R := 6 + σ, it holds that LR(·) is R-Lipschitz and (1 − α)ρ-strongly convex in B∗ with w∗ as its minimum
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(Lemma I.1). Then, with probability (1− δ) · (1− 4δ log T ),

∥w̄2 − w∗∥2 ≤ 2

(1− α)ρ
(LR(w̄2)− LR(w

∗))

≤ O


R

(√
log T +

√
log 1/δ

)
(1− α)ρ

2
 · 1

T
,

where the first inequality follows from the fact that w̄2 ∈ B∗, and the strong convexity of LR(·), combined with Property 2.7,
and the second inequality follows from Corollary J.2 with L := R, ν := (1− α)ρ, w1 := w̄ and D := 2/3.

Theorem I.5. Let ϵ > 0, δ ∈ (0, 1) and denote w̄2 as the output of Algorithm 6. If

T ≥ Ω̃

(
(6 + σ)2

((1− α)ρ)2

(
∥w∗∥2 log2(1/δ) + log(1/δ)

ϵ

))
,

Then, ∥w̄2 − w∗∥2 ≤ ϵ with probability larger than (1− δ) · (1− 4δ log T ), where Ω̃ hides logarithmic dependence in 1/ϵ.

Proof. This follows immediately from Corollary I.3 and Theorem I.4.

I.1 Proof of Lemma I.1

Proof. We show that LR(·) is a sum of a (1−α)ρ-strongly function and a convex function and as such it is a (1−α)ρ-strongly
convex. This is done in a similar way to the proof of Lemma D.1.

Define

H(w) := E
x,ϵ,b

[
hR (⟨w − w∗, x⟩ − ϵ− b)

∣∣∣b ̸= 0
]
,

which is convex as an average of convex functions.

Given that b = 0, it holds for any w ∈ B∗ that

|⟨w − w∗, x⟩ − ϵ| ≤ ∥w − w∗∥ · ∥x∥+ |ϵ| ≤ 6 + σ , (20)

which follows from the definition of B∗ and the boundness of x, ϵ. Now, define

F (w) := E
x,ϵ,b

[
hR (⟨w − w∗, x⟩ − ϵ− b)

∣∣∣b = 0
]

(a)
= E

x,ϵ,b

[
1

2
(⟨w − w∗, x⟩ − ϵ)

2
∣∣∣b = 0

]
(b)
= E

x,ϵ

[
1

2
(⟨w − w∗, x⟩ − ϵ)

2

]
= E

x,ϵ

[
1

2
⟨w − w∗, x⟩2 − ϵ · ⟨w − w∗, x⟩+ 1

2
ϵ2
]
,

where (a) follows from Equation (20) and R := 6 + σ and (b) follows from the assumption that x, ϵ, b are statistically
independent. The Hessian matrix of F (·) is given by ∇2F (w) = E

x

[
xxT

]
= Σ which is, by assumption, positive definite.

So, Assumption 2.5 and Property 2.6 assure that F (·) is a ρ-strongly convex function. Then, by the law of total expectation
with respect to b:

LR(w) = (1− α)F (w) + αH(w) .

Since H(·) is convex and (1− α)F (·) is (1− α)ρ-strongly convex, LR(·) is (1− α)ρ-strongly convex.
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Next we show that w∗ = argminLR(w). Indeed For any w ∈ Rd

LR(w) := E
x,ϵ,b

[hR (⟨w − w∗, x⟩ − ϵ− b)]

(a)

≥ E
ϵ,b

[
hR

(
E
x
[⟨w − w∗, x⟩ − ϵ− b]

)]
(b)
= E

ϵ,b

[
hR

(〈
w − w∗,E [x]

〉
− ϵ− b

)]
(c)
= E

ϵ,b
[hR (−ϵ− b)]

= E
ϵ,b

[hR (⟨w∗ − w∗, x⟩ − ϵ− b)]

= LR(w
∗) ,

where (a) follows from convexity of the Huber loss and Jensen’s inequality, (b) follows from the linearity of the inner
product and (c) from the fact that E [x] = 0. Moreover, due to the strong-convexity of LR(w) in B∗ , then w∗ is the unique

minimizer of LR(w).

J High Probability SGD for Strongly Convex Function

Lemma J.1 (Adjusted Theorem 2 from Kakade and Tewari (2008)). Define W :=
{
w ∈ Rd : ∥w − w1∥ ≤ D

}
for some

w1 ∈ Rd. Let Z be a random variable taking values in some space Z . Let f : W × Z 7→ R be L-Lipschitz and let
F (w) := E [f(w; z)] be ν-strongly convex. Denote w∗ := argminw∈W F (w) as the minimizer of F . Also, assume that we

apply a regret minimization algorithm A over the sequence of losses {f(·, Zt)}Tt=1, and A yields predictions w1, . . . , wT .
Then, for δ ∈ [0, 1), with probability ≥ 1− 4δ log T ,

1

T

T∑
t=1

F (wt)− F (w∗) ≤ C(L, ν)

T

where

C(L, ν) := RegT + 4L

√
log 1/δ ·RegT

ν
+max

{
15L2

ν
, 24LD

}
· log 1/δ

and RegT :=
∑T

t=1 f(wt;Zt)−minw∈W
∑T

t=1 f(w;Zt) is the regret of the online A algorithm being used.

Further, using Jensen’s inequality, 1
T

∑T
t=1 F (wt) can be replaced by F

(
1
T

∑T
t=1 wt

)
.

The following is an immediate corollary of the above lemma.

Corollary J.2. Under the same conditions of Lemma J.1, and by taking the online algorithm A to be OGD with a learning
rate of ηt = 1

νt , it holds with probability 1− 4δ log T that

F (w̄T )− F (w∗) ≤ O
(
L2

ν
log T +

L2

ν

√
log T · log 1/δ +max

{
L2

ν
, LD

}
· log 1/δ

)
· 1
T

,

where w̄T := 1
T

∑T
t=1 wt.

The corollary follows immediately from combining Lemma J.1 with the regret guarantees of OGD for the strongly-convex
case (which uses ηt = 1

νt ), that ensures RegT ≤ O
(

L2

ν log T
)

(see e.g. Hazan (2021, Theorem 3.3)).

Proof of Lemma J.1. This lemma is a re-statement of the original theorem in Kakade and Tewari (2008), with the minor
difference that in Kakade and Tewari (2008) it is assumed that each f(·;Z) is strongly-convex, whereas here we only assume
the strong-convexity of F (·). All other assumptions are identical.
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We thus next describe the (minor) changes needed for this adjusted theorem:
Proof of (Kakade and Tewari, 2008, Lemma 1)
The argument stated therein

f(w;Z) + f(w′;Z)

2
≥ f

(
w + w′

2
;Z

)
+

ν

8
∥w − w′∥2 ,

is not needed, since we assume here that F is strongly convex, and so the line that follows in their proof, to wit,

F (w) + F (w′)

2
≥ f

(
w + w′

2
;Z

)
+

ν

8
∥w − w′∥2 ,

holds by the assumed strong convexity of F .

Proof of (Kakade and Tewari, 2008, Theorem 2): The proof hinges on proving various properties of the random variable

ξt := F (wt)− F (w∗)− (f(wt;Zt)− f(w∗;Zt)) .

Specifically, the assumption therein is that f : W ×Z 7→ [0, B], and this immediately implies that |ξt| ≤ 2B.

Here, we do not make a direct assumption that f is bounded. However, the requires modification is minor. We know that
f(·) is L-Lipschitz, and thus so is F (·). Then, since ∥w∗∥ ≤ D, the triangle inequality implies

|ξt| ≤ |F (wt)− F (w∗)|+ |f(wt;Zt)− f(w∗;Zt)| ≤ 2L∥wt − w∗∥ ≤ 4LD ,

which is the required boundedness property of the ξt’s.

K Extension of Impossibility result to General α

Here we show that in the general convex case, when E[x] ̸= 0, then for any value of α ∈ [0, 1], there does not exist a learner
that can ensure a prediction error better than Ω(α2).

Recall that in our setting we assume that the learner does not know the distribution of the features nor of the measurement
noise ϵ, or of the contamination b. Thus, in order to prove the impossibility result we will construct two different models
with two different measurement noise distributions and two different contamination distributions and show that after being
contaminated, no learner can distinguish between these models. We then show the latter to imply that no learner can obtain
a better prediction error than Ω(α2). Next we provide the details.

The impossibility result. Let α ≥ 0 be the fraction of samples that the adversary may contaminate. Now consider two
one-dimensional models with parameter vectors w∗

1 , w
∗
2 , which will be determined later. For both models we assume that

x = 1, thus E[x] is known and equals 1. Next we show how to construct these two models such that after being contaminated
by an adversary, one cannot distinguish between them.

Model 1: for model m = 1 we take w∗
1 = 1, and ϵ

(1)
i = 0 ;∀i. We also define the adversarial perturbation b

(1)
i to be a

Bernoulli random variable with parameter α, thus b(1)i = 1 with probability α, and is equal to zero otherwise. Therefore for
any sample i in model 1 we have,

y
(1)
i = w∗

1 · xi + ϵ
(1)
i + b

(1)
i = 1 + b

(1)
i , (21)

where b
(1)
i ∼ Ber(α) is the adversarial perturbation injected to the sample i.

Model 2: Now for model m = 2 we take w∗
2 = 1 + α, and define noise for this model as follows,

ϵ
(2)
i = Zi − α

where Zi ∼ Ber(α), and therefore E[ϵ(2)i ] = 0. For this model we also choose the adversarial perturbations to be always
zero, i.e., b(2)i = 0 ;∀i. Consequently, for any sample i in model 2 we can write,

y
(2)
i = w∗

2 · xi + ϵ
(2)
i + b

(2)
i = (1 + α) + (Zi − α) + 0 = 1 + Zi , (22)
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where Zi ∼ Ber(α).

Thus, from Equations (21) and (22), it is clear that one cannot distinguish between models 1 and 2 from their α-contaminated
samples.

Now since this is the case, any learner will output the same solution irrespective of the model from which he observes the
contaminated samples. Let us denote this solution by w. Now if the model that we present to the learner is either model 1 or
2 with equal probability, then his expected prediction error (expected excess loss) in this case would be,

ExpectedExccessLoss(w) =
1

2
(F1(w)−min

v
F1(v)) +

1

2
(F2(w)−min

v
F2(v))

=
1

2
· 1
2
(w − 1)2 +

1

2
· 1
2
(w − (1 + α))2

where F1(·) and F2(·) are the expected losses for models 1 and 2 over the clean (non-contaminated) data, and the second
line follows by a straightforward computation. Now if we minimize the above objective as a function of w, we conclude that
its minimum is obtained in wopt = 1 + α/2. Thus for any solution w we have,

ExpectedExccessLoss(w) ≥ ExpectedExccessLoss(wopt) =
1

8
α2 .

Therefore, any learner must incur a prediction error of at least Ω(α2) in this case.

L Experiment With More Algorithms

Figure 3: Results for α = 0.7.
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We perform one more experiment, similar to the experiments in Section 7, where α = 0.7, but now we change the distribution
of b and consider more algorithms: Centered + Non-Centered projected SGD over the ℓ1 loss and Filtering + Least Squares
(with different filtering thresholds).

Adversary The corruption b is chosen as such that if b ̸= 0, then b = 1 w.p. 1
2 and 100 otherwise.

Filtering + Least Squares Any sample whose (absolute value of its) label is larger than the filtering threshold is removed
(we apply the filter approach with 5 different threshold levels, appearing as "Filtering + LS" algorithms. The threshold value
is chosen to be a ·D + σ where a is the number appearing in the legend).6 Then, we use the remaining samples to compute
the least squares solution: (XXT )−1Xy. This gives us one solution but we chose to show this as a line in the figure in
order to see the result compared to the other algorithms across all steps.

Note that in Figure 3, the error for a ∈ {1, 2, 5, 10, 50} is the same as the same samples are filtered.

6The result for a = 100 was omitted as its error is larger than 1000, and distorts the graph.
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M Adaptivity to α

Algorithm 8 Adapting to Curvature

1: Require: Baseline Online learning algorithm A
2: Initialize: W a convex close set in a reflexive Banach space, x̄0 an arbitrary point in W .
3: for t = 1 to T do
4: Get point wt from A
5: Set zt := wt + x̄t−1

6: Play xt ∈ ΠW (zt), receive subgradient gt ∈ ∂ℓt(xt)
7: Set g̃t ∈ gt + ∥gt∥∗ ∂SW (zt) ;where SW (z) := infu∈W ∥u− z∥
8: Set x̄t :=

x̄0+
∑t

i=1∥g̃i∥
2
∗xi

1+
∑t

i=1∥g̃∥
2
∗

9: Send g̃t to A as the t-th subgradient
10: end for

As mentioned in Section 6.2, the expected Huber loss LR(·) is (1− α)ρ-strongly-convex, and we encode this information
into the learning rate of the SGD variants that we employ (Algorithms 2 & 3). In the recent paper of Cutkosky and Orabona
(2018), an online convex optimization algorithm was presented that adapts to the strong-convexity parameter, and so does not
need to know the value of α. In our analysis of Algorithm 3 the choice of the 1

2 -suffix averaging SGD can be easily switched
with any SGD for strongly-convex function that has an error of Õ

(
1
T

)
, such is Algorithm 8, which has the following

guarantees:
Theorem M.1 (Cutkosky and Orabona 2018, Theorem 7). Let {ℓt(·)}t=1,... be a sequence of convex loss functions. Let A
be an online linear optimization algorithm that outputs wt in response to gt. Also assume that W is a convex closed set of
diameter D. Suppose A guarantees for all T and

◦
v:

T∑
t=1

〈
wt −

◦
v, g̃t

〉
≤ η +

∥∥∥◦v∥∥∥A
√√√√√√ T∑

t=1

∥g̃t∥2∗

1 + ln

1 +

∥∥∥◦v∥∥∥2 TC

η2


+B

∥∥∥◦v∥∥∥ ln

∥∥∥◦v∥∥∥TC

η
+ 1

 ,

for constants A, B and C and η independent of T . Then for all
◦
w ∈ W , Algorithm 8 guarantees

T∑
t=1

ℓt(xt)− ℓt

(
◦
w
)
≤

T∑
t=1

〈
xt −

◦
v, gt

〉
≤ O

(√
VT

(
◦
w
)
ln

TD

η
ln(T ) + ln

TD

η
ln(T ) + η

)
,

where

VT

(
◦
w
)
:=
∥∥∥x̄0 −

◦
w
∥∥∥2 + T∑

t=1

∥g̃t∥2∗
∥∥∥xt −

◦
w
∥∥∥2 ≤ D2

T∑
t=1

∥gt∥2∗
∥∥∥xt −

◦
w
∥∥∥2 .

Note that for Rd : ∥·∥∗ = ∥·∥.

Adaptivity to Strong-Convexity: As Cutkosky and Orabona 2018 further state in their paper, if the loss function (denoted
by ℓt(·)) is λ-strongly convex, that is ℓt(vt)− ℓt

(
◦
v
)
≤
〈
vt −

◦
v, gt

〉
− λ

2

∥∥∥vt − ◦
v
∥∥∥, then the above theorem implies that,

T∑
t=1

ℓt(wt)− ℓt

(
◦
v
)
≤ O

(
log2(DT )

(
1 +

1

λ

))
,

with the simplifying assumption ∥gt∥∗ ≤ 1. and the above demonstrates the adaptivity to the strong-convexity parameter as
promised.

Note: To obtain this result one could employ Algorithm 3 from Cutkosky and Orabona 2018 as the baseline online algorithm
A used as an input to Algorithm 8. This choice satisfies the conditions in Theorem M.1.

Online to Batch: The output of Algorithm 8 can be easily converted to the stochastic settings by standard online-to-batch
conversion Cesa-Bianchi and Lugosi (2006) to achieve a stochastic algorithm that is adaptive to the strong-convexity
parameter.
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