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Abstract

Multi-agent interactions are increasingly impor-
tant in the context of reinforcement learning,
and the theoretical foundations of policy gradient
methods have attracted surging research interest.
We investigate the global convergence of natural
policy gradient (NPG) algorithms in multi-agent
learning. We first show that vanilla NPG may
not have parameter convergence, i.e., the conver-
gence of the vector that parameterizes the policy,
even when the payoffs are regularized (which en-
abled strong convergence guarantees in the pol-
icy space in the literature). This non-convergence
of parameters leads to stability issues in learning,
which becomes especially relevant in the func-
tion approximation setting, where we can only
operate on low-dimensional parameters, instead
of the high-dimensional policy. We then propose
variants of the NPG algorithm, for several stan-
dard multi-agent learning scenarios: two-player
zero-sum matrix and Markov games, and multi-
player monotone games, with global last-iterate
parameter convergence guarantees. We also gen-
eralize the results to certain function approxi-
mation settings. Note that in our algorithms,
the agents take symmetric roles. Our results
might also be of independent interest for solv-
ing nonconvex-nonconcave minimax optimiza-
tion problems with certain structures. Simula-
tions are also provided to corroborate our theo-
retical findings.

1 Introduction

Policy gradient (PG) methods have served as the workhorse
of modern reinforcement learning (RL) (Schulman et al.,
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2015, 2017; Haarnoja et al., 2018), and enjoy the desired
properties of being scalable to large state-action spaces, sta-
bility with function approximation, as well as sample effi-
ciency. In fact, policy gradient methods have achieved im-
pressive empirical performance in multi-agent RL (Lowe
et al., 2017; Yu et al., 2021), the regime where many RL’s
recent successes are pertinent to (Silver et al., 2017; Ope-
nAI, 2018; Shalev-Shwartz et al., 2016).

Despite the tremendous empirical successes, theoretical
foundations of PG methods, even for the single-agent set-
ting, have not been uncovered until recently (Fazel et al.,
2018; Agarwal et al., 2019; Zhang et al., 2019a; Wang
et al., 2019; Mei et al., 2020; Cen et al., 2021a). The the-
oretical understanding of PG methods for multi-agent RL
remains largely elusive, except for several recent attempts
(Daskalakis et al., 2020; Zhao et al., 2021; Wei et al., 2021;
Cen et al., 2021b). The key challenge is that in the policy
parameter space, even for the basic two-player zero-sum
matrix game, the problem becomes nonconvex-nonconcave
and is computationally intractable in general (Daskalakis
et al., 2021).

In this paper, we aim to fill in the gap by studying the
global convergence of natural PG (NPG) (Kakade, 2002),
which forms the basis for many popular PG algorithms
(e.g., Proximal Policy Optimization (PPO)/Trust Region
Policy Optimization (TRPO)), in the parameter space and
for multi-agent learning. We are interested in the setting
where the agents take symmetric roles and operate inde-
pendently, as it does not require a central coordinator and
it scales favorably with the number of agents. Analysis of
this setting is challenging precisely because the concurrent
updates of the agents makes the learning environment non-
stationary from one agent’s perspective. With asymmet-
ric update rules among agents, the non-stationarity issue
can be mitigated, and the global convergence of PG meth-
ods has been established lately in (Zhang et al., 2019b;
Daskalakis et al., 2020; Zhao et al., 2021). However,
though being valid as an optimization scheme, asymmet-
ric update-rules might be hard to justify in game-theoretic
multi-agent learning with symmetric players. It is thus de-
sirable to develop provably convergent PG methods with
symmetric update rules.
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1.1 Related work

Policy gradient RL methods for games. Gradient-
descent-ascent (GDA) with projection on simplexes can be
viewed as symmetric policy gradient methods for solving
matrix games with direct policy parameterization (Agar-
wal et al., 2019), which enjoys an average-iterate conver-
gence (Cesa-Bianchi and Lugosi, 2006). Such a guaran-
tee is shared with multiplicative weight update (MWU),
which is especially suitable for repeated matrix games, and
equivalent to natural PG method with tabular softmax pol-
icy parameterization (Agarwal et al., 2019). To the best
of our knowledge, however, neither parameter convergence
nor function approximation has been studied in this con-
text. For Markov games, Zhang et al. (2019b); Bu et al.
(2019); Hambly et al. (2021) have studied global conver-
gence of PG methods for those with a linear quadratic
structure; for zero-sum Markov games, Daskalakis et al.
(2020) established global convergence of independent PG
with two-timescale stepsizes for the tabular setting; Zhao
et al. (2021) studied a double-loop natural PG algorithm
with function approximation; more recently, Alacaoglu
et al. (2022) proposed a framework of natural actor-critic
algorithms. No last-iterate convergence to the Nash equi-
librium was established in these works, and these update-
rules were all asymmetric. Qiu et al. (2021) developed sym-
metric policy optimization methods for certain zero-sum
Markov games with structured transitions. Concurrently,
Zhang et al. (2022) proposed a policy optimization frame-
work with fast average-iterate convergence guarantees for
finite-horizon Markov games. Finally, Leonardos et al.
(2021); Zhang et al. (2021); Ding et al. (2022) have studied
global convergence of symmetric PG methods in Markov
potential games recently, not focused on last-iterate or pa-
rameter convergence.

Last-iterate convergence in constrained multi-agent
learning. Several papers including Tseng (1995); Az-
izian et al. (2020); Ibrahim et al. (2020); Fallah et al. (2020)
and references therein studied the last-iterate behavior of
strongly monotone games. Furthermore, Golowich et al.
(2020a,b) extended this analysis to the monotone game set-
ting. However, these papers did not consider parametrized
policies. More specifically, in the matrix game setting
with a simplex constraint, papers including Daskalakis and
Panageas (2019); Wei et al. (2020); Cen et al. (2021b)
showed the last-iterate policy convergence of optimistic
methods. However, these papers did not consider policy pa-
rameterization or the function approximation settings, and
some papers required the assumption that the NE is unique
(Daskalakis and Panageas, 2019; Wei et al., 2020). For
Markov games, Zhao et al. (2021) established last-iterate
convergence, but not to NE due to asymmetric update; Wei
et al. (2021); Cen et al. (2021b) were, to the best of our
knowledge, the only last-iterate policy convergence results
in Markov games with symmetric updates. However, these

works did not study the function approximation setting,
or monotone games beyond the two-player zero-sum case.
Also, though having greatly inspired our work, the regu-
larization idea in Cen et al. (2021b) alone cannot prevent
the non-convergence issue of the policy parameters from
happening (see §2). Our goal, in contrast, is to study the
(last-iterate) convergence of the actual policy parameters,
and for more general multi-agent learning settings beyond
the tabular zero-sum one.

Nonconvex-nonconcave minimax optimization. It is
shown that for general nonconvex-nonconcave minimax
optimization, even local solution concepts (Jin et al.,
2020) may not exist, and finding them can be intractable
(Daskalakis et al., 2021). Thus, specific structural prop-
erties have to be exploited to design efficient algorithms
with global convergence. Lin et al. (2019); Thekumpara-
mpil et al. (2019); Nouiehed et al. (2019); Yang et al.
(2020) have studied the nonconvex-(strongly)-concave or
the nonconvex-Polyak-Lojasiewicz (PL) or PL-PL settings,
with global convergence rate guarantees. The algorithms
in these papers are all asymmetric in that they run the in-
ner loop (which solves the maximization problem) multi-
ple times (or on a faster timescale with larger stepsizes)
to reach an approximate solution of the inner optimization
problem, and then run one step of descent on the outer
problem (or on a slower timescale with smaller stepsizes).
Closely related to one motivation of our work, Vlatakis-
Gkaragkounis et al. (2019); Flokas et al. (2021); Mlade-
novic et al. (2021) studied nonconvex-nonconcave mini-
max problem with hidden convexity structures, and show
that GDA can fail to converge globally even so. Interest-
ingly, the benefit of regularization (more generally, strict
convexity), and natural gradient flow under Fisher informa-
tion geometry, were also examined in Flokas et al. (2021);
Mladenovic et al. (2021) to establish some positive con-
vergence results. Different from our work, the dynamics
there are in continuous-time, and the parameterization in
Flokas et al. (2021) is decoupled by dimension, and the
convergence rate in the perturbed game is not global. These
conditions prevent the application of their results and proof
techniques to our setting directly. Also, last-iterate finite-
time rates of the iterates were not established in Mladen-
ovic et al. (2021).

We focus on the last-iterate convergence of the policy pa-
rameters, which is critical to establish in order to avoid
stability issues during learning. For example, if the norm
of the parameters blow up, we might end up with preci-
sion issues in computing the gradient and updating the pa-
rameters. This is particularly relevant to the setting with
function approximation, where we can only operate on low-
dimensional parameters of the policy, instead of the high-
dimensional policy per se. Indeed, we aim to explore the
convergence property in the function approximation setting
to handle large state-action spaces. Finally, our results are
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also motivated from the study of nonconvex-nonconcave
minimax optimization problems, especially those with cer-
tain structures that yield global convergence of gradient-
based methods. We aim to explore such structures in multi-
agent learning with parameterized policies. We summarize
our contributions as follows.

Contributions. Our contributions are three-fold. First,
we identify the non-convergence issue in the policy pa-
rameter space of natural PG methods for RL. We show
that this issue persists even with entropy regularized re-
wards. Second, we develop symmetric variants of the
natural PG method, i.e., both without and with the opti-
mistic updates (Rakhlin and Sridharan (2013)) and estab-
lish the last-iterate global convergence to the Nash equi-
librium in the policy parameter space. Third, we general-
ize the scope of symmetric PG methods in game-theoretic
multi-agent learning, including two-player zero-sum ma-
trix and Markov games (MGs), multi-player monotone
games, and the corresponding linear function approxima-
tion settings under certain assumptions, in order to handle
enormously large state-action spaces, all with last-iterate
parameter convergence rate guarantees. We have also pro-
vided numerical experiments to validate the effectiveness
of our algorithms.

Notation. For vector v ∈ Rd, we use [v]a with a ∈
{1, 2, · · · , d} to denote the a-th element of v. We use ‖v‖
to denote the `2-Euclidean norm of a vector v and ‖Q‖
to denote the `2-induced norm of matrix Q. We also use
‖Q‖∞ to denote the infinity norm and ‖Q‖F to denote the
Frobenius norm of matrix Q. For a finite-set S, we use
∆(S) to denote the simplex over S. We use 1 to denote the
matrix of all ones of appropriate dimension. For any posi-
tive integer n, we use [n] to denote the set {1, · · · , n}. We
use the subscript −i to denote the quantities of all players
other than player i. KL(p‖q) denotes the KL divergence
between two probability distributions p and q. For a matrix
C, we use C = [A | B] to denote the concatenation of the
component matrices A and B. For two vectors x, y ∈ Rd,
x · y denotes their inner-product, i.e., x>y. We use Id to
denote an identity matrix of dimension d.

2 Motivation & Background
In this section, we introduce the background of the natural
PG methods we study, with two-player1 zero-sum matrix
games being a motivating example.

Zero-sum matrix games. Two-player zero-sum matrix
games are characterized by a tuple (A,B, Q), where Q ∈
Rn×n denotes the cost2 matrix, A and B denote the action

1Hereafter, we use player and agent interchangeably.
2Note that we can also model it as a payoff, with a negative

sign.

spaces of players 1 and 2, respectively. For notational sim-
plicity, we assume both action spaces have cardinality n,
i.e., |A| = |B| = n. Note that our results can be readily
generalized to the setting with different action-space car-
dinalities. For convenience, we use indices of the actions
to denote the actions, i.e., A = B = {1, 2, · · · , n}, with-
out loss of generality. Note that the actual actions of both
players for the same index need not to be the same, and
the cost matrix Q needs not to be symmetric. The prob-
lem can thus be formulated as a minimax (i.e., saddle-point
optimization) problem

min
g∈∆(A)

max
h∈∆(B)

f(g, h) := g>Qh, (2.1)

where g and h are referred to as the policies/strategies of
the players. By Minimax Theorem (Neumann, 1928), the
min and max operators in (2.1) can be interchanged, and
the solution concept of Nash equilibrium (NE), which is
defined as a pair of policies (g?, h?) such that

f(g, h?) ≥ f(g?, h?) ≥ f(g?, h), for any (g, h) ∈ ∆(A)×∆(B)

always holds. In particular, at the Nash equilibrium, the
players execute the best-response policies of each other,
and have no incentive to deviate from it.

Policy parameterization. To develop policy gradient
methods for multi-player learning, the policies (g, h) ∈
∆(A)×∆(B) are parameterized by some parameters θ and
ν. Specifically, consider the following softmax parameteri-
zation that is common in practice: for any a ∈ A and b ∈ B

gθ(a) =
epθ(a)∑

a′∈A e
pθ(a′)

, hν(b) =
eqν(b)∑

b′∈B e
qν(b′)

, (2.2)

where θ, ν ∈ Rd for some integer d > 0, pθ, qν :
Rd → Rn are two differentiable functions. Note
that gθ(a), hν(b) > 0 for any bounded pθ, qν , and∑
a∈A gθ(a) =

∑
b∈B hν(b) = 1. This parameterization

gives the following minimax problem for the zero-sum ma-
trix game:

min
θ∈Rn

max
ν∈Rn

f(θ, ν) := g>θ Qhν , (2.3)

where by a slight abuse of notation, we use f(θ, ν) to de-
note f(gθ, hν). In this section and §3, we consider the tab-
ular softmax parameterization where pθ = θ ∈ Rn and
qν = ν ∈ Rn. In §C, we consider the setting with function
approximation where d < n.

The benefits of softmax parameterization are that: 1) it
transforms a constrained problem over simplexes to an un-
constrained one, making it easier to implement; 2) it read-
ily incorporates function approximation to deal with large
spaces (see §C). On the other hand, this policy parameter-
ization makes the optimization problem (2.3) more chal-
lenging to solve. Indeed, the minimax problem (2.3) be-
comes a nonconvex-nonconcave problem in θ and ν, even
with the tabular parameterization as we will show later in
Lemma 2.2.
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Remark 2.1 (Hidden bilinear problem). Note that Prob-
lem (2.3), which resembles a bilinear zero-sum game, in
fact falls into the class of hidden bilinear minimax prob-
lems discussed in Vlatakis-Gkaragkounis et al. (2019) (or
more generally the hidden convex-concave games stud-
ied in Flokas et al. (2021); Mladenovic et al. (2021)). It
was shown in Flokas et al. (2021) that for general smooth
functions of gθ and hν , vanilla gradient descent-ascent ex-
hibits a variety of behaviors antithetical to convergence
to the solutions. We here instead, show that for the spe-
cific softmax parameterization, and for certain variants of
the vanilla gradient-descent-ascent method, the last-iterate
convergence rate of the parameters θ and ν can be estab-
lished.

Natural PG & Non-convergence pitfall. Before pro-
ceeding further, we first introduce the regularized game:

min
θ∈Rn

max
ν∈Rn

fτ (θ, ν) := g>θ Qhν − τH(gθ) + τH(hν), (2.4)

where the cost of both players is regularized by the Shan-
non entropy of the policies, with τ > 0 being the regular-
ization parameter, and H(π) = −

∑
a∈A π(a) log(π(a))

for π on a simplex. The entropy regularization, which is
commonly used in single-player RL, enjoys the benefits of
both encouraging exploration and accelerating convergence
(Neu et al., 2017; Mei et al., 2020). Our hope is also to
exploit the benefits of entropy regularization in the multi-
player setting. Indeed, the regularized cost traces its source
in the game theory literature (McKelvey and Palfrey, 1995),
to model the imperfect knowledge of the cost matrix Q. In
the next lemma, we show that the problem in Equation 2.4
can be of the nonconvex-nonconcave type:

Lemma 2.2. The minimax problem (2.4) is nonconvex in
θ and nonconcave in ν, even if pθ = θ and qν = ν.

Note the nonconvexity in the parameters remains even
when we regularize with the entropy of the policy, i.e.,
when τ > 0.

Motivated by the successes of natural policy gradient
(Kakade, 2002) and its variants, as PPO/TRPO (Schulman
et al., 2015, 2017), in RL practice, we consider the natural
PG descent-ascent update for (2.4), which is given by

θt+1 = θt − η · F †θ (θt) ·
∂fτ (θt, νt)

∂θ

= (1− ητ)θt − ηQhνt + ητ

(
log

∑
a′∈A

eθt(a
′) − 1

)
,

(2.5)

νt+1 = νt + η · F †ν (νt) ·
∂fτ (θt, νt)

∂ν

= (1− ητ)νt + ηQ>gθt − ητ
(

log
∑
b′∈B

eνt(b
′) − 1

)
,

(2.6)

where Fθ(θ) = Ea∼gθ [(∇θ log gθ(a))(∇θ log gθ(a))>]
and Fν(ν) = Eb∼hν [(∇ν log hν(b))(∇ν log hν(b))>] are
the Fisher information matrices, M† denotes the pseudo-
inverse of the matrix M , and η > 0 is the stepsize. The
derivations for natural policy gradient can be found in §A.2
for completeness.

Unfortunately, the vanilla NPG update (2.5)-(2.6) may fail
to converge in the parameter space for any stepsize η > 0.
The key reason for the failure is that the mappings repre-
sented in (2.5)-(2.6) may not have a fixed point for a gen-
eral Q and τ (which could be the only limit point for this
dynamics). In fact, this issue persists even when the regu-
larization parameter τ = 0. We formalize this pitfall in the
following lemma, with its proof deferred to appendix.

Lemma 2.3 (Pitfall of vanilla NPG). There exists a game
(2.4) with τ ≥ 0 and |B| = 1, such that the updates (2.5)-
(2.6) do not converge for any η > 0.

Remarkably, we emphasize that our Lemma 2.3, by con-
struction, also even applies to the single-agent setting, with
a regularized cost and the NPG update, as studied recently
in Cen et al. (2021a); Lan (2021); Zhan et al. (2021). These
works only focus on the convergence in the policy space,
which does not imply the desired convergence in the pol-
icy parameter space. The later becomes especially rel-
evant in the function approximation setting, as we will
study later. Finally, we remark that, the non-convergence
here also should not be confused with the last-iterate non-
convergence of no-regret learning algorithms for solving
bilinear zero-sum games (Daskalakis and Panageas, 2018;
Bailey and Piliouras, 2018), as our example is essentially a
single-agent case. We summarize the importance and mo-
tivation of establishing parameter convergence as follows.

Importance of Parameter Convergence:

Numerical instability: Prior works were only able to show
the convergence of values and/or policies, and the conver-
gence behavior of policy parameters was unclear (or over-
looked). Arguably, having (last-iterate) parameter conver-
gence is the strongest type of convergence among the three.
In practice, having parameters blow-up to infinity can cause
numerical issues. For example, once the size of the pa-
rameter crosses a threshold (say 264 for an integer in a
64-bit operating system), there would be overflow issues,
and the stored parameter would be void, and NaN (not a
number) would be returned by the program. This blow-
up would then cause trouble in recovering the policy, or
approximating the policy with arbitrary accuracy. In or-
der to circumvent this issue, a common practice in Neural
Network training is to do Clipping/Projection. In fact, en-
suring the stability of the model is very important in deep
learning. Specifically, consider maxθ∈Rn q

>gθ + τH(gθ),
where we know that under the NPG updates, gθ → g?

while θ could blow up to infinity. One could clip the
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parameter θ to some large constant θmax, i.e., solving
max‖θ‖∞≤θmax

q>gθ + τH(gθ) instead. For concreteness,
let n = 2, τ = 1, θmax = 80 and q = [−2,−3]. The op-
timal solution is then given by g?i ∝ exp(qi) for i = 1, 2.
On running the vanilla NPG algorithm, since we do weight
clipping, the algorithm converges to θ = [θmax, θmax] cor-
responding to the distribution [1/2, 1/2] 6= g?. Meanwhile,
the modified NPG we propose converges to θ = [−2,−3]
(see Theorem 3.4) which exactly corresponds to the op-
timal solution g?. Hence, in practice where the norm of
the (neural network) parameters is bounded, one might not
obtain policy convergence using vanilla NPG as desired,
while our proposed algorithm works.

Nonconvex-nonconcave minimax optimization: The sec-
ond reason comes from a minimax optimization perspec-
tive of solving (2.3). We view optimization over the param-
eter space as an interesting nonconvex-nonconcave min-
imax optimization problem with a hidden structure (See
Lemma 2.2). To the best of our knowledge, this is the
first paper to provide a symmetric discrete-time algorithm
to solve certain nonconvex-nonconcave problem (and more
generally non-monotone variational inequalities) with last-
iterate convergence rates, even including the specialized
settings (like the ones with Polyak-Łojasiewicz condition
(Nouiehed et al., 2019; Yang et al., 2020)).

Function approximation (FA): Parameter convergence
becomes crucial in FA settings (used in practice). Here, the
policy lies in a high-dimensional space (or even an infinite-
dimensional space if the actions are continuous), which we
simply do not have access to and/or cannot operate on. The
way practitioners run PG methods is to just operate on the
low-dimensional policy parameter space. Thus, parame-
ter convergence is necessary to design meaningful stopping
criteria for optimization algorithms. If parameters explode
to infinity, we cannot decide on how close we are to con-
vergence, and the numerical issue mentioned before would
cause trouble in recovering the policy.

3 Warm-up: (Optimistic) NPG for Matrix
Games

To address the pitfall above about parameter convergence,
we introduce two variants of the vanilla NPG (2.5)-(2.6),
and show their convergence for solving matrix games.

3.1 NPG for Matrix Games

We first introduce the following variant of the vanilla NPG
update:

θt+1 = (1− ητ)θt − ηQhνt , (3.1)

νt+1 = (1− ητ)νt + ηQ>gθt , (3.2)

where we removed the last term in (2.5)-(2.6), respectively.
Note that these updates correspond to the popular Multi-
plicative Weights Update (MWU) for the regularized game
in policy space (we succinctly represent gθt and hνt as gt
and ht, respectively), i.e.,

gt+1(a) ∝ gt(a)(1−ητ)e−η[Qht]a ,

ht+1(b) ∝ ht(b)(1−ητ)eη[Q>gt]b . (3.3)

First, we provide a convergence result for the updates in
Equations (3.1)-(3.2), the non-optimistic version, both in
terms of policy as well as parameters. In order to do so,
we need to first show that the iterates of the regularized
MWU in Equations (3.1)-(3.2) ensure that the policies stay
bounded away from the boundary of the simplex. We show
this in the following lemma:
Lemma 3.1. The policies corresponding to the iterates of
regularized MWU in Equations (3.1)-(3.2) with stepsize
η < 1/τ stay within a set ∆′ ⊂ ∆ which is bounded
away from the boundary of the simplex, i.e., ∀x ∈ ∆′ with
x = (x1, · · · , xn)>, and for all i ∈ [n], xi ≥ δ > 0 for
some δ.

Since the iterates of the policies lie within ∆′, a closed and
bounded set, and the regularized cost is continuously dif-
ferentiable with respect to the policies, we let L denote the
smoothness constant of the regularized cost in the policy
space, i.e. ∀z1, z2 ∈ Z ′,
‖(Mz1 + τ∇H(z1))− (Mz2 + τ∇H(z2))‖ ≤ L‖z1 − z2‖,

(3.4)

where z = [g;h], Z ′ ∈ ∆′ × ∆′ and with a slight abuse
of notation, we define ∇H(z) = [∇gH(g);∇hH(h)], and

also, we define the matrix M =

(
0 Q
−Q> 0

)
.

Finally, the entropy regularized optimization problem in
the policy space can be formulated as:

min
g∈∆(A)

max
h∈∆(B)

= g>Qh− τH(g) + τH(h). (3.5)

Now, we use this to derive the policy and parameter con-
vergence of the MWU updates in Equations (3.1)-(3.2) in
the following theorem.
Theorem 3.2. The solution (g?, h?) to the problem (3.5)
is unique. Furthermore, let θ? = −Qh?

τ and ν? = Q>g?

τ .
Then on running Equations (3.1)-(3.2) with the stepsize sat-
isfying 0 < η ≤ τ/L2, we have:

KL(z∗‖zt+1) ≤
(

1− ητ

2

)
KL(z∗‖zt), (3.6)

and

‖θt+1 − θ?‖2 + ‖νt+1 − ν?‖2

≤ (1− ητ/4)t

(
‖θ0 − θ?‖2 + ‖ν0 − ν?‖2 +

4C

ητ

)
,

(3.7)
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where C =
(

1 + 1
ητ (1− ητ)2

)
4η2‖Q‖2∞KL(z?‖z0).

Here z0 = (gθ0 , hν0
) and z? = (g?, h?).

To the best of our knowledge, this is the first policy conver-
gence guarantee for NPG (without optimism) for regular-
ized matrix games. As the theorem above shows, parame-
ter convergence can be established as well. In other words,
though the vanilla NPG descent-ascent diverges for Prob-
lem (2.4), the variant we propose (Equations (3.1)-(3.2))
implicitly regularizes the parameter iterates to converge to
a particular solution, in last-iterate. Recall from Lemma
2.2 that Problem (2.4) is a nonconvex-nonconcave mini-
max problem and there have been no convergence guaran-
tees, to the best of our knowledge, of any symmetric and
simultaneous-update algorithms in general (see Yang et al.
(2020); Rafique et al. (2018); Lin et al. (2019) and refer-
ences therein as examples for some structured nonconvex-
nonconcave problems). From Theorem 3.2, the rate we can
hope to achieve with NPG is O(κ2 log(1/ε)) (number of
steps to reach a point ε close to the solution), where κ is the
condition number L/τ of the problem. In the next subsec-
tion, we see how adding optimism (Rakhlin and Sridharan
(2013)) will improve this rate of convergence.

3.2 Optimistic NPG (ONPG) for Matrix Games

In this subsection, we study the variant of the NPG updates
in Equations (3.1)-(3.2) along with optimism (Popov, 1980;
Rakhlin and Sridharan, 2013; Daskalakis and Panageas,
2018, 2019; Mokhtari et al., 2020b). In particular, we in-
troduce the intermediate iterates (θ̄t, ν̄t), and the following
optimistic variant of the NPG (here (θ̄0, ν̄0) is initialized as
(θ0, ν0)):

θ̄t+1 = (1− ητ)θt − ηQhν̄t , θt+1 = (1− ητ)θt − ηQhν̄t+1

ν̄t+1 = (1− ητ)νt + ηQ>gθ̄t , νt+1 = (1− ητ)νt + ηQ>gθ̄t+1
.

This optimistic update is motivated by the success of opti-
mistic gradient methods in saddle-point problems recently
analyzed in several papers including Hsieh et al. (2019);
Mokhtari et al. (2020a,b). Note that our algorithm is sym-
metric in θ and ν updates and both players update simulta-
neously. The update rules are also tabulated in Algorithm
1.

Remark 3.3 (Connections to the literature). Note that the
natural PG update rule in Equations (3.1)-(3.2) has a close
relationship to the multiplicative weight update rule (Fre-
und and Schapire, 1997; Arora et al., 2012) in the policy
space (gθ, hν), see Section C.3 in Agarwal et al. (2019) for
a detailed discussion. Similarly, the optimistic NPG update
in Algorithm 1 also relates to the optimistic MWU update
(Daskalakis and Panageas, 2019). In fact, recent works Wei
et al. (2020); Cen et al. (2021b) have shown the last-iterate
policy convergence of OMWU for zero-sum matrix games
(with Wei et al. (2020) relying on the uniqueness assump-
tion of the NE). Our goal, in contrast, is to study the (last-

iterate) convergence behavior of the actual policy parame-
ters (θ, ν), and go beyond the tabular zero-sum setting.

Inspired by the results which show that adding optimistic
updates improves convergence rates (Rakhlin and Sridha-
ran, 2013), we next explore our modified NPG updates with
optimism, and show that the convergence rate does in fact
improves (in line with the comparison of the performance
of GDA and optimistic GDA, see e.g., Fallah et al. (2020)).

In the next theorem, we show that our Optimistic NPG Al-
gorithm (Algorithm 1) in fact converges linearly in last-
iterate to a unique point in the set of NE in the parameter
space, at a faster rate3 than the non-optimistic counterpart
in Equations (3.1)-(3.2). The results are formally stated be-
low.
Theorem 3.4. Let θ? = −Qh?

τ and ν? = Q>g?

τ , where
g? and h? are the solutions to the regularized game (2.4).
Then on running Algorithm 1 with the stepsize satisfying
0 < η ≤ min

{
1

2τ+2‖Q‖∞ ,
1

4‖Q‖∞

}
, we have:

‖θt+1 − θ?‖2 + ‖νt+1 − ν?‖2 ≤ (1− ητ/2)tV0, (3.8)

where V0 = ‖θ0 − θ?‖2 + ‖ν0 − ν?‖2 + 2C
ητ and C =(

1 + 1
ητ (1− ητ)2

)
4η2‖Q‖2∞KL(z?‖z0). Here z0 =

(gθ0 , hν0
) and z? = (g?, h?).

This result shows that the specific hidden bilinear minimax
problem we are dealing with does not fall into the spuri-
ous categories discussed in Vlatakis-Gkaragkounis et al.
(2019), if we resort to the (optimistic) natural PG update.
Note that achieving parameter convergence is a non-trivial
task since we are dealing with a nonconvex-nonconcave
minimax problem (see Lemma 2.2) The proof relies on the
specific structure of the softmax policy parametrization and
the construction of a novel Lyapunov function (see §B for
more details). Next, we show how the optimistic NPG al-
gorithm solves the original matrix game without regular-
ization.
Corollary 3.5. If we run the non-optimistic variant of NPG
in Equations (3.1)-(3.2) or the optimistic version in Al-
gorithm 1 for time T = O

(
logn
ηε log

(
1
ε

))
and set τ =

ε/(8 log n), we have that the output (θT , νT ) is an ε-NE of
the original unregularized Problem (2.3).

We extend these results to simple function approximation
settings in the Section C.

4 Multi-player Monotone Games

Monotone games. Consider a multi-player continuous
game over simplexes, which strictly generalizes the zero-

3Note that we say that the optimistic version achieves a faster
rate, since the range of stepsizes which permits convergence is
much larger for the optimistic variant. This can be noted from the
fact that L in equation (3.4) will be larger than ‖Q‖∞ + τ .
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sum matrix game in §2. The game is characterized by
(N , {Ai}i∈[N ], {fi}i∈[N ]), where N = [N ] is the set of
players. Without loss of generality, we assume |Ai| = n for
all i ∈ [N ]. For notational convenience, let ∆ denote the
simplex over Ai, and z := (g1, g2, · · · , gN ) ∈ ∆N denote
the strategy profile of all N players, with each gi ∈ ∆. We
define the pseudo-gradient operator F : ∆N → RnN as
F (z) := [∇gifi(gi, g−i)]Ni=1. To make the N -player game
tractable, we make the following standard assumptions on
F (Rosen, 1965; Nemirovski, 2004; Facchinei and Pang,
2007).
Assumption 4.1 (Monotonicity & Smoothness). The op-
erator F is monotone and smooth, i.e., ∀z, z′ ∈ ∆N

〈F (z)− F (z′), z − z′〉 ≥ 0, ‖F (z)− F (z′)‖ ≤ L · ‖z − z′‖,

where L > 0 is the Lipschitz constant of the operator F .

The goal is to find the NE, given by strategy z? such that
fi(z

?
i , z

?
−i) ≤ fi(zi, z

?
−i), ∀ zi ∈ ∆, i ∈ [N ]. Under As-

sumption 4.1, it is known that the NE exists (Rosen, 1965).

Policy parameterization & regularized game. To de-
velop policy gradient methods, we parameterize each pol-
icy gi ∈ ∆ by gθi in the softmax form as before, i.e., for
any ai ∈ Ai, gθi(ai) = epθi (ai) ·

(∑
a′i∈Ai

epθi (a
′
i)
)−1

,
where θi ∈ Rd, and we consider both the tabular case with
pθi = θi and the linear function approximation case with
pθi(ai) = φ>aiθi. This parameterization leads to the follow-
ing set of optimization problems:

min
θi∈Rn

fi(gθi , gθ−i), ∀ i ∈ [N ], (4.1)

whose solution (θ?1 , θ
?
2 , · · · , θ?N ), if exists, corresponds to

the Nash equilibrium under this parameterization. Note
that (4.1) can also be viewed as a nonconvex game (Lemma
2.2 is a special case) with a “hidden” monotone variational
inequality structure, which generalizes the class of hidden
convex-concave problems discussed in Flokas et al. (2021);
Mladenovic et al. (2021).

Motivated by §2, we also consider the regularized game in
hope of stronger convergence guarantees for solving (4.1).
Specifically, the players solve

min
θi∈Rn

fi(gθi , gθ−i)− τH(gθi), ∀ i ∈ [N ], (4.2)

where τ > 0 and H is the entropy function. With a small
enough τ , the solution to (4.2) approximates that to (4.1).

4.1 Softmax parameterization

We first consider the tabular softmax parameterization with
pθi = θi ∈ Rn for all i ∈ [N ]. In this case, the Nash equi-
librium θ? = (θ?1 , θ

?
2 , · · · , θ?N ) of the regularized monotone

game (4.2) satisfies the following property.

Lemma 4.2. The NE of the game (4.2) exists. A vec-
tor θ? = (θ?1 , θ

?
2 , · · · , θ?N ) is a NE of (4.2) if and only

if: gθ?i (a) ∝ exp
(−[∇gθi fi(gθ?i ,gθ?−i )]a

τ

)
and the vector

(gθ?1 , gθ?2 , · · · , gθ?N ) is unique. We denote g?i := gθ?i .

Note that although the NE policy (gθ?1 , gθ?2 , · · · , gθ?N ) is
unique, the NE parameter (θ?1 , θ

?
2 , · · · , θ?N ) is not neces-

sarily the case. Motivated by §2 and §3, we propose the
following update-rule for solving (4.2): ∀ players i ∈ [N ],

θ̄t+1
i = (1− ητ)θti − η∇gθi fi(gθ̄ti , gθ̄t−i),

θt+1
i = (1− ητ)θti − η∇gθi fi(gθ̄t+1

i
, gθ̄t+1
−i

).

We refer to the update-rule as optimistic NPG (as summa-
rized in Algorithm 3), as it corresponds to the optimistic
version of the (specific instance of) natural PG direction
for the regularized objective (4.2). We choose this specific
instance of NPG due to the pitfall discussed in §2; and the
optimistic update is meant to obtain fast last-iterate con-
vergence. See §E.2 for a detailed derivation of the update
rule.

As shown in §2, the problem (4.1) is nonconvex in the pol-
icy parameter space, and can be challenging in general. Our
strategy is to show that our algorithm solves the regularized
problem (4.2) fast, with last-iterate parameter convergence
(see Theorem 4.3), which, with small enough τ , also solves
the nonconvex game (4.1) (see Corollary 4.5).
Theorem 4.3. Let z? = (g?i )Ni=1 be the unique Nash
equilibrium given in Lemma 4.2. Also, we denote zt =
(gθti )

N
i=1. Then for Algorithm 3 with stepsize 0 < η <
1

2(N+4)L+2τ , we have:

max {KL(z?‖zt),KL(z?‖z̄t+1)} ≤ (1− ητ)t2KL(z?‖z0),

‖θt+1 − θ?‖2 ≤ (1− ητ/2)tV0, (4.3)

where θ?i =
−∇gθi fi(g

?
i ,g

?
−i)

τ , V0 = ‖θt−θ?‖2 + 2NC
ητ , and

C = 4η2L2
(

1 + 1
ητ (1− ητ)2

)
KL(z?‖z0).

The proof follows by first showing convergence in the pol-
icy space, in which we are dealing with a strongly convex
problem under convex constraints. We then use this result,
along with a novel Lyapunov function to demonstrate the
convergence in the parameter space, in which it is a non-
convex problem. The proof technique might of indepen-
dent interest, and might be generalized to showing conver-
gence in other nonconvex games with a hidden monotonic-
ity structure.

Remark 4.4. The proof for Theorem 4.3 follows by
first showing the convergence rate of the Proximal Point
method, and then observing that Optimistic methods ap-
proximate this method and could potentially achieve the
same convergence rates (see Mokhtari et al. (2020b) for a
unified analysis). We provide a convergence analysis for
the Proximal Point and Extragradient methods in §E.5.
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Now, we present the convergence of Algorithm 3 to an ε-
NE of the un-regularized problem (4.1).

Corollary 4.5. If we run Algorithm 3 for time T =

O
(
N logn
ηε log

(
1
ε

))
and set the regularization parameter

τ = ε/(4N log n), we have that θT = [θT1 , θ
T
2 , · · · , θTN ],

the iterate at time T , is an ε-NE of Problem (4.1).

We extend the results to certain function approximation set-
tings in §E.6 in the Appendix.

5 Optimistic NPG for Markov Games

We now generalize our results in previous sections to the
sequential decision-making case of Markov games. We
provide a brief description of Markov games in §F.1.

Policy parameterization. Following the matrix game
setting, we also use the softmax parameterization of the
policies. Specifically, for any θ, ν ∈ Rd, (s, a, b) ∈
S ×A× B,

gθ(a | s) =
epθ(s,a)∑

a′∈A
epθ(s,a′)

, hν(b | s) =
eqν(s,b)∑

b′∈B
eqν(s,b′)

.

(5.1)

Note that for any s ∈ S,
∑
a gθ(a | s) =

∑
b hν(b | s) =

1. We will consider both 1) the tabular case with pθ = θ
and qν = ν, where θ ∈ R|A|×|S| and ν ∈ R|B|×|S|; and
2) the linear function approximation case with pθ(s, a) =
θ · φ(s, a) and qν(s, a) = ν · φ(s, a) (See §F.3 for more
details)4.

The parameterization thus leads to the following definition
of the solution concept.

Definition 5.1 (ε-in-class-NE for Markov games). The
policy parameter pair (θ̃, ν̃) is an ε-in-class Nash equilib-
rium if it satisfies that for all s ∈ S,

V θ̃,ν(s)− ε ≤ V θ̃,ν̃(s) ≤ V θ,ν̃(s) + ε,∀θ, ν ∈ Rd,
(5.2)

where V θ,ν(s) = V gθ,hν (s) denotes the value of the pa-
rameterized policy pair (gθ, hν). Note that if we are in the
tabular setting, we will have d = n, and the definition cov-
ers that of the standard ε-NE for Markov games. We also
define the ε-in-class NE Q-value accordingly.

Given that matrix games considered in §2 is a special case
of the Markov games with |S| = 1 and γ = 0, Lemma 2.2
implies that finding the NE in Definition 5.1 is nonconvex-
nonconcave in general, and can be challenging to solve.

4Once again, note that we use the same features for both play-
ers for notational convenience. Our results continue to hold when
the two players have different features φ.

We show in the following lemma that, for the tabular and
linear function approximation settings we consider, such a
parameterized NE exists.

Lemma 5.2 (Existence of parameterized/in-class NE).
Under policy parameterization (5.1) with tabular parame-
terization, the in-class NE defined in Definition 5.1 exists.

Motivated by §3, we consider the modified version of NPG
with optimism to solve this problem.

Optimistic NPG. Following §2, we also consider the
regularized Markov games (Geist et al., 2019; Zhang et al.,
2020; Cen et al., 2021b), in hope of favorable convergence
guarantees. Define the regularized value functions as

V θ,ντ (s) := Eat∼gθ(· | st),bt∼hν(· | st)

[
∞∑
t=0

γt
(
rt − τ log gθ(at|st)

+ τ log hν(bt|st)
) ∣∣∣ s0 = s

]
, (5.3)

where rt = r(st, at, bt), τ < 1, and

Qθ,ντ (s, a, b) := r(s, a, b) + γEs′∼P(·|s,a,b)[V
θ,ν
τ (s′)].

(5.4)

We denote by V ?τ and Q?τ , the NE value and Q-functions
respectively, for the regularized Markov game (“regular-
ized NE”), i.e., V ?τ = minθ maxν V θ,ντ and Q?τ is the
corresponding Q-function. Note that their existence fol-
lows along similar lines as Lemma 5.2. As a generalization
of regularized matrix games in §2, the non-convergence
pitfall of vanilla NPG also occurs. We also define5

fτ
(
Q(s); gθ(· | s), hν(· | s)

)
:= − gθ(· | s)>Q(s)hν(· | s)−

τH(gθ(· | s)) + τH(hν(· | s))

5.1 Convergence guarantee

To stabilize the algorithm, we propose the update rule
where the parameters (θ, ν) for all states are updated at a
faster time scale, and the Q matrix is updated at a slower
time scale. To be more precise, at every time t of the outer
loop, we solve the matrix game

min
θ∈Rn

max
ν∈Rn

fτ (Q(s); gθ(· | s), hν(· | s)), (5.5)

for each state s ∈ S by running Tinner iterations of the
Optimistic NPG algorithm (Algorithm 1). At the end
of each inner loop, the outer loop updates the Q matrix
for each state s ∈ S as Qt+1(s, a, b) = r(s, a, b) +
γEs′∼P(·|s,a,b)[fτ (Qt(s

′); gθTinner (· | s′), hνTinner (· | s′))].

The complete algorithm is presented in Algorithm 6. Note
that we use the name ONPG for Markov games because the

5We add a minus sign in front of Q in order to continue work-
ing with costs, instead of rewards, as done in the previous sec-
tions.
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inner matrix game is solved using the ONPG updates. The
two-timescale-type update rule (between the policy and
value updates) for solving infinite-horizon Markov games
has also been used before in Sayin et al. (2021); Cen et al.
(2021b); Wei et al. (2021).

Next, we provide a convergence result for the performance
of Algorithm 6 for the regularized Markov game.
Theorem 5.3. Let Q?τ be the NE Q-value of the regu-
larized Markov Game under the tabular parametrization.
Choose the stepsize η = 1−γ

2(1+τ(logn+1−γ)) for the inner
loop in Algorithm 6. Let T denote the total number of iter-
ations (Touter · Tinner). Then, after

Tinner = O
(

1

ητ

(
log

1

ε
+ log

1

1− γ + log logn+ log
1

η

))
,

Touter = O
(

1

1− γ

(
log

1

ε
+ log

(
8

τ

(
1 + C2‖Q?‖2∞

))
+ log

1 + τ logn

1− γ

))
, (5.6)

iterations, we have ‖QT − Q?τ‖F ≤ ε and max{‖θT −
θ?‖, ‖νT − ν?‖} ≤ ε where (QT , θT , νT ) is the output of
Algorithm 6 after T iterations, and (θ?, ν?) are defined in
Equation (F.8).

Finally, we show how the optimistic NPG algorithm solves
the original Markov game without regularization.

Corollary 5.4. If we run Algorithm 6 for time Tinner =

O
(

logn
(1−γ)2ε log

(
1
ε

))
, Touter = O

(
1

(1−γ) log
(

1
ε

))
, and

setting τ = O((1 − γ)ε/ log n), the output (θT , νT ) will
be an ε-in-class NE (Definition 5.1) of the original unregu-
larized Markov game.

Remark 5.5. We remark that Theorem 5.3, to the best of
our knowledge, is the first to show parameter convergence
in Markov games with policy parametrization, and is dif-
ferent from the policy convergence results of several re-
cent works Zhao et al. (2021); Wei et al. (2021); Cen et al.
(2021b) (see §1.1 for a detailed comparison).

We extend these results to simple function approximation
settings in §F.3 and have simulations in §G in the Ap-
pendix.
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(2019). Poincaré recurrence, cycles and spurious equi-
libria in gradient-descent-ascent for non-convex non-
concave zero-sum games. In Advances in Neural Infor-
mation Processing Systems, pages 10450–10461.

Wang, L., Cai, Q., Yang, Z., and Wang, Z. (2019). Neural
policy gradient methods: Global optimality and rates of
convergence. arXiv preprint arXiv:1909.01150.

Wei, C.-Y., Lee, C.-W., Zhang, M., and Luo, H. (2020).
Linear last-iterate convergence in constrained saddle-
point optimization.

Wei, C.-Y., Lee, C.-W., Zhang, M., and Luo, H. (2021).
Last-iterate convergence of decentralized optimistic
gradient descent/ascent in infinite-horizon competitive
Markov games. arXiv preprint arXiv:2102.04540.

Yang, J., Kiyavash, N., and He, N. (2020). Global con-
vergence and variance-reduced optimization for a class
of nonconvex-nonconcave minimax problems. arXiv
preprint arXiv:2002.09621.

Yu, C., Velu, A., Vinitsky, E., Wang, Y., Bayen, A.,
and Wu, Y. (2021). The surprising effectiveness of
MAPPO in cooperative, multi-agent games. arXiv
preprint arXiv:2103.01955.

Zhan, W., Cen, S., Huang, B., Chen, Y., Lee, J. D., and
Chi, Y. (2021). Policy mirror descent for regularized
reinforcement learning: A generalized framework with
linear convergence. arXiv preprint arXiv:2105.11066.
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Supplementary Materials for
“Symmetric (Optimistic) Natural Policy Gradient for Multi-agent Learning

with Parameter Convergence”

A Missing Definitions and Proofs in §2

A.1 Proof of Lemma 2.2

We show that the problem

min
θ∈Rn

max
ν∈Rn

g>θ Qhν , (A.1)

is nonconvex-nonconcave.

Let

Q =

[
1 0
0 1

]
. (A.2)

Consider θ1 = (0, 0) and θ2 = (log 4, log 9). This implies gθ1 = (1/2, 1/2)> and gθ2 = (4/13, 9/13)>. Also, from the
form of Q, we have Qhν = [hν(1), hν(2)]>, ∀ν. Now, for [hν(1), hν(2)] = [1/3, 2/3], we have

1

2
(g>θ1Qhν + g>θ2Qhν) < g(θ1+θ2)/2Qhν , (A.3)

which implies nonconvexity in θ.

Similarly, taking ν1 = (0, 0) and ν2 = (log 4, log 9) (which implies hν1
= (1/2, 1/2)> and hν2

= (4/13, 9/13)>, and
taking gθ = (2/3, 1/3)>, we have

1

2
(g>θ Qhν1 + g>θ Qhν2) > gθQh(ν1+ν2)/2, (A.4)

which implies nonconcavity in ν.

Note that adding regularization does not get rid of this convexity. For example consider the specific case when hν is a
constant policy and the matrix Q is 0. We show the nonconvexity of the function −τH(gθ) in θ next. Consider θ1 = (0, 0)
and θ2 = (log 4, log 9). We have gθ1 = (1/2, 1/2) and gθ2 = (4/13, 9/13). Furthermore, we have g(θ1+θ2)/2 =
(1/3, 2/3), and we can see that:

−τ
2

(H(gθ1) +H(gθ2)) < −τH(g(θ1+θ2)/2) (A.5)

which shows nonconvexity of −τH(gθ). This completes the proof of the lemma.

A.2 Vanilla NPG for matrix games

Next, we compute the Fisher Information Matrix Fθ(θ) = Ea∼gθ
[(
∇θ log gθ(a)

)(
∇θ log gθ(a)

)>]
. For the softmax

parametrization, we have:

∇θ log gθ(a) = ∇θ

(
θ(a)− log

( ∑
a′∈A

eθ(a
′)
))

= [−gθ(1),−gθ(2), · · · , 1− gθ(a), · · · ,−gθ(n)]>. (A.6)

Now, consider the (i, i)th element of the Fisher information matrix. We have:

[Fθ(θ)]ii = gθ(i)(1− gθ(i))(1− gθ(i)) +
∑
j 6=i

gθ(j)gθ(i)
2 = gθ(i)(1− gθ(i)). (A.7)
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Similarly, we have the (i, j)th element, where i 6= j is given by:

[Fθ(θ)]ij = (1− gθ(i)− gθ(j))gθ(i)gθ(j)− gθ(i)(1− gθ(i))gθ(j)− gθ(j)(1− gθ(j))gθ(i) = −gθ(i)gθ(j). (A.8)

Therefore, the matrix Fθ(θ) can be succinctly written as:

Fθ(θ) = diag(gθ)− gθg>θ , (A.9)

where diag(gθ) is a diagonal matrix with entries gθ. Note that this is in fact∇θgθ (see Mei et al. (2020)), i.e.,

∇θgθ = diag(gθ)− gθg>θ . (A.10)

Therefore, we have:

F †θ (θ)∇θgθ = I. (A.11)

The update of the vanilla NPG thus simplifies to the following:

θt+1 = θt − η · F †θ (θt) ·
∂fτ (θt, νt)

∂θ
= θt − η

∂fτ (θt, νt)

∂gθ

= θt − η (Qhνt + τ(1+ log gθt)) . (A.12)

However, since gθ(a) = eθ(a)∑
a′∈A e

θ(a′) , we have

θt+1(a) = (1− ητ)θt(a)− η
(

[Qhνt ]a + τ − τ log
∑
a′∈A

eθt(a
′)

)
. (A.13)

A similar update for ν leads to the updates in Equations (2.5)-(2.6). Note that when we write a constant in the update, we
mean a constant vector with all elements being the same.

A.3 Proof of Lemma 2.3

We restate the lemma here first for convenience:

Lemma A.1 (Pitfall of vanilla NPG). There exists a game (2.4) with τ ≥ 0 (we allow for unregularized games as well)
and a dummy player 2, i.e., |B| = 1, for which the updates (2.5)-(2.6) do not converge for any η > 0.

Proof. Consider the θ update under NPG:

θt+1(a) = (1− ητ)θt(a)− η
(

[Qhνt ]a + τ − τ log
∑
a′∈A

eθt(a
′)

)
. (A.14)

From here, it is easy to see that it need not converge for the case where τ = 0, since this would require Qhνt = 0 which
need not be the case (For example consider Q = [1 | 1]>, and hν = [1]. In this case, hνt = 1 for any parameter νt).

Next, we consider the case where τ > 0. Suppose θ converges to some point θ?. Since |B| = 1, we have hνt = [1].
Substituting the point θ? into the update we have:

θ?(a) = (1− ητ)θ?(a)− η
(

[Q]a + τ − τ log
∑
a′∈A

eθ
?(a′)

)
. (A.15)

This implies:

ητθ?(a) = −ητ
(

[Q]a
τ

+ 1

)
+ ητ log

∑
a′∈A

eθ
?(a′). (A.16)

This leads to:

log eθ
?(a) − log

∑
a′∈A

eθ
?(a′) = − [Q]a

τ
− 1. (A.17)
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Algorithm 1 Optimistic NPG

Initialize: θ0 = 0 and ν0 = 0.
for t = 1, 2, · · · do
θ̄t+1 = (1− ητ)θt − ηQhν̄t
ν̄t+1 = (1− ητ)νt + ηQ>gθ̄t

θt+1 = (1− ητ)θt − ηQhν̄t+1

νt+1 = (1− ητ)νt + ηQ>gθ̄t+1

end for

However,

log eθ
?(a) − log

∑
a′∈A

eθ
?(a′) = log

eθ
?(a)∑

a′∈A e
θ?(a′)

= log gθ?(a). (A.18)

Substituting this in Equation (A.17), we have:

gθ?(a) = exp

(
− [Q]a

τ
− 1

)
. (A.19)

This need not be a valid probability measure. For example, consider Q = [−2 | 2]> and τ = 1, we have:

gθ?(1) = e > 1, (A.20)

which contradicts the fact that gθ is a probability measure. This implies that the original NPG updates cannot have a fixed
point, and therefore does not converge for any stepsize η > 0.

B Missing Details and Proofs in §3

Remark B.1. We note that all results presented in this section also follow for the case where the action spaces for both
players are asymmetric. However, we stick to the case where the number of actions is the same for both players, for ease
of exposition.

B.1 Proof of Theorem 3.2

B.1.1 Policy convergence

Consider the following modified NPG updates for the regularized game:

θt+1 = (1− ητ)θt − ηQhνt , (B.1)

νt+1 = (1− ητ)νt + ηQ>gθt . (B.2)

Note that these updates correspond to the popular Multiplicative Weights Update (Freund and Schapire, 1997; Arora et al.,
2012) for the regularized game in policy space (we succinctly represent gθt and hνt as gt and ht, respectively), i.e.,

gt+1(a) ∝ gt(a)(1−ητ)e−η[Qht]a ,

ht+1(b) ∝ ht(b)(1−ητ)eη[Q>gt]b . (B.3)

We can write these updates as a mirror descent update with Bregman function given by the negative entropy (i.e., the
corresponding Bregman distance is the KL divergence) as follows:

gt+1 = argmin
g∈∆

{〈Qht + τ∇gH(gt), g〉+ KL(g‖gt)},

ht+1 = argmax
h∈∆

{〈Q>gt − τ∇hH(ht), h〉 − KL(h‖ht)}. (B.4)
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Note that we can write these updates succinctly as one Mirror Descent update in the following form:

zt+1 = argmin
z∈Z

{〈Mzt + τ∇H(zt), z〉+ KL(z‖zt)}, (B.5)

where z = [g;h], Z ∈ ∆×∆ and with slight abuse of notation, we define∇H(z) = [∇gH(g);∇hH(h)]. Also, we define
the matrix

M =

(
0 Q
−Q> 0

)
. (B.6)

We can now use properties of mirror decent to analyze the iterates of MWU.

First, we have the following two lemmas which follow from Bauschke et al. (2003), Proposition 2.3, and Lemma D.4 in
Sokota et al. (2022) which will be used to derive the final convergence rate:

Lemma B.2. For all z ∈ Z , we have

η〈Mzt + τ∇H(zt), zt+1 − z〉 ≤ KL(z‖zt)− KL(z‖zt+1)− KL(zt+1‖zt). (B.7)

Lemma B.3. For all z ∈ Z , we have

η〈Mz + τ∇H(z), z∗ − z〉 ≤ −ητ(KL(z‖z∗) + KL(z∗‖z)). (B.8)

In the next lemma, we show that the iterates of MWU on the regularized problem will be bounded away from the boundary
of the simplex.

Lemma B.4. For η < 1/τ , the iterates of regularized MWU stay within a set ∆′ ⊂ ∆ which is bounded away from the
boundary of the simplex, i.e., xi ≥ δ > 0 for some δ > 0, ∀x ∈ ∆′.

Proof. Consider the update of g. We have the following property from Mirror Descent (see Beck and Teboulle (2003))

KL(g∗‖gt+1) ≤ (1− ητ)KL(g∗‖gt)− (1− ητ)KL(gt+1‖gt)− ητH(gt+1) + ητH(g∗)

− η〈gt+1 − g∗, Qht〉
≤ (1− ητ)KL(g∗‖gt) + 2ητ log n+ 2η‖Q‖∞. (B.9)

This implies that

KL(g∗‖gt) ≤ 2 log n+
2‖Q‖∞
τ

+ KL(g∗‖g0). (B.10)

From the definition of the KL divergence and Equation (B.10), we have:

gt,i ≥ exp

(
−1

g∗min

(
2 log n+

2‖Q‖∞
τ

+ KL(g∗‖g0) +H(g∗)

))
> 0, ∀ i, and ∀ t. (B.11)

Here g∗min is the smallest value of the Nash Equilibrium policy (which is greater than 0 since the NE policy of the regular-
ized game is in the interior of the simplex). This completes the proof of the Lemma.

Since the iterates lie within ∆′, we let L denote the Lipschitz constant of Mz + τ∇H(z) (a continuous function over
∆×∆ whose norm approaches infinity as z approaches the boundary) in the set Z ′ (where Z ′ = ∆′ ×∆′), i.e.,

‖(Mz1 + τ∇H(z1))− (Mz2 + τ∇H(z2))‖ ≤ L‖z1 − z2‖, ∀z1, z2 ∈ Z ′. (B.12)

Now, we use these lemmas to derive the convergence rate of MWU for the regularized problem.

Theorem B.5. Consider the modified NPG updates in Equation (B.1)-(B.2) with stepsize satisfying 0 ≤ η ≤ τ/L2. We
then have:

KL(z∗‖zt+1) ≤
(

1− ητ

2

)
KL(z∗‖zt). (B.13)
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Proof. Note that the constraint η ≤ τ/L2 will automatically satisfy η < 1/τ (as needed by Lemma B.4) since τ ≤ L.

We have the following string of inequalities:

KL(z∗‖zt+1) ≤∗1 KL(z∗‖zt)− KL(zt+1‖zt) + η〈F (zt) + τ∇H(zt), z
∗ − zt+1〉

= KL(z∗‖zt)− KL(zt+1‖zt) + η〈F (zt+1) + τ∇g(zt+1), z∗ − zt+1〉
+ η〈(F (zt) + τ∇H(zt))− (F (zt+1) + τ∇H(zt+1)), z∗ − zt+1〉

≤∗2 KL(z∗‖zt)− KL(zt+1‖zt)− ητ (KL(zt+1‖z∗) + KL(z∗‖zt+1))

+ η〈(F (zt) + τ∇H(zt))− (F (zt+1) + τ∇H(zt+1)), z∗ − zt+1〉
≤∗3 KL(z∗‖zt)− KL(zt+1‖zt)− ητ (KL(zt+1‖z∗) + KL(z∗‖zt+1))

+ ηL‖zt+1 − zt‖‖z∗ − zt+1‖
≤∗4 KL(z∗‖zt)− KL(zt+1‖zt)− ητ (KL(zt+1‖z∗) + KL(z∗‖zt+1))

+
1

2
‖zt+1 − zt‖2 +

η2L2

2
‖z∗ − zt+1‖2

≤∗5 KL(z∗‖zt)− KL(zt+1‖zt)− KL(zt+1‖z∗) + η2L2KL(zt+1‖z∗)
− ητKL(zt+1‖z∗)− ητKL(z∗‖zt+1)

≤∗6 KL(z∗‖zt)− ητKL(z∗‖zt+1). (B.14)

Here (∗1) follows from Lemma B.2, (∗2) follows from Lemma B.3, (∗3) follows from Equation (B.12), (∗4) follows from
Young’s inequality, (∗5) follows from Pinskers inequality and (∗6) follows from η ≤ τ/L2. Therefore, we have

KL(z∗‖zt+1) ≤ 1

1 + ητ
KL(z∗‖zt) ≤

(
1− ητ

2

)
KL(z∗‖zt), (B.15)

which completes the proof.

B.1.2 Parameter convergence

In this section, we show convergence of the policy parameters. We have the following theorem.

Theorem B.6. Consider the modified NPG updates in Equation (B.1)-(B.2) with stepsize satisfying 0 ≤ η ≤ τ/L2. We
then have:

‖θt+1 − θ?‖2 + ‖νt+1 − ν?‖2 ≤ (1− ητ/4)t

(
‖θ0 − θ?‖2 + ‖ν0 − ν?‖2 +

4C

ητ

)
, (B.16)

where θ? = −Qh?
τ , ν? = Q>g?

τ and C =
(

1 + 1
ητ (1− ητ)2

)
4η2‖Q‖2∞KL(z?‖z0).

Proof. We begin by first providing the intuition of the proof, when the opponent is playing the NE strategy. We denote the
NE strategies of the players as g? and h?. Then, the NPG update has the following form:

θt+1 = (1− ητ)θt − ηQh?. (B.17)

We know that the NE satisfy:

g?(a) =
e−[Qh?]a/τ∑

a′∈A e
−[Qh?]a′/τ

=
e−[Qh?]a/τ

K
, (B.18)

where we define K :=
∑
a′∈A e

−[Qh?]a′/τ . Taking log on both sides, we have:

−ηQh? = ητ log g? + ητ logK. (B.19)
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Substituting this back into the θ update in (B.17), we have:

θt+1 = (1− ητ)θt + ητ log g? + ητ logK

= θt − ητθt + ητ log g? + ητ logK − ητ logZθt + ητ logZθt

= θt + ητ log g? − ητ log

(
eθt

Zθt

)
+ ητ log

(
K

Zθt

)
= θt + ητ log g? − ητ log gθt + ητ log

(
K

Zθt

)
= θt + ητ log

(
g?

gθt

)
+ ητ log

(
K

Zθt

)
= θt + ητ log

(
g?K

gθtZθt

)
. (B.20)

We can further simplify this as:

θt+1 = θt + ητ log

(
e−[Qh?]/τ

eθt

)
, (B.21)

which is nothing but:

θt+1 = θt + ητ

(
−Qh?

τ
− θt

)
. (B.22)

Note that this is the Gradient Descent update on the strongly convex function 1
2

∥∥−Qh?
τ −θ

∥∥2
with stepsize ητ . This update

leads to the following convergence guarantees:

‖θt+1 − θ?‖2 ≤ (1− ητ)2‖θt − θ?‖2, (B.23)

where θ? = −Qh?
τ .

The analysis above shows that if one of the players is already at the NE strategy, the parameters of the second player
converges to the NE at a linear rate. However, the original NPG update for θ is given by

θt+1 = (1− ητ)θt − ηQh? + ηQ(h? − hνt). (B.24)

Since hν̄t+1
converges to h? at a linear rate (from Theorem B.5), we expect the term

εt = ηQ(h? − hνt), (B.25)

to be small, and goes to 0. This is formalized in what follows.

The NPG update for θ can be re-written using εt as:

θt+1 = θt + ητ

(
−Qh?

τ
− θt

)
+ εt. (B.26)

Once again, defining θ? = −Qh?
τ , we have:

‖θt+1 − θ?‖2 = ‖θt + ητ (θ? − θt) + εt − θ?‖2 = ‖(1− ητ)(θt − θ?) + εt‖2

= (1− ητ)2‖θt − θ?‖2 + 2(1− ητ)(θt − θ?)>εt + ‖εt‖2

≤∗1 (1− ητ)2‖θt − θ?‖2 + ητ‖θt − θ?‖2 +
1

ητ
(1− ητ)2‖εt‖2 + ‖εt‖2

= (1− ητ + η2τ2)‖θt − θ?‖2 +

(
1 +

1

ητ
(1− ητ)2

)
‖εt‖2, (B.27)

where ∗1 follows from Young’s inequality.

Next, we analyze the error term ‖εt‖. We have:

‖εt‖2 = ‖ηQ(h? − hνt)‖2 ≤ η2‖Q‖2∞‖(h? − hνt)‖21 ≤∗1 2η2‖Q‖2∞(KL(h?‖hνt)). (B.28)



Sarath Pattathil, Kaiqing Zhang, Asuman Ozdaglar

Here ∗1 follows from Pinsker’s Inequality. Now, writing the same inequality for ν, we have:

‖θt+1 − θ?‖2 + ‖νt+1 − ν?‖2 ≤ (1− ητ + η2τ2)(‖θt − θ?‖2 + ‖νt − ν?‖2)

+

(
1 +

1

ητ
(1− ητ)2

)
2η2‖Q‖2∞KL(z?‖zt) (B.29)

≤ (1− ητ + η2τ2)(‖θt − θ?‖2 + ‖νt − ν?‖2) +

(
1 +

1

ητ
(1− ητ)2

)
4η2C‖Q‖2∞

(
1− ητ

2

)t
KL(z?‖z0).

Define:

C =

(
1 +

1

ητ
(1− ητ)2

)
4η2‖Q‖2∞KL(z?‖z0). (B.30)

Substituting back in Equation (B.51), along with the corresponding expression for ν, we have:

‖θt+1 − θ?‖2 + ‖νt+1 − ν?‖2 ≤ (1− ητ + η2τ2)(‖θt − θ?‖2 + ‖νt − ν?‖2) + C
(

1− ητ

2

)t
. (B.31)

For ητ < 1/2 we have:

‖θt+1 − θ?‖2 + ‖νt+1 − ν?‖2 ≤ (1− ητ/4)(‖θt − θ?‖2 + ‖νt − ν?‖2) + C(1− ητ/2)t. (B.32)

Consider the Lyapunov function:

Vt+1 = ‖θt+1 − θ?‖2 + ‖νt+1 − ν?‖2 +
4C

ητ
(1− ητ/2)t+1. (B.33)

We have:

Vt+1 ≤ (1− ητ/4)(‖θt − θ?‖2 + ‖νt − ν?‖2) + C(1− ητ/2)t +
4C

ητ
(1− ητ/2)(1− ητ/2)t

= (1− ητ/4)(‖θt − θ?‖2 + ‖νt − ν?‖2) +
4C

ητ
(1− ητ)t(1− ητ/4)

= (1− ητ/4)

(
‖θt − θ?‖2 + ‖νt − ν?‖2 +

4C

ητ
(1− ητ)t

)
= (1− ητ/4)Vt. (B.34)

This shows linear convergence of the parameter θ to θ? since:

‖θt+1 − θ?‖2 + ‖νt+1 − ν?‖2 ≤ Vt+1 ≤ (1− ητ/4)tV0. (B.35)

This completes the proof.

B.2 Proof of Theorem 3.4

We first prove the following result which follows from Theorem 1 in Cen et al. (2021b).

Lemma B.7. [Theorem 1, Cen et al. (2021b)] Consider Algorithm 1. Suppose that the learning rates satisfy:

0 < η ≤ min

{
1

2τ + 2‖Q‖∞
,

1

4‖Q‖∞

}
. (B.36)

Let zt = (gθt , hνt) and z̄t = (gθ̄t , hν̄t). Then:

max

{
KL(z?‖zt),

1

2
KL(z?‖z̄t+1)

}
≤ (1− ητ)tKL(z?‖z0). (B.37)

Proof. Let gt and ḡt denote gθt and gθ̄t respectively. Also, for any parameter θ, we denote Zθ to be the normalizing
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constant
∑
a′∈A e

θ(a′) (Define Zν similarly). We have:

ḡt+1(a) =
eθ̄t+1(a)∑

a′∈A e
θ̄t+1(a′)

∝ eθ̄t+1(a) = e(1−ητ)θt(a)−η[Qhν̄t ]a = e(1−ητ)θt(a)+logZθt−logZθt−η[Qhν̄t ]a

= e(1−ητ) log eθt(a)+logZθt−logZθt−η[Qhν̄t ]a = e
(1−ητ) log

(
eθt(a)

Zθt

)
+logZθt−η[Qhν̄t ]a

∝ e
(1−ητ) log

(
eθt(a)

Zθt

)
−η[Qhν̄t ]a

= e(1−ητ) log gt(a)−η[Qhν̄t ]a = elog gt(a)(1−ητ)−η[Qhν̄t ]a

= gt(a)(1−ητ)e−η[Qhν̄t ]a . (B.38)

Therefore:

ḡt+1(a) ∝ gt(a)(1−ητ)e−η[Qhν̄t ]a . (B.39)

Similarly, we have:

gt+1(a) ∝ gt(a)(1−ητ)e−η[Qhν̄t+1
]a ,

h̄t+1(a) ∝ ht(a)(1−ητ)eη[Q>gθ̄t ]a ,

ht+1(a) ∝ ht(a)(1−ητ)e
η[Q>gθ̄t+1

]a , (B.40)

which is the same as the OMW updates for the regularized problem in Cen et al. (2021b). Therefore, by Theorem 1 in Cen
et al. (2021b), we have convergence of gθ and hν to the solution of the regularized min-max problem.

We begin by first providing the intuition of the proof, when the opponent is playing the NE strategy. We denote the NE
strategies of the players as g? and h?. Then, the optimistic NPG update has the following form:

θt+1 = (1− ητ)θt − ηQh?. (B.41)

From Mertikopoulos and Sandholm (2016), we know that the NE satisfy:

g?(a) =
e−[Qh?]a/τ∑

a′∈A e
−[Qh?]a′/τ

=
e−[Qh?]a/τ

K
, (B.42)

where we define K :=
∑
a′∈A e

−[Qh?]a′/τ . Taking log on both sides, we have:

−ηQh? = ητ log g? + ητ logK. (B.43)

Substituting this back into the θ update in (B.41), we have:

θt+1 = (1− ητ)θt + ητ log g? + ητ logK

= θt − ητθt + ητ log g? + ητ logK − ητ logZθt + ητ logZθt

= θt + ητ log g? − ητ log

(
eθt

Zθt

)
+ ητ log

(
K

Zθt

)
= θt + ητ log g? − ητ log gθt + ητ log

(
K

Zθt

)
= θt + ητ log

(
g?

gθt

)
+ ητ log

(
K

Zθt

)
= θt + ητ log

(
g?K

gθtZθt

)
. (B.44)

We can further simplify this as:

θt+1 = θt + ητ log

(
e−[Qh?]/τ

eθt

)
, (B.45)
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which is nothing but:

θt+1 = θt + ητ

(
−Qh?

τ
− θt

)
. (B.46)

Note that this is the Gradient Descent update on the strongly convex function 1
2

∥∥−Qh?
τ − θ

∥∥2
with stepsize ητ . Note that

this update leads to the following convergence guarantees:

‖θt+1 − θ?‖2 ≤ (1− ητ)2‖θt − θ?‖2, (B.47)

where θ? = −Qh?
τ .

The analysis above shows that if one of the players is already at the NE strategy, the parameters of the second player
converges to the NE at a linear rate. However, the original OGDA update for θ is given by

θt+1 = (1− ητ)θt − ηQh? + ηQ(h? − hν̄t+1). (B.48)

Since hν̄t+1
converges to h? at a linear rate (from Lemma B.7), we expect the term

εt = ηQ(h? − hν̄t+1), (B.49)

to be small, and goes to 0. This is formalized in what follows.

The OGDA update for θ can be re-written using εt as:

θt+1 = θt + ητ

(
−Qh?

τ
− θt

)
+ εt. (B.50)

Once again, defining θ? = −Qh?
τ , we have:

‖θt+1 − θ?‖2 = ‖θt + ητ (θ? − θt) + εt − θ?‖2 = ‖(1− ητ)(θt − θ?) + εt‖2

= (1− ητ)2‖θt − θ?‖2 + 2(1− ητ)(θt − θ?)>εt + ‖εt‖2

≤∗1 (1− ητ)2‖θt − θ?‖2 + ητ‖θt − θ?‖2 +
1

ητ
(1− ητ)2‖εt‖2 + ‖εt‖2

= (1− ητ + η2τ2)‖θt − θ?‖2 +

(
1 +

1

ητ
(1− ητ)2

)
‖εt‖2, (B.51)

where ∗1 follows from Young’s inequality.

Next, we analyze the error term ‖εt‖. We have:

‖εt‖2 = ‖ηQ(h? − hν̄t+1)‖2 ≤ η2‖Q‖2∞‖(h? − hν̄t+1)‖21 ≤∗1 2η2‖Q‖2∞(KL(h?‖hν̄t+1)). (B.52)

Here ∗1 follows from Pinsker’s Inequality. Now, writing the same inequality for ν, we have:

‖θt+1 − θ?‖2 + ‖νt+1 − ν?‖2 ≤ (1− ητ + η2τ2)(‖θt − θ?‖2 + ‖νt − ν?‖2)

+

(
1 +

1

ητ
(1− ητ)2

)
2η2‖Q‖2∞KL(z?‖z̄t+1) (B.53)

≤ (1− ητ + η2τ2)(‖θt − θ?‖2 + ‖νt − ν?‖2) +

(
1 +

1

ητ
(1− ητ)2

)
4η2C‖Q‖2∞(1− ητ)tKL(z?‖z0).

Define:

C =

(
1 +

1

ητ
(1− ητ)2

)
4η2‖Q‖2∞KL(z?‖z0). (B.54)

This gives us (Using Lemma B.7):

‖θt+1 − θ?‖2 + ‖νt+1 − ν?‖2 ≤ (1− ητ + η2τ2)(‖θt − θ?‖2 + ‖νt − ν?‖2) + C(1− ητ)t. (B.55)
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For ητ < 1/2 we have:

‖θt+1 − θ?‖2 + ‖νt+1 − ν?‖2 ≤ (1− ητ/2)(‖θt − θ?‖2 + ‖νt − ν?‖2) + C(1− ητ)t. (B.56)

Consider the Lyapunov function:

Vt+1 = ‖θt+1 − θ?‖2 + ‖νt+1 − ν?‖2 +
2C

ητ
(1− ητ)t+1. (B.57)

We have:

Vt+1 ≤ (1− ητ/2)(‖θt − θ?‖2 + ‖νt − ν?‖2) + C(1− ητ)t +
2C

ητ
(1− ητ)(1− ητ)t

= (1− ητ/2)(‖θt − θ?‖2 + ‖νt − ν?‖2) +
2C

ητ
(1− ητ)t(1− ητ/2)

= (1− ητ/2)

(
‖θt − θ?‖2 + ‖νt − ν?‖2 +

2C

ητ
(1− ητ)t

)
= (1− ητ/2)Vt. (B.58)

This shows linear convergence of the parameter θ to θ? since:

‖θt+1 − θ?‖2 + ‖νt+1 − ν?‖2 ≤ Vt+1 ≤ (1− ητ/2)tV0. (B.59)

This completes the proof.

Note that proof of Corollary 3.5 follows from Remark 4 and the preceding discussion in Cen et al. (2021b).

C Matrix Games with Function Approximation

To handle games with excessively large action spaces, we resort to policy parameterization with function approximation.
In particular, consider the following problem:

min
θ∈Rd

max
ν∈Rd

g>θ Qhν , (C.1)

where gθ and hν are both parameterized in a softmax way as in (2.2), with the linear function class pθ(a) = φ>a θ (also
called log-linear policy in Agarwal et al. (2019)), where φa ∈ Rd is a low-dimensional feature representation of the action
(see Branavan et al. (2009); Agarwal et al. (2019)) (Note that usually d < n). We define:

Φ = [φ1, φ2, · · · , φn] ∈ Rd×n. (C.2)

Assumption C.1. Φ is a full rank matrix. In particular, assume that Φ = [M | 0], where M ∈ Rd×d is an invertible d× d
square matrix.

Note that the full-rankness of Φ is a standard assumption (see Assumption 6.2 in Agarwal et al. (2019)). It essentially
requires the features to be the bases of some low-dimensional space. Furthermore, the results also extend to the case where
the matrix Φ is of the from [M | c1] where 1 is the matrix of all 1s of appropriate dimension, and c is any constant. This
particular structure of the feature matrix, though being restrictive, ensures that the constraint set of policies is convex,
as shown next, otherwise the minimax theorem of min max = max min might not hold, i.e., the Nash equilibrium for
the parameterized game does not exist. Moreover, the assumption is also not as restrictive as it seems. For example,
in applications of self-driving car and robotics, only a subset of actions (steering angles) is essential in controlling the
agent, with other actions being insignificant/redundant. Our feature matrix encodes patterns like these. Moreover, as a first
step studying policy optimization in multi-agent learning with function approximation, we start with this simpler setting.
Extending the ideas to more general FA settings is an interesting direction worth exploring.

Remark C.2. Note that the results in this section are presented for the case where the feature matrix is identical for both
players purely for simplification of notation. The results continue to hold for the case with asymmetric features as well (as
long as the feature matrix also satisfies Assumption C.1.
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As motivated in the previous section, we study the following regularized problem in order to solve (C.1) efficiently:

min
θ∈Rd

max
ν∈Rd

g>θ Qhν − τH(gθ) + τH(hν), (C.3)

where H denotes the entropy function and τ > 0 is the regularization parameter. Note that this problem can still be
nonconvex-nonconcave in general, given the example in §3 as a special case.

We define the solution to this problem next, the Nash equilibrium in the parameterized policy classes, i.e., in-class NE.

Definition C.3 (ε-in-class Nash equilibrium). The policy parameter (θ̃, ν̃) is an ε-Nash equilibrium of the matrix game
with function approximation (or ε-in-class NE), if it satisfies that for all i ∈ [N ],

g>
θ̃
Qhν − ε ≤ g>

θ̃
Qhν̃ ≤ g>θ Qhν̃ + ε, ∀θ, ν ∈ Rd. (C.4)

Furthermore, when ε = 0, we refer to it as the in-class Nash Equilibrium.

C.1 Equivalent problem characterization

In this subsection, we study the regularized problem (C.3) under a log-linear parametrization and find an equivalent problem
in the tabular case.

First, in the following lemma, we characterize the set of distributions covered by this parametrization, and study the
equivalent problem in the space of probability vectors.

Lemma C.4. Under Assumption C.1, the log-linear parametrization in Equation (2.2) covers all distributions in the fol-
lowing convex set:

∆̃ = {µ : µ ∈ ∆, µd+1 = µd+2 = · · · = µn}, (C.5)

and Problem (C.3) is equivalent to

min
gθ∈∆̃

max
hν∈∆̃

g>θ Qhν − τH(gθ) + τH(hν). (C.6)

Lemma C.4 characterizes the set of distributions which can be represented by log-linear parametrization. Therefore, when
we try to solve the matrix game with such function approximation, the best we can hope for is to find an equilibrium within
the set ∆̃.

Next, we characterize the Nash equilibrium of the regularized Problem (C.3) in the function approximation setting, and
show its equivalence to another problem in the tabular softmax setting.

Theorem C.5. An in-class Nash equilibrium (θ?, ν?) of Problem (C.3) under the function approximation setting exists,
and any such in-class NE satisfies:

gθ?(a) =
e−

[Ψ>QΨhν? ]a
τ∑

a′ e
−

[Ψ>QΨhν? ]
a′

τ

, hν?(a) =
e

[Ψ>Q>Ψgθ? ]a
τ∑

a′ e
[Ψ>Q>Ψgθ? ]

a′
τ

,

where Ψ ∈ Rn×n is defined as:

Ψ =


Id 0

0

1
n−d · · · 1

n−d
· · · · · · · · ·
1

n−d · · · 1
n−d

 . (C.7)

Furthermore, Problem (C.3) is equivalent to6:

min
gθ∈∆

max
hν∈∆

g>θ Ψ>QΨhν − τH(gθ) + τH(hν). (C.8)

Note that the matrix Ψ defined in Theorem C.5 is the invariant matrix for the set ∆̃, i.e., Ψµ = µ, ∀µ ∈ ∆̃.
6By equivalent, we mean that the two problems have the same value at the NE.
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Algorithm 2 Optimistic NPG (Function Approximation)

Initialize: θ0 = 0 and ν0 = 0.
for t = 1, 2, · · · do
θ̄t+1 = (1− ητ)θt − η[(M>)−1|0]P̃Qhν̄t
ν̄t+1 = (1− ητ)νt + η[(M>)−1|0]P̃Q>gθ̄t

θt+1 = (1− ητ)θt − η[(M>)−1|0]P̃Qhν̄t+1

νt+1 = (1− ητ)νt + η[(M>)−1|0]P̃Q>gθ̄t+1

end for

C.2 Optimistic NPG algorithm

From Section 3, we see that the optimistic version of NPG leads to faster convergence (of both policy and parameters). This
motivates us to focus on the optimistic version of the methods. In this subsection, (and the ones that follow), we focus on
optimistic methods instead of their non-optimistic counterparts. Note that similar to Section 3, we can derive convergence
rates for the non-optimistic versions as well, which would be slower than the corresponding optimistic versions.

As Theorem C.5 characterizes the solution to the function approximation setting to that of the tabular softmax setting, we
modify the algorithm for function approximation setting as follows:

θ̄t+1 = (1− ητ)θt − η[(M>)−1 | 0]P̃Qhν̄t , θt+1 = (1− ητ)θt − η[(M>)−1 | 0]P̃Qhν̄t+1
, (C.9)

and a similar update for ν to reach the solution of the regularized problem under a log-linear parametrization. Here, the
matrix P̃ is defined as

P̃ =

Id
−1
n−d · · · −1

n−d
· · · · · · · · ·
−1
n−d · · · −1

n−d
0 0

 .

The additional term involving the inverse of the feature matrix arises due to the nature of the log-linear function approxi-
mation. We make this formal in the following proposition.
Proposition C.6. Consider Algorithm 2 used to solve Problem (C.3) under the log-linear parametrization in Equation (2.2)
under Assumption C.1. Then the iterates of Algorithm 2 have the same guarantees provided in Theorem 3.4. Here, the NE
parameter value to which the algorithm converges to is given by:

θ? =
−[(M>)−1 | 0]P̃Qhν?

τ
, ν? =

[(M>)−1 | 0]P̃Q>gθ?

τ
.

Next, we show how the optimistic NPG algorithm solves the original matrix game without regularization.

Corollary C.7. If we run Algorithm 2 for time T = O
(

logn
ηε log

(
1
ε

))
and set the regularization parameter τ =

ε/(8 log n), we have that the output (θT , νT ) is an ε-in-class NE (Definition C.3) of the unregularized Problem (C.1).

D Missing Details and Proofs in §C

Remark D.1. We note that all results present in this section also follow for the case where the cardinality of the action
spaces for both players are unequal. However, we stick to the case where the number of actions is the same for both players
for ease of exposition.

D.1 Proof of Lemma C.4

The first part of the lemma describes the set of distributions in the m-dimensional simplex covered by this parametriza-
tion. Since the set of distributions covered by the log-linear parametrization would be the same for all invertible M 7, for

7To see this, consider θ̃ = Mθ. Since M is invertible, there is a 1-1 correspondence between θ̃ and θ. The distribution parametrized
by θ under the function approximation matrix M , is the same as the distribution parametrized by θ̃ under the function approximation
matrix I . Therefore it is enough to consider the special case of M = I.
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simplicity, we study the case where M = I. Note that this would imply:

gθ(a) ∝ eθ(a) ∀a ∈ {1, 2, · · · , d},
gθ(a) ∝ 1 ∀a ∈ {d+ 1, d+ 2, · · · , n}. (D.1)

Similarly for hν . Therefore, according to this parametrization the first d elements can be chosen freely, and the rest n− d
parameters have to be equal. In other words, this parametrization covers the following set of distributions:

∆̃ = {µ : µ ∈ ∆, µd+1 = µd+2 = · · · = µn}, (D.2)

which is a closed convex subset of the n-dimensional simplex. To see that any element of ∆̃ can be represented by the
log-linear parametrization, we can take the parameters θ(a) = log µ(a) for a = 1, 2, · · · , d8. This would be a valid
parametrization under the log-linear function approximation setting, and therefore all elements of ∆̃ can be represented in
this manner. Therefore, since the two sets are equivalent, we can rewrite the problem in terms of the policy vectors lying
in the constraint set ∆̃ which completes the proof of the lemma.

D.2 Proof of Theorem C.5

For the regularized game (C.6), let player 2 play the NE strategy h?ν . Then player 1’s optimization problem is given by:

min
gθ∈∆̃

g>θ Qh
?
ν − τH(gθ). (D.3)

Define the following Lagrange multipliers (and associated constraints):

λ :

n∑
a=1

gθ(a) = 1,

β1 : gθ(d+ 1) = gθ(d+ 2),

β2 : gθ(d+ 2) = gθ(d+ 3),

· · ·
βn−d−1 : gθ(n− 1) = gθ(n). (D.4)

Therefore, for the optimal Lagrange multipliers, taking the first-order optimality conditions (with respect to the variable
gθ), we have:

[Qh?ν ]a + τ(log gθ(a) + 1) + λ = 0 ∀a ∈ {1, 2, · · · , d},
[Qh?ν ]a + τ(log gθ(a) + 1) + λ+ βa−d − βa−d−1 = 0 ∀a ∈ {d+ 1, d+ 2, · · · , n}, (D.5)

where β0 and βn−d are defined to be equal to 0. This gives us:

g?θ(a) ∝ e−[Qh?ν ]a/τ ∀a ∈ {1, 2, · · · , d}. (D.6)

For actions with indices a > d, the equality constraints give us:

[Qh?ν ]a + βa−d − βa−d−1 = C ∀a ∈ {d+ 1, d+ 2, · · · , n}, (D.7)

for some constant C. On solving these equations for C, we have:

C =
1

n− d

n∑
a=d+1

[Qh?ν ]a, (D.8)

which gives us

g?θ(a) ∝ e−C/τ ∀a ∈ {d+ 1, · · · , n}. (D.9)

8Note that if µ(a) = 0, the corresponding paramter would be −∞.
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Now, consider the symmetric matrix Ψ ∈ Rn×n defined as:

Ψ =


Id 0

0

1
n−d · · · 1

n−d
· · · · · · · · ·
1

n−d · · · 1
n−d

 . (D.10)

Note that

[Ψ>Qh?ν ]a = [Qh?ν ]a ∀a ∈ {1, 2, · · · , d},
[Ψ>Qh?ν ]a = C ∀a ∈ {d+ 1, d+ 2, · · · , n}. (D.11)

Therefore, we can succinctly write the optimal distribution as:

g?θ(a) ∝ e−[Ψ>Qh?ν ]a/τ ∀a ∈ {1, 2, · · · , n}. (D.12)

Also, we have Ψµ = µ, ∀µ ∈ ∆̃.

Now, since h?ν is the optimal distribution for Player 2, we must have h?ν ∈ ∆̃ which implies:

Ψh?ν = h?ν . (D.13)

Doing a similar calculation for g?ν , we have that the NE satisfy:

g?θ(a) =
e−[Ψ>QΨh?ν ]a/τ∑
a′ e
−[Ψ>QΨh?ν ]a′/τ

, h?ν(a) =
e[Ψ>Q>Ψg?θ ]a/τ∑
a′ e

[Ψ>Q>Ψg?θ ]a′/τ
. (D.14)

Now, from this characterization of the NE, we see that these solutions are also the same as those of the following problem:

min
g∈∆

max
h∈∆

g>Ψ>QΨh− τH(g) + τH(h). (D.15)

Note that in the analysis above we have found a solution in the (relative) interior of the constraint set. For example, if for
some action a, we have fθ(a) = 0, then the term log fθ(a) is not defined and the Lagrangian would be different. However,
since this is a strongly convex strongly concave minimax problem over a convex compact set, there is a unique solution
(see Facchinei and Pang (2007)). As we have already found a solution in the interior of the constraint set, by the argument
above we have that this is the unique solution. This allows us to solve the first-order KKT optimality conditions (see Boyd
and Vandenberghe (2004)) to find the solution. Also, since all terms satisfy fθ(a) > 0 (similarly for gν(a)) we do not need
to explicitly write down the Lagrange multipliers for the non-negativity constraint. This completes the proof.

D.3 Proof of Proposition C.6

The algorithm is similar to the one proposed for the tabular case. However, since the exponents are elements of Φ>θ
instead of just θ as was in the case of tabular softmax, we have the updates modified as well (we write the updates here for
the combined update instead of the two step update for ease of presentation):

Φ>θt+1 = (1− ητ)Φ>θt − (2− ητ)ηΨ>P̃QΨhνt + (1− ητ)ηΨ>P̃QΨhνt−1 ,

Φ>νt+1 = (1− ητ)Φ>νt + (2− ητ)ηΨ>P̃Q>Ψgθt − (1− ητ)ηΨ>P̃Q>Ψgθt−1
, (D.16)

where Φ is a full-rank feature matrix. Note that the additional matrix P̃ is to ensure that the probability vector at each step
of the algorithm satisfies the function approximation constraint9. Since Φ is full-rank, we can explicitly write this update
for θ and ν as follows:

θt+1 = [ΦΦ>]−1Φ
(

(1− ητ)Φ>θt − (2− ητ)ηΨ>P̃QΨhνt + (1− ητ)ηΨ>P̃QΨhνt−1

)
,

νt+1 = [ΦΦ>]−1Φ
(

(1− ητ)Φ>νt + (2− ητ)ηΨ>P̃Q>Ψgθt − (1− ητ)ηΨ>P̃Q>Ψgθt−1

)
,

9This is based on the fact that for a probability vector xi ∝ eyi , we will also have xi ∝ eyi−k for any constant k independent of the
index i.
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which can be simplified to:

θt+1 = (1− ητ)θt − (2− ητ)η[ΦΦ>]−1ΦΨ>P̃QΨhνt + (1− ητ)η[ΦΦ>]−1ΦΨ>P̃QΨhνt−1
,

νt+1 = (1− ητ)νt + (2− ητ)η[ΦΦ>]−1ΦΨ>P̃Q>Ψgθt − (1− ητ)η[ΦΦ>]−1ΦΨ>P̃Q>Ψgθt−1
. (D.17)

Note that for Φ = [M | 0], we have

[ΦΦ>]−1Φ = ([M |0][M |0]>)−1[M |0] = (MM>)−1[M |0] = [(M>)−1|0]. (D.18)

From the previous discussion, since all the terms gθt and hνt lie in the set ∆̃, we have Ψgθt = gθt and Ψhνt = hνt . Also,
we have:

[ΦΦ>]−1ΦΨ> = [(M>)−1|0]Ψ> = [(M>)−1|0], (D.19)

from the structure of Ψ. Therefore, the update can be written as:

θt+1 = (1− ητ)θt − (2− ητ)η[(M>)−1|0]P̃Qhνt + (1− ητ)η[(M>)−1|0]P̃Qhνt−1
,

νt+1 = (1− ητ)νt + (2− ητ)η[(M>)−1|0]P̃Q>gθt − (1− ητ)η[(M>)−1|0]P̃Q>gθt−1 , (D.20)

which completes the proof.

D.4 Simulation to show convergence of ONPG in the function approximation setting

In this section, we show the performance of the ONPG algorithm under Function Approximation (Algorithm 2). The
policies have a log linear parametrization, with the feature matrix Φ = [I | 0] ∈ R10×100, and the cost matrix Q is chosen
to be a random matrix of dimension 100× 100.
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Figure 1: Behavior of Algorithm 2 in the matrix game under the log-linear function approximation setting.

E Missing Definitions and Proofs in §4

Remark E.1. We note that all results presented in this section also follow for the case where the number of possible actions
for each player can be different. However, we stick to the case where the number of action is the same for both players for
ease of exposition. Note that the actual action spaces need not be identical, but only their cardinalities.
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Algorithm 3 Optimistic NPG for monotone games

Initialize: θ0
i = 0 for all players i.

for t = 1, 2, · · · do
θ̄t+1
i = (1− ητ)θti − η∇gθi fi(gθ̄ti , gθ̄t−i) ∀i ∈ [N ].

θt+1
i = (1− ητ)θti − η∇gθi fi(gθ̄t+1

i
, gθ̄t+1
−i

) ∀i ∈ [N ].

end for

Definition E.2 (In-class Nash equilibrium for a monotone game). The policy parameter θ? = [θ?1 , θ
?
2 , · · · , θ?N ] is an NE

under function approximation, i.e., (in-class NE) of the monotone game, if it satisfies that for all i ∈ [N ],

fi(gθ?i , gθ?−i) ≤ fi(gθi , gθ?−i), ∀θi ∈ Rd. (E.1)

Note that if we are in the tabular setting, we will have d = n.

Definition E.3 (ε-in-class Nash equilibrium for a monotone game). The policy parameter (θ̃1, · · · , θ̃N ) is an ε-Nash equi-
librium under function approximation (or in-class ε-NE) of the monotone game if it satisfies that for all i ∈ [N ],

fi(gθ̃i , gθ̃−i)− ε ≤ fi(gθi , gθ̃−i), ∀θi ∈ Rd. (E.2)

Note that if we are in the tabular setting, we will have d = n.

We will also use the notation fτi (gi, g−i) = fi(gi, g−i)− τH(gi).

E.1 Proof of Lemma 4.2

We can follow the analysis for a two player game from Mertikopoulos and Sandholm (2016) to write down the solution
form for the N-player monotone setting. We let gi and g−i denote gθi and gθ−i respectively. First, note that the solutions
in the policy space exists for the unregularized game, since we are solving a monotone VI over a convex compact set, and
this solution is unique if we regularize the game, since in this case we are solving a stringly monotone VI over a convex
compact set. See Facchinei and Pang (2007).

Consider player i′s optimization problem when other players play the equilibrium strategies:

min
gi∈∆

fi(gi, g
?
−i)− τH(gi). (E.3)

Since we are in the monotone setting with a strongly convex regularizer, the first order Karush–Kuhn–Tucker (KKT)
conditions are both necessary and sufficient. The first order KKT conditions are:

[∇gifi(g?i , g?−i)]a + τ(log g?i + 1) + λ = 0,

where λ is the Lagrange multiplier corresponding to the simplex constraint. This implies:

g?i (a) ∝ e
−[∇gi fi(g

?
i ,g

?
−i)]a

τ , (E.4)

which shows the NE in the policy space. Now, to complete the proof of the lemma, we need to find parameters θ? which
leads to this distribution. This can be easily seen by setting θ?i =

−[∇gifi(g
?
i ,g

?
−i)]

τ , thereby completing the proof of the
lemma.

E.2 (Optimistic) NPG for monotone games

As noted in §A.2, we have that the Fisher Information matrix Fθ(θ) = ∇θgθ. Therefore, the NPG update for player i can
be simplified as:

θt+1
i = θti − η · F

†
θ (θti) ·

∂fτi (gθti , gθt−i)

∂θ
= θt − η

∂fτi (gθti , gθt−i)

∂gθi

= θt − η
(
∇gθi fi(gθti , gθt−i) + τ(1+ log gθti )

)
. (E.5)
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This can be simplified as:

θt+1
i (a) = (1− ητ)θti(a)− η[∇gθi fi(gθti , gθt−i)]a + ητ(logZθti − 1), (E.6)

where Zθti =
∑
a′∈A e

θti(a
′). Note that this update will have the same pitfall of parameter divergence as the NPG update

for the matrix game, since a matrix game is a special case of the monotone game. Therefore, we propose the following
modified version of NPG, as done for the matrix game:

θt+1
i (a) = (1− ητ)θti(a)− η[∇gθi fi(gθti , gθt−i)]a. (E.7)

This leads to the modified NPG dynamics for the monotone game. Now, similar to the matrix game, we analyze the
optimistic version of this algorithm with updates:

θ̄t+1
i = (1− ητ)θti − η∇gθi fi(gθ̄ti , gθ̄t−i), θt+1

i = (1− ητ)θti − η∇gθi fi(gθ̄t+1
i
, gθ̄t+1
−i

),

in §4.

E.3 Proof of Theorem 4.3

We prove the following Lemma first:

Lemma E.4. For any z = (gθi , gθ−i) ∈ ∆N , consider an update of the form:

θt+1
i = (1− ητ)θti − η∇gθi fi(gθi , gθ−i) ∀i ∈ [N ]. (E.8)

We have:

〈log zt+1 − (1− ητ) log zt − ητ log z?, z − z?〉 ≤ 0, (E.9)

where z? = (g?i )Ni=1.

Proof. In the proof below, we define gi := gθi and gti := gθti . From the update sequence in Equation (E.8), we have

log gt+1
i = (1− ητ) log gti − η∇gifi(gi, g−i) + c · 1, (E.10)

where c is the normalization constant. This implies:

〈log gt+1
i − (1− ητ) log gti , gi − g?i 〉 = 〈−η∇gifi(gi, g−i) + c · 1, gi − g?i 〉

= 〈−η∇gifi(gi, g−i), gi − g?i 〉. (E.11)

Note that 〈c · 1, gi − g?i 〉 = 0, since gi, g?i ∈ ∆. Since this is true for all players i, we have:

〈log zt+1 − (1− ητ) log zt, z − z?〉 = −η
∑
i

〈∇gifi(gi, g−i), gi − g?i 〉 = −η〈F (z), z − z?〉. (E.12)

Now, from the properties of the NE, we have:

ητ log g?i = −η∇gifi(g?i , g?−i) + c · 1, (E.13)

which gives us:

〈ητ log g?i , gi − g?i 〉 = 〈−η∇gifi(g?i , g?−i), gi − g?i 〉. (E.14)

Since this is true for all players i, we have

〈ητ log z?, z − z?〉 = −η〈F (z?), z − z?〉. (E.15)

From Equations (E.12) and (E.15), we have:

〈log zt+1 − (1− ητ) log zt − ητ log z?, z − z?〉 = −η〈F (z)− F (z?), z − z?〉 ≤ 0, (E.16)

where the last step uses the monotonicity assumption of F . This completes the proof of the lemma.
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Lemma E.5. For updates of the form:

θt+1
i = (1− ητ)θti − η∇gθi fi(gθ̄t+1

i
, gθ̄t+1
−i

) ∀i ∈ [N ], (E.17)

we have

(1− ητ)KL(z?‖zt) ≥ (1− ητ)KL(z̄t+1‖zt) + ητKL(z̄t+1‖z?) + KL(zt+1‖z̄t+1)

− 〈log z̄t+1 − log zt+1, z̄t+1 − zt+1〉+ KL(z?‖zt+1), (E.18)

and

KL(z?‖z̄t+1) = KL(z?‖zt+1)− KL(z̄t+1‖zt+1)− 〈z? − z̄t+1, log z̄t+1 − log zt+1〉. (E.19)

Proof. From the definition of KL divergence we have:

−〈log zt+1 − (1− ητ) log zt − ητ log z?, z?〉 = −(1− ητ)KL(z?‖zt) + KL(z?‖zt+1). (E.20)

Next, note that:

〈log zt+1 − (1− ητ) log zt − ητ log z?, z̄t+1〉
= 〈log z̄t+1 − (1− ητ) log zt − ητ log z?, z̄t+1〉+ 〈log z̄t+1 − log zt+1, zt+1〉

− 〈log z̄t+1 − log zt+1, z̄t+1 − zt+1〉
= (1− ητ)KL(z̄t+1‖zt) + ητKL(z̄t+1‖z?) + KL(zt+1‖z̄t+1)

− 〈log z̄t+1 − log zt+1, z̄t+1 − zt+1〉. (E.21)

Now, substituting z = z̄t+1 in Lemma E.4 we have:

〈log zt+1 − (1− ητ) log zt − ητ log z?, z̄t+1 − z?〉 ≤ 0. (E.22)

Substituting Equations (E.20) and (E.21) in (E.22), we get the Inequality (E.18).

Inequality (E.19) follows from the properties of KL divergence.

From the ONPG updates in Algorithm (3), we have:

log ḡt+1
i − log gt+1

i = −η
(
∇gifi(ḡti , ḡt−i)−∇gifi(ḡt+1

i , ḡt+1
−i )

)
+ c · 1. (E.23)

This implies:

〈log ḡt+1
i − log gt+1

i , ḡt+1
i − gt+1

i 〉
= −η〈∇gifi(ḡti , ḡt−i)−∇gifi(gti , gt−i) +∇gifi(gti , gt−i)−∇gifi(ḡt+1

i , ḡt+1
−i ), ḡt+1

i − gt+1
i 〉

≤∗1 η
(
‖∇gifi(ḡti , ḡt−i)−∇gifi(gti , gt−i)‖+ ‖∇gifi(gti , gt−i)−∇gifi(ḡt+1

i , ḡt+1
−i )‖

)
‖ḡt+1
i − gt+1

i ‖
≤∗2 ηL

(
‖ḡti − gti‖+ ‖ḡt−i − gt−i‖+ ‖ḡt+1

i − gti‖+ ‖ḡt+1
−i − g

t
−i‖
)
‖ḡt+1
i − gt+1

i ‖

≤∗3 1

2
ηL
(
‖ḡti − gti‖2 + ‖ḡt−i − gt−i‖2 + ‖ḡt+1

i − gti‖2 + ‖ḡt+1
−i − g

t
−i‖2 + 4‖ḡt+1

i − gt+1
i ‖2

)
, (E.24)

where (∗1) follows from the fact that a>b ≤ ‖a‖‖b‖, (∗2) follows from Assumption 4.1, and (∗3) follows from x · y ≤
1
2 (x2 + y2). Since this is true for all players i, we have:

〈log z̄t+1 − log zt+1,z̄t+1 − zt+1〉

≤ 1

2
ηL

N∑
i=1

(
‖ḡti − gti‖2 + ‖ḡt−i − gt−i‖2 + ‖ḡt+1

i − gti‖2 + ‖ḡt+1
−i − g

t
−i‖2 + 4‖ḡt+1

i − gt+1
i ‖2

)
≤ 1

2
ηL
(
N‖z̄t − zt‖2 +N‖z̄t+1 − zt‖2 + 4‖z̄t+1 − zt+1‖2

)
≤∗1 ηL (NKL(zt‖z̄t) +NKL(z̄t+1‖zt) + 4KL(zt+1‖z̄t+1)) , (E.25)



Sarath Pattathil, Kaiqing Zhang, Asuman Ozdaglar

where (∗1) follows from Pinsker’s Inequality and the fact that the l1 norm is an upper bound for the l2 norm. Substituting
this in Equation (E.18), we have

KL(z?‖zt+1) ≤ (1− ητ)KL(z?‖zt)− (1− ητ −NηL)KL(z̄t+1‖zt)− ητKL(z̄t+1‖z?)
− (1− 4ηL)KL(zt+1‖z̄t+1) +NηLKL(zt‖z̄t). (E.26)

For η < 1
2(N+4)L+2τ , we have:

NηL ≤ (1− ητ)(1− 4ηL). (E.27)

This gives us:

KL(z?‖zt+1) + (1− 4ηL)KL(zt+1‖z̄t+1) ≤ (1− ητ)KL(z?‖zt) +NηLKL(zt‖z̄t)
≤ (1− ητ) (KL(z?‖zt) + (1− 4ηL)KL(zt‖z̄t)) .

(E.28)

Define:

Vt = KL(z?‖zt) + (1− 4ηL)KL(zt‖z̄t). (E.29)

Then we have:

Vt+1 ≤ (1− ητ)Vt, (E.30)

and therefore:

KL(z?‖zt+1) ≤ Vt+1 ≤ (1− ητ)tV0 = (1− ητ)tKL(z?‖z0), (E.31)

which shows convergence of KL(z?‖zt+1). Next we show convergence of KL(z?‖z̄t+1).

Similar to derivation of Equation (E.25), we have

−〈z? − z̄t+1, log z̄t+1 − log zt+1〉 ≤ ηL (NKL(zt‖z̄t) +NKL(z̄t+1‖zt) + 4KL(z?‖z̄t+1)) . (E.32)

Substituting this in Equation (E.19), we have:

(1− 4ηL)KL(z?‖z̄t+1) ≤ KL(z?‖zt+1) + ηL (NKL(zt‖z̄t) +NKL(z̄t+1‖zt)) . (E.33)

Now, using Equation (E.26), we have:

(1− 4ηL)KL(z?‖z̄t+1) ≤ (1− ητ)KL(z?‖zt)− (1− ητ − 2NηL)KL(z̄t+1‖zt)− ητKL(z̄t+1‖z?)
− (1− 4ηL)KL(zt+1‖z̄t+1) + 2NηLKL(zt‖z̄t)

≤ (1− ητ)KL(z?‖zt) + 2NηLKL(zt‖z̄t)
≤ KL(z?‖zt) + (1− 4ηL)KL(zt‖z̄t) := Vt, (E.34)

which gives us:

KL(z?‖z̄t+1) ≤ 2Vt ≤ 2(1− ητ)tV0 = 2(1− ητ)tKL(z?‖z0). (E.35)

This completes the proof of the first part of the theorem.

Next, we prove parameter convergence. We have from Equation (B.51):

‖θt+1
i − θ?i ‖2 = (1− ητ + η2τ2)‖θti − θ?i ‖2 +

(
1 +

1

ητ
(1− ητ)2

)
‖εt‖2, (E.36)

where θ?i =
−∇gif(g?i ,g

?
−i)

τ (Note that the term εt however is different here from definition of εt in Equation (B.51)). Now,
for ONPG, we have:

‖εt‖2 = η2‖∇gifi(g?i , g?−i)−∇gifi(ḡt+1
i , ḡt+1

−i )‖2 ≤ η2L2‖z̄t+1 − z?‖2 ≤ 2η2L2KL(z?‖zt+1). (E.37)
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This gives us:

‖θt+1
i − θ?i ‖2 ≤ (1− ητ + η2τ2)‖θti − θ?i ‖2 + C(1− ητ)t, (E.38)

where

C = 4η2L2

(
1 +

1

ητ
(1− ητ)2

)
KL(z?‖z0), (E.39)

from the first part of the Theorem proved above. For ητ < 1/2, this reduces to:

‖θt+1
i − θ?i ‖2 ≤ (1− ητ/2)‖θti − θ?i ‖2 + C(1− ητ)t. (E.40)

Now, consider the Lyapunov function:

Vt+1 = ‖θt+1
i − θ?i ‖2 +

2C

ητ
(1− ητ)t+1. (E.41)

We have:

Vt+1 ≤ (1− ητ/2)‖θti − θ?i ‖2 + C(1− ητ)t +
2C

ητ
(1− ητ)(1− ητ)t

= (1− ητ/2)‖θti − θ?i ‖2 +
2C

ητ
(1− ητ)t(1− ητ + ητ/2)

= (1− ητ/2)‖θti − θ?i ‖2 +
2C

ητ
(1− ητ)t(1− ητ/2)

= (1− ητ/2)

(
‖θti − θ?i ‖2 +

2C

ητ
(1− ητ)t

)
= (1− ητ/2)Vt. (E.42)

This shows linear convergence of the parameter θi to θ?i since:

‖θt+1
i − θ?i ‖2 ≤ Vt+1 ≤ (1− ητ/2)tV0. (E.43)

Merging these inequalities for all players i completes the proof of the Theorem.

E.4 Proof of Corollary 4.5

We define gi := gθi . The Duality gap for the regularized game is given by:

DGτ (g1, g2, · · · , gN ) =

N∑
i=1

[
fτi (gi, g−i)−min

g̃i
fτi (g̃i, g−i)

]
= max
g̃1,g̃2,··· ,g̃N

N∑
i=1

[fτi (gi, g−i)− fτi (g̃i, g−i)]

= max
g̃1,g̃2,··· ,g̃N

N∑
i=1

[fτi (gi, g−i)− fτi (gi, g
?
−i) + fτi (gi, g

?
−i)− fτi (g̃i, g

?
−i)

+ fτi (g̃i, g
?
−i)− fτi (g̃i, g−i)]

≤ max
g̃1,g̃2,··· ,g̃N

N∑
i=1

[fτi (gi, g−i)− fτi (gi, g
?
−i) + fτi (gi, g

?
−i)− fτi (g?i , g

?
−i)

+ fτi (g̃i, g
?
−i)− fτi (g̃i, g−i)]. (E.44)
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Algorithm 4 Proximal Point Method

Initialize: θ0
i = 0 for all players i.

for t = 1, 2, · · · do
θt+1
i = (1− ητ)θti − η∇gθi fi(gθt+1

i
, gθt+1

i
) ∀i ∈ [N ].

end for

Next, we note that:

N∑
i=1

fτi (gi, g−i)− fτi (gi, g
?
−i) + fτi (gi, g

?
−i)− fτi (g?i , g

?
−i) + fτi (g̃i, g

?
−i)− fτi (g̃i, g−i)

≤
N∑
i=1

[
‖fτi (gi, g−i)− fτi (gi, g

?
−i)‖+ ‖fτi (gi, g

?
−i)− fτi (g?i , g

?
−i)‖+ ‖fτi (g̃i, g

?
−i)− fτi (g̃i, g−i)‖

]
≤

N∑
i=1

[
‖fτi (gi, g−i)− fτi (gi, g

?
−i)‖+ ‖fτi (gi, g

?
−i)− fτi (g?i , g

?
−i)‖+ ‖fτi (g̃i, g

?
−i)− fτi (g̃i, g−i)‖

]
≤ C1

N∑
i=1

[
‖gi − g?i ‖+ ‖g−i − g?−i‖

]
≤ C2N

√
KL(z?‖zt). (E.45)

This follows by noting that the functions fτi are Lipschitz since they are smooth functions defined on a compact domain.
The last step follows from Pinsker’s inequality and the fact that the l1 norm is an upper bound for the l2 norm.

Combining the two inequalities (E.44) and (E.45) we have:

DGτ (g1, g2, · · · , gN ) ≤ C2N
√

KL(z?‖zt). (E.46)

Let DG denote the Duality gap of the unregularized problem. Then we have:

DG(g1, g2, · · · , gN ) ≤ DGτ (g1, g2, · · · , gN ) + 2Nτ log n. (E.47)

Therefore, setting τ = ε
4N logn and solving the regularized problem to an accuracy of ε2

4C2
2N

2 in terms of KL divergence,
we have that:

DG(g1, g2, · · · , gN ) ≤ ε, (E.48)

completing the proof.

E.5 Proximal point and Extragradient methods to solve multi-player monotone games

We define gi := gθi and gti := gθti for simplicity.

E.5.1 Proximal-point updates

In this subsection, we show the convergence of the Proximal Point (PP) updates to the NE of the regularized N-player
monotone game. The PP algorithm is presented in Algorithm 4

Theorem E.6. Let z? = (g?i )Ni=1 be the Nash equilibrium of Problem (4.2). Also, we denote zt = (gti)
N
i=1. Define

θ?i :=
−∇gifi(g

?
i ,g

?
−i)

τ . Then for updates in Algorithm 4, we have for ητ < 1/2:

• KL(z?‖zt+1) ≤ (1− ητ)tKL(z?‖z0).

• ‖θt+1 − θ?‖2 ≤ (1− ητ/2)tV0, where,

V0 = ‖θt − θ?‖2 +
2NC

ητ
, C = 2η2L2

(
1 +

4

ητ
(1− ητ)2

)
KL(z?‖z0).
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Proof. From the definiton of the KL divergence we have:

−〈log zt+1 − (1− ητ) log zt − ητ log z?, z?〉 = −(1− ητ)KL(z?‖zt) + KL(z?‖zt+1), (E.49)

and

〈log zt+1 − (1− ητ) log zt − ητ log z?, zt+1〉 = (1− ητ)KL(zt+1‖zt) + KL(zt+1‖z?). (E.50)

Substituting in Lemma E.4 with z = zt+1, we have:

〈log zt+1 − (1− ητ) log zt − ητ log z?, zt+1 − z?〉 ≤ 0, (E.51)

and using the two equalities, we get:

−(1− ητ)KL(z?‖zt) + KL(z?‖zt+1) + (1− ητ)KL(zt+1‖zt) + KL(zt+1‖z?) ≤ 0. (E.52)

This implies:

KL(z?‖zt+1) ≤ (1− ητ)KL(z?‖zt). (E.53)

This shows linear convergence of the KL divergence to the Nash equilibrium for the proximal point method which com-
pletes the proof of the first part of the Theorem.

When the agents are playing the NE strategy, the updates reduce to

θt+1
i = (1− ητ)θti − η∇gifi(g?i , g?−i). (E.54)

From Lemma E.4, we know that the NE satisfy:

g?i (a) =
e
−[∇gi f(g?i ,g

?
−i)]a

τ

K
, (E.55)

where K =
∑
a′∈Ai e

−[∇gi f(g?i ,g
?
−i)]a′

τ . Taking log on both sides, we have:

−η∇gif(g?i , g
?
−i) = ητ log g?i + ητ logK. (E.56)

Substituting this back into the θ update, we have:

θt+1
i = (1− ητ)θti + ητ log g?i + ητ logK = θti − ητθti + ητ log g?i + ητ logK − ητ logZθti + ητ logZθti

= θti + ητ log g?i − ητ log

(
eθ
t
i

Zθti

)
+ ητ log

(
K

Zθti

)
= θti + ητ log g?i − ητ log gθti + ητ log

(
K

Zθti

)

= θti + ητ log

(
g?i
gθti

)
+ ητ log

(
K

Zθti

)
= θti + ητ log

(
g?iK

gθtiZθti

)
. (E.57)

We can further simplify this as:

θt+1
i = θti + ητ log

(
e−[∇gif(g?i ,g

?
−i)]/τ

eθ
t
i

)
. (E.58)

This is nothing but:

θt+1
i = θti + ητ

(−[∇gif(g?i , g
?
−i)]

τ
− θti

)
. (E.59)

Now the Proximal Point updates can be written as:
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θt+1
i = θti + ητ

(−∇gif(g?i , g
?
−i)

τ
− θti

)
+ εt, (E.60)

where εt = η∇gifi(g?i , g?−i)− η∇gifi(g
t+1
i , gt+1

−i ).

Defining θ?i =
−∇gif(g?i ,g

?
−i)

τ , we have:

‖θt+1
i − θ?i ‖2 = ‖θti + ητ

(
θ?i − θti

)
+ εt − θ?i ‖2 = ‖(1− ητ)(θti − θ?i ) + εt‖2

= (1− ητ)2‖θti − θ?i ‖2 + 2(1− ητ)(θti − θ?i )>εt + ‖εt‖2

≤∗1 (1− ητ)2‖θti − θ?i ‖2 + ητ‖θti − θ?i ‖2 +
4

ητ
(1− ητ)2‖εt‖2 + ‖εt‖2

= (1− ητ + η2τ2)‖θti − θ?i ‖2 +

(
1 +

4

ητ
(1− ητ)2

)
‖εt‖2, (E.61)

where ∗1 follows from Young’s inequality.

Now, for the proximal point methods, we have:

‖εt‖2 = η2‖∇gifi(g?i , g?−i)−∇gifi(gt+1
i , gt+1

−i )‖2 ≤ η2L2‖zt+1 − z?‖2 ≤ 2η2L2KL(z?‖zt+1), (E.62)

where it follows from Pinsker’s inequality and the fact that the l1 norm is an upper bound for the l2 norm.

This gives us:

‖θt+1
i − θ?i ‖2 ≤ (1− ητ + η2τ2)‖θti − θ?i ‖2 + C(1− ητ)t, (E.63)

where

C = 2η2L2

(
1 +

4

ητ
(1− ητ)2

)
KL(z?‖z0). (E.64)

For ητ < 1/2, this reduces to:

‖θt+1
i − θ?i ‖2 ≤ (1− ητ/2)‖θti − θ?i ‖2 + C(1− ητ)t. (E.65)

Now, consider the Lyapunov function:

Vt+1 = ‖θt+1
i − θ?i ‖2 +

2C

ητ
(1− ητ)t+1. (E.66)

We have:

Vt+1 ≤ (1− ητ/2)‖θti − θ?i ‖2 + C(1− ητ)t +
2C

ητ
(1− ητ)(1− ητ)t

= (1− ητ/2)‖θti − θ?i ‖2 +
2C

ητ
(1− ητ)t(1− ητ + ητ/2)

= (1− ητ/2)‖θti − θ?i ‖2 +
2C

ητ
(1− ητ)t(1− ητ/2) = (1− ητ/2)

(
‖θti − θ?i ‖2 +

2C

ητ
(1− ητ)t

)
= (1− ητ/2)Vt. (E.67)

This shows linear convergence of the parameter θi to θ?i since:

‖θt+1
i − θ?i ‖2 ≤ Vt+1 ≤ (1− ητ/2)tV0. (E.68)

Merging these inequalities for all players i completes the proof of the theorem.
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Algorithm 5 Extragradient Method

Initialize: g0 and h0.
for t = 1, 2, · · · do
θ̄t+1
i = (1− ητ)θti − η∇gθi fi(gθti , gθt−i) ∀i ∈ [N ].
θt+1
i = (1− ητ)θti − η∇gθi fi(gθ̄t+1

i
, gθ̄t+1
−i

) ∀i ∈ [N ].

end for

E.5.2 Extragradient updates

In this subsection, we show the convergence of the Extragradient method to the NE of the regularized N-player monotone
game. The EG algorithm is presented in Algorithm 5.

Theorem E.7. Let z? = (g?i )Ni=1 be the unique Nash equilibrium of Problem (4.2). Also, we denote zt = (gθti )
N
i=1. Then

for updates in Algorithm 5, we have for stepsize satisfying 0 < η < 1
2NL+τ :

• Convergence of distributions:

max {KL(z?‖zt),KL(z?‖z̄t+1)} ≤ (1− ητ)t2KL(z?‖z0). (E.69)

• Convergence of parameters:

‖θt+1 − θ?‖2 ≤ (1− ητ/2)tV0, (E.70)

where,

V0 = ‖θt − θ?‖2 +
2NC

ητ
, C = 4η2L2

(
1 +

4

ητ
(1− ητ)2

)
KL(z?‖z0).

Proof. From the EG updates in Algorithm 5, we have:

log ḡt+1
i − log gt+1

i = −η
(
∇gifi(gti , gt−i)−∇gifi(ḡt+1

i , ḡt+1
−i )

)
+ c · 1. (E.71)

This implies:

〈log ḡt+1
i − log gt+1

i , ḡt+1
i − git+1〉 = −η〈∇gifi(gti , gt−i)−∇gifi(ḡt+1

i , ḡt+1
−i ), ḡt+1

i − gt+1
i 〉

≤∗1 η‖∇gifi(gti , gt−i)−∇gifi(ḡt+1
i , ḡt+1

−i )‖‖ḡt+1
i − gt+1

i ‖
≤∗2 ηL

(
‖ḡt+1
i − gti‖+ ‖ḡt+1

−i − g
t
−i‖
)
‖ḡt+1
i − gt+1

i ‖

≤∗3 1

2
ηL
(
‖ḡt+1
i − gti‖2 + 2‖ḡt+1

i − gt+1
i ‖2 + ‖ḡt+1

−i − g
t
−i‖2

)
, (E.72)

where (∗1) follows from the fact that a>b ≤ ‖a‖‖b‖, (∗2) follows from Assumption 4.1, and (∗3) follows from x · y ≤
1
2 (x2 + y2). Since this is true for all players, we have:

〈log z̄t+1 − log zt+1, z̄t+1 − zt+1〉 ≤
1

2
ηL

N∑
i=1

(
‖ḡt+1
i − gti‖2 + 2‖ḡt+1

i − gt+1
i ‖2 + ‖ḡt+1

−i − g
t
−i‖2

)
≤ 1

2
ηL
(
N‖z̄t+1 − zt‖2 + 2‖z̄t+1 − zt+1‖2

)
≤ N

2
ηL
(
‖z̄t+1 − zt‖2 + ‖z̄t+1 − zt+1‖2

)
≤∗1 NηL (KL(z̄t+1‖zt) + KL(zt+1‖z̄t+1)) , (E.73)

where (∗1) follows from Pinsker’s Inequality and the fact that the l1 norm is an upper bound for the l2 norm. Substituting
this in Equation (E.18), we have

KL(z?‖zt+1) ≤ (1− ητ)KL(z?‖zt)− (1− ητ −NηL)KL(z̄t+1‖zt)
− ητKL(z̄t+1‖z?)− (1−NηL)KL(zt+1‖z̄t+1). (E.74)
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If η ≤ 1
τ+NL , we have:

KL(z?‖zt+1) ≤ (1− ητ)KL(z?‖zt). (E.75)

Similar to the derivation of Equation (E.73), we have:

−〈log z̄t+1 − log zt+1, z
? − z̄t+1〉 ≤ NηL (KL(z̄t+1‖zt) + KL(z?‖z̄t+1)) . (E.76)

Substituting this in Equation (E.19) we have:

(1−NηL)KL(z?‖z̄t+1) ≤ KL(z?‖zt+1) +NηLKL(z̄t+1‖zt). (E.77)

Now, plugging Inequality (E.74) in (E.77) we have:

(1−NηL)KL(z?‖z̄t+1) ≤ (1− ητ)KL(z?‖zt)
− (1− ητ − 2NηL)KL(z̄t+1‖zt)− ητKL(z̄t+1‖z?)− (1−NηL)KL(zt+1‖z̄t+1). (E.78)

With stepsize η < 1
τ+2NL we have:

KL(z?‖z̄t+1) ≤ 2KL(z?‖zt) ≤ 2(1− ητ)tKL(z?‖z0), (E.79)

which completes the first part of the proof.

The proof of parameter convergence follows exactly from the proof of Theorem 4.3 and we avoid rewriting it here.

E.6 Parameterization with function approximation

In this section, we discuss the monotone game setting with function approximation for policy parameterization, as discussed
for matrix games in §C. In this setting, the regularized problem each player faces is:

min
θi∈Rd

fi(gθi , gθ−i)− τH(gθi), (E.80)

where gθi is a log-linear policy parametrization. In the next lemma, we show the existence of a NE in this setting as well
as the equivalence of this problem to one on the entire simplex, in the same spirit as §C for matrix games:
Lemma E.8. The in-class NE (Definition E.2) for the unregularized (and regularized) monotone game under the log-linear
policy parametrization exists. Also, under Assumption C.1, Problem (E.80) is equivalent to:

min
gθi∈∆

fi(Ψgθi ,Ψgθ−i)− τH(gθi), (E.81)

where Ψ is defined in Equation (C.7).

Now, using Lemma E.8, and Proposition C.6, we describe an algorithm to solve this problem in the following corollary.
Corollary E.9. The update rule:

θ̄t+1
i = (1− ητ)θti − [(M>)−1|0]ηP̃∇gθi fi(gθ̄ti , gθ̄t−i)

θt+1
i = (1− ητ)θti − [(M>)−1|0]ηP̃∇gθi fi(gθ̄t+1

i
, gθ̄t+1
−i

),

solves Problem (E.80) with similar guarantees given by Theorem 4.3. Here, the NE parameter value to which the algorithm

converges to is given by θ?i =
−[(M>)−1|0]P̃∇gθi fi(g

?
i ,g

?
−i)

τ . Furthermore, by choosing the regularization parameter τ small
enough, like in Corollary 4.5, we reach an ε-in-class NE (Definition E.3) of the unregularized monotone game under the
function approximation setting.

E.7 Proof of Lemma E.8

The proof of this Lemma follows along the lines of Lemma C.4 and Theorem C.5. The key here is to notice that:

∇gθi fi(Ψgθi ,Ψgθ−1) = Ψ>∇Ψgθi
fi(Ψgθi ,Ψgθ−1), (E.82)

and that:

Ψµ = µ ∀µ ∈ ∆̃. (E.83)

The rest of the proof is identical to the proof of Lemma C.4.
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Algorithm 6 Optimistic NPG for Markov Games

Initialize: Q0 = 0
for t = 1, 2, · · · , Touter do

for s = 1, 2, · · · , |S| do
Let Qt(s, a, b) := r(s, a, b) + γEs′∼P(·|s,a,b)[Vt(s

′)]
Solve minθ∈Rn maxν∈Rn fτ (Q(s); gθ, hν) by running the Optimistic NPG algorithm (Algorithm 1) for Tinner
iterations and return the last iterates (θTinner , νTinner ).
Set Vt+1(s) = fτ (Qt(s); gθTinner (· | s), hνTinner (· | s))

end for
end for

F Missing Definitions and Proofs in §5

F.1 Zero-Sum Markov Games

A two-player zero-sum Markov game is characterized by the tuple (S,A,B, P, r, γ), where S is the state space; A,B are
the action spaces of players 1 and 2, respectively; P : S × A × B → ∆(S) denotes the transition probability of states;
r : S × A× B → [0, 1] denotes the bounded reward function of player 1 (thus −r is the reward function of player 2); and
γ ∈ [0, 1) is the discount factor. The goal of player 1 (player 2) is to minimize (maximize) the long-term accumulative
discounted reward.

Specifically, at each time t, player 1 (player 2) has a Markov stationary policy g : S → ∆(A) (h : S → ∆(B)). The state
makes a transition from st to st+1 following the probability distribution P (· | st, at, bt), given (at, bt). As in the Markov
decision process model, one can define the state-value function under a pair of joint policies (g, h) as

V g,h(s) := Eat∼g(· | st),bt∼h(· | st)

[∑
t≥0

γtr(st, at, bt)

∣∣∣∣ s0 = s

]
.

Also, the state-action/Q-value function under (g, h) is defined as

Qg,h(s, a, b) := Eat∼g(· | st),bt∼h(· | st)

[∑
t≥0

γtr(st, at, bt)

∣∣∣∣ s0 = s, a0 = a, b0 = b

]
.

Similar as the matrix game setting, a common solution concept in Markov game is also the (Markov perfect) Nash equilib-
rium policy pair (g?, h?), which satisfies the following saddle-point inequality:

V g,h
?

(s) ≥ V g
?,h?(s) ≥ V g

?,h(s), ∀ s ∈ S.

It follows from Shapley (1953); Filar and Vrieze (2012) that there exists a Nash equilibrium (g?, h?) ∈ ∆(A)|S|×∆(B)|S|

for two-player discounted zero-sum MGs. The state-value V ? := V g
?,h? is referred to as the value of the game. The

corresponding Q-value function is denoted by Q?.

We focus on the softmax parameterization gθ and hν of the policies g and h, respectively.

Remark F.1. We note that all results presented in this section also follow for the case where the cardinality of the action
spaces for both players are asymmetric. However, we stick to the case where the number of action is the same for both
players in all states for ease of exposition.

F.2 Proof of Theorem 5.3

We first have the following lemma which shows the smoothness property of the NE policy with respect to the game matrix
Q.

Lemma F.2. Consider the following entropy regularized game:

min
x∈∆̃

max
y∈∆̃

x>Qy − τH(x) + τH(y), (F.1)
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where ∆̃ ⊆ ∆ is a convex compact subset of the simplex given by Equation (C.5). Let (x?Q, y
?
Q) denote the unique solution

to this problem (note that this is unique since we have a strongly convex-strongly concave objective over a compact convex
set). Then, we have:

max
{
‖x?Q1

− x?Q2
‖, ‖y?Q1

− y?Q2
‖
}
≤ C · ‖Q1 −Q2‖F , (F.2)

for some constant C > 0 and for any Q1, Q2 ∈ Rn×n.

Proof. First notice that by the proof of Theorem C.5, solving (F.1) is equivalent to solving

min
x∈∆

max
y∈∆

x>Ψ>QΨy − τH(x) + τH(y), (F.3)

with Ψ being defined in Equation (C.7), i.e., (x?Q, y
?
Q) also solves (F.3). Also, notice that the solution to (F.3) always lies

in the relative interior of ∆, given by (D.14). In other words, [x?Q]a > 0 and [y?Q]a > 0 for all a. Due to the simplex con-
straint, the free variable is of dimension n − 1, and the last dimension of x can be represented as 1 −

∑n−1
a=1 xa > 0.

Let x̃ = (x1, x2, · · · , xn−1)>, ỹ = (y1, y2, · · · , yn−1)>, and f(x, y) := x>Ψ>QΨy − τH(x) + τH(y). Recall
that f(x, y) is strongly convex in x and strongly concave in y. Note that f(x, y) = f

(
Λ(x̃),Λ(ỹ)

)
= f̃(x̃, ỹ) :=

Λ(x̃)>Ψ>QΨΛ(ỹ) − τH
(
Λ(x̃)

)
+ τH

(
Λ(ỹ)

)
, where x = Λ(x̃) =

[
I
−1>

]
x̃ +


0
0
...
1

, and 1 denotes an all-one vec-

tor of proper dimension. Note that f̃(x̃, ỹ) is also strongly convex in x̃ and strongly concave in ỹ, as for any ỹ, the Hessian

∇2
x̃f̃(x̃, ỹ) =

[
I
∣∣ − 1]∇2

xf(Λ(x̃),Λ(ỹ))

[
I
−1>

]
� 0, so is the Hessian with respect to ỹ for any x̃. Hence, the solution

to the minimax problem

min{
x̃
∣∣ x̃a≥0,1−

∑n−1
a=1 x̃a≥0

} max{
ỹ
∣∣ ỹa≥0,1−

∑n−1
a=1 ỹa≥0

} f̃(x̃, ỹ) (F.4)

is given by (x̃?Q, ỹ
?
Q), where x̃?Q and ỹ?Q are just the first n− 1 dimensions of x?Q and y?Q, satisfying [x̃?Q]a > 0, [ỹ?Q]a > 0,

and 1 −
∑n−1
a=1 [x̃?Q]a > 0, 1 −

∑n−1
a=1 [ỹ?Q]a > 0, i.e., the constraints in (F.4) are not violated at (x̃?Q, ỹ

?
Q). By KKT

conditions, it holds that at (x̃?Q, ỹ
?
Q)

τ∇x̃H(Λ(x̃?Q))−
[
I
∣∣ − 1]Ψ>QΨΛ(ỹ?Q) = 0 (F.5)

τ∇ỹH(Λ(ỹ?Q)) +
[
I
∣∣ − 1]Ψ>Q>ΨΛ(x̃?Q) = 0. (F.6)

Define operator G
(
x̃, ỹ, vec(Q)

)
as

G
(
x̃, ỹ, vec(Q)

)
:=

[
τ∇x̃H(Λ(x̃))−

[
I
∣∣ − 1]Ψ>QΨΛ(ỹ)

τ∇ỹH(Λ(ỹ)) +
[
I
∣∣ − 1]Ψ>Q>ΨΛ(x̃)

]
,

where vec(Q) is the vecterization of Q. Then, (x̃?Q, ỹ
?
Q) is given by the solution to G

(
x̃, ỹ, vec(Q)

)
= 0. Note that the

Jacobian of G with respect to [x̃>, ỹ>]> is

M
(
x̃, ỹ, vec(Q)

)
:=
[
∂G
∂x̃

∣∣ ∂G
∂ỹ

]
=

 τ∇2
x̃H(Λ(x̃)) −

[
I
∣∣ − 1]Ψ>QΨ

[
I
−1>

]
[
I
∣∣ − 1]Ψ>Q>Ψ

[
I
−1>

]
τ∇2

ỹH(Λ(ỹ))

 ,
which is always invertible for any x̃ and ỹ belonging to the constraints in (F.4), due to the fact that
τ∇2

x̃H(Λ(x̃)), τ∇2
ỹH(Λ(ỹ)) � 0, and M

(
x̃, ỹ, vec(Q)

)
is skew-symmetric, yielding the fact that the real parts of the

eigenvalues ofM
(
x̃, ỹ, vec(Q)

)
, which are the eigenvalues of (M> +M)/2, are always positive, and in fact uniformly

lower bounded by some constant η > 0 for any x̃ and ỹ belong to the constraints in (F.4), due to the strong convexity of
H(Λ(x̃)) andH(Λ(ỹ)). Hence, we have∥∥M(x̃, ỹ, vec(Q)

)−1∥∥
2
≤ 2

λmin

(
M
(
x̃, ỹ, vec(Q)

)
+M

(
x̃, ỹ, vec(Q)

)>) ≤ 1

η
.
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Due to the invertibility of M
(
x̃, ỹ, vec(Q)

)
, we can apply implicit function theorem (Krantz and Parks, 2012) for any

solution to G
(
x̃, ỹ, vec(Q)

)
= 0, and obtain that for any such a solution (x̃?Q, ỹ

?
Q, vec(Q)), there exists a neighborhood of

it such that for any (x̃, ỹ, vec(Q̃)) in the neighborhood

∂[x̃>, ỹ>]>

∂vec(Q̃)
= −M

(
x̃, ỹ, vec(Q̃)

)−1 ·
∂G
(
x̃, ỹ, vec(Q̃)

)
∂vec(Q̃)

.

Notice that ∂G(x̃,ỹ,vec(Q̃))

∂vec(Q̃)
is uniformly bounded in norm on the constrained sets in (F.4), due to the boundedness of the sets.

Hence, there exists a uniform constant C ′ > 0 such that∥∥∥∥∂[(x̃?Q)>, (ỹ?Q)>]>

∂vec(Q)

∥∥∥∥
2

≤
∥∥∥M(x̃?Q, ỹ?Q, vec(Q)

)−1
∥∥∥

2
·
∥∥∥∥∂G

(
x̃?Q, ỹ

?
Q, vec(Q)

)
∂vec(Q̃)

∥∥∥∥
2

≤ C ′

for any (x̃?Q, ỹ
?
Q, vec(Q)). By the mean-value theorem, we know that∥∥[(x̃?Q1

)>, (ỹ?Q1
)>]− [(x̃?Q2

)>, (ỹ?Q2
)>]
∥∥

2
≤ C ′ ·

∥∥vec(Q1)− vec(Q2)
∥∥

2
.

Finally, notice that

∥∥[(x?Q1
)>, (y?Q1

)>]− [(x?Q2
)>, (y?Q2

)>]
∥∥

2
≤

∥∥∥∥∥
[
I
−1>

] ∥∥∥∥∥
2

·
∥∥[(x̃?Q1

)>, (ỹ?Q1
)>]− [(x̃?Q2

)>, (ỹ?Q2
)>]
∥∥

2
,

which completes the proof by the equivalence of norms.

F.2.1 Tabular case and proof of Theorem 5.3

We set the stepsize to be:

η =
1− γ

2(1 + τ(log n+ 1− γ))
. (F.7)

The convergence of the Q-function follows from Lemma B.7, along with Theorem 2 in Cen et al. (2021b).

We show the convergence of the parameter next. We define:

θ?(s) =
−Q?τhν?(· | s)

τ
, ν?(s) =

Q?τ
>gθ?(· | s)
τ

. (F.8)

We have:

‖θt − θ?Q?‖2 = ‖θt − θ?Qt + θ?Qt − θ
?‖2 ≤ 2‖θt − θ?Qt‖

2 + 2‖θ?Qt − θ
?‖2. (F.9)

Now, the first term converges approximately after the inner loop terminates. We can analyze the second term as follows:

‖θ?Qt − θ
?‖2 =∗1

1

τ
‖Qthν?Qt −Q

?hν?
Q?
‖2 =

1

τ
‖Qthν?Qt −Q

?hν?Qt
+Q?hν?Qt

−Q?hν?
Q?
‖2

≤ 2

τ

(
‖Qthν?Qt −Q

?hν?Qt
‖2 + ‖Q?hν?Qt −Q

?hν?
Q?
‖2
)

≤ 2

τ

(
‖Qt −Q?‖2F + ‖Q?‖2∞‖hν?Qt − hν?Q?‖

2
1

)
≤∗2 2

τ

(
‖Qt −Q?‖2F + C‖Q?‖2∞‖Qt −Q?‖2F

)
=

2

τ

(
1 + C2‖Q?‖2∞

)
‖Qt −Q?‖2F , (F.10)

where (∗1) follows from the definition of θ? and (∗2) follows from Lemma F.2. Substituting this in Equation (F.9) we
have:

‖θt − θ?Q?‖2 ≤ 2‖θt − θ?Qt‖
2 +

4

τ

(
1 + C2‖Q?‖2∞

)
‖Qt −Q?‖2F . (F.11)
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Therefore, we have ‖θt − θ?Q?‖2 ≤ ε if

‖θt − θ?Qt‖
2 ≤ ε

4
, ‖Qt −Q?‖2F ≤

ε
8
τ (1 + C2‖Q?‖2∞)

. (F.12)

Note that the first term can be achieved by setting the inner-loop iterations Tinner to be the following (from Theorem 3.4):

Tinner = O
(

1

ητ

(
log

1

ε
+ log

1

1− γ
+ log log n+ log

1

η

))
, (F.13)

and the second term can be achieved by setting the outer-loop iterations Touter to be:

Touter = O
(

1

1− γ

(
log

1

ε
+ log

(
8

τ

(
1 + C2‖Q?‖2∞

))
+ log

1 + τ log n

1− γ

))
. (F.14)

This completes the proof.

F.3 Function approximation setting

In this subsection, we discuss Markov games where the policies have a log-linear parametrization. The basic idea is to
follow the tabular setting, but only for those states for which there is an action for which the feature vector corresponding
to the state action pair is non-zero. The detailed description of the algorithm can be found in §F.3.1. We first make the
following assumption on the feature matrix φ.

Assumption F.3. The feature matrix Φ is of the form Φ = [φ1, φ2, · · · , φ|S|×|A|] = [I | 0].

This assumption plays a similar role as Assumption C.1 for the matrix game case, whose discussion has been provided after
Assumption C.1. Essentially, it ensures that the feature matrix is not only full-rank (a standard assumption in single-agent
RL), but also lead to a convex subset in the policy space, so that the in-class equilibrium exists (and thus the optimization
problem is well-defined).

Theorem F.4. Let Q?τ be the in-class NE (Definition 5.1) Q-value defined in Equation (5.4) of the regularized problem,
under the log-linear parametrization satisfying Assumption F.3. Choose the stepsize η = 1−γ

2(1+τ(logn+1−γ)) for the inner
loop in Algorithm 7. Then, after running Algorithm 7 for

Tinner = O
(

1

ητ

(
log

1

ε
+ log

1

1− γ
+ log log n+ log

1

η

))
,

Touter = O
(

1

1− γ

(
log

1

ε
+ log

(
8

τ

(
1 + C2‖Q?‖2∞

))
+ log

1 + τ log n

1− γ

))
, (F.15)

iterations, we have ‖QT −Q?τ‖F ≤ ε and max{‖θT −θ?‖, ‖νT −ν?‖} ≤ ε where (QT , θT , νT ) is the output of Algorithm
6 after T iterations and (θ?, ν?) are defined in Equation (F.16).

Remark F.5. Note that Theorem F.4 provides the convergence rate for a two player Markov game under the function
approximation setting. This covers the tabular case by setting the feature matrix, Φ (See Equation (C.2) in §C), to be equal
to the identity matrix. In particular, making this substitution recovers the results of Theorem 5.3 .

Remark F.6. We remark that Theorem F.4, to the best of our knowledge, provides the first symmetric algorithm with
convergence guarantees for the Markov game under the function approximation setting. The only other existing result
in this setting is Zhao et al. (2021), where the update is asymmetric, and one of the players performs multiple updates
while the other player updates once. An asymmetric update-rule also appears in Daskalakis et al. (2020), without function
approximation. Our results also improve over Wei et al. (2021); Cen et al. (2021b) by generalizing the results to the case
of function approximation, as well as showing parameter convergence.

F.3.1 Proof of Theorem F.4

In this section, we consider the Markov game with log-linear parametrized policies. For sake of simplicity, we assume
that the feature matrix Φ ∈ Rd×|S|n is of the form Φ = [Id | 0] (Assumption F.3). Each column of Φ is a feature vector
corresponding to some state action pair (s, a). Note that for each state, there could be 0 to min{n, d} actions for which the
feature vector is non-zero.
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Algorithm 7 Optimistic NPG for Markov Games with Function Approximation

Initialize: Q0 = 0
for t = 1, 2, · · · , Touter do

Let Qt(s, a, b) := r(s, a, b) + γEs′∼P(·|s,a,b)[fτ (Qt(s
′); gθTinner (· | s′), hνTinner (· | s′))]

for i = 1, 2, · · · , D do
Solve min

θ∈R
|Asdi

| max
ν∈R

|Bsdi
| fτ (Q(sdi); gθ, hν) by running the Optimistic NPG algorithm (Algorithm 2) with

feature matrix Φsdi for Tinner iterations and return the last iterates (θdiTinner , ν
di
Tinner

).
end for
Set (θTinner , νTinner ) =

(
[θd1

Tinner
, θd2

Tinner
, · · · , θdDTinner ], [ν

d1

Tinner
, νd2

Tinner
, · · · , νdDTinner ]

)
.

end for

Now, consider a state s ∈ S. Define As = {a ∈ A : Φs,a 6= 0} where Φs,a corresponds to the column in the feature
matrix for Atate s, and Action a, and here 0 denotes the zero vector. Therefore As is the set of actions in state s for which
the feature vector is non-zero. For sake of notational simplicity, let these be the actions 1, 2, · · · , |As|. Note that As can
be an empty set. We further assume that the first |A1| columns of Φ are corresponding to State 1, the next |A2| columns
correspond to state 2 and so on. Note that we have

∑
i∈S |Ai| = d.

For state s, if As is nonempty, define the feature matrix Φs = [I|As| | 0] ∈ R|As|×n. Note that this would be the feature
matrix corresponding to each state for the original feature matrix Φ.

Now, define ∆̃s corresponding to each state s, and feature matrix Φs as in Equation (C.5). This corresponds to the set of
permissible distributions under the function approximation setting for state s. If the set As is empty, we take ∆̃s to be the
singleton set with the uniform distribution.

Next, let the first d1 columns of the Matrix Φ correspond to state sd1
, i.e., d1 = |A1|, the next d2 columns correspond

to actions in state sd2
and so on till finally the columns from d − dD + 1 to column d correspond to state sdD , i.e., we

partition the columns for which the feature vector is non-zero into the different states they correspond to. Therefore, D
corresponds to the number of states for which there is at least one action for which the feature vector corresponding to
the state action pair is non-zero. This means that the states sd1 , sd2 , · · · , sdD are the only states for which there is at
least one action with a nonzero feature vector, and therefore ∆̃s is not a singleton set for these states. For all other states
s ∈ S\{sd1 , sd2 , · · · , sdD}, we have that ∆̃s is a singleton set containing the uniform distribution.

Now, the algorithm used to solve the Markov game in this function approximation setting, is similar to the tabular setting,
except that we only have to run the inner iteration on the states sdi , i = {1, 2, · · · , D}. We describe the algorithm in detail
in Algorithm 7 in §F. In order to characterize the point where the parameter converges to, we define:

θ? = [θ?sd1
, θ?sd2

, · · · , θ?sdD ], ν? = [ν?sd1
, ν?sd2

, · · · , ν?sdD ], (F.16)

where

θ?sdi
= −[I|Asdi |

|0]
Q?τ (sdi)hν?(· | sdi)

τ
∈ RAsdi , ν?sdi

= [I|Asdi |
|0]
Q?τ (sdi)

>gθ?(· | sdi)
τ

∈ RAsdi ,

and Q?τ is the in-class NE Q-value (Definition 5.1).

The Nash equilibrium (θ?, ν?) under the function approximation setting satisfies:

V θ
?,ν(s) ≤ V θ

?,ν?(s) ≤ V θ,ν
?

(s) ∀θ, ν ∈ Rd, ∀s ∈ S. (F.17)

Note that this is equivalent to (from Lemma C.4):

V gθ? ,hν (s) ≤ V gθ? ,hν? (s) ≤ V gθ,hν? (s) ∀gθ, hν ∈ ∆̃s, ∀s ∈ S. (F.18)

We denote the NE V (and Q) as V ? (and Q?)(We use this notation for the general regularized version with τ ≥ 0, i.e., we
allow for the unregularized game with τ = 0), i.e.,

Q?(s, a, b) = r(s, a, b) + γEs′∼P(·|s,a,b)[V
?(s′)]. (F.19)
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Next, we define the soft-Bellman operator as:

Tτ (Q)(s, a, b) := r(s, a, b) + γEs′∼P(·|s,a,b)[ min
θ∈R|As|

max
ν∈R|As|

fτ (Q(s′); gθ(· | s′), hν(· | s′))], (F.20)

where

fτ (Q(s′); gθ(· | s′), hν(· | s′) := gθ(· | s)>Q(s)hν(· | s)− τH(gθ(· | s)) + τH(hν(· | s)), (F.21)

and Q(s) is the Q-value matrix at state s. Let θs, νs be the NE parameters at state s. Note that by NE we mean the
solution to the min-max problem (which is the in class NE in the function approximation setting). Then the concatenation
θ = [θ>1 , θ

>
2 , · · · , θ|S|> ]> (and similarly for ν) denotes the parameters.

Note that the inner min max problem is equivalent to (from §C):

min
gθ∈∆̃s′

max
hν∈∆̃s′

fτ (Q(s′); gθ(· | s′), hν(· | s′)). (F.22)

Consider the value iteration:

Qt+1 = Tτ (Qt). (F.23)

We have ‖Qt − Q?‖∞ ≤ γt‖Q0 − Q?‖∞, due to the non-expansiveness property of the min max operator and the
contraction factor γ < 1. Note from Lemma 5.2, this fixed point in fact corresponds to the in-class NE Q−value matrix of
the regularized Markov game. Thus, we have that the fixed point of the soft-Bellman operator defined in (F.20) is the NE
Q-value matrix Q?.

The inner problem, which solves the saddle point problem, is solved for each state with the input feature matrix Φs using
Algorithm 2. The iteration complexity follows from a similar analysis to the tabular case. This completes the proof.

F.4 Proof of Lemma 5.2

Consider the operator

T (V )(s) := min
θs∈R|As|

max
νs∈R|As|

Ea∼gθs ,b∼hνs
[
r(s, a, b) + γEs′∼P(·|s,a,b)[V (s′)]

]
. (F.24)

We put the subscript on the variables to show that it is for state s. Note that we state proof here for the unregularized game,
i.e. with τ = 0. The same proof also follows if we used the soft bellman operator defined in Equation (F.20) for regularized
games.

Note that this is the operator for the value function V corresponding to the Q value operator in Equation (F.20) with τ = 0.
We have, from the nonexpansive property of the min-max operator (see for example Filar and Vrieze (2012)):

‖T (V1)− T (V2)‖∞ ≤ γ‖V1 − V2‖∞, (F.25)

which shows that this is a contracting operator and therefore has a unique fixed point by the Banach Fixed Point theorem.
We show that this fixed point will lead to the in-class Nash equilibrium policy defined in Definition 5.1. Let the fixed point
be denoted by V ?, and let (θ?, ν?) be the minimax policy parameters in Equation (F.24) when plugging in V ?. Note that
θ? = (θ?s)

|S|
s=1 and similarly ν?. We will show that (θ?, ν?) is in fact the NE policy parameters. We have:

V ?(s) = Ea∼gθ?s ,b∼hν?s
[
r(s, a, b) + γEs′∼P(·|s,a,b)[V

?(s′)]
]

= max
ν∈Rd

Ea∼gθ?s ,b∼hνs
[
r(s, a, b) + γEs′∼P(·|s,a,b)[V

?(s′)]
]

≥ Ea∼gθ?s ,b∼hνs
[
r(s, a, b) + γEs′∼P(·|s,a,b)[V

?(s′)]
]

∀ ν ∈ Rd. (F.26)

Now applying Lemma 4.3.3 in Filar and Vrieze (2012) to Inequality (F.26), we have:

V ? ≥ V θ
?,ν ∀ ν ∈ Rd. (F.27)
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Applying the same inequality for ν?, we have:

V θ
?,ν ≤ V ? ≤ V θ,ν

?

θ, ν ∈ Rd. (F.28)

Furthermore, since we have:

V ? = Ea∼gθ? ,b∼hν?
[
r(s, a, b) + γEs′∼P(·|s,a,b)[V

?(s′)]
]
. (F.29)

Lemma 4.3.3 in Filar and Vrieze (2012) gives us that V ? = V θ
?,ν? . Combining this with Inequality (F.28), we have:

V θ
?,ν ≤ V θ

?,ν? ≤ V θ,ν
?

∀θ, ν ∈ Rd, (F.30)

which shows that (θ?, ν?) is the required NE. Finally, using Theorem 4.3.2 (iii) in Filar and Vrieze (2012) , we can find
the NE (θ?, ν?) for each state s ∈ S by solving the following matrix game:

min
θ∈R|As|

max
ν∈R|As|

Ea∼gθ,b∼hν
[
r(s, a, b) + γEs′∼P(·|s,a,b)[V

?(s′)]
]
.

This completes the proof.

G Simulations

We now provide simulation results to corroborate our theoretical results. First, we study matrix games under the tabular
setting in Figure 2a. Here, we show the behavior of vanilla NPG and our proposed variant (Equations (3.1)-(3.2)). We plot
the first element of the iterate, i.e., θ(1) on the y-axis. It is shown that even for vanishingly small stepsizes, vanilla NPG
diverges, whereas the proposed variant converges even with reasonable step-size choices. The cost matrix Q is taken to be
an identity matrix of dimension 5.

Next, we confirm the convergence of our variant of NPG in Figure 2b. In this figure, we compare the behavior of ONPG
and NPG, and show that ONPG admits convergence for larger stepsizes. Smaller stepsizes that enables NPG convergence
would lead to a slower convergence rate than ONPG. This is in line with our results in Theorems 3.2 and 3.4.
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(a) Vanilla NPG vs proposed variant of NPG.
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Figure 2: Comparison of vanilla NPG, proposed variant of NPG and ONPG in matrix game under the tabular setting, in
terms of parameter convergence.

G.1 ONPG in Markov games with function approximation

Figures 3a and 3b study the behavior of Algorithm 7 in Markov games with log-linear function approximation, and corrob-
orate the results of Theorem F.4. Here we take the feature matrix Φ ∈ R10×100, and |S| = 10, i.e., there are 10 states. The
first 10 columns correspond to the first action of each of the 10 states. This means that Φ(s,1) = es for s = {1, 2, · · · , 10}
where es is a standard basis vector with element 1 at position s. We take the discount factor γ = 0.8. We take the transition
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probability to be uniform for each state action pair, i.e., P(·|s, a, b) = 1/10 for all (s, a, b), i.e., P(s′|s, a, b) = 1/10 for all
state s′ ∈ S. Finally, we take the regularization parameter τ = 0.1.
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(a) Q-matrix to in-class NE Q-matrix.
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Figure 3: Convergence in Markov Games with linear function approximation.
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