
On the Privacy Risks of Algorithmic Recourse

Martin Pawelczyk Himabindu Lakkaraju* Seth Neel*
University of Tübingen Harvard University Harvard University

Abstract

As predictive models are increasingly being em-
ployed to make consequential decisions, there is a
growing emphasis on developing techniques that
can provide algorithmic recourse to affected indi-
viduals. While such recourses can be immensely
beneficial to affected individuals, potential adver-
saries could also exploit these recourses to com-
promise privacy. In this work, we make the first
attempt at investigating if and how an adversary
can leverage recourses to infer private informa-
tion about the underlying model’s training data.
To this end, we propose a series of novel mem-
bership inference attacks which leverage algorith-
mic recourse. More specifically, we extend the
prior literature on membership inference attacks
to the recourse setting by leveraging the distances
between data instances and their corresponding
counterfactuals output by state-of-the-art recourse
methods. Extensive experimentation with real
world and synthetic datasets demonstrates sig-
nificant privacy leakage through recourses. Our
work establishes unintended privacy leakage as
an important risk in the widespread adoption of
recourse methods.

1 INTRODUCTION

Machine learning (ML) models are increasingly being de-
ployed in domains such as finance, healthcare, and policy
to make a variety of consequential decisions. As a result,
there is a growing emphasis on providing recourse to indi-
viduals who have been adversely impacted by the predic-
tions of these models [43]. For example, an individual who
was denied a loan by a predictive model employed by a
bank should be informed about what can be done to reverse
this decision. Several approaches in the recent literature
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tackled the problem of providing recourse by generating
counterfactual explanations [12, 26, 40, 41, 45] which high-
light what features need to be changed and by how much
to flip a model’s prediction. For instance, Wachter et al.
[45] proposed a gradient based approach to find the nearest
counterfactual resulting in the desired prediction. More re-
cently, Karimi et al. [13, 14] shed light on the spuriousness
of the recourses generated by counterfactual/contrastive ex-
planation techniques [40, 45], and advocated for leveraging
the causal structure of the underlying data when generating
recourses [3, 17, 21].

As algorithmic recourses seep into real-world applications,
adversaries could potentially exploit these recourses to ex-
tract information about the underlying models and their
training data, thereby leaking sensitive information (e.g.,
a bank’s customer data) and enabling fraudulent activities.
Therefore, there is a clear and urgent need to investigate the
privacy risks associated with algorithmic recourse. While
there is extensive literature on privacy attacks and defenses
for machine learning models [1, 19, 30, 32], there is very
little research [2, 33] that focuses on the privacy risks that
arise when adversaries have access to explanations which
highlight the rationale behind one or more model predic-
tions. Recently, Shokri et al. [33] studied if and how feature
attribution based explanations (which capture the feature
importances associated with individual model predictions)
leak sensitive information, and Aïvodji et al. [2] developed
model extraction (i.e., reconstructing the underlying model)
attacks against counterfactual explanations. However, nei-
ther of these works explore if and how adversaries may
leverage recourses to infer sensitive information about the
underlying model’s training data.

In this work, we address the aforementioned gaps by ini-
tiating a study of if and how an adversary can leverage
algorithmic recourses to leak sensitive information about
the training data of the underlying model. To this end, we
introduce a general class of membership inference attacks
called counterfactual distance-based attacks which leverage
algorithmic recourse to determine if an instance belongs to
the training data of the underlying model or not. In formulat-
ing this new class of attacks, we exploit the intuition that the
distance between an instance and its corresponding recourse
may capture information about whether that instance was
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used to train the model. We instantiate the aforementioned
class of attacks to propose two novel membership inference
attacks. Our first attack infers membership by thresholding
on the distance between a given instance and its correspond-
ing algorithmic recourse. Our second attack draws inspira-
tion from state-of-the-art loss-based membership inference
attacks [5, 46] and proposes a likelihood ratio test (LRT)
that accounts for algorithmic recourse. Our attacks operate
under the assumption that the adversary can only query the
recourse algorithm once. This assumption is a lot more
practical than those considered in related works [2], and
is inline with real-world settings where an end user would
typically be provided with a single recourse and will not be
able to query the underlying model or recourse algorithm
multiple times [40, 45]. To the best of our knowledge, our
work is the first to introduce membership inference attacks
which leverage algorithmic recourse.

We experiment with multiple real world datasets spanning
diverse domains such as lending, healthcare, and law to
evaluate the effectiveness of the proposed attacks. Our ex-
perimental results clearly demonstrate the efficacy of the
proposed attacks, and highlight significant privacy leakage
through recourses generated by a wide range of recourse al-
gorithms. In addition, the proposed attacks also outperform
the state-of-the-art loss-based membership inference attacks
(which do not leverage recourses) on data with sufficiently
high dimensionality, thus highlighting the promise of our
recourse-based attacks as generic membership inference at-
tacks. We also empirically analyze the factors contributing
to the success of our attacks, and find that our attacks are
highly successful when the underlying model overfits to the
training data [5] and the dimensionality of the data is high.
Overall, our results establish unintended privacy leakage as
an important risk in the widespread adoption of recourse
algorithms.

2 RELATED WORK

Algorithmic Recourse. Several approaches have been
proposed in literature to provide recourse to individuals
who have been negatively impacted by model predictions
[12, 15, 17, 18, 21, 27, 38, 40, 45]. These approaches can
be broadly categorized based on [42]: type of the underlying
predictive model (e.g., tree vs. differentiable classifier), type
of access they require to the underlying predictive model
(e.g., black box vs. gradient access), whether they encour-
age sparsity in counterfactuals (i.e., only a small number
of features should be changed), whether counterfactuals
should lie on the data manifold, whether the underlying
causal relationships should be accounted for when gener-
ating counterfactuals, and whether the output produced by
the method should be multiple diverse counterfactuals or
a single counterfactual. Recent research also highlighted
and addressed various challenges pertaining to the robust-
ness [4, 8, 23–25, 28, 34, 39] and fairness [11, 44] of al-

gorithmic recourse. However, none of the aforementioned
works explore the privacy risks associated with algorithmic
recourse which is the focus of our work.

Privacy Attacks for ML Models. There is a long line of
prior work developing privacy attacks on machine learn-
ing models [5, 30–32, 46]. One class of attacks called
membership inference attacks focus on determining if a
given instance is present in the training data of a particular
model [5, 31, 32, 46]. These attacks typically exploit the
differences in the distribution of model confidence on the
true label (or the loss) between the instances that are in the
training set and those that are not. For example, Shokri
et al. [32] proposed a loss-based membership inference at-
tack which determines if an instance is in the training set
by testing if the loss of the model for that instance is less
than a specific threshold. Other membership inference at-
tacks are also predominantly loss-based attacks where the
calibration of the threshold varies from one proposed attack
to the other [5, 31, 46].

Some works leverage additional information beyond loss
functions to do membership inference attacks. For instance,
[7] leverages adversarial examples to orchestrate member-
ship inference attacks. While there exist similarities be-
tween adversarial examples and recourses output by SCFE
[45], the recourses output by other SOTA methods such
as CCHVAE [21] and GS [15] are quite different from ad-
versarial examples and their framework does not apply to
algorithmic recourse broadly.

Intersections between Privacy and Explainability. The
intersection between privacy and explainability, which is
the focus of our work, is relatively under explored. Re-
cently, Shokri et al. [33] developed a membership inference
attack against a variety of feature attribution based explana-
tion methods (e.g., LIME [29], SHAP [16], Gradient-based
methods [35, 37]). Their attack exploits the intuition that the
higher the variance of the feature attribution corresponding
to an instance, the more uncertain the corresponding predic-
tion (i.e., higher model loss), and therefore the less likely
it is that the instance belongs to the training set. Further-
more, Aïvodji et al. [2] developed a model extraction attack
against counterfactual explanation methods. Their attack
leverages model predictions and counterfactual explanations
(output in case of unfavorable predictions) corresponding to
a set of instances, and learns a proxy model that mimics the
behavior of the model under attack as closely as possible.
None of these works develop membership inference attacks
against counterfactual explanation (algorithmic recourse)
methods which is the main theme of our work.

3 PRELIMINARIES

Let us consider a predictive model fθ ∶ X → Y where
X ⊆ Rd is the feature space, Y is the space of outcomes,
and θ ∈ Θ denotes the parameters of the model fθ . Let Y =
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{0,1} where 0 and 1 denote an unfavorable outcome (e.g.,
loan denied) and a favorable outcome (e.g., loan approved)
respectively. In practice fθ(x) will output a probability in
[0,1] of a positive classification, which is then thresholded
to obtain a binary classification, and we will denote by
(fθ(x))y the probability fθ assigns to a binary label y. Let
us assume that the model fθ was trained using some data
set Dt = (Xt, Yt) where each (x, y) ∈ Dt is sampled from
an underlying data distribution D. A training algorithm
T ∶ (X × Y)n → Θ is a potentially randomized algorithm
that takes in a dataset Dt and outputs a model fθ . With this
notation in place, we provide an overview of the standard
formulations for algorithmic recourse as well as membership
inference attacks.

Algorithmic Recourse. Let x ∈ X be an instance which
received a negative outcome i.e., fθ(x) = 0. The goal
here is to find a recourse for this instance x i.e., to deter-
mine a set of changes δ that can be made to x in order to
reverse the negative outcome. The problem of finding a
recourse for x involves finding a counterfactual x′ = x + δ
for which the predictive model outputs a positive outcome
i.e., fθ(x′) = fθ(x + δ) = 1. Note that it is desirable to
minimize the cost c(x,x′) required to change x to x′ so
that the recourse is easily implementable. In practice, ℓ1 or
ℓ2 distance are commonly used as cost functions [45]. Fur-
thermore, since recommendations to change features such
as gender or race would be unactionable, it is important to
restrict the search for counterfactuals so that only actionable
changes are allowed. Let Ap denote the set of plausible or
actionable counterfactuals.

Putting it all together, the problem of finding a recourse for
instance x for which fθ(x) = 0 can be formalized as [45]:

x′ = argmin
x′∈Ap

ℓ(fθ(x′),1) + λ ⋅ c(x,x′), (1)

where ℓ ∶ X ×Y → R+ denotes a differentiable loss function
(e.g., binary cross entropy loss) which ensures that gap
between fθ(x′) and the favorable outcome 1 is minimized,
and λ > 0 is a trade-off parameter. Eqn. (1) captures the
generic formulation leveraged by several of the state-of-
the-art recourse finding algorithms [45]. In general, we
denote (potentially randomized) recourse algorithms asR ∶
(Θ,X ) → S. In the standard recourse setting R returns a
recourse x′ and so S = X .

Membership Inference Attacks for ML Models. The goal
of a membership attack is to create a function that accurately
determines if an instance z = (x, y) belongs to the training
set of the model fθ. Several membership inference attacks
proposed in literature exploit the intuition that models have
lower loss on instances that were observed during their
training. Such approaches are commonly referred to as loss-
based attacks. Below, we discuss two of the most popular
loss-based attacks developed by Yeom et al. [47] and Carlini
et al. [5].

Info Loss CFD Loss LRT CFD LRT

Query access to fθ ✓ × ✓ ×
Query access toR × ✓ × ✓

Known loss function ✓ × ✓ ×
Access to DN × × ✓ ✓

Access to true labels ✓ × ✓ ×

Table 1: Summarizing the assumptions underlying the dif-
ferent MI attacks. The recourse based attacks do not require
access to the true labels nor do they need to know the correct
loss functions.

Thresholding on Model Loss [47]. This attack takes an
instance x and determines whether it is a member of the
training set (MEMBER) by checking if the Loss of the model
fθ is lower than or equal to a threshold τL:

MLoss(x) =
⎧⎪⎪⎨⎪⎪⎩

MEMBER if ℓ(θ, z) ≤ τL
NON-MEMBER if ℓ(θ, z) > τL.

(2)

Sablayrolles et al. [31] demonstrated that this attack is nearly
optimal in the sense that it is approximately equivalent to the
likelihood ratio test under certain conditions, which is the
uniformly most powerful test for a given significance level
(by the Neyman-Pearson Lemma). Note that this attack is
only feasible when the adversary has access to the true label
y of x, and the model’s loss function ℓ and its parameters θ.

Likelihood Ratio Attack [5]. Recent work has attempted
to further approximate a test based on the full likelihood
ratio of the model θ by computing the likelihood ratio of the
model loss, or equivalently confidence, conf(fθ, z). Given
sample access to D the adversary trains shadow models,
and computes conf(fθ, z) in the case when z is included
in the training set and when it is a test point. Under the
assumption that the logit scaled confidence is normally dis-
tributed, normal distributions are fit to the “in” and “out”
scaled confidences, and an approximate likelihood ratio
Λ = Pr[conf(fθ,z) ∣N (µin,σ

2
in)]

Pr[conf(fθ,z) ∣N (µout,σ2
out)] is computed. Finally, the

adversary predicts MEMBER when Λ > τ . We call this attack
Loss LRT. In Subsection 4.2 we develop an LRT attack
based not on conf(fθ, z), but on the counterfactual distance,
which does not require direct access to fθ or y and can be
implemented with algorithmic recourses.

4 OUR FRAMEWORK

In this section, we introduce a general class of novel mem-
bership inference attacks that leverage algorithmic recourse.
First, we introduce the recourse-based membership infer-
ence game which generalizes the previously proposed mem-
bership inference attacks [47] on ML models to account for
information captured in algorithmic recourse (see Table 1
for an overview). Then we introduce an attack that uses
the distance between the recourse and the input (Subsec-
tion 4.1), and show how the attack can be improved with a
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likelihood-ratio test (LRT) based approach in the style of
[5] which we present in Subsection 4.2.
Definition 1 (Recourse-based MI Game). The game has
two players: a model owner (O) and an adversary (A). The
players take the following actions:

(1) O draws a training set from the population Dt ∼ DN ,
and using training algorithm T , equipped with loss
function ℓ trains a model fθ ∼ T (Dt). O then la-
bels every point z ∈ Dt with a binary label fθ(z).
Let D0

t denote the subset of the training data with
fθ(x) = 0, and let Dθ,0 denote the conditional dis-
tribution p(z) ∼ D∣fθ(z) = 0. O flips a coin: if

“heads”, O samples x ∼ D0,θ, else x ∼ D0
t . Us-

ing recourse generation algorithm R, O generates
a recourse x′ ∼ R(fθ, x,Dt) for x. Then O sends
s = (x′, x) to A.

(2) In addition to s, A obtains query access to D. We
assume that A has full knowledge of all the implemen-
tation details of O, including the specifics of T and
R. Finally A produces a binary guess G indicating
whether x ∈Dt (MEMBER) or x /∈Dt (NON-MEMBER).

We now present two attacks based on a statistic we call the
counterfactual distance.

4.1 Thresholding on Counterfactual Distance

In the recourse-based MI Game, all the adversary has access
to is the original instance x and its counterfactual x′ gen-
erated by recourse algorithm. Loss-based attacks perform
well at determining whether a point is a MEMBER of the
training set or not, because the model typically over-fits to
the training points, leading to lower losses on these points
than on the test set. One explanation for this loss-disparity
that has been given in prior work [33], is that during the
training process, the decision boundary is forced away from
training points. This suggests that points in the training set
should be further from the boundary than points in the test
set, motivating a distance-based attack that predicts a point
is a MEMBER of the training set if its loss is below some
threshold τ . The distance of a point x to the boundary can be
computed as c(x,x′) where x′ is the solution to Equation 1
with Ap = Rd. So if we exactly optimize the objective func-
tion in Equation 1 that underpins our recourse algorithms
(with Ap = Rd), the counterfactual distance c(x,x′) is ex-
actly the distance to the model boundary. While algorithms
that focus on generating realistic recourses [14, 21] do not
exactly optimize this objective in general, we can still view
the distance to the recourse as a proxy for the distance of x
to the model boundary. Based on this intuition we have the
following counterfactual distance (CFD) based attack:

MDistance(x) =
⎧⎪⎪⎨⎪⎪⎩

MEMBER if c(x,x′) ≥ τD
NON-MEMBER if c(x,x′) < τD.

(3)

Following [5], we assume for the first two attacks below that
A knows apriori an optimal threshold τα that maximizes a
given TPR subject to a fixed FPR α, as the purpose of these
simple attacks is to illustrate the potential privacy leakage
through the recourse output. In practice, we will be plotting
the TPR vs. FPR curves over all values of the threshold τα
and so we will not need to pick a specific one.

4.2 LR Test using Counterfactual Distance

Algorithm 1 One-sided Distance-based Likelihood Ratio
Test (CFD LRT)

1: Inputs: point (x, y), recourse output s =
GetRecourse(x, fθ),D; FP-Rate: α, # Shadow
Models: N , T = TrainClassifier(⋅)

2: teststats = []
3: Compute: t0 = T (s) = c(x,x′)
4: for i = 1 ∶ N do
5: Sample D(i)t ∼ D
6: fθ(i) = TrainClassifier(D(i))
7: s(i) = GetRecourse(x, fθ(i))
8: teststats ←Ð T (si) = c(x,x′(i))
9: end for

10: µ̂MLE = 1
N ∑

N
i=1 ( log c(x,x′(i))))

11: σ̂2
MLE = 1

N ∑
N
i=1 (µ̂MLE − log (c(x,x′(i))))

2

12: if t0 > z1−α then ▷ z1−α is the 1−α-quantile of
Z ∼ LN (µ̂MLE, σ̂

2
MLE)

13: Output: G = NON-MEMBER
14: else
15: Output: G = MEMBER
16: end if

Carlini et al. [5] showed that Loss LRT attacks perform
better than simple Loss thresholding. In Algorithm 1 we
present an LRT version of our counterfactual distance at-
tack (CFD LRT). As in prior work [5, 31] since computing
the LRT (Equation 4) exactly is intractable, we make sev-
eral modifications to the attack that allow us to compute it
efficiently. The full likelihood ratio given c(x,x′) is:

Λ = Pr[c(x,x′)∣x ∈Dt]
Pr[c(x,x′)∣x /∈Dt]

. (4)

We model the distributions of our statistic c(x,x′) as log-
Normal, and so in order to compute eqn. (4), we need to
estimate (µin, σin), (µout, σout) where we assume that if
Dt/{x} ∼ D, θ ∼ T ({x} ∪ Dt), x′ ∼ R(x, θ,Dt), then
log c(x,x′) ∼ N (µin, σin), and similarly when x′ /∈ Dt,
log c(x,x′) ∼ N (µout, σout). Given access to D we can
estimate the parameters µ,σ by drawing fresh datasets,
training models θ – with or without a given point x – and
then computing the resulting counterfactual distances (Lines
5 − 8). However, as in [5] we note that to approximate the
numerator, we have to perform this sampling and model
training separately for each x that we perform the attack
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on, which is computationally infeasible. Hence in Algo-
rithm 1 we present a one-sided version of the LRT, where
in Lines 10 − 11 we estimate µout, σout, and our attack pre-
dicts MEMBER if c(x,x′) has a sufficiently low likelihood
under these parameters. Note that since µout, σout do not de-
pend on x, we only need to perform the process of training
Shadow models once, even if we are evaluating our attack
on many different x’s.

5 IS PRIVACY LEAKAGE THROUGH
RECOURSES INEVITABLE?

The attacks developed above and empirical results in Sec-
tion 6 suggest that recourses can be exploited to infer private
information about the underlying training set. This raises
a natural question: Is privacy leakage through recourses
inevitable?

Over the last decade, differential privacy [10] has emerged
as the canonical approach to provably preventing member-
ship inference for a wide array of statistical tasks. Applying
this to the recourse setting, results which have been folklore
in the privacy community imply that if the recourse genera-
tion algorithm is DP in the training data, we can provably
bound the success of any adversaryA in the Recourse-based
MI Game. In Theorem 2 (proof deferred to Supplement) we
state a variant of the folklore result tailored to our setting,
showing that not only can we bound the excess accuracy of
the adversary over random guessing, we can also bound the
balanced accuracy (BA). Since BA = TPR+TNR

2
, this implies

that for a small FPR α, the TPR of A is also close to α. Re-
cent work advocates for evaluating the success of MI attacks
at low FPR instead of just looking at the overall accuracy
[5, 46].

Theorem 1. Let T ∶ (X × Y)n → Θ denote the train-
ing algorithm, draw Dt ∼ Dn and and A be an arbi-
trary adversary that receives z = (x, y), s ∼ R(fθ, x,Dt)
from the recourse inference game, and produces a guess
G ∈ {MEMBER,NON-MEMBER}. Then, if R is (ϵ,0)-
differentially private, we have for all A:

BAA ≤
1

2
+ 1 − e−ϵ

2
.

While Theorem 2 provides strong privacy guarantees, for
several reasons both generic and specific to the recourse
setting, differential privacy is not a silver bullet to defend
recourses against membership inference attacks. It is known
that training with DP causes a significant drop in accuracy
on even relatively simple benchmarks [20], and so when ac-
curacy is a concern this defense may not be feasible. More-
over, model accuracy aside, private training could alter the
distance between training points and the model boundary,
potentially leading to costlier and less actionable recourses
for individuals.

6 EXPERIMENTAL EVALUATION

Here, we discuss the detailed experimental evaluation of our
proposed attacks. Relative to related work [7], we are focus-
ing on (i) a variety of recourse algorithms and (ii) evaluate
our suggested LRT based attacks. We do so by first compar-
ing the proposed recourse-based attacks to each other using
log-scaled AUC curves, that emphasize the importance of
the low false-positive rate regime. Recently, the latter metric
has been advocated for [5, 46]. Second, we use average-
case metrics such as AUC or balanced accuracy (BA) to
understand which recourse algorithms are most vulnerable
to membership inference attacks. We show these results in
Section 6.2. Finally, in Section 6.3 we leverage synthetic
data to analyze the determining factors of attack success.
Below, we describe our experimental setup in more detail.

Data Measures CFD CFD LRT

SCFE GS CCHVAE SCFE GS CCHVAE

A

AUC 0.4971 0.5038 0.5008 0.4988 0.5103 0.5066
BA 0.5115 0.5125 0.5056 0.5132 0.5098 0.5176

TPR (0.1) 0.1039 0.1020 0.1058 0.1010 0.1043 0.1298
TPR (0.01) 0.0121 0.0097 0.0157 0.0158 0.0095 0.0134

H

AUC 0.5887 0.5410 0.4874 0.5829 0.5027 0.6789
BA 0.5904 0.5404 0.5473 0.5924 0.5326 0.6389

TPR (0.1) 0.1130 0.1223 0.0863 0.1106 0.1142 0.2635
TPR (0.01) 0.0155 0.0176 0.0016 0.0135 0.0372 0.0513

D

AUC 0.5051 0.5000 NA 0.5050 0.5047 NA
BA 0.5100 0.5133 NA 0.5145 0.5136 NA

TPR (0.1) 0.1020 0.0950 NA 0.0894 0.1181 NA
TPR (0.01) 0.0093 0.0083 NA 0.0113 0.0159 NA

Table 2: Comparing the efficacy of the distance-based at-
tacks for various recourse methods. The AUC denotes the
area under the receiver operating characteristic curve, BA
is the Balanced Accuracy, and TPR(x) measures the TPR
when the FPR = x. For the Diabetes data set CCHVAE could
not identify any recourses.

6.1 Setup

Datasets. Our first data set is the Adult (A) data set [9] that
originates from the 1994 Census database, consisting of 14
attributes and 48,842 instances. The class label indicates
whether an individual has an income greater than 50,000
USD/year. Second, we use the Home Equity Line of Credit
(Heloc) (H) data set (d = 23). Here, the target variable
records a score indicating whether individuals will repay
the Heloc account within a fixed time window. Across both
tasks we consider individuals in need of recourse if their
scores lies below the median score across the entire data set,
thresholding the scores based on the median to obtain binary
target labels. Third, we use the Diabetes (D) data set which
contains information on diabetic patients from 130 different
US hospitals [36]. The patients are described using admin-
istrative (e.g., length of stay) and medical records (e.g., test
results) (d = 42), and the prediction task is concerned with
identifying whether a patient will be readmitted within the
next 30 days. In line with [33], we sub sampled smaller data
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Figure 1: Comparing the attack efficacy across different
MI attacks for fully connected NN model trained on the
real-world data sets when SCFE and GS are used for the
attacks. Small upwards deviations from the diagonal at low
FPRs (i.e. 0.01) indicate that a small fraction of points can
accurately be identified as members of the training data set.

sets of 10000 points from each of these datasets. 5000 points
are left to the model owner to train the their private model,
while another 5000 data points are used by the adversary to
train their shadow models when applicable.

Additionally, we follow Shokri et al. [33] and generate syn-
thetic data sets from the sklearn library. For d features the
method randomly chooses a vertex from the d-dimensional
hypercube as a center for each of the classes, and samples
Gaussian distributed random variables centered at the vertex
with unit variance. For the linear model experiments, we use
d ∈ {100,1000,5000,7000}with n = 5000 training and test
samples. For the non-linear models we use d ∈ {50,150}.
Recourse Algorithms and Predictive Models. We apply
our techniques to three different methods which aim to gen-
erate low-cost recourses using different principles: SCFE
is the method suggested by Wachter et al. [45] and uses
a gradient-based objective to find recourses, GS conducts
a random search for recourse in the input space [15], and
CCHVAE [21] searches for recourse in a lower dimensional

latent space using a generative model to encourage recourses
to lie on the data manifold. All methods use a ℓ1-regularizer
to encourage sparse recourses. We use implementations
from the CARLA library [22].

Baseline Attacks. We implement several baseline attacks:
the baseline of random guessing that for a target FPR α
predicts MEMBERwith probability α, and baselines based on
the loss ℓ. The loss-based baselines are simple thresholding
on the loss [47] (i.e., Loss), and the offline loss-based LRT
[5] (i.e., Loss LRT).

Evaluation Measures. We use several well established
measures to validate the efficacy of our proposed member-
ship inference attacks. Consistent with with previous works
[32, 33, 47] we report balanced accuracy (BA) and receiver
operating characteristic (ROC) area under the curve (AUC)
scores. Additionally, we follow [5, 46] and also report log-
scale ROC curves, and true positive rates of the attacks at
low false positive rates. The authors argue that, for member-
ship inference attacks, average case metrics such as BA and
AUC are not well suited. The underlying idea is that if a
membership inference attack can identify even a very small
subset of the training data with very high confidence, then
the attack should be considered successful. We follow this
intuition and primarily report our findings using this metric.

6.2 Evaluating the Attack Efficacy

Inspecting Figure 1, we see that for nearly all datasets across
all methods, at sufficiently low FPR the CFD LRT curve
lies above the diagonal, outperforming the random baseline;
the one exception being the Adult dataset with recourses
generated from GS. CFD also often outperforms the random
baseline in most cases, but not on the Diabetes dataset with
recourse method SCFE or the Heloc dataset with method
CCHVAE. These trends are reflected in the metrics captured
in Table 2, where CFD LRT achieves TPR > .01 at FPR
= .01, and AUC > .5 in 7 of the 8 dataset-recourse settings.
CFD achieves TPR > .01 at FPR = .01 in 4 of the 8 settings.
Focusing on the metric of TPR at FPR = .01, we see that
in the 7 of 8 settings where either method outperforms the
random baseline, CFD LRT achieves higher TPR than CFD
5 times. This difference is particularly evident on the He-
loc dataset, where CFD LRT obtains TPR 35%,270%, and
413% above the random baseline for SCFE, GS, CCHVAE
respectively. In summary, both methods often outperform
the random baseline across all metrics, showing substantial
privacy leakage from algorithmic recourses, with CFD LRT
generally outperforming CFD. The results show that the
Heloc dataset is particularly vulnerable to distance-based
attacks across all recourse algorithms. On the Adult and
Diabetes datasets the distance-based attacks usually outper-
form random guessing, however, the improvement over the
random baseline is less pronounced.

Perhaps most interesting, is that only in the case of CCHVAE



Martin Pawelczyk, Himabindu Lakkaraju*, Seth Neel*

do the CFD LRT attacks that outperform the random base-
line and are plotted in Figure 1(c), actually reverse the
direction of the threshold. This means that for the CFD
LRT curves in Figure 1(c) and metrics in Table 2 in col-
umn CCHVAE, rather than predicting MEMBER in Line 12
of Algorithm 1 if c(x,x′) > z1−α, we predict MEMBER iff
c(x,x′) < zα. While these results stand in contrast to our
findings for SCFE and GS, there is an intuitive explanation.
CCHVAE trains a VAE to model the data generating distri-
bution, and performs sampling in the latent space to find a
point in latent space z′ that is close to the representation of
x in the latent space encode(x) = zx. Then it outputs the
recourse x′ = decode(z′) in the input space. Regardless of
the specific z′ found by the recourse algorithm, decode(z′)
is still in the range of the generative model. It is a known
property of generative models like VAEs and GANs that
their generated samples tend to be closer to training points
than to test points, a fact which has been exploited for MI
[6]. One explanation for the results in Figure 1(c) is that this
property of generative models is in some cases outweighing
the effect of the optimization during model training.

6.3 Towards Understanding Attack Success

To better understand the factors underlying these impressive
results, in this section we use experiments on synthetic data
with R = SCFE to examine the role of model type, model
size, and number of features in attack success.

Linear Models. One potential confounding factor in assess-
ing the results for SCFE, is that when fθ(x) is non-convex
so is the objective in Equation 1, and so there is no guar-
antee that the recourse output is close to globally optimal.
In the case when fθ is linear the objective is convex and
has a closed form minimizer [7, 24]. In Figure 2 we train
logistic regression models on the synthetic data, varying
the number of features, and plotting the distribution of the
counterfactual distances for train and test points, as well
as the log-scaled ROC curves. We observe that the train-
ing distance distribution starts moving away from the test
distance distribution as the number of feature dimensions in-
creases (see Figure 2a), and as expected the distance-based
attack starts performing better as the number of features
increases (see Figure 2b). Strikingly, the CFD LRT in par-
ticular not only outperforms the CFD and random baseline,
but also thresholding based on the Loss and the Loss
LRT — attacks which have access to the full loss function
and the label y. Figures 2a, 2b suggest two potential rea-
sons why the results in Figure 1 for SCFE do not exhibit
the same level of attack performance as on the synthetic
data: (i) Since the model classes are non-convex it could
be due to our optimization failing to find the recourse that
minimizes Equation 1, and (ii) Distance-based membership
inference attacks are more effective in high dimensions, and
the tabular datasets we experiment on are of relatively small
dimension d < 50.

Nonlinear models. So far we have studied the effect of
the dimension on the attack success, which in the case of
linear models is equal to the number of parameters. To
disentangle the effect that the number of features has from
the effect that model capacity has on attack success, we use
fully-connected neural networks for which we can control
both factors independently. We generate two synthetic data
sets with d = 50,150 respectively, and study to what ex-
tent an increase in model capacity, in this case the number
of hidden nodes, impacts the performance of our attacks.
For d = 50 the results in Figure 3a suggest that increas-
ing model capacity does not yield performance increases
for our distance-based attacks. On the other hand, when
d = 150 the results in Figure 3b show that increasing model
capacity drastically increases the attack success of the CFD
LRT, while the simple CFD still does not work well. For the
model with the largest capacity, three layers of 1000 hidden
nodes per layer, CFD LRT performs considerably better
than even the Loss LRT. Taken together these results sug-
gest that a combination of high model capacity and high
feature dimension increases the vulnerability of recourses
to MI attacks, where feature dimension appears to play a
more important role.

7 CONCLUSION

In this work, we investigated the privacy risks associated
with algorithmic recourse. More specifically, we introduced
a general class of membership inference attacks called coun-
terfactual distance-based attacks which leverage algorith-
mic recourse to determine if an instance belongs to the train-
ing data of the underlying model. In formulating this new
class of attacks, we exploit the intuition that the distance
between an instance and its corresponding recourse may
capture information about whether that instance was used to
train the model. Empirical results on multiple synthetic and
real-world datasets clearly demonstrate the efficacy of the
proposed attacks, and highlight significant privacy leakage
through recourses generated by a wide range of recourse
methods. The proposed attacks also outperformed other
state-of-the-art loss-based membership inference attacks on
data with sufficiently high dimensionality. Overall, our re-
sults shed light on the critical risk of unintended privacy
leakage through algorithmic recourse.

Our work paves the way for other important future research
directions. For instance, exploring solutions to mitigate
the privacy risks highlighted in our work, either through
heuristic methods, or by developing novel ways to generate
differentially private recourses which are provably robust to
such attacks. Perhaps the most interesting future direction
is to undertake a more thorough theoretical and empirical
study of how the geometry of the decision boundary relates
to privacy leakages.
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(a) Comparing log distances (ℓ1) to the decision boundary across train and test points.
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(b) Comparing the true positive rates against the false positive rates across different MI attacks using log-scaled ROC curves.

Figure 2: Demonstrating the efficacy of our proposed distance-based attack for logistic regression models trained on the
synthetic data set when SCFE is used for the attack. At the interpolation threshold (i.e., when the number of training points
equals the feature dimension: d = n = 5000) the baseline loss-based and distance-based attacks start outperforming the
lrt-based attacks.
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Figure 3: Demonstrating that both the network capacity and the number of features d matter for the efficacy of the distance-
based attack. We trained neural network models on 10000 instances from the synthetic data set and used SCFE for the attack.
From left to right the model capacity increases: (a): two-layer neural network with 1000 hidden nodes. (b): three-layer
neural network with 100 hidden nodes in each hidden layer. (c): three-layer neural networks with 333 hidden nodes in each
hidden layer. (d): three-layer neural networks with 1000 hidden nodes in each hidden layer.
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A IS PRIVACY LEAKAGE THROUGH RECOURSES INEVITABLE?

The attacks developed above and empirical results in Section 6 suggest that recourses can be exploited to infer private
information about the underlying training set. This raises a natural question: Is privacy leakage through recourses inevitable?

Over the last decade, differential privacy [10] has emerged as the canonical approach to provably preventing membership
inference for a wide array of statistical tasks. Applying this to the recourse setting, results which have been folklore in
the privacy community imply that if the recourse generation algorithm is DP in the training data, we can provably bound
the success of any adversary A in the Recourse-based MI Game. In Theorem 2 (proof deferred to Supplement) we state a
variant of the folklore result tailored to our setting, showing that not only can we bound the excess accuracy of the adversary
over random guessing, we can also bound the balanced accuracy (BA). Since BA = TPR+TNR

2
, this implies that for a small

FPR α, the TPR of A is also close to α. Recent work advocates for evaluating the success of MI attacks at low FPR instead
of just looking at the overall accuracy [5, 46].
Theorem 2. Let T ∶ (X × Y)n → Θ denote the training algorithm, draw Dt ∼ Dn and and A be an arbi-
trary adversary that receives z = (x, y), s ∼ R(fθ, x,Dt) from the recourse inference game, and produces a guess
G ∈ {MEMBER,NON-MEMBER}. Then, ifR is (ϵ,0)-differentially private, we have for all A:

BAA ≤
1

2
+ 1 − e−ϵ

2
.

While Theorem 2 provides strong privacy guarantees, for several reasons both generic and specific to the recourse setting,
differential privacy is not a silver bullet to defend recourses against membership inference attacks. It is known that training
with DP causes a significant drop in accuracy on even relatively simple benchmarks [20], and so when accuracy is a concern
this defense may not be feasible. Moreover, model accuracy aside, private training could alter the distance between training
points and the model boundary, potentially leading to costlier and less actionable recourses for individuals.

B Proof of Theorem 2

Proof. Throughout the proof let the event that A recieves (z, s) and outputs G = MEMBER be denoted by A(z, s) = 1.
First we prove the following simple lemma in the Appendix, which says that since the recourse is generated privately, the
probability it takes on any value can’t be changed by more than eϵ depending on whether a given point z is in the training
set.

Lemma 1. If o is any event, for any z:

Pr
s∼R,Dt∼Dn

[s ∈ o∣z ∈Dt] ≤ eϵ Pr
s∼R,Dt∼Dn

[s ∈ o∣z /∈Dt]

Proof. Fix arbitrary Dt/{z} = (z2, . . . zn). Expanding

Pr
s∼R,Dt∼Dn

[s ∈ o∣z ∈Dt] = ∫(z2,...zn)∼Dn−1
Pr
s∼R
[s ∈ o∣z,Dt/{z} = (z2, . . . zn)]PrD [(z2, . . . zn)] (5)

By the definition of differential privacy, for arbitrary z′:

∫(z2,...zn)∼Dn−1
Pr
s∼R
[s ∈ o∣z,Dt/{z} = (z2, . . . zn)]PrD [(z2, . . . zn)] ≤

∫(z2,...zn)∼Dn−1
eϵ Pr

s∼R
[s ∈ o∣z′,Dt/{z} = (z2, . . . zn)]PrD [(z2, . . . zn)] (6)

Since this holds for arbitrary z′, we have:

Pr[s ∈ o∣z ∈Dt] ≤ inf
z′
(∫(z2,...zn)∼Dn−1

eϵ Pr
s∼R
[s ∈ o∣z′,Dt/{z} = (z2, . . . zn)]PrD [(z2, . . . zn)]) ≤

Ez′∼D [∫(z2,...zn)∼Dn−1
eϵ Pr

s∼R
[s ∈ o∣z′,Dt/{z} = (z2, . . . zn)]PrD [(z2, . . . zn)]] = e

ϵPr[s ∈ o∣z /∈Dt], (7)

as desired.



Martin Pawelczyk, Himabindu Lakkaraju*, Seth Neel*

Recall that BA = FPR+TNR
2

= Pr[A(z,s)=1∣z∈Dt]+Pr[A(z,s)=0∣z/∈Dt]
2

, and let a1 = Pr[A(z, s) = 1∣z ∈ Dt], and a0 =
Pr[A(z, s) = 0∣z /∈Dt]. Then:

a1 = Pr[A(z, s) = 1∣z ∈Dt] = ∫
s∈S ∫z∈X×Y Pr[A(z, s) = 1∣z, s]Pr[s∣z ∈Dt]PrD [z] ≤

∫
s∈S ∫z∈X×Y Pr[A(z, s) = 1∣x, s]PrD [x](e

ϵPr[s∣z /∈Dt]) =

∫
s∈S ∫z∈X×Y Pr[A(z, s) = 1∣x, s]PrD [x](e

ϵPr[s]) =

eϵPr[A(x, s) = 1∣x /∈Dt] = eϵ(1 − a0), (8)

where the inequality follows from Lemma 1. Rearranging a1 ≤ eϵ(1 − a0) we get that a0 ≤ 1 − e−ϵa1. Hence:

BA ≤ a1 + (1 − e−ϵa1)
2

= 1

2
+ a1(1 − e−ϵ)

2

Since a1 ≤ 1 this gives the result, and we note that for small ϵ this can be improved to BA ≤ 1
2
+ (2−e

−ϵ)(1−e−ϵ)
4

.

C TRAINING DETAILS

C.1 Classification Models

Details on the trained models are provided in tables 3 and 4.

Model

d = 100 d = 1000 d = 5000 d = 7000
Train 0.957 0.958 0.973 0.976
Test 0.951 0.936 0.899 0.872

Table 3: Model performances for the logistic regression classifiers trained on the synthetic data sets. We measured
performance in terms of classification accuracy.

Data set d = 50 d = 150
Model size (a) (b) (c) (d) (a) (b) (c) (d)

Train 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Test 0.8632 0.8748 0.8820 0.8806 0.9060 0.9196 0.9130 0.9208

Table 4: Model performances for the neural network classifiers trained on the synthetic data sets for different numbers of
features. We measured performance in terms of classification accuracy. (a): two-layer network with 1000 hidden nodes. (b):
three-layer neural network with 100 hidden nodes in each hidden layer. (c): three-layer neural networks with 333 hidden
nodes in each hidden layer. (d): three-layer neural networks with 1000 hidden nodes in each hidden layer.

Data set Adult (d = 13) Heloc (d = 23) Diabetes (d = 42)

Train 0.9755 1.00 0.9096
Test 0.8109 0.6701 0.5334

Table 5: Model performances for the neural network classifiers trained on the real-world data sets. We measured performance
in terms of classification accuracy for two-layer network with 1000 hidden nodes.
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C.2 Recourse methods

• SCFE: As suggested in Wachter et al. [45], an Adam optimizer is used to optimize the recourse objective. We obtain
recourses using an ℓ1 distance function, and the binary cross entropy loss between the counterfactual label and the
target.

• GS: The explanation model uses a counterfactual search algorithm in the input space. Particularly, instances are sampled
within an ℓ1-norm ball with search radius search radius ri until recourse is successfully obtained. The search radius of
the norm ball is increased until recourse is found.

• C-CHVAE: An autoencoder is additionally trained to model the data-manifold. The explanation model uses a counter-
factual search algorithm in the latent space of the AE. Particularly, a latent sample within an ℓ1-norm ball with search
radius rl is used until recourse is successfully obtained. The search radius of the norm ball is increased until recourse is
found. All generative models use 8 latent dimensions, and 20 nodes in the first and third hidden layer.

D ADDITIONAL EXPERIMENTAL RESULTS
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(b) d = 150, n = 20000
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(c) d = 50, n = 30000
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(d) d = 150, n = 30000

Figure 4: Demonstrating the efficacy of our proposed distance-based attack for neural network models trained on the
synthetic data set when SCFE is used for the attack. (a): two-layer network with 1000 hidden nodes. (b): three-layer neural
network with 100 hidden nodes in each hidden layer. (c): three-layer neural networks with 333 hidden nodes in each hidden
layer. (d): three-layer neural networks with 1000 hidden nodes in each hidden layer.
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(c) d = 50, n = 30000
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(d) d = 150, n = 30000

Figure 5: Demonstrating the efficacy of our proposed distance-based attack for neural network models trained on the
synthetic data set when SCFE is used for the attack. (a): two-layer network with 1000 hidden nodes. (b): three-layer neural
network with 100 hidden nodes in each hidden layer. (c): three-layer neural networks with 333 hidden nodes in each hidden
layer. (d): three-layer neural networks with 1000 hidden nodes in each hidden layer. The thresholds have been normalized to
the range [0,1] when necessary.
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Figure 6: Demonstrating the efficacy of our proposed distance-based attack for logistic regression models trained on the
synthetic data set by showing the attack accuracy as the threshold varies. Both the LRT-Distance as well as the baseline
distance attacks are the most competetive attacks. The thresholds have been normalized to the range [0,1].
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