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Abstract

This paper focuses on Bayesian inference in a
federated learning context (FL). While several
distributed MCMC algorithms have been pro-
posed, few consider the specific limitations of
FL such as communication bottlenecks and statis-
tical heterogeneity. Recently, Federated Averag-
ing Langevin Dynamics (FALD) was introduced,
which extends the Federated Averaging algorithm
to Bayesian inference. We obtain a novel tight
non-asymptotic upper bound on the Wasserstein
distance to the global posterior for FALD. This
bound highlights the effects of statistical hetero-
geneity, which causes a drift in the local updates
that negatively impacts convergence. We propose
a new algorithm VR-FALD? that uses control
variates to correct the client drift. We establish
non-asymptotic bounds showing that VR-FALD?

is not affected by statistical heterogeneity. Finally,
we illustrate our results on several FL benchmarks
for Bayesian inference.

1 Introduction

The paradigm of fully centralized machine learning is in-
creasingly at odds with real-world use cases. Centralized
machine learning leads to (a) data processing bottlenecks,
(b) inefficient use of communication resources and (c) risks
exposing individuals’ private data. As storage and compu-
tational capacity increases at the agent level, it becomes
increasingly attractive to decentralize computational tasks
whenever possible. The term federated learning (FL) was
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recently coined to capture some aspects of this grand chal-
lenge (McMahan et al., 2017; Kairouz et al., 2021; Yang
et al., 2019; Alistarh et al., 2017; Horváth et al., 2022; Wang
et al., 2021).

Reducing communication costs has been identified as one of
the major challenges of FL (Kairouz et al., 2021). Two main
approaches have been proposed to achieve this goal. In the
former, agents perform multiple local optimization steps be-
fore sending a model update to the central node (McMahan
et al., 2017). The latter consists in compressing the mes-
sages exchanged (Alistarh et al., 2017; Horváth et al., 2022).
In this paper, we focus on the first approach which is widely
used in practice. However, due to statistical heterogeneity,
performing multiple steps can hinder convergence, as model
updates target each agent’s local minimizer (Li et al., 2019;
Ro et al., 2021). This results in a trade-off between com-
munication cost and convergence (Wang et al., 2020) and a
need for algorithms that mitigate client drift (Karimireddy
et al., 2020).

Most of existing FL algorithms minimize a training loss.
However, their results do not provide reliable uncertainty
quantification, a strong requirement in safety-critical appli-
cations (Coglianese and Lehr, 2016; Fatima et al., 2017). We
address this problem by considering the federated version
of Bayesian inference (Welling and Teh, 2011; Yurochkin
et al., 2019; Chen and Chao, 2021; Izmailov et al., 2021;
Wilson et al., 2021). The objective is to compute the predic-
tive distribution, highest posterior density regions (HPD).
To this end, it is required to sample the posterior distri-
bution π ∝ exp(−U) associated with the model at hand.
This target posterior decomposes into the product of local
posteriors π =

∏
i∈[b] π

i. It is well known that sampling
according to product distributions (Neiswanger et al., 2014;
Hoffman et al., 2013; Minsker et al., 2014; Wang et al.,
2015; Al-Shedivat et al., 2021; Dai et al., 2021) raises se-
rious computational challenges even when sampling from
each local posterior πi is reasonably easy. We tackle this
question in our contributions which can be summarized as
follows.
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Contributions.

• We study a random loop version of the FALD algo-
rithm proposed in Deng et al. (2021), and we establish
non-asymptotic upper bounds in Wasserstein distance
for strongly convex potentialsU . An analysis of FALD
was conducted in (Deng et al., 2021, Theorem 5.7).
However, the proof is plagued by an error; see Sec-
tion 7.1.

• We give matching lower bounds to show that even
with full batch gradients, FALD can be slower than
Stochastic Gradient Langevin Dynamics (SGLD) due
to client-drift.

• We propose a new method VR-FALD? that circum-
vents the shortcomings of FALD. This algorithm ex-
tends the Shifted Local-SVRG of Gorbunov et al.
(2021) to the Bayesian context. It combines Stochas-
tic Variance Reduced Gradient (SVRG) Langevin Dy-
namics (LD) (Dubey et al., 2016) and adapts the bias
reduction techniques from SCAFFOLD (Karimireddy
et al., 2020).

• We derive theoretical guarantees for VR-FALD?

which highlight its gradient variance reduction effect
and its ability to deal with data heterogeneity.

• The results are based on a general framework devel-
oped in the supplement, that encompasses a broad fam-
ily of federated Bayes algorithms based on Langevin
dynamics. This is the first unifying study among exist-
ing works on federated Bayesian inference.

• Finally, in Section 4 we illustrate our results using
classical FL benchmarks and provide a thorough com-
parison with existing FL Bayesian methods.

Related works. Many distributed MCMC algorithms have
been proposed in the last decade and it is difficult to credit
all the references. The first significant contributions in
this direction are the Consensus Monte Carlo (CMC) ap-
proach and “embarrassingly parallel” MCMC algorithms;
see, e.g. Neiswanger et al. (2014); Wang and Dunson (2013);
Scott et al. (2016). These methods require running sepa-
rate MCMC chains on each client/computational node, with
each chain targeting the local posterior πi. In the final stage,
the algorithms recombine the samples from these chains
to generate samples from the desired global posterior π
(Minsker et al., 2014). The local posteriors may differ sig-
nificantly from each other due to statistical heterogeneity,
data imbalance, and / or inaccurate approximation. The
effectiveness of the final combinations is either based on
stringent assumptions on the local likelihoods (Liu and Ihler,
2014; Nemeth and Sherlock, 2018; Mesquita et al., 2020;
Chittoor and Simeone, 2021) or on “fusion” algorithms that
are exact but scale badly with the dimension; see, e.g. Dai
et al. (2021); De Souza et al. (2022).

Vono et al. (2020); Rendell et al. (2020); Plassier et al.
(2021); Vono et al. (2022a) introduced hierarchical Bayesian
models to simulate separate MCMC chains on each machine.
Inspired by the alternating direction method of multipliers
(Boyd et al., 2011), each client is assigned an auxiliary pa-
rameter that is conditionally independent given the server
parameter. These authors developed MCMC schemes which
alternate between sampling the clients parameters given
the server parameter, and sampling the server parameter
given the clients parameters. However, these approaches
require tuning an additional hyperparameter to control the
dispersion of the “local parameters”. This parameter charac-
terizes the trade-off between computational tractability and
closeness to the original target distribution.

A competing approach to Federated Averaging, the
quantized-SGD scheme, has been proposed in (Alistarh
et al., 2017) for non Bayesian FL. In this framework, the
agents do not adapt parameters locally but a random subset
of the agents compute at each iteration a new gradient esti-
mator and transmit a compressed form—see Haddadpour
et al. (2021), among many others, (Bernstein et al., 2018;
Tang et al., 2021) for scalar quantization or (Shlezinger
et al., 2020), for vector quantization. These approaches
have been extended to the Bayesian inference context in
Lee et al. (2020); Zhang et al. (2022); Vono et al. (2022b).
Performance analysis is given in Vono et al. (2022b); Sun
et al. (2022).

The Federated Gradient Stochastic Langevin Dynamics (FS-
GLD algorithm introduced by El Mekkaoui et al. (2021)
extends the distributed-SGLD (DSGLD) (Ahn et al., 2014)
to the FL setting. Specifically, FSGLD operates passing
a Markov chain between computing nodes and using only
local data to estimate gradients at each step.

Methods with multiple local steps have been considered by
several authors. Deng et al. (2021) designed FALD as a
Bayesian version of FEDAVG. Al-Shedivat et al. (2021) pro-
posed FEDPA as a generalization of FEDAVG. This method
performs several local steps to infer Gaussian approxima-
tions of the clients local parameters. These local parameters
are then reweighted using the estimated local means and
covariance matrices before being aggregated on the central
server.

Notation and Convention. The Euclidean norm on Rd is
denoted by ‖ · ‖, and we set N∗ = N \ {0}. For n ∈ N?,
we refer to {1, . . . , n} with the notation [n]. We denote
by P2(Rd) the set of probability measures on Rd with fi-
nite 2-moment. For any random variable ξ with values
in Rd, we define Var(ξ) = E[‖ξ − Eξ‖2]. Let µ, ν be in
P2(Rd), we define the Wasserstein distance of order 2 by
W2(µ, ν) = (infζ∈Π(µ,ν)

∫
Rd×Rd ‖x − x

′‖2dζ(x, x′))1/2,
where Π(µ, ν) is the set of transference plans of µ and ν.
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2 Algorithm derivation
We aim to sample a target probability density function π
defined for x ∈ Rd by

π (x) ∝
∏b
i=1 π

i (x) , πi(x) ∝ exp(−U i(x)) , (1)

where b is the number of clients and the potential U i is a
finite sum expressed by

U i(x) = $iU0(x) +
∑Ni
j=1 U

i,j(x) ,

with {$i}i∈[b] ∈ [0, 1]
b and

∑
i∈[b]$

i = 1. This setting
encompasses the Bayesian federated learning as a particular
case, in which π stands for the global posterior distribution
and {πi}i∈[b] are referred to as local posteriors (Wu and
Robert, 2017; Dai et al., 2021). In this case U0 is the global
negative log-prior, Ni denotes the number of observations
of client i, U i,j is the negative log-likelihood of the j-th
data of client i, and $iU0 is the fraction of the negative
log-prior allocated to this client (Rendell et al., 2020).

Federated Averaging Langevin Dynamics (FALD).
FALD, proposed in Deng et al. (2021), is an extension
to the Bayesian setting of FEDAVG (McMahan et al., 2017).
The updates performed on the ith client define a sequence of
local parameters (Xi

k)k∈N which are transmitted according
to some preset schedule (which is deterministic in Deng
et al. (2021) and is random in this work) to a central server.
The central server averages the local parameters to update
the global parameter. This global parameter is finally trans-
mitted back to each client, and is used as a starting point of
a new round of local iterations. Hence, each iteration k ≥ 0
of FALD can be decomposed into two steps:

(1) Local iteration on each client. Each client i performs
one step of the Langevin Monte Carlo algorithm (Grenan-
der and Miller, 1994; Roberts and Tweedie, 1996) with a
stochastic gradient associated with its local potential:

Gik+1 = ∇̂U ik+1(Xi
k) ,

X̃i
k+1 = Xi

k − γGik+1 +
√

2γ Zik+1 ,
(2)

where γ > 0 and for x ∈ Rd, ∇̂U ik+1(x) is an unbiased
estimator of ∇U i(x) given by (see Welling and Teh (2011)
– general updates are considered in the supplement)

∇̂U ik+1 = $i∇U0 + (Ni/ni)
∑
j∈Sik+1

∇U i,j , (3)

where (Sik)k∈N? is a sequence of i.i.d. uniform random sub-
sets of [Ni] of cardinal number ni. Moreover, (Zik)k∈N∗ ,
i ∈ [b] are sequence of i.i.d Gaussian random variables
which might be correlated across the agents and the cen-
tral server. More precisely, given independent sequences,
(Z̃ik)k∈N∗ , i ∈ [b] and (Z̃k)k∈N∗ of i.i.d. d-dimensional stan-
dard Gaussian random variables, for τ ∈ [0, 1] we set

Zik =
√
τ Z̃k +

√
1− τ Z̃ik . (4)

(2) A local update. With probability pc ∈ (0, 1], the ith
client communicates its parameter X̃i

k+1, resulting from the
first step, to the central server which in turns broadcasts
the average Xk+1 = b−1

∑
i∈[b] X̃

i
k+1. Finally, each client

updates its parameter as Xi
k+1 = Xk+1. When no commu-

nication is performed, each client updates its parameter as
Xi
k+1 = X̃i

k+1.

The local recursions defined by FALD can be written for
i ∈ [b] and k ≥ 0 as

Xi
k+1 = (1−Bk+1)X̃i

k+1 +(Bk+1/b)
∑
j∈[b] X̃

j
k+1 , (5)

where (Bk)k∈N∗ is a sequence of i.i.d. Bernoulli random
variables with parameter pc.

For k ≥ 1, denote by µ(F)
k the distribution of the average

parameter
Xk = (1/b)

∑
i∈[b]X

i
k . (6)

Non-asymptotic Wasserstein bounds between µ(F)
k and the

target distribution π are established in Theorem 1 under the
following assumptions.

A1. For any i ∈ [b], U i is continuously differentiable. In
addition, there exist m,L > 0 such that for any i ∈ [b], the
function U i is L-smooth and m-strongly convex, i.e., for
any x, x′ ∈ Rd,

(m/2)‖x′−x‖2 ≤ U i(x′)−U i(x)−
〈
∇U i(x), x′ − x

〉
≤ (L/2)‖x′ − x‖2 .

A2. For any i ∈ [b], ({∇̂U ik}i∈[b])k∈N are i.i.d. unbiased
estimates of {∇U i}i∈[b]. In addition, there exists L̂ ≥ 0

such that for any x, x′ ∈ Rd we have

E
[
‖∇̂U ik(x′)− ∇̂U ik(x)‖2

]
≤ L̂2‖x′ − x‖2 .

In the mini-batch scenario (3), A2 is satisfied if for i ∈ [b],
j ∈ [Ni] there exists Lij ≥ 0 such that for any x, x′ ∈ Rd,
‖∇U i,j(x′)−∇U i,j(x)‖ ≤ Lij‖x′ − x‖.

Finally, we also consider the following optional smooth-
ness condition on the potentials {U i}i∈[b]. This additional
assumption, often satisfied in applications have been con-
sidered e.g. in Durmus and Moulines (2019); Dalalyan and
Karagulyan (2019).

HX1. There exists L̃ ≥ 0, such that for any i ∈ [b], the
function U i is three times continuously differentiable and
for any x, x′ ∈ Rd, ‖∇2U i(x)−∇2U i(x′)‖ ≤ L̃‖x− x′‖.

We introduce some key quantities appearing in the theo-
retical derivations below. Denote by x? the minimizer of∑
i∈[b] U

i which exists and is unique under A1. We define

Vπ =
∫
Rd Var{b−1

∑
i∈[b] ∇̂U i1(x)}π(dx) ,

V? = Var{b−1
∑
i∈[b] ∇̂U i1(x?)} ,

(7)
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the average of the stochastic gradient variance under the sta-
tionary distribution π and at the minimum x?, respectively.
Finally, the statistical heterogeneity between the clients is
quantified by (see, e.g. Stich et al. (2018))

H = b−1
∑
i∈[b] ‖∇U i (x?) ‖2 .

For ease of presentation, for two sequences (ak)k∈N and
(bk)k∈N we write ak . bk if there exists C > 0 only de-
pending on the constants introduced in A1, A2 and HX1
such that ak ≤ Cbk, for any k ∈ N.
Theorem 1 (Simplified). Assume A1, A2 and suppose for
any i ∈ [b], Xi

0 = X0. Then, there exist γ̄ > 0, such that
for any γ ∈ (0, γ̄], k ∈ N, X0 ∼ µ0 ∈ P2(Rd), we have

W2
2(µ

(F)
k , π) . (1− γm/8)k I(µ0) +

γe

b
J + γVπ

+
γ2(1− pc)

p2
c

{
H + pcV? +

d

b

}
+
γ(1− τ)(1− b−1)d

pc
,

where J = d, e = 1 and I(µ0) < ∞ is a function of
the initial condition µ0. If HX1 holds, then e = 2 and
J = d(1 + d/b).

Elements of proof are provided in Section 3; a precise state-
ment is given in Theorem 20 with detailed proofs. Note the
step size upper bound γ̄ is proportional to pc. In the single
user case (b = pc = τ = 1), we recover up to numerical
constants the results stated in Durmus and Moulines (2019);
Dalalyan and Karagulyan (2019). Note that, under HX1 the
leading term in the step size γ is proportional to the stochas-
tic gradient variance Vπ , in accordance with the bounds ob-
tained for SGLD by e.g., Dalalyan and Karagulyan (2019).
More discussions on these bounds are postponed after the
statement of Theorem 3.

Lower bounding the effect of heterogeneity. Similar to
FEDAVG, the convergence of FALD is impaired by data
heterogeneity. Multiple local SGLD steps described in
(2) cause Xi

k to target the local posteriors πi ∝ exp(U i).
We now provide lower bound on the Wasserstein distance
between the distribution of the samples generated by FALD
and the target distribution π which is proportional to the
heterogeneity γ2H.
Proposition 2. There exist γ̄ > 0, potentials {U i}2i=1 on
R satisfying A1, HX1 and an instance of FALD satisfying
A2 such that for any γ ∈ (0, γ̄], we have

lim inf
k→+∞

W2
2(µ

(F)
k , π) & γ2H .

This proposition extends Karimireddy et al. (2020, Theorem
II) to the Bayesian context and underlines the same limita-
tion as FEDAVG. To circumvent this, various bias reduction
techniques have been suggested in the stochastic optimiza-
tion literature (Horváth et al., 2022; Gorbunov et al., 2021).
In the next section, we adapt similar mechanisms to derive
an alternative to FALD satisfying better finite bounds.

FALD with control variates and bias reduction. To
mitigate the impact of local stochastic gradients, we adapt
variance-reduction techniques (Wang et al., 2013; Kovalev
et al., 2020) and bias-reduction techniques (Horváth et al.,
2022; Gorbunov et al., 2021). This new approach introduces
a different recursion rule in step (1) of FALD, while keeping
step (2) unchanged. The local update rule is based on a ref-
erence point Yk ∈ Rd common to all clients. This common
point is updated with probability qc ∈ (0, 1] and allows the
inclusion of a local shift Ck to recenter the local gradients.
This mechanism eliminates the “infamous non-stationarity
of the local methods” (paraphrasing Gorbunov et al. (2021))
and therefore avoids extra bias. At each iteration k, the first
step of the VR-FALD? algorithm is divided into two parts:

(1.1) Update of the reference parameter and control
variate. The variance reduced gradient requires a sporadic
computation of the full local gradient. Let (BYk )k∈N∗ be
a sequence of i.i.d. Bernoulli random variables with pa-
rameter qc ∈ (0, 1]. If BYk+1 = 1, then the client refer-
ence point Yk is updated: the clients transmit their local
parameter {Xi

k}i∈[b] to the central server which computes
their average Yk+1 = b−1

∑
i∈[b]X

i
k; which is sent back

to the clients. The clients then compute the full gradients
{∇U i(Yk+1)}i∈[b] and transmit them to the central server
which updates the shift Ck+1 = b−1

∑
i∈[b]∇U i(Yk+1).

To summarize, the reference point and the shift are updated
according to

Yk+1 = (1−BYk+1)Yk + (BYk+1/b)
∑
i∈[b]X

i
k , (8)

Ck+1 = (1−BYk+1)Ck + (BYk+1/b)
∑
i∈[b]∇U i(Yk+1) .

(1.2) Local iteration on each client. This step is similar to
FALD, upon replacing the local updates (2) by the variance-
reduced version

Gik+1 = ∇̂U ik+1(Xi
k)− ∇̂U ik+1(Yk) + Ck , (9)

X̃i
k+1 = Xi

k − γGik+1 +
√

2γZik+1 . (10)

The VR-FALD? analysis relies on the following additional
assumption.

A3. There exists ω ≥ 0 such that for any i ∈ [b], k ∈ N?
and x, y ∈ Rd, the following inequality holds

E
[
‖∇̂U ik(x)− ∇̂U ik(y)−∇U i(x) +∇U i(y)‖2

]
≤ ω ‖x− y‖2 .

Under A1 and A2, A3 is satisfied with ω = 2L2 + 2L̂2.
However, using this result leads to some discrepancy in
previous existing analysis, since ω = 0 in the non-stochastic
gradient case while 2L2 + 2L̂2 6= 0 in general. Finally,
in the mini-batch scenario (3), if {∇U i,j}j∈[Ni] are Li-
Lipschitz, then A3 holds with ω = maxi∈[b]{NiL2

i /ni};
see Remark 15.
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For k ≥ 0, denote by µ(Vr?)
k the distribution of the average

Xk = b−1
∑
i∈[b]X

i
k whereXi

k is defined as in (5) with X̃i
k

given in (10). With these notations, we obtain the following
theoretical guarantee on VR-FALD?.

Theorem 3 (Simplified). Assume A1, A2, A3 and suppose
for i ∈ [b], Xi

0 = Y0 = X0. Then, there exist γ̄Vr? > 0,
such that for any qc ≤ pc, γ ∈

(
0, γ̄Vr?

]
, k ∈ N, X0 ∼

µ0 ∈ P2(Rd), we have

W2
2(µ

(Vr?)
k , π) . (1−γm/8)k IVr?(µ0) +

γe

b
J+

γ2d

bqc
ω

+
γ(1− τ)(1− b−1)d

pc
+
γ2(1− pc)

p2
c

{
γV? +

d

b

}
,

where J = d, e = 1, V? is defined in (7), IVr?(µ0) < ∞ is
a function of the initial condition µ0. If HX1 holds, then
e = 2 and J = d(1 + d/b).

The proof is postponed to Section 7.2. Compared to The-
orem 1, the client-drift term does no longer appear, high-
lighting the advantage of VR-FALD? in dealing with data
heterogeneity between agents.

Further, the variance of the stochastic gradients of VR-
FALD? only appear in the factor γ2ω. This result agrees
with Chatterji et al. (2018) for SVRG-LD, which might be
seen as a particular instance of VR-FALD? with b = 1,
pc = 1. Nevertheless, a close inspection of the proof in
Chatterji et al. (2018) reveals a gap—see Remark 31, which
is corrected in the proof of Theorem 30.

Complexity and Communication costs. We now discuss
the complexity and communication costs of FALD and VR-
FALD?. We study two extreme cases: (A) the local com-
putation cost is negligible and only the communication cost
matters, which is typical in cross-device applications. (B)
the communication cost is negligible and only the local com-
putation cost (complexity) matters. More general scenarios
are discussed in the supplement Section 9. In this discussion,
it is assumed that HX1 is satisfied and τ = 1. In both cases,
for a target precision ε > 0, we optimize the hyperparame-
ters (number of iterationsKε, learning rate γε, probability of
communication pc,ε) to ensure W2(µ

(F)
Kε
, π) ≤ ε (FALD)

or W2(µ
(Vr?)
Kε

, π) ≤ ε (VR-FALD?). The values of the pa-
rameters d, m, ω, H, J, Vπ and V? are reported in Table 5.
(Scenario A) The objective is to minimize the number of
communications pc,εKε. As γ can be arbitrarily small, we
set Kε = γ−1λε, pc,ε = ρεγ, where λε, ρε > 0. Hence,
the optimization problem becomes min{λερε} subject to
I(µ0) exp(−λεm/8) + ρ−2

ε (H + d/b) ≤ ε2. As ε ↓ 0+,
the minimum number of communications pc,εKε scales as
Õ(ε−1

√
H + b−1d) for FALD and Õ(ε−1

√
b−1d) for VR-

FALD?.
(Scenario B) We take pc,ε = 1 and seek to mini-
mize the total number of iterations Kε. As ε ↓ 0+,
Kε scales as Õ(ε−2(Vπ + ε

√
b−1J)) for FALD and

(Scenario A) Numerical results optimizing pc,εKε.
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(Scenario B) Numerical results optimizing Kε.
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Figure 1: Complexity and Communication costs.

Õ(ε−1
√
b−1J + b−1ωd) for VR-FALD?.

In Figures 1a-1b, we display the optimal number of commu-
nications pc,εKε as a function of ε (left panels Figures 1a-
1b). We also exhibit the physical time which corresponds to
the time of the Langevin diffusion. The total physical times
– λε for (A) and γεKε for (B) – are displayed in the middle
panels Figures 1a-1b. Finally, the right panels Figures 1a-1b
represent the average physical time between two consec-
utive communications — ρ−1

ε for (A) and γ/pc,ε for (B).
Note that, the total physical time is (almost) the same for
FALD, VR-FALD?, in scenarios (A) and (B). VR-FALD?

significantly reduces the number of communications pc,εKε

in scenario (A) (top panel) and number of rounds Kε (B)
(bottom panel) w.r.t. FALD.

Figures 1a-1b also illustrate that the “embarrassingly par-
allel” approach of (Neiswanger et al., 2014) is far from
optimal. Indeed, our results show the importance of making
multiple interactions (rather than a single consensus step)
and using correlated noises between clients. In scenario (A),
the optimal number of communications scales inversely pro-
portional to 1/ε which improve the bounds Õ(1/ε2) derived
in Deng et al. (2021, Section 5.3.1). For scenario (B), FALD
has the same complexity as QLSD Vono et al. (2022b) under
similar assumptions; see also Sun et al. (2022). VR-FALD?

has the lowest complexity (Õ(1/ε)) among the Bayesian
Federated algorithms reported earlier. This bound matches
the one obtained by Chatterji et al. (2018) for the fully cen-
tralized SVRG-LD (corresponding to b = 1).

3 Proofs outline

We briefly outline the main steps of the proof of Theorems 1
and 3. Details of the proofs can be found in the supple-
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mentary paper, where we analyze the two algorithms under
a common unifying framework. For both algorithms, the
local parameters (Xi

k)i∈[b], k ≥ 0, are given by (5), where
(X̃i

k)i∈[b] stands for local iterations, which are given in (2)
for FALD and (9) for VR-FALD?. Then, we bound the
Wasserstein distance between the target distribution π and
the distribution of Xk = b−1

∑
i∈[b]X

i
k which is denoted

by (µ
(γ)
k )k∈N. The Wasserstein distance is defined as the

infimum over the coupling. We use below the synchronous
coupling construction used in (Durmus and Moulines, 2019;
Dalalyan and Karagulyan, 2019) for the analysis of Stochas-
tic Gradient Langevin algorithms.

Synchronous coupling. We first construct a Brownian mo-
tion (Wt)t≥0 by Wt =

√
τ W̃t +

√
(1− τ)/b

∑
i∈[b] W̃

i
t,

starting from b + 1 independent d-dimensional standard
Brownian motions (W̃i

t)t≥0, i ∈ [b], and (W̃t)t≥0. Sec-
ond, we define the following standard Gaussian random
variables Z̃ik+1 = γ−1/2(W̃i

(k+1)γ − W̃i
kγ), Z̃k+1 =

γ−1/2(W̃(k+1)γ−W̃kγ), and we setZik as in (4). For k ∈ N,
it holds that

√
γ
∑
i∈[b] Z

i
k+1 =

√
b(W(k+1)γ − Wkγ).

Finally, we consider (Xt)t≥0 the strong solution of the
Langevin diffusion associated with π and starting from
X0 ∼ π (see (1)) and driven by (Wt)t≥0:

dXt = −(1/b)
∑
i∈[b]∇U i(Xt) dt+

√
2/b dWt . (11)

Under A1 and A2, π is the unique stationary distribution
for the Langevin diffusion, hence the distribution of Xt is π
for all t ≥ 0; see e.g. Roberts and Tweedie (1996). Hence,
(Xk,Xkγ) defines a coupling between µ(γ)

k and π, thus for
any k ∈ N we get

W2
2(µ

(γ)
k , π) ≤ E

[
‖Xk − Xkγ‖2

]
.

The rest of the proof then consists in bounding the right-
hand side. It is worth noting that in contrast to most analysis
on Langevin dynamics, we consider a Langevin diffusion
(11) we scale the gradient term by b−1 and the Brownian
motion by b−1/2. This scaling is adapted to the averaging
procedure defining (Xk)k∈N.

Decomposition of E[‖Xk−Xkγ‖2]. Denote byFk the filtra-
tion generated by X0, (Wt)t≤kγ and ({Xi

l }bi=1)l≤k. Using
the definition (6) of (Xk)k∈N combined with A1, we show
in Proposition 4 that for any γ . 1

EFk
[
‖X(k+1)γ −Xk+1‖2

]
. (1− γm/2) ‖Xkγ −Xk‖2

+ Ek + γ2Sk + Vk , (12)

where Vk = b−1
∑
i∈[b] ‖Xi

k −Xk‖2 and

Sk = VarFk(b−1
∑
i∈[b]G

i
k) ,

Ek = γ−1‖EFk [Ik]‖2 + EFk
[
‖Ik‖2

]
,

with Ik = b−1
∑
i∈[b]

∫ (k+1)γ

kγ
(∇U i(Xs)−∇U i(Xkγ))ds.

Bounding Ek. The term Ek accounts for the difference
between the diffusion and its discretization; the bound is the
same for FALD and VR-FALD?. By adapting Durmus and
Moulines (2019, Lemma 21), we establish in Lemma 7 that

E [Ek] . γ2d/b . (13)

Under HX1, for γ . 1 the bound can be sharpened in

E [Ek] . (γ3d/b)(1 + d/b) . (14)

The right-hand side of (13) has a higher order with respect
to the step size γ in comparison to (14). This step is the
reason why we consider the more restrictive assumption
HX1, which leads to different guarantees depending on
whether this condition is met or not.

Bounding Sk. Sk is the conditional variance of the stochas-
tic gradient. This is the main difference between the two
algorithms. For FALD, we show in Lemma 19 that

E [Sk] . E
[
‖Xk − Xkγ‖2

]
+ E [Vk] + Vπ . (15)

On the other hand, under A3, we establish in Lemma 27 that
for VR-FALD?, it holds that

E [Sk] . ωE
[
‖Xk − Xkγ‖2

]
+ ωE [Vk] +

γωd

bqc

+ ωqc

k−1∑
l=0

(1− qc)k−l−1E
[
‖Xlγ −Xl‖2

]
.

Compared to the inequality (15), which holds for FALD, the
variance term Vπ for VR-FALD? is replaced by γωd/bqc,
which can be made arbitrarily small with γ → 0. Note that
this term is inversely proportional to the update probability
qc of the control variate. Interestingly, the term Sk vanishes
when ω = 0, i.e., when each client uses its full local gradient
at each iteration.

Bounding Vk. We show in Lemma 18 (FALD) and
Lemma 26 (VR-FALD?), there exist a0, a1 ≥ 0 satisfying

E[Vk] ≤ (1− γm/8)ka0 + a1 . (16)

To establish this result, we consider the sequence (fk)k∈N
with general term given by

fk = Vk + αdd
2
k + ασσ

2
k ,

where αd, ασ ≥ 0 are given in (97); dk = ‖Xk − x?‖
denotes the distance between the average parameter Xk

and the minimizer x? of the global potential U ; σk =
0 for FALD and σ2

k = b−1
∑
i∈[b] EFk [‖∇̂U ik(Yk) −

∇̂U ik(x?)‖2] for VR-FALD? with Yk defined in (8). The
weights αd, ασ are tailored to prove a contraction; more pre-
cisely, we show the existence of a2 > 0 whose expression
is given in Lemma 12, such that

fk+1 ≤ (1− γm/4) fk + γ2a2 + 2γd (1− τ) (1− b−1) .
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An immediate induction combines with Vk ≤ fk yields a
first bound for E[Vk] of the form (16) with a1 of order γ. In
a final step Lemma 10, we refine this bound to obtain a term
a1 of order γ2.

Gathering all the bounds. The proof is concluded by plug-
ging the upper bounds derived for Ek, Sk, Vk into (12).

4 Numerical experiments

To illustrate our findings, we perform three numerical ex-
periments on both synthetic toy-examples and real datasets.
We compare FALD, VR-FALD? with Bayesian federated
learning benchmarks: DG-LMC (Plassier et al., 2021),
the Federated Stochastic Langevin Dynamics FSGLD
(El Mekkaoui et al., 2021), the Quantized Langevin Stochas-
tic Dynamic QLSD and its variance-reduced version QLS-
DPP (Vono et al., 2022b). We also include in our bench-
mark state of the art (centralized MCMC) algorithms: HMC
(Brooks et al., 2011), the Stochastic Gradient Langevin
Dynamics (SGLD) (Welling and Teh, 2011) and the precon-
ditioned SGLD (pSGLD) (Li et al., 2016).

Gaussian posterior. We consider b = 100 clients associ-
ated to local Gaussian potentials with mean {µi}i∈[b] and co-
variance {Σi}i∈[b], i.e., U i(x) = (1/2)(x− µi)>Σ−1

i (x−
µi). For different values of the hyperparameters (pc, γ, τ),
we run 100 chains with k1 = 107 iterations (Xk)k1k=1 and
discard 10% of the samples (more details are reported
in Section 10.1). For each chain, we estimate the poste-
rior variance σ2

? =
∫
‖x − x?‖2dπ(x) using FALD and

VR-FALD?, where π ∝ exp(−
∑
i∈[b] U

i) and x? =

arg maxx∈Rd π(x). We compute a Monte-Carlo estimates
(over 102 independent replications) of the Mean Squared Er-
ror (MSE) given by {(k1− k0)−1

∑k1
k=k0+1 ‖Xk − x?‖2−

σ2
?}2 where k1 is the total number of samples and k0 is

the burn-in period. The values of the hyperparameters are
reported in Section 10.1. From Table 1, VR-FALD? always
outperforms FALD for any choices of pc, γ. This illustrates
the impact of the heterogeneity and supports the theoreti-
cal findings given in Theorems 1 and 3. Furthermore, the
asymptotic bias for VR-FALD? improves when τ = 1 as
derived in the theoretical analysis.

Bayesian Logistic Regression. We assess the performance
of FALD and VR-FALD? using calibration metrics—the
expected calibration error (ECE), the Brier score (BS), and
the negative log likelihood (nNLL); see Guo et al. (2017)—
and predictive accuracy. We consider Bayesian logistic
regression applied to the Titanic dataset, which consists of
p = 2 classes with N = 2201 samples in dimension d = 4.
This dataset is allocated between b = 10 clients in a very
heterogeneous manner, as displayed in Figure 3. We use an
isotropic Gaussian prior with a mean of zero and variance
1. We also report the total variation distance between the
predictive distribution obtained for FALD and VR-FALD?
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Figure 2: MSE comparison with pc = 1/5 and γ = γ̄/3.

to the predictive distribution approximated by 100 long runs
of Langevin Stochastic Dynamics (LSD). These metrics are
evaluated on a test data sets of 441 samples, and the mean
and standard deviation are reported in Table 2. Moreover,
we illustrate the quality improvement of VR-FALD? over
FALD in Figure 4. We compared the Wasserstein distance
using POT (Flamary et al., 2021) between the empirical
distributions generated by FALD, VR-FALD? to the esti-
mated target distribution. Based on the same samples, we
compute the relative highest posterior density (HPD) error;
see Section 10.2 for details.
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PROBABILITY pc pc = 1/5 pc = 1/10 pc = 1/20
STEPSIZE γ 1

2
pcγ̄

1
5
pcγ̄

1
10
pcγ̄

1
2
pcγ̄

1
5
pcγ̄

1
10
pcγ̄

1
2
pcγ̄

1
5
pcγ̄

1
10
pcγ̄

FALD (τ = 0) 2.5E+01 9.5E-01 3.9E-02 3.6E+01 1.1E+00 8.2E-02 4.2E+01 2.0E+00 1.1E-01
VR-FALD? (τ = 0) 4.8E-02 2.6E-02 1.4E-02 5.0E-02 4.9E-02 3.7E-02 9.8E-02 5.3E-02 3.9E-02
VR-FALD? (τ = 1) 2.8E-02 2.0E-02 1.3E-02 4.1E-02 3.7E-02 1.4E-02 8.6E-02 4.3E-02 2.1E-02

Table 1: Asymptotic bias in function of τ , pc and γ.

METHOD Accuracy Agreement 104× TV 10×ECE 10×BS 10×nNLL
LSD 72.4 ± 0.1 99.9 ± 0.1 5.53 ± 2.00 1.20 ± 0.01 3.44 ± 0.00 5.30 ± 0.00
FALD 77.0 ± 0.8 91.3 ± 0.9 533.32 ± 8.13 1.05 ± 0.09 3.37 ± 0.01 5.19 ± 0.00
VR-FALD? 74.9 ± 0.1 93.6 ± 0.1 287.81 ± 2.04 1.00 ± 0.05 3.51 ± 0.00 5.35 ± 0.00

Table 2: Bayesian Logistic Regression on Titanic.

Bayesian Neural Network: MNIST. To illustrate the be-
havior of FALD and VR-FALD? in a non-convex setting,
we perform Bayesian Neural Network (BNN) inference
on the MNIST dataset (Deng, 2012). To this end, we dis-
tribute the dataset to b = 20 clients as follows: 80% of
the data labeled y ∈ {0, . . . , 9} are equally allocated to
clients i = y + 1 and i = y + 10; the remaining data are
evenly distributed among the b clients. The likelihood of
the observations is computed using LeNet5 neural network
(LeCun et al., 1998) with an isotropic Gaussian prior. Fi-
nally, we implement FALD and its variants with pc = 1/b
and qc = Nb/Nd, where Nb is the batch size used in the
experiments and Nd is the total number of data. All stan-
dard deviations and the values of the other parameters are
reported in Section 10.3.

In Table 3 we can observe that the best results are obtained
by VR-FALD?: it achieves similar performance to the
(fully centralized) SGLD and pSGLD. Alleviating client
drift using control variates is still effective even in the highly
non-convex BNN setting.

METHOD SGLD pSGLD FALD VR-FALD? FSGLD

Accuracy 99.1 99.2 99.1 99.2 98.5
103×ECE 6.88 21.6 4.07 4.34 6.34
102×BS 1.66 1.45 1.47 1.39 2.39
102×nNLL 3.53 4.24 3.06 3.43 4.87

Table 3: Performance of Bayesian FL algorithms on MNIST.

Bayesian Neural Network: CIFAR10. We consider the
CIFAR10 dataset (Krizhevsky, 2009) and the ResNet-20
model (He et al., 2016). We split the data across 20
clients, similar to the previous example. Denote by Y =
{y1, . . . , y10} the set of labels. Then 80% of the data asso-
ciated with a label yj ∈ Y, j ∈ [10], is distributed among
clients j and j + 10, while the rest of the data is evenly
distributed among clients. We assess the performance of
FALD and VR-FALD? against HMC, Deep Ensemble, and
SGLD. We follow Izmailov et al. (2021) by computing the

accuracy, agreement, and total deviation distance between
the predictive distribution. All of these quantities are de-
fined in the Appendix; see Section 10.4. We also report the
calibration results and all resulting scores in Table 7; the
results for HMC and SGLD are from Izmailov et al. (2021,
Table 6). Details on the implementation and choice of hy-
perparameters can be found in Section 10.4. We can see
that VR-FALD? gives very similar results to SGLD and
performs favorably in terms of agreement. Finally, FALD
and VR-FALD? outperform Deep Ensembles.

METHOD HMC SGD DEEP ENS. SGLD FALD VR-FALD?

Accuracy 89.6 91.57 91.68 89.96 92.54 92.03
Agreement 94.0 90.99 91.03 92.43 91.53 91.12
10× TV 0.74 1.45 1.49 1.03 1.42 1.39
102×ECE 5.9 4.71 5.44 4.41 3.79 3.26
10×BS 1.4 1.69 1.45 1.53 1.16 1.20
10×nNLL 3.07 3.35 3.81 3.15 2.75 2.63

Table 4: Performance of Bayesian FL algo. on CIFAR10.

5 Conclusion
In this work, we propose VR-FALD? which extends the
FALD Deng et al. (2021) algorithm by introducing con-
trol variates to mitigate client drift and reducing stochastic
gradient variance. We develop a unifying framework for
Bayesian FL combining ideas from Langevin Monte Carlo
and Federated Averaging schemes. The theory covers a
wide range of local stochastic gradient algorithms; connec-
tions can even be made with the global consensus Monte
Carlo method (Rendell et al., 2020; Vono et al., 2022a). Us-
ing this theoretical framework, we develop non-asymptotic
bounds for the algorithms FALD and VR-FALD?, and
discuss the choice of hyperparameters (learning rate, com-
munication probability, control variate update probability)
to obtain optimal trade-offs. Our analysis allows to correct
some errors in the results obtained previously for FALD.
The results we obtain on both toy examples and applications
to BNNs clearly show the importance of variance reduction
and heterogeneity, even when the potential is non-convex.
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Notation and convention. The Euclidean norm and the scalar product on Rd are denoted by ‖ · ‖ and 〈·, ·〉 respectively.
We set N∗ = N \ {0} and denote by N(m,Σ) the Gaussian distribution with mean vector m and covariance matrix Σ.
Finally, for any f : Rd → R twice continuously differentiable, we define the Laplacian ∆f , which for all x ∈ Rd is given
by ∆f(x) = {

∑d
l=1(∂2fj)(x)/∂x2

l }dj=1.

Theoretical road map. The derivations leading to Theorem 1 and Theorem 3 are split in two sections:

• Section 6 consists of general results under mild assumptions. In this section, we derive an upper bound on Vk – see
Section 6.3, and provide a Wasserstein upper bound holding for general federated averaging Langevin schemes in
Theorem 8.

• Section 7 is subdivided between the results on FALD (Section 7.1) and VR-FALD? (Section 7.2). In each subsection,
we prove intermediate results showing that results of Section 6.3 hold, and finally we apply Theorem 8 to derive the
final theoretical guarantees on FALD and VR-FALD?.
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6 General scheme and technical results

Problem statement. We consider a general recursion that includes both FALD and VR-FALD?. This general scheme
is based on i.i.d. random variables {ξk : k ∈ N} taking values in a measurable space (E, E) and whose joint distribution
is denoted by νξ. Moreover, we introduce a family of measurable functions {G i : Rd × Y2 × C2 × E → Rd , Y i :
Rd × Y2 × E → Y , C i : Rd × Y × C2 × E → C}bi=1, where (Y,Y) and (C, C) are measurable spaces. For each i ∈ [b],
the functions (G i,Y i,C i) correspond to the update of the local parameter and control variate by the ith agent. To define
the global control variate update, we consider the function D : Y × Cb+1 × (Rd)b+1 × E → Y × C. Starting from
{Gi0}bi=1, {Xi

0}bi=1 ∈ (Rd)b, (C0, {Ci0}bi=1) ∈ Cb+1, (Y0, {Y i0 }bi=1) ∈ Yb+1 and set X0 = b−1
∑b
i=1X

i
0. For each k ∈ N

the random variables are updated according to

Gik+1 = G i
(
Xi
k, Y

i
k , Yk, C

i
k, Ck, ξk+1

)
, (17)

X̃i
k+1 = Xi

k − γGik+1 +
√

2γ
(√

τ/b Z̃k+1 +
√

1− τ Zik+1

)
,

Y ik+1 = Y i
(
Xi
k, Y

i
k , Yk, ξk+1

)
, (18)

Cik+1 = C i
(
Xi
k, Y

i
k , C

i
k, Ck, ξk+1

)
, (19)

Xi
k+1 = Bk+1

b∑
j=1

X̃j
k+1 + (1−Bk+1)X̃i

k+1 , (20)

(Yk+1, Ck+1) = D(Yk, Ck, {Cik}bi=1, {Xi
k}bi=1, ξk+1) , (21)

where τ ∈ [0, 1]; γ ∈ (0, γ̄] is the stepsize; {(Bk, ξk, Z̃k, Z1
k , . . . , Z

b
k) : k ∈ N?} is a set of independent sequences of

i.i.d. random variables such that for any k ∈ N∗ Bk, is a Bernoulli random variable with parameter pc ∈ (0, 1]; and
(Z̃k, Z

1
k , . . . , Z

b
k) are d-dimensional standard Gaussian random variables. Recall that (ξk)k≥1 is a set of i.i.d. random

variables distributed according to νξ such that H1 holds to ensure that the combination of functions {G i}i∈[b] provides an
unbiased estimate of∇U .

In iteration k ≥ 0, the local parameter of the ith client is denoted by Xi
k, and Gik stands for its local gradient. If Bk = 1

(communication round), the local parameter Xi
k is set to the value of the global server parameter Xk. If Bk = 0, Xi

k is
set to the local update X̃i

k. Moreover, we write Y ik the reference point used to compute the control variate Cik. The first
step (17) corresponds to the computation of a stochastic estimate of ∇U i by the ith client. Then, the client updates the
reference point Y ik (18) at which the local control variate is computed. The client also update its own local control variate
Cik in (19). If Bk+1 = 1, then the server averages the parameter of each client, and broadcasts this average. If Bk+1 = 0,
then each client keeps X̃i

k+1 as its new local parameter. Finally, the server updates the reference point Yk and the global
control variate Ck according to (21). Denote the filtration {Fk}k∈N defined for any k ≥ 0, by

Fk = σ

(
X0,

(
Bl, Cl, Yl, Z̃l, ξl,

(
Cil , G

i
l, X

i
l , X̃

i
l , Y

i
l , Z

i
l

)
i=1,...,n

)
0≤l≤k

)
(22)

and consider the conditional expectation and variance denoted by EFk , VarFk(·) = EFk [‖· − EFk [·]‖2] respectively. For
k ∈ N, we introduce Xk the average of the local parameters given by

Xk =
1

b

b∑
i=1

Xi
k (23)

and we set

Vk =
1

b

b∑
i=1

‖Xi
k −Xk‖2 . (24)

Finally, to control the distance between the average parameter Xk and the minimizer x? = arg minU , we consider the
parameter dk, which for k ≥ 0 is given by

dk = ‖Xk − x?‖ . (25)

For each k ∈ N and γ ∈ (0, γ̄], we denote by µ(γ)
k the distribution of Xk defined by (23). To ensure the quality of the

samples generated by Algorithm 1, we control the Wasserstein distance W2(π, µ
(γ)
k ). Recall that the Wasserstein distance
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Algorithm 1 Stochastic Averaging Langevin Dynamics - FALD and its variants

Input: initial vectors (Xi
0)i∈[b], noise parameter τ ∈ [0, 1], number of communication roundsK, probability pc ∈ (0, 1]

of communication, probability qc ∈ [0, 1] to update the control variates, and step-size γ
Initialize: Y0 = (1/b)

∑b
i=1X

i
0 and C0 = (1/b)∇U(Y0)

for k = 0 to K − 1 do
Draw Bk+1 ∼ B(pc), Z̃k+1 ∼ N(0d, Id) // On every client
for i = 1 to b do // In parallel on the b clients

Draw ξik+1 ∼ νiξ, Z̃ik+1 ∼ N(0d, Id)

Compute Gik following (17)
Set X̃i

k+1 = Xi
k − γGik +

√
2γ (

√
τ/b Z̃k+1 +

√
1− τ Z̃ik+1)

if Bk+1 = 1 then
Broadcast X̃i

k+1 to the server // Communication round
else

Update Xi
k+1 ← X̃i

k+1 // Local step

if B̃k+1 = 1 then // Control variate update round
Broadcast the necessary information to the server in order to update (Y ik , C

i
k, Yk, Ck)

else
Set (Y ik+1, C

i
k+1, Yk+1, Ck+1)← (Y ik , C

i
k, Yk, Ck) // No update

if Bk+1 = 1 then // During communication round
Update then broadcast Xk+1 ← (1/b)

∑b
i=1 X̃

i
k+1 // On the central server

Update the local parameter Xi
k+1 ← Xk+1 // On every client

if B̃k+1 = 1 then // During control variate update round
If needed, update then broadcast Yk+1 ← (1/b)

∑b
i=1X

i
k // On the central server

Update (Y ik , C
i
k) using the parameters (Xi

k, Y
i
k , Yk, Yk+1, Ck) // On every client

Update then broadcast Ck+1 ← (1/b)
∑b
i=1 C

i
k+1 // On the central server

Output: samples {X`}{`∈[K] :B`=1}.
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is the infimum of E[‖Xkγ −Xk‖2] over all couplings (Xkγ , Xk) such that Xkγ is distributed according to π. Thus, to study
the convergence of (µ

(γ)
k )k∈N, we introduce a synchronous coupling (Xkγ , Xk)k≥0 with values in (Rd)2 between π and

µ
(γ)
k , starting from the couple (X0, X0) distributed according to ζ ∈ P2(Rd × Rd), i.e., ζ(Rd, ·) = µ

(γ)
0 ∈ P2(Rd) and

ζ(·,Rd) = π. Since log π is supposed m-strongly concave by A1, note that π belongs in P2(Rd). Based on independent
d-dimensional standard Brownian motions ({W̃t, {W̃i

t}bi=1})t≥0, we define Wt =
√
τW̃t +

√
(1− τ)/b

∑b
i=1 W̃

i
t. For

k ∈ N?, we introduce Z̃k = γ−1/2(W̃kγ−W̃(k−1)γ), and for i ∈ [b], we consider Z̃ik = γ−1/2(W̃i
kγ−W̃i

(k−1)γ). Therefore,

for all k ∈ N? we can verify that Wkγ −W(k−1)γ =
√
γτZ̃k +

√
γ(1− τ)/b

∑b
i=1 Z̃

i
k. Moreover, consider (Xt)t≥0 the

strong solution of the Langevin stochastic differential equation (SDE) given by

dXt = −1

b
∇U(Xt) dt+

√
2

b
dWt . (26)

The Langevin diffusion defines a Markov semigroup (P̃t)t≥0 satisfying πP̃t = π for any t ≥ 0, see for example Roberts
and Tweedie (1996, Theorem 2.1). Note that Xt and Xk are distributed according to π and µ(γ)

k , respectively. From the
definition of the Wasserstein distance of order 2 it follows that

W2(π, µ
(γ)
k ) ≤ E

[
‖Xkγ −Xk‖2

]1/2
.

So the proof consists mainly of upper bounding the squared norm ‖Xkγ −Xk‖, from which we derive an explicit bound on
the Wasserstein distance by the previous inequality.

First upper bound on EFk [‖X(k+1)γ −Xk+1‖2]. Under mild assumptions, we derive a first bound in Proposition 4 to
control ‖X(k+1)γ −Xk+1‖2 based on ‖Xkγ −Xk‖2, (1/b)

∑b
i=1G

i
k and Vk. This decomposition highlights the different

approximations brought by the discretization of the Langevin diffusion (26) between the averaged parameter (Xk)k∈N
defined in (23) and {Xkγ}k∈N. Recall that x? = arg minU and for all k ∈ N, consider Ik the approximation error defined
by

Ik =

∫ (k+1)γ

kγ

(
∇Ū(Xs)−∇Ū(Xkγ)

)
ds . (27)

For γ̄ > 0 small enough and k ∈ N, for all γ ∈ (0, γ̄] and under the following assumption H1 we control the distance
between the target distribution π and µ(γ)

k .

H1. For any {(xi, yi, ci)}bi=1 ∈ R3d, we have

b∑
i=1

∫
E

G i
({

(xj , yj , cj)
}b
j=1

, ξi
)

dνξ(ξ
i) =

b∑
i=1

∇U i(xi) .

Proposition 4. Assume A1, H1 hold and let γ ≤ 2(3L)−1. Then, for any k ∈ N, we have

EFk
[
‖X(k+1)γ −Xk+1‖2

]
≤ [1− γm (1− 3γL)] ‖Xkγ −Xk‖2 + γ

(
2L2

m
+ 3γL2

)
Vk

+

(
2

γm

∥∥EFk [Ik]
∥∥2

+ 3EFk
[
‖Ik‖2

])
+ γ2 VarFk

(
1

b

b∑
i=1

Gik

)
,

where Vk,Fk, dk are defined in (24), (22) and (25).

Proof. Let k be in N and γ in
(
0, 2(3L)−1

]
. Recall the stochastic processes Xk+1,X(k+1)γ are defined in (23) and (26) by{

X(k+1)γ = Xkγ − γ∇Ū(Xkγ)− Ik +
√

2/b
(
W(k+1)γ −Wkγ

)
,

Xk+1 = 1
b

∑b
i=1

[
Xi
k − γGik +

√
2γ
(√

τ/b Z̃k+1 +
√

1− τ Z̃ik+1

)]
,

with Ik defined in (27). Substracting the two above equations gives

X(k+1)γ −Xk+1 = (Xkγ −Xk)−

(∫ (k+1)γ

kγ

∇Ū(Xs)ds−
γ

b

b∑
i=1

Gik

)
.
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Taking the conditional expectation of the above equation and developing the squared norm, we obtain

EFk
[
‖X(k+1)γ −Xk+1‖2

]
= EFk

[
‖Xkγ −Xk‖2

]
− 2γ

〈
Xkγ −Xk,∇Ū(Xkγ)−∇Ū(Xk)

〉
− 2

〈
Xkγ −Xk,EFk [Ik] + γ∇Ū(Xk)− γ

b

b∑
i=1

EFk
[
Gik
]〉

+ EFk

∥∥∥∥∥Ik + γ∇Ū(Xkγ)− γ

b

b∑
i=1

Gik

∥∥∥∥∥
2
 . (28)

Using that for all α > 0, (a, b) ∈ (Rd)2, 2 〈a, b〉 ≤ α ‖a‖2 + (1/α) ‖b‖2 combined with H1, for any ε > 0 we have

− 2

〈
Xkγ −Xk,EFk [Ik] + γ∇Ū(Xk)− γ

b

b∑
i=1

EFk
[
Gik
]〉
≤ ε‖Xkγ −Xk‖2 +

2

ε

∥∥EFk [Ik]
∥∥2

+
2γ2

ε

∥∥∥∥∥∇Ū(Xk)− 1

b

b∑
i=1

∇U i(Xi
k)

∥∥∥∥∥
2

. (29)

In addition, the unbiased property H1 implies that

EFk

∥∥∥∥∥Ik + γ∇Ū(Xkγ)− γ

b

b∑
i=1

Gik

∥∥∥∥∥
2
 = γ2 VarFk

(
1

b

b∑
i=1

Gik

)

+ EFk

∥∥∥∥∥γ (∇Ū(Xkγ)−∇Ū(Xk)
)

+ Ik + γ∇Ū(Xk)− γ

b

b∑
i=1

∇U i(Xi
k)

∥∥∥∥∥
2
 . (30)

The Young inequality shows that

EFk

∥∥∥∥∥γ (∇Ū(Xkγ)−∇Ū(Xk)
)

+ Ik + γ∇Ū(Xk)− γ

b

b∑
i=1

∇U i(Xi
k)

∥∥∥∥∥
2


≤ 3γ2
∥∥∇Ū(Xkγ)−∇Ū(Xk)

∥∥2
+ 3EFk

[
‖Ik‖2

]
+ 3γ2

∥∥∥∥∥∇Ū(Xk)− 1

b

b∑
i=1

∇U i(Xi
k)

∥∥∥∥∥
2

.

By A1 we know that Ū is L-smooth and convex which imply the co-coercivity of Ū (Nesterov, 2003, Theorem 2.1.5), that
is for all x, y ∈ Rd,

∥∥∇Ū(y)−∇Ū(x)
∥∥2 ≤ L

〈
∇Ū(y)−∇Ū(x), y − x

〉
. Hence, we deduce that∥∥∇Ū(Xkγ)−∇Ū(Xk)

∥∥2 ≤ L
〈
Xkγ −Xk,∇Ū(Xkγ)−∇Ū(Xk)

〉
. (31)

Setting ε = γm, we have 0 < ε ≤ 1 and 1 + 1/ε ≤ 2(γm)−1. Therefore, (29), (30) and (31) associated with (28) show that

EFk
[
‖X(k+1)γ −Xk+1‖2

]
≤ (1 + γm) ‖Xkγ −Xk‖2 +

(
2

γm

∥∥EFk [Ik]
∥∥2

+ 3EFk
[
‖Ik‖2

])
− γ (2− 3γL)

〈
Xkγ −Xk,∇Ū(Xkγ)−∇Ū(Xk)

〉
+ γ2

(
3 +

2

γm

)∥∥∥∥∥∇Ū(Xk)− 1

b

b∑
i=1

∇U i(Xi
k)

∥∥∥∥∥
2

+ γ2 VarFk

(
1

b

b∑
i=1

Gik

)
. (32)

For any i ∈ [b], by A1, the m-convexity of Ū gives that〈
Xkγ −Xk,∇Ū(Xkγ)−∇Ū(Xk)

〉
≥ m‖Xkγ −Xk‖2 (33)

In addition, under A1 the Jensen inequality implies∥∥∥∥∥∇Ū(Xk)− 1

b

b∑
i=1

∇U i(Xi
k)

∥∥∥∥∥
2

≤ L2Vk , (34)

where Vk is defined in (24). Therefore, using the assumption on γ and plugging (33) and (34) in (32) yields the expected
inequality.
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6.1 General supporting lemmas

In this subsection, we consider the stochastic processes (Xk)k∈N, (Xkγ)k∈N defined in (23) and (26). We derive several
lemmas which allow us to derive a recursion on E[‖Xkγ −Xk‖2].

Lemma 5. Assume A1 holds. Then, for any k ∈ N and γ > 0 we have

E
[
‖Ik‖2

]
≤ dγ3L2

b

(
1 +

γL2

2m
+
γ2L2

12

)
.

Proof. Let k be in N. Using the Jensen inequality, we have

E
[
‖Ik‖2

]
= E

∥∥∥∥∥
∫ (k+1)γ

kγ

(
∇Ū(Xs)−∇Ū(Xkγ)

)
ds

∥∥∥∥∥
2


≤ γ
∫ (k+1)γ

kγ

E
[∥∥∇Ū(Xs)−∇Ū(Xkγ)

∥∥2
]

ds

≤ L2γ

∫ (k+1)γ

kγ

E
[
‖Xs − Xkγ‖2

]
ds . (35)

Further, for any s ∈ R+, using Durmus and Moulines (2019, Lemma 21) applied to (Xbt)t∈R+
we obtain

EFkγ
[
‖Xs − Xkγ‖2

]
≤ d(s− kγ)

b

(
2 + (s− kγ)2L

2

3

)
+

3

2
(s− kγ)2L2‖Xkγ − x?‖2 .

Integrating the previous inequality on [kγ, (k + 1)γ], it implies∫ (k+1)γ

kγ

E
[
‖Xs − Xkγ‖2

]
ds ≤ γ2

b

(
d+

bL2γ

2
E
[
‖Xkγ − x?‖2

]
+
dL2γ2

12

)
. (36)

Plugging (36) in (35) gives

E
[
‖Ik‖2

]
≤ L2γ3

b

(
d+

bL2γ

2
E
[
‖Xkγ − x?‖2

]
+
dL2γ2

12

)
. (37)

Applying Durmus and Moulines (2019, Proposition 1) to (Xbt)t∈R+ , we get

E
[
‖Xkγ − x?‖2

]
≤ d

bm
. (38)

Thus, combining (37) with (38) completes the proof.

Lemma 6. Assume A1 and HX1 hold. Then, for any k ∈ N and γ > 0 we have

E
[∥∥EFk [Ik]

∥∥2
]
≤ 2γ4d

3b

(
L3 +

dL̃2

b

)
,

where Ik is defined in (27).

Proof. Denote ∆ the Laplacian defined, for all x ∈ Rd, by ∆U(x) = {
∑d
l=1(∂2Uj)(x)/∂x2

l }dj=1, moreover let k ∈ N be
a fixed integer and γ > 0. Using the Itô formula, we have for s ∈ [kγ, (k + 1)γ]

∇Ū(Xs)−∇Ū(Xkγ) =

∫ s

kγ

1

b
∆(∇Ū)(Xu)−∇2Ū(Xu)∇Ū(Xu)du+

√
2

b

∫ s

kγ

∇2Ū(Xu)dBu . (39)

We will upper bound separately the three terms of the previous equality. First, the L-Lipschitz property of∇Ū given by A1
implies for any u ∈ R+ that ∥∥∇2Ū(Xu)∇Ū(Xu)

∥∥ ≤ L∥∥∇Ū(Xu)−∇Ū(x?)
∥∥ . (40)
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In addition, since for u ∈ R+, the random variable Xu is distributed according to the stationary distribution π ∝ exp(−U),
we know from Dalalyan (2017, Lemma 2) that

E
[∥∥∇Ū(Xu)−∇Ū(x?)

∥∥2
]
≤ dL

b
. (41)

Therefore, we deduce from (40) and (41) the following bound

E
[∥∥∇2Ū(Xu)∇Ū(Xu)

∥∥2
]
≤ dL3

b
. (42)

Denote (ei)
d
i=1 the canonical basis of Rd; using that U is three times continuously differentiable we can apply the Schwarz’s

theorem which combined with HX1, immediately yield that

∥∥∆(∇Ū)(x)
∥∥2

=

d∑
i=1

∣∣∣∣∣∣
d∑
j=1

∂2
j ∂iŪ(x)

∣∣∣∣∣∣
2

≤ d
d∑
i=1

d∑
j=1

∣∣∂i∂2
j Ū(x)

∣∣2
= d

d∑
i=1

lim
ε→0

ε−2
d∑
j=1

∣∣∂2
j Ū(x+ ε · ei)− ∂2

j Ū(x)
∣∣2

≤ d
d∑
i=1

lim
ε→0

{
ε−2

(
L̃‖(x+ ε · ei)− x‖−1

)2
}
≤
(
dL̃
)2

. (43)

Lastly, we upper bound the third term derived in (39). Since the potentials {U i}i∈[b] are supposed L-smooth and Ū twice
continuously differentiable, for s ∈ [kγ, (k + 1)γ] we know that

∫ s
kγ
∇2Ū(Xu)dBu is a Fs-martingale. Thus, for k ≥ 0 we

deduce that

EFk
[∫ (k+1)γ

kγ

∇2Ū(Xu) du

]
= 0 . (44)

Eventually, combining (39), (42), (43) and (44) with the Jensen and Young inequalities give

1

γ
E
[∥∥EFk [Ik]

∥∥2
]

=
1

γ
E

∥∥∥∥∥
∫ (k+1)γ

kγ

EFk
[
∇Ū(Xs)−∇Ū(Xkγ)

]
ds

∥∥∥∥∥
2


≤
∫ (k+1)γ

kγ

E
[∥∥EFk [∇Ū(Xs)−∇Ū(Xkγ)

]∥∥2
]

ds

=

∫ (k+1)γ

kγ

E

[∥∥∥∥EFk [∫ s

kγ

1

b
∆(∇Ū)(Xu)−∇2Ū(Xu)∇Ū(Xu)du

]∥∥∥∥2
]

ds

≤ 2

∫ (k+1)γ

kγ

(s− kγ)

∫ s

kγ

E

[
1

b2

∥∥∥∥∫ s

kγ

∆(∇Ū)(Xu)du

∥∥∥∥2

+
∥∥∇2Ū(Xu)∇Ū(Xu)du

∥∥2

]
ds

≤ 2

∫ (k+1)γ

kγ

(s− kγ)2

(
dL3

b
+

(dL̃)2

b2

)
ds =

2γ3d

3b

(
L3 +

dL̃2

b

)
.

Multiplying this last inequality by γ > 0 proves the expected result.

Lemma 7. Assume A1 hold. Then, for any k ∈ N and γ ∈
(
0, (3m)−1

]
we have

2

γm
E
[
‖EFk [Ik] ‖2

]
+ 3E

[
‖Ik‖2

]
≤


3γ2dL2

bm

(
1 + 19γL2

36m

)
γ3d
bm

(
5L3 + 4dL̃2

3b

)
if HX1 holds and γ ≤ L−1.

Proof. Let k be in N and γ ∈
(
0, (3m)−1

]
, using Lemma 5 we have

E
[
‖Ik‖2

]
≤ γ3dL2

b

(
1 +

γL2

2m
+
γ2L2

12

)
.



Vincent Plassier, Alain Durmus, Éric Moulines

Therefore, we deduce

2

γm
E
[∥∥EFk [Ik]

∥∥2
]

+ 3E
[
‖Ik‖2

]
≤ 3γ2dL2

bm

(
1 +

γL2

2m
+
γ2L2

12

)
.

Moreover, if we additionally suppose the regularity of the Hessian of the potentials (U i)bi=1 as stated in HX1, we sharpen
the upper bound on E[‖EFk [Ik]‖2]. Indeed, we show in Lemma 6 that

2

γm
E
[∥∥EFk [Ik]

∥∥2
]
≤ 4γ3d

3bm

(
L3 +

dL̃2

b

)
.

Hence, we deduce that

2

γm
E
[∥∥EFk [Ik]

∥∥2
]

+ 3E
[
‖Ik‖2

]
≤ 3γ3dL2

b

(
1 +

γL2

2m
+
γ2L2

12

)
+

4γ3d

3bm

(
L3 +

dL̃2

b

)

≤ γ3dL3

bm

(
3 +

4

3
+

19γL

36

)
+

4γ3d2L̃2

3b2m
.

6.2 Derivation of the central theorem

H2. There exist αv ∈ (0, 1) and (v1, v2) ∈ (R+)2 such that for any k ∈ N, Vk satisfies

E [Vk] ≤ v1α
k
v + v2 ,

where Vk is defined in (24).
HX2. There exist qc ∈ (0, 1) and α0, α1, α2, α3, α4 ∈ R+ satisfying (1 − qc)(1 + α0 +

√
(α0 − 1)2 + 4α1) < 2 such

that for k ≥ 0 the following inequality holds

(1− qc)−1E
[
‖X(k+1)γ −Xk+1‖2

]
≤ α0E

[
‖Xkγ −Xk‖2

]
+ α1

k−1∑
l=0

(1− qc)k−lE
[
‖Xlγ −Xl‖2

]
+ α2E [Vk] + α3

k−1∑
l=0

(1− qc)k−lE [Vl] + α4 .

With the notation introduced in HX2, consider

δ =
−1− α0 +

√
(α0 − 1)2 + 4α1

2
. (45)

At iteration k ≥ 0, recall that µ(γ)
k denotes the distribution of the average parameter Xk (23). The next result controls the

Wasserstein distance between µ(γ)
k and the posterior distribution π.

Theorem 8. Assume HX2 and H2 hold. Then, for any probability measure µ(γ)
0 ∈ P2(Rd), k ∈ N, we have

W2
2

(
µ

(γ)
k , π

)
≤ (1 + α0 + δ)

k
(1− qc)

k
W2

2

(
µ

(γ)
0 , π

)
+ (1− qc)v1

(
α2 +

α3

α0 + δ

)
αkv − (1 + α0 + δ)

k
(1− qc)

k

αv − (1 + α0 + δ) (1− qc)

+
1− qc

qc − (1− qc)(α0 + δ)

[(
α2 +

α3

α0 + δ

)
v2 + α4

]
.

Proof. For any n ∈ N, define

un = (1− qc)
−n E

[
‖Xnγ −Xn‖2

]
, Sn =

n∑
l=0

ul ,

vn = (1− qc)
−n

(α2E [Vn] + α4) + α3

n−1∑
l=0

(1− qc)−lE [Vl] .

(46)
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With the above notations, HX2 becomes

uk+1 ≤ α0uk + α1

k−1∑
l=0

ul + vk ,

which can be rewritten as
Sk+1 − Sk ≤ α0 (Sk − Sk−1) + α1Sk−1 + vk . (47)

Since δ is solution of δ(1 + α0 + δ) + α0 − α1 = 0, adding (1 + δ)Sk in (47) gives that

Sk+1 + δSk ≤ (1 + α0 + δ)

(
Sk −

α0 − α1

1 + α0 + δ
Sk−1

)
+ vk

= (1 + α0 + δ) (Sk + δSk−1) + vk .

Using the fact that α0 ≤ 1+
√

(α0 − 1)2 + 4α1, we obtain 2(1+δ) = 1−α0 +
√

(α0 − 1)2 + 4α1 ≥ 0. Hence 1+δ > 0,
which leads to the following upper bound

uk+1 ≤ uk+1 + (1 + δ)

k∑
l=0

ul = Sk+1 + δSk .

Thus, we obtain that

uk ≤ Sk + δSk−1 ≤ (1 + α0 + δ)
k−1

(u1 + (1 + δ)uk) +

k−1∑
l=1

(1 + α0 + δ)
k−l−1

vl .

Plugging the definition (46) of uk and vl inside the previous inequality, we get

(1− qc)
−k E

[
‖Xkγ −Xk‖2

]
≤ (1 + α0 + δ)

k−1
(

(1− qc)
−1 E

[
‖Xγ −X1‖2

]
+ (1 + δ)E

[
‖X0 −X0‖2

])
+

k−1∑
l=1

(1 + α0 + δ)
k−l−1

(1− qc)
−l

(α2E [Vl] + α4) + α3

l−1∑
j=0

(1− qc)−jE [Vj ]

 . (48)

Moreover, using HX2 we obtain that

E
[
‖Xγ −X1‖2

]
≤ (1− qc)α0E

[
‖X0 −X0‖2

]
+ (1− qc)α2E [V0] + α4 , (49)

combining (48) with (49) yield

E
[
‖Xkγ −Xk‖2

]
≤ (1 + α0 + δ)

k
(1− qc)

k E
[
‖X0 −X0‖2

]
+ α2

k−1∑
l=0

(1 + α0 + δ)
k−l−1

(1− qc)
k−l E [Vl]

+ α3

k−2∑
j=0

(1− qc)k−jE [Vj ]

k−1∑
l=j+1

(1 + α0 + δ)
k−l−1

+ (1− qc)α4

k−1∑
l=0

(1 + α0 + δ)
l
(1− qc)

l
. (50)

Consider the function f : a ∈ R → R defined by f(a) = a(1 + α0 + a) + α0 − α1. Using the definition (45) of δ
combined with the increasing property of f , we deduce from f(δ) = 0 > f(−α0) = −α1 that δ > −α0, and thus we get
1 + α0 + δ > 1 which implies that

k−1∑
l=j+1

(1 + α0 + δ)
k−l−1 ≤

k−j−2∑
l=0

(1 + α0 + δ)
k−j−l−2 (51)

≤ (1 + α0 + δ)k−j−1

α0 + δ
.

Therefore, plugging (51) in (50) gives

k−2∑
j=0

(1− qc)k−jE [Vj ]

k−1∑
l=j+1

(1 + α0 + δ)
k−l−1 ≤

k−2∑
l=0

(1− qc)
k−l

(1 + α0 + δ)k−l−1

α0 + δ
E [Vl] . (52)
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In addition, since HX2 ensures that (1− qc)(1 + α0 + δ) < 1, we have

k−1∑
l=0

(1 + α0 + δ)
l
(1− qc)

l ≤ 1

qc − (1− qc)(α0 + δ)
. (53)

The last inequality combined with (50) and (52) show that

E
[
‖Xkγ −Xk‖2

]
≤ (1 + α0 + δ)

k
(1− qc)

k E
[
‖X0 −X0‖2

]
+

(
α2 +

α3

α0 + δ

) k−1∑
l=0

(1 + α0 + δ)
k−l−1

(1− qc)
k−l E [Vl] +

(1− qc)α4

qc − (1− qc)(α0 + δ)
. (54)

Further, since we assume H2, we have

k−1∑
l=0

(1 + α0 + δ)
k−l−1

(1− qc)
k−l E [Vl] ≤ v1

k−1∑
l=0

(1 + α0 + δ)
k−l−1

(1− qc)
k−l

αlv

+ v2

k−1∑
l=0

(1 + α0 + δ)
k−l−1

(1− qc)
k−l

. (55)

A calculation gives that

k−1∑
l=0

(1 + α0 + δ)
k−l−1

(1− qc)
k−l

αlv ≤ (1− qc)
αkv − (1 + α0 + δ)

k
(1− qc)

k

αv − (1 + α0 + δ) (1− qc)
(56)

and combining (53), (55) with (56), we find that

k−1∑
l=0

(1 + α0 + δ)
k−l−1

(1− qc)
k−l E [Vl] ≤ (1− qc)v1

αkv − (1 + α0 + δ)
k

(1− qc)
k

αv − (1 + α0 + δ) (1− qc)
+

(1− qc)v2

qc − (1− qc)(α0 + δ)
. (57)

Therefore, plugging (57) inside (54) shows that

E
[
‖Xkγ −Xk‖2

]
≤ (1 + α0 + δ)

k
(1− qc)

k E
[
‖X0 −X0‖2

]
+ (1− qc)v1

(
α2 +

α3

α0 + δ

)
αkv − (1 + α0 + δ)

k
(1− qc)

k

αv − (1 + α0 + δ) (1− qc)

+
1− qc

qc − (1− qc)(α0 + δ)

[(
α2 +

α3

α0 + δ

)
v2 + α4

]
. (58)

Eventually, since the Wasserstein distance W2(π, µ
(γ)
k ) is the infimum over all couplings, we obtain that W2

2(π, µ
(γ)
k ) ≤

E[‖Xkγ −Xk‖2]. Moreover, it follows from the strongly convex assumption A1 that π ∈ P2(Rd). Thus, we can apply
Villani (2009, Theorem 4.1) to prove the existence of an optimal coupling ζ such that taking (X0, X0) distributed according
to ζ implies that E[‖X0 −X0‖2]1/2 = W2(π, µ

(γ)
0 ). Substituting these results into (58) completes the proof.

6.3 Upper bound on Vk

The goal of this subsection is to prove the upper bound derived in Lemma 11 for (E [Vk])k∈N to ensure that H2 holds. Recall
that for k ≥ 0, Vk is defined in (24), dk in (25), Gik in (17) and we introduce Ḡik = EFk [Gik]. To prove the central lemma of
this subsection, we also consider the assumptions HX3 and HX4 given below.

HX3. There exist Ad, Aσ ∈ (0, 1) , Bd, Bσ, Cd, Cσ, Dd, Dσ ∈ R+, such that for any k ∈ N, we have

E
[
d2
k+1

]
≤ (1−Ad)E

[
d2
k

]
+BdE

[
σ2
k

]
+ CdE [Vk] +Dd ,

E
[
σ2
k+1

]
≤ (1−Aσ)E

[
σ2
k

]
+BσE

[
d2
k

]
+ CσE [Vk] +Dσ .
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HX4. There exist A, Ā,B, B̄, C, C̄,D, D̄ ≥ 0 such that for any i ∈ [b], k ∈ N, we have

1

b

b∑
i=1

E
[∥∥Ḡik∥∥2

]
≤ ĀE [Vk] + B̄E

[
d2
k

]
+ C̄E

[
σ2
k

]
+ D̄ ,

1

b

b∑
i=1

E
[∥∥Gik − Ḡik∥∥2

]
≤ AE [Vk] +BE

[
d2
k

]
+ CE

[
σ2
k

]
+D .

With the notation considered in HX3 and HX4, for any γ > 0 we also introduce the following quantities:

Cγ =
4(1− pc)γ2

pc − 4Ad

[
B +

2 + pc

pc
B̄ +

Bσ
Aσ −Ad

(
C +

2 + pc

pc
C̄

)]
,

Cγr =
9γ2 (1− pc)Cσ

pc − 4Ad

(
C +

2 + pc

pc
C̄

)
+ 3Cγ

(
Cd +

BdCσ
Aσ −Ad

)
,

Cγσ =
4(1− pc)γ2

pc − 4Ad

(
C +

2 + pc

pc
C̄

)
+ CγBd

(
2 +

3

Aσ −Ad

)
, Cγd = 7Cγ , CγV = 1 + 2CγCd ,

Cγδ =
4(1− pc)γ2Dσ

Aσ(pc − 4Ad)

(
C +

2 + pc

pc
C̄

)
+

4(1− pc)γ2

pc

(
D +

2 + pc

pc
D̄

)
+

Cγ

Ad

(
1 +

2BdBσ
Ad(Aσ −Ad)

)(
Dd +

BdDσ

Aσ

)
+

8 (1− τ) (b− 1) γd

bpc
.

(59)

If Ad ≤ Aσ/2 and AdAσ ≥ 8BdBσ , we also introduce a convergence rate (proved later in Lemma 10) defined by

α = Ad −
2(Aσ −Ad)−1BdBσ

1 +
√

1 + 4(1−Ad)−1(Aσ −Ad)−1BdBσ
. (60)

Lemma 9. Assume HX3 and also that Ad ≤ Aσ/2, AdAσ ≥ 8BdBσ hold. Then, we have

Ad/2 < α ≤ Ad .

Proof. First, introduce δα ∈ R+ the unique non-negative solution of

δ2
α + δα =

BdBσ
(1−Ad)(Aσ −Ad)

.

Since we suppose Ad ≤ Aσ/2, thus we have Ad ≤ 1/2 which implies that (1−Ad)(A2
d/4 +Ad/2) ≥ Ad/4. In addition,

using AdAσ ≥ 8BdBσ , we get that

(1−Ad)
(
A2
d

4
+
Ad
2

)
≥ Ad

4
≥ 2BdBσ

Aσ
≥ (1−Ad)

(
δ2
α + δα

)
.

Hence, the increasing property of the function x ∈ R+ 7→ x2 + x combined with the fact that δα ≥ 0 prove that Ad ≥ 2δα.
Moreover, a calculation shows that α satisfies α = 1 − (1−Ad)(1 + δα). Thus, using 0 ≤ 2δα ≤ Ad implies that
α ∈ (Ad/2, Ad].

The random variable Vk given in (24) measures the averaged distance between the global parameter Xk and the local ones
(Xi

k)i∈[b]. The first lines of the proof of the next lemma are based on Gorbunov et al. (2021, Lemma E.3), however their
purpose was to upper bound

∑
l wlEVl for some weights wl > 0, while we prefer to control EVk to combine this bound with

that of Proposition 4. Moreover, the assumptions considered in this work are different, so the proof requires the development
of other techniques
Lemma 10. Assume HX3, HX4 hold with Ad < min(Aσ/2, pc/4), AdAσ ≥ 8BdBσ and consider γ ≤
p

1/2
c (2− 2pc)−1/2[A+ (1 + 2/pc)Ā]−1/2. Then, for any k ∈ N, we have

E [Vk] ≤ (1− α)
k (

CγV E [V0] + CγdE
[
d2

0

]
+ CγσE

[
σ2

0

]
+ 2Dd

)
+ Cγr

k−2∑
i=0

(1− α)
k−i−1 E [Vi] + Cγδ ,

where Vk is defined in (24).
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Proof. Let k ∈ N?, using for i ∈ [b] the definitions (20), (23) of Xi
k and Xk

Xi
k+1 = Xi

k − γGik +
√

2γ
(√

τ/b Z̃k+1 +
√

1− τ Z̃ik+1

)
,

Xk+1 = Xk −
γ

b

b∑
j=1

Gik +

√
2γτ

b
Z̃k+1 +

√
2(1− τ)γ

b

b∑
i=1

Zik+1 .

First upper bound on E [Vk]. Substracting the two above equations combined with the Jensen inequality give

E [Vk+1] =
1

b

b∑
i=1

E
[∥∥Xi

k+1 −Xk+1

∥∥2
]

=
1− pc

b

b∑
i=1

E


∥∥∥∥∥∥(Xi

k −Xk)− γ(Gik −Gk) +
√

2(1− τ)γZik+1 −
√

2(1− τ)γ

b

b∑
j=1

Zjk+1

∥∥∥∥∥∥
2


=
1− pc

b

b∑
i=1

E
[∥∥(Xi

k −Xk)− γ(Ḡik − Ḡk)
∥∥2
]

+
(1− pc)γ2

b

b∑
i=1

E
[∥∥(Gik − Ḡik)− (Gk − Ḡk)

∥∥2
]

+ 2(1− τ)γE


∥∥∥∥∥∥Zik+1 −

1

b

b∑
j=1

Zjk+1

∥∥∥∥∥∥
2


Hence, we get

E [Vk+1] ≤ 1− pc

b

b∑
i=1

E
[∥∥(Xi

k −Xk)− γ(Ḡik − Ḡk)
∥∥2
]

+
(1− pc)γ2

b

b∑
i=1

E
[∥∥Gik − Ḡik∥∥2

]
+ 2 (1− τ) (1− 1/b) γd

≤ (1− pc)(1 + pc/2)

b

b∑
i=1

E
[∥∥Xi

k −Xk

∥∥2
]

+
(1− pc)γ2

b

b∑
i=1

E
[∥∥Gik − Ḡik∥∥2

]
+

(1− pc)(1 + 2/pc)γ2

b

b∑
i=1

E
[∥∥Ḡik − Ḡk∥∥2

]
+ 2 (1− τ) (1− 1/b) γd .

Using (1− pc)(1 + pc/2) ≤ 1− pc/2, we finally obtain

E [Vk+1] ≤ (1− pc/2)E [Vk] +
(1− pc)(2 + pc)γ2

pcb

b∑
i=1

E
[∥∥Ḡik∥∥2

]
+

(1− pc)γ2

b

b∑
i=1

E
[∥∥Gik − Ḡik∥∥2

]
+ 2 (1− τ) (1− 1/b) γd .

Combining the last inequality with HX4, it shows

E [Vk+1] ≤
(

1− pc

2
+ (1− pc)γ2

[
A+

2 + pc

pc
Ā

])
E [Vk] + (1− pc)γ2

(
D +

2 + pc

pc
D̄

)
+ (1− pc)γ2

(
B +

2 + pc

pc
B̄

)
E
[
d2
k

]
+ (1− pc)γ2

(
C +

2 + pc

pc
C̄

)
E
[
σ2
k

]
+ 2 (1− τ) (1− 1/b) γd .

Since γ ≤ p1/2c

2(1−pc)1/2[A+(1+2/pc)Ā]
1/2 , the above inequality implies that

E [Vk+1] ≤
(

1− pc

4

)
E [Vk] + (1− pc)γ2

(
D +

2 + pc

pc
D̄

)
+ 2 (1− τ) (1− 1/b) γd
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+ (1− pc)γ2

(
B +

2 + pc

pc
B̄

)
E
[
d2
k

]
+ (1− pc)γ2

(
C +

2 + pc

pc
C̄

)
E
[
σ2
k

]
.

Using by convention that
∑−1
l=0 = 0, an induction shows that

E [Vk] ≤
(

1− pc

4

)k
E [V0] +

4(1− pc)γ2

pc

(
D +

2 + pc

pc
D̄

)
+

8 (1− τ) (b− 1) γd

bpc

+ (1− pc)γ2

(
B +

2 + pc

pc
B̄

) k−1∑
l=0

(
1− pc

4

)k−l−1

E
[
d2
l

]
+ (1− pc)γ2

(
C +

2 + pc

pc
C̄

) k−1∑
l=0

(
1− pc

4

)k−l−1

E
[
σ2
l

]
. (61)

Moreover, for any l ∈ N? the assumption HX3 implies that

E
[
d2
l

]
≤ (1−Ad)E

[
d2
l−1

]
+BdE

[
σ2
l−1

]
+ CdE [Vl−1] +Dd ,

and unrolling the recursion gives that

E
[
d2
l

]
≤ (1−Ad)l E

[
d2

0

]
+

l∑
j=1

(1−Ad)l−j
(
BdE

[
σ2
j−1

]
+ CdE [Vj−1]

)
+
Dd

Ad
. (62)

Similarly, we also have

E
[
σ2
l

]
≤ (1−Aσ)

l E
[
σ2

0

]
+

l∑
j=1

(1−Aσ)
l−j (

BσE
[
d2
j−1

]
+ CσE [Vj−1]

)
+
Dσ

Aσ
. (63)

Hence, by plugging (63) in (61) we obtain that

E [Vk] ≤
(

1− pc

4

)k
E [V0] +

4(1− pc)γ2

pc

(
D +

2 + pc

pc
D̄

)
+

8 (1− τ) (b− 1) γd

bpc

+ (1− pc)γ2

(
B +

2 + pc

pc
B̄

) k−1∑
l=0

(
1− pc

4

)k−l−1

E
[
d2
l

]
+ (1− pc)γ2

(
C +

2 + pc

pc
C̄

) k−1∑
l=0

(
1− pc

4

)k−l−1

(1−Aσ)
l E
[
σ2

0

]
+Bσ(1− pc)γ2

(
C +

2 + pc

pc
C̄

) k−1∑
l=0

l∑
j=1

(
1− pc

4

)k−l−1

(1−Aσ)
l−j E

[
d2
j−1

]
+ Cσ(1− pc)γ2

(
C +

2 + pc

pc
C̄

) k−1∑
l=0

l∑
j=1

(
1− pc

4

)k−l−1

(1−Aσ)
l−j E [Vj−1]

+
4(1− pc)γ2Dσ

Aσ(pc − 4Ad)

(
C +

2 + pc

pc
C̄

)
. (64)

In addition, interchanging the summations gives

k−1∑
l=0

l∑
j=1

(
1− pc

4

)k−l−1

(1−Aσ)
l−j E

[
V 2
j−1

]
=

k−2∑
i=0

[
k−i−2∑
l=0

(
1− pc

4

)k−i−2−l
(1−Aσ)

l

]
E [Vi] .

Thus, using that
∑k−i−2
l=0 (1− pc/4)

k−i−2−l
(1−Aσ)

l ≤ 4 (1−Ad)k−i−1
(pc − 4Ad)

−1, we can simplify the upper
bound of E [Vk] derived in (64). Indeed, we can write
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E [Vk] ≤
(

1− pc

4

)k
E [V0] +

4(1− pc)γ2 (1−Ad)k

pc − 4Ad

(
C +

2 + pc

pc
C̄

)
E
[
σ2

0

]
+

4(1− pc)γ2

pc

(
D +

2 + pc

pc
D̄

)
+

8 (1− τ) (b− 1) γd

bpc
+

4(1− pc)γ2Dσ

Aσ(pc − 4Ad)

(
C +

2 + pc

pc
C̄

)
+ (1− pc)γ2

(
B +

2 + pc

pc
B̄

) k−1∑
l=0

(
1− pc

4

)k−l−1

E
[
d2
l

]
+Bσ(1− pc)γ2

(
C +

2 + pc

pc
C̄

) k−1∑
l=0

(
1− pc

4

)k−l−1 l−1∑
j=0

(1−Aσ)
l−j−1 E

[
d2
j

]
+

4(1− pc)γ2Cσ
pc − 4Ad

(
C +

2 + pc

pc
C̄

) k−2∑
l=0

(1−Ad)k−l−1 E [Vl] . (65)

Upper bound on E
[
d2
k

]
. For l ≥ 1, plugging (63) into (62) yields the following upper bound

E
[
d2
l

]
≤ (1−Ad)l E

[
d2

0

]
+ Cd

l∑
j=1

(1−Ad)l−j E [Vj−1] +
Dd

Ad

+Bd

l∑
j=1

(1−Ad)l−j
[

(1−Aσ)
j−1 E

[
σ2

0

]
+

j−1∑
i=1

(1−Aσ)
j−i−1 (

BσE
[
d2
i−1

]
+ CσE [Vi−1]

)
+
Dσ

Aσ

]
.

The above inequality leads to the next inequality

E
[
d2
l

]
≤ (1−Ad)l E

[
d2

0

]
+Bd

l∑
j=1

(1−Ad)l−j (1−Aσ)
j−1 E

[
σ2

0

]
+ Cd

l∑
j=1

(1−Ad)l−j E [Vj−1] +BdCσ

l∑
j=1

j−1∑
i=1

(1−Aσ)
j−i−1

(1−Ad)l−j E [Vi−1]

+BdBσ

l∑
j=1

j−1∑
i=1

(1−Ad)l−j (1−Aσ)
j−i−1 E

[
d2
i−1

]
+
Dd

Ad
+
BdDσ

AdAσ
. (66)

By interchanging the double summations in (66), we obtain

l∑
j=1

j−1∑
i=1

(1−Ad)l−j (1−Aσ)
j−i−1 E

[
d2
i−1

]
=

l−1∑
i=1

 l∑
j=i+1

(1−Ad)l−j (1−Aσ)
j−i−1

E
[
d2
i−1

]

=

l−2∑
i=0

l−i−2∑
j=0

(1−Ad)l−i−2−j
(1−Aσ)

j

E
[
d2
i

]
≤ 1

Aσ −Ad

l−2∑
i=0

(1−Ad)l−i−1 E
[
d2
i

]
. (67)

Similarly, we can also get that

l∑
j=1

j−1∑
i=1

(1−Ad)l−j (1−Aσ)
j−i−1 E [Vi−1] ≤ 1

Aσ −Ad

l−2∑
i=0

(1−Ad)l−i−1 E [Vi] . (68)

Plugging back (67) and (68) in (66) shows

E
[
d2
l

]
≤ (1−Ad)l E

[
d2

0

]
+
Bd (1−Ad)l

Aσ −Ad
E
[
σ2

0

]
+

BdBσ
Aσ −Ad

l−2∑
i=0

(1−Ad)l−i−1 E
[
d2
i

]
+ Cd

l−1∑
i=0

(1−Ad)l−i−1 E [Vi] +
BdCσ
Aσ −Ad

l−2∑
i=0

(1−Ad)l−i−1 E [Vi] +
Dd

Ad
+
BdDσ

AdAσ
. (69)
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Now, we want to control
∑l−2
i=0 (1−Ad)l−i−1 E

[
d2
i

]
. For this, for any l ∈ N define

Ul = E
[
d2

0

]
+

Bd
Aσ −Ad

E
[
σ2

0

]
+
Dd (1−Ad)−l

Ad
+
BdDσ (1−Ad)−l

AdAσ

+ Cd

l−1∑
i=0

(1−Ad)−i−1 E [Vi] +
BdCσ
Aσ −Ad

l−2∑
i=0

(1−Ad)−i−1 E [Vi] (70)

and consider

Sl =

l∑
i=0

(1−Ad)−i E
[
d2
i

]
.

With the above notation, (69) can be rewritten as

Sl − Sl−1 ≤
BdBσ

(1−Ad) (Aσ −Ad)
Sl−2 + Ul . (71)

For l ≥ 2, using the upper bound derived in (71) gives

E
[
d2
l

]
= (1−Ad)l (Sl − Sl−1) ≤ BdBσ (1−Ad)l−1

Sl−2

(Aσ −Ad)
+ (1−Ad)l Ul . (72)

Finally, we define

δα =
−1 +

√
1 + 4(1−Ad)−1

(Aσ −Ad)−1BdBσ

2

such that δα is solution of the equation

δ2
α + δα =

BdBσ
(1−Ad) (Aσ −Ad)

(73)

Thus for l ≥ 2, the definition of δα combined with (71) show

Sl + δαSl−1 ≤ (1 + δα) (Sl−1 + δαSl−2) + Ul .

Unrolling this recursion gives

Sk + δαSk−1 ≤ (1 + δα)
k−1

(S1 + δαS0) +

k∑
l=2

(1 + δα)
k−l

Ul . (74)

Upper bound on
∑k−1
l=0 (1− α̃)

l−j−1 E[d2
j ]. Let consider a fixed α̃ ∈ {pc/4, Aσ}, by assumption we have Ad < α̃ < 1.

Since we want to control
∑k−1
l=0 (1− pc/4)k−l−1E[d2

l ] and
∑k−1
l=0 (1− pc/4)k−l−1

∑l−1
j=0 (1−Aσ)

l−j−1 E[d2
j ] involved in

the inequality (65), we first study
∑k−1
l=0 (1− α̃)k−l−1E[d2

l ]. From (72), we deduce that

k−1∑
l=0

(1− α̃)
k−l−1 E

[
d2
l

]
≤ BdBσ

(1−Ad)(Aσ −Ad)

k−1∑
l=0

(1−Ad)l (1− α̃)
k−l−1

Sl−2

+

k−1∑
l=0

(1−Ad)l (1− α̃)
k−l−1

Ul . (75)

Since we suppose HX3 and Ad ≤ Aσ/2, AdAσ ≥ 8BdBσ we can apply Lemma 9 which shows that 1−α = (1−Ad)(1 +
δα) ∈ (0, 1− α̃) and leads to

k−1∑
l=0

(1−Ad)l (1− α̃)
k−l−1

(1 + δα)
l−3 ≤ (1 + δα)

−3
k−1∑
l=0

(1− α)
l
(1− α̃)

k−l−1

≤ (1− α)
k

(α̃− α)(1 + δα)3
. (76)
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Moreover, for l ≥ 2 applying the result given by (74), we have

Sl−2 ≤ (1 + δα)
l−3

(S1 + δαS0) +

l−2∑
j=2

(1 + δα)
l−j−2

Uj . (77)

Using the definition of Ul given by (70), we can write the following equality

k−1∑
l=0

(1−Ad)l (1− α̃)
k−l−1

l−2∑
j=2

(1 + δα)
l−j−2

Uj

=

(
E
[
d2

0

]
+

Bd
Aσ −Ad

E
[
σ2

0

]) k−1∑
l=0

l−2∑
j=2

(1−Ad)l (1− α̃)
k−l−1

(1 + δα)
l−j−2

+

(
Dd

Ad
+
BdDσ

AdAσ

) k−1∑
l=0

l−2∑
j=2

(1−Ad)l−j (1− α̃)
k−l−1

(1 + δα)
l−j−2

+

(
Cd +

BdCσ
Aσ −Ad

) k−1∑
l=0

l−2∑
j=2

(1−Ad)l (1− α̃)
k−l−1

(1 + δα)
l−j−2

j−1∑
i=0

(1−Ad)−i−1 E [Vi] (78)

We now upper bound each quantity separately. Regarding the first double sum, since (1−Ad)(1 + δα) = 1− α we get

k−1∑
l=0

l−2∑
j=2

(1−Ad)l (1− α̃)
k−l−1

(1 + δα)
l−j−2

=

k−3∑
j=2

(1−Ad)j+2
k−1∑
l=j+2

(1− α̃)
k−l−1

(1− α)
l−j−2

≤ 1

α̃− α

k−1∑
j=4

(1−Ad)j (1− α)
k−j ≤ (1−Ad)4

(1− α)
k−3

(Ad − α)(α̃− α)
. (79)

Using (1−Ad)(1 + δα) = 1− α combined with
∑k−1
l=j+2(1− α)l−j−2(1− α̃)k−l−1 ≤ (α̃− α)−1(1− α)k−j−2 give

k−1∑
l=0

l−2∑
j=2

(1−Ad)l−j (1− α̃)
k−l−1

(1 + δα)
l−j−2

= (1−Ad)2
k−1∑
l=0

l−2∑
j=2

(1− α)
l−j−2

(1− α̃)
k−l−1

= (1−Ad)2
k−3∑
j=2

k−1∑
l=j+2

(1− α)
l−j−2

(1− α̃)
k−l−1

≤ (1−Ad)2

α̃− α

k−3∑
j=2

(1− α)
k−j−2 ≤ (1− α) (1−Ad)2

α(α̃− α)
. (80)

The same arguments show that

k−1∑
l=0

l−2∑
j=2

(1−Ad)l (1− α̃)
k−l−1

(1 + δα)
l−j−2

j−1∑
i=0

(1−Ad)−i−1 E [Vi]

≤
k−4∑
i=0

k−3∑
j=i+1

k−1∑
l=j+2

(1−Ad)l (1− α̃)
k−l−1

(1 + δα)
l−j−2

(1−Ad)−i−1 E [Vi]

≤
k−4∑
i=0

E [Vi]

k−3∑
j=i+1

(1−Ad)j−i+1
k−1∑
l=j+2

(1− α̃)
k−l−1

(1− α)
l−j−2
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≤ 1

α̃− α

k−4∑
i=0

E [Vi]

k−3∑
j=i+1

(1−Ad)j−i+1
(1− α)

k−j−2

=
(1− α) (1−Ad)2

α̃− α

k−4∑
i=0

E [Vi]

k−3∑
j=i+1

(1−Ad)j−i−1
(1− α)

k−j−3

≤ (1− α)
−1

(1−Ad)2

(Ad − α)(α̃− α)

k−4∑
i=0

(1− α)
k−i−1 E [Vi] . (81)

Therefore, plugging (79), (80), (81) inside (78) implies

k−1∑
l=0

l−2∑
j=2

(1−Ad)l (1− α̃)
k−l−1

(1 + δα)
l−j−2

Uj ≤
(1− α) (1−Ad)2

α(α̃− α)

(
Dd

Ad
+
BdDσ

AdAσ

)

+
(1−Ad)4

(1− α)
k−3

(Ad − α)(α̃− α)

(
E
[
d2

0

]
+

Bd
Aσ −Ad

E
[
σ2

0

])
+

(1− α)
−1

(1−Ad)2

(Ad − α)(α̃− α)

(
Cd +

BdCσ
Aσ −Ad

) k−4∑
i=0

(1− α)
k−i−1 E [Vi] . (82)

In addition, by definition of Ul provides in (70) we have

k−1∑
l=0

(1−Ad)l (1− α̃)
k−l−1

Ul =

(
Dd

Ad
+
BdDσ

AdAσ

) k−1∑
l=0

(1− α̃)
k−l−1

+

(
E
[
d2

0

]
+

Bd
Aσ −Ad

E
[
σ2

0

]) k−1∑
l=0

(1−Ad)l (1− α̃)
k−l−1

+

(
Cd +

BdCσ
Aσ −Ad

) k−1∑
l=0

(1−Ad)l (1− α̃)
k−l−1

l−1∑
i=0

(1−Ad)−i−1 E [Vi] .

Thus, a calculation yields that

k−1∑
l=0

(1−Ad)l (1− α̃)
k−l−1

Ul ≤
(1−Ad)k

α̃−Ad

(
E
[
d2

0

]
+

Bd
Aσ −Ad

E
[
σ2

0

])

+
1

α̃

(
Dd

Ad
+
BdDσ

AdAσ

)
+

1

α̃−Ad

(
Cd +

BdCσ
Aσ −Ad

) k−2∑
i=0

(1−Ad)k−i−1 E [Vi] . (83)

Plugging (77) in (75) shows

k−1∑
l=0

(1− α̃)
k−l−1 E

[
d2
l

]
≤ BdBσ (S1 + δαS0)

(1−Ad)(Aσ −Ad)

k−1∑
l=0

(1−Ad)l (1− α̃)
k−l−1

(1 + δα)
l−3

+
BdBσ

(1−Ad)(Aσ −Ad)

k−1∑
l=0

l−2∑
j=2

(1−Ad)l (1− α̃)
k−l−1

(1 + δα)
l−j−2

Uj

+

k−1∑
l=0

(1−Ad)l (1− α̃)
k−l−1

Ul . (84)

Hence, by combining (76), (82), (83) and (84) we obtain for Ad > α, that

k−1∑
l=0

(1− α̃)
k−l−1 E

[
d2
l

]
≤ BdBσ (S1 + δαS0) (1− α)

k

(1−Ad)(Aσ −Ad)(α̃− α)(1 + δα)3
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+

(
(1−Ad)k

α̃−Ad
+

BdBσ (1− α)
k

(Aσ −Ad)(Ad − α)(α̃− α)

)(
E
[
d2

0

]
+

Bd
Aσ −Ad

E
[
σ2

0

])
+

(
1

α̃
+

BdBσ
α(α̃− α)(Aσ −Ad)

)(
Dd

Ad
+
BdDσ

AdAσ

)
+

(
Cd +

BdCσ
Aσ −Ad

) k−2∑
i=0

(
(1−Ad)k−i−1

α̃−Ad
+

BdBσ (1− α)
k−i−1

(Aσ −Ad)(Ad − α)(α̃− α)

)
E [Vi] . (85)

In addition, the above bound holds even if Ad = α by considering that (Ad − α)−1BdBσ = 0.

Upper bound on
∑k−1
l=0 (1− pc/4)k−l−1E

[
d2
l

]
. Applying (85) with α̃ = pc/4 gives

k−1∑
l=0

(
1− pc

4

)k−l−1

E
[
d2
l

]
≤ 4BdBσ (S1 + δαS0) (1− α)

k

(1−Ad)(Aσ −Ad)(pc − 4α)(1 + δα)3

+

(
4 (1−Ad)k

pc − 4Ad
+

4BdBσ (1− α)
k

(Aσ −Ad)(Ad − α)(pc − 4α)

)(
E
[
d2

0

]
+

Bd
Aσ −Ad

E
[
σ2

0

])
+

(
4

pc
+

4BdBσ
α(pc − 4α)(Aσ −Ad)

)(
Dd

Ad
+
BdDσ

AdAσ

)
+ 4

(
Cd +

BdCσ
Aσ −Ad

) k−2∑
i=0

(
(1−Ad)k−i−1

pc − 4Ad
+

BdBσ (1− α)
k−i−1

(Aσ −Ad)(Ad − α)(pc − 4α)

)
E [Vi] . (86)

Upper bound on
∑k−1
l=0 (1− pc/4)k−l−1

∑l−1
j=0 (1−Aσ)

l−j−1 E[d2
j ]. Recall that we consider that (Ad−α)−1BdBσ = 0

in the specific case where Ad = α. This time, setting α̃ = Aσ in (85) shows that

l−1∑
j=0

(1−Aσ)
l−j−1 E

[
d2
l

]
≤ BdBσ (S1 + δαS0) (1− α)

l

(1−Ad)(Aσ −Ad)(Aσ − α)(1 + δα)3

+

(
(1−Ad)l

Aσ −Ad
+

BdBσ (1− α)
l

(Aσ −Ad) (Ad − α) (Aσ − α)

)(
E
[
d2

0

]
+

Bd
Aσ −Ad

E
[
σ2

0

])
+

(
1

Aσ
+

BdBσ
α(Aσ − α)(Aσ −Ad)

)(
Dd

Ad
+
BdDσ

AdAσ

)
+

(
Cd +

BdCσ
Aσ −Ad

) l−2∑
i=0

(
(1−Ad)l−i−1

Aσ −Ad
+

BdBσ (1− α)
l−i−1

(Aσ −Ad)(Ad − α)(Aσ − α)

)
E [Vi] . (87)

Moreover, we have the two following bounds

k−1∑
l=0

(
1− pc

4

)k−l−1

(1−Ad)l ≤
4 (1−Ad)k

pc − 4Ad
,

k−1∑
l=0

(
1− pc

4

)k−l−1

(1− α)
l ≤ 4 (1− α)

k

pc − 4α
.

(88)

Therefore, permuting the summations implies

k−1∑
l=0

(
1− pc

4

)k−l−1 l−2∑
i=0

(1−Ad)l−i−1 E [Vi] ≤
k−3∑
i=0

E [Vi]

k−1∑
l=i+2

(
1− pc

4

)k−l−1

(1−Ad)l−i−1

≤ 4

pc − 4Ad

k−3∑
i=0

(1−Ad)k−i−1 E [Vi] . (89)
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In a similar way, we obtain

k−1∑
l=0

(
1− pc

4

)k−l−1 l−2∑
i=0

(1− α)
l−i−1 E [Vi] ≤

4

pc − 4α

k−3∑
i=0

(1− α)
k−i−1 E [Vi] . (90)

Hence, the combination of (87) with (88), (89), (90) yields

k−1∑
l=0

(
1− pc

4

)k−l−1 l−1∑
j=0

(1−Aσ)
l−j−1 E

[
d2
l

]
≤ 4BdBσ (S1 + δαS0) (1− α)

k

(pc − 4α)(1−Ad)(Aσ −Ad)(Aσ − α)(1 + δα)3

+
4

Aσ −Ad

(
(1−Ad)k

pc − 4Ad
+

BdBσ (1− α)
k

(pc − 4α)(Ad − α)(Aσ − α)

)(
E
[
d2

0

]
+

Bd
Aσ −Ad

E
[
σ2

0

])
+

4

pc

(
1

Aσ
+

BdBσ
α(Aσ − α)(Aσ −Ad)

)(
Dd

Ad
+
BdDσ

AdAσ

)
+

4

Aσ −Ad

(
Cd +

BdCσ
Aσ −Ad

) k−3∑
i=0

(
(1−Ad)k−i−1

pc − 4Ad
+

BdBσ (1− α)
k−i−1

(pc − 4α)(Ad − α)(Aσ − α)

)
E [Vi] . (91)

Upper bound on E [Vk]. Plugging (86) and (91) in (65), we obtain

E [Vk] ≤
(

1− pc

4

)k
E [V0] +

4(1− pc)γ2 (1−Ad)k

pc − 4Ad

(
C +

2 + pc

pc
C̄

)
E
[
σ2

0

]
+

4(1− pc)γ2Dσ

Aσ(pc − 4Ad)

(
C +

2 + pc

pc
C̄

)
+

4(1− pc)γ2

pc

(
D +

2 + pc

pc
D̄

)
+

8 (1− τ) (b− 1) γd

bpc

+ (1− pc)γ2

(
B +

2 + pc

pc
B̄

)[
4BdBσ (S1 + δαS0) (1− α)

k

(1−Ad)(Aσ −Ad)(pc − 4α)(1 + δα)3

+

(
4 (1−Ad)k

pc − 4Ad
+

4BdBσ (1− α)
k

(Aσ −Ad)(Ad − α)(pc − 4α)

)(
E
[
d2

0

]
+

Bd
Aσ −Ad

E
[
σ2

0

])
+

(
4

pc
+

4BdBσ
α(pc − 4α)(Aσ −Ad)

)(
Dd

Ad
+
BdDσ

AdAσ

)
+ 4

(
Cd +

BdCσ
Aσ −Ad

) k−2∑
i=0

(
(1−Ad)k−i−1

pc − 4Ad
+

BdBσ (1− α)
k−i−1

(Aσ −Ad)(Ad − α)(pc − 4α)

)
E [Vi]

]

+ 4(1− pc)γ2Bσ

(
C +

2 + pc

pc
C̄

)[
BdBσ (S1 + δαS0) (1− α)

k

(pc − 4α)(1−Ad)(Aσ −Ad)(Aσ − α)(1 + δα)3

+
1

Aσ −Ad

(
(1−Ad)k

pc − 4Ad
+

BdBσ (1− α)
k

(pc − 4α)(Ad − α)(Aσ − α)

)(
E
[
d2

0

]
+

Bd
Aσ −Ad

E
[
σ2

0

])
+

1

pc

(
1

Aσ
+

BdBσ
α(Aσ − α)(Aσ −Ad)

)(
Dd

Ad
+
BdDσ

AdAσ

)
+

1

Aσ −Ad

(
Cd +

BdCσ
Aσ −Ad

) k−3∑
i=0

(
(1−Ad)k−i−1

pc − 4Ad
+

BdBσ (1− α)
k−i−1

(pc − 4α)(Ad − α)(Aσ − α)

)
E [Vi]

]

+
4(1− pc)γ2Cσ
pc − 4Ad

(
C +

2 + pc

pc
C̄

) k−2∑
l=0

(1−Ad)k−l−1 E [Vl] . (92)

For any negative number j < 0, using the convention that
∑j
l=0 = 0 and simplifying the calculations provided by (92), we

find that

E [Vk] ≤
(

1− pc

4

)k
E [V0] +

4(1− pc)γ2 (1−Ad)k

pc − 4Ad

(
C +

2 + pc

pc
C̄

)
E
[
σ2

0

]
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+
4(1− pc)γ2BdBσ (S1 + δαS0) (1− α)

k

(pc − 4α)(1−Ad)(Aσ −Ad)(1 + δα)3

[
B +

2 + pc

pc
B̄ +

Bσ
Aσ − α

(
C +

2 + pc

pc
C̄

)]
+

4(1− pc)γ2Dσ

Aσ(pc − 4Ad)

(
C +

2 + pc

pc
C̄

)
+

4(1− pc)γ2

pc

(
D +

2 + pc

pc
D̄

)
+

8 (1− τ) (b− 1) γd

bpc

+ 4(1− pc)γ2

[(
1

pc
+

BdBσ
α(pc − 4α)(Aσ −Ad)

)(
B +

2 + pc

pc
B̄

)

+
Bσ
pc

(
1

Aσ
+

BdBσ
α(Aσ − α)(Aσ −Ad)

)(
C +

2 + pc

pc
C̄

)](
Dd

Ad
+
BdDσ

AdAσ

)

+
4γ2 (1− pc) (1−Ad)k

pc − 4Ad

[
B +

2 + pc

pc
B̄ +

Bσ
Aσ −Ad

(
C +

2 + pc

pc
C̄

)](
E
[
d2

0

]
+

Bd
Aσ −Ad

E
[
σ2

0

])
+

4γ2 (1− pc)BdBσ (1− α)
k

(pc − 4α) (Ad − α) (Aσ −Ad)

[
B +

2 + pc

pc
B̄ +

Bσ
Aσ − α

(
C +

2 + pc

pc
C̄

)](
E
[
d2

0

]
+

Bd
Aσ −Ad

E
[
σ2

0

])
+

4γ2 (1− pc)

pc − 4Ad

[
Cσ

(
C +

2 + pc

pc
C̄

)
+

(
Cd +

BdCσ
Aσ −Ad

)(
B +

2 + pc

pc
B̄ +

Bσ
Aσ −Ad

(
C +

2 + pc

pc
C̄

))]

×
k−2∑
i=0

(1−Ad)k−i−1 E [Vi]

+
4γ2 (1− pc)BdBσ

(pc − 4α) (Ad − α) (Aσ −Ad)

(
Cd +

BdCσ
Aσ −Ad

)[
B +

2 + pc

pc
B̄ +

Bσ
Aσ − α

(
C +

2 + pc

pc
C̄

)]
×
k−3∑
i=0

(1− α)
k−i−1 E [Vi] . (93)

As explained in (73), recall that

δ2
α + δα =

BdBσ
(1−Ad) (Aσ −Ad)

, α = Ad − δα(1−Ad) .

Thus, when BdBσ 6= 0 then δα 6= 0, which implies that Ad 6= α and gives

BdBσ
(Ad − α) (Aσ −Ad)

= 1 + δα .

In addition, in the proof of Lemma 9 we saw that 2δα ≤ Ad ≤ 1/2 and also that Ad/2 ≤ α ≤ Ad. Therefore, we can
regroup several terms in (93) and write

E [Vk] ≤
(

1− pc

4

)k
E [V0] +

4(1− pc)γ2 (1−Ad)k

pc − 4Ad

(
C +

2 + pc

pc
C̄

)
E
[
σ2

0

]
+

4(1− pc)γ2δα (S1 + δαS0) (1− α)
k

(pc − 4Ad)(1 + δα)2

[
B +

2 + pc

pc
B̄ +

Bσ
Aσ −Ad

(
C +

2 + pc

pc
C̄

)]
+

9γ2 (1− pc) (1− α)
k

pc − 4Ad

[
B +

2 + pc

pc
B̄ +

Bσ
Aσ −Ad

(
C +

2 + pc

pc
C̄

)](
E
[
d2

0

]
+

Bd
Aσ −Ad

E
[
σ2

0

])
+

4(1− pc)γ2Dσ

Aσ(pc − 4Ad)

(
C +

2 + pc

pc
C̄

)
+

4(1− pc)γ2

pc

(
D +

2 + pc

pc
D̄

)
+

8 (1− τ) (b− 1) γd

bpc

+ 4(1− pc)γ2

[(
1

pc
+

2BdBσ
Ad(pc − 4Ad)(Aσ −Ad)

)(
B +

2 + pc

pc
B̄

)

+
Bσ
pc

(
1

Aσ
+

2BdBσ
Ad(Aσ −Ad)2

)(
C +

2 + pc

pc
C̄

)](
Dd

Ad
+
BdDσ

AdAσ

)

+
9γ2 (1− pc)

pc − 4Ad

[
Cσ

(
C +

2 + pc

pc
C̄

)
+

(
Cd +

BdCσ
Aσ −Ad

)(
B +

2 + pc

pc
B̄ +

Bσ
Aσ −Ad

(
C +

2 + pc

pc
C̄

))]
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×
k−2∑
i=0

(1− α)
k−i−1 E [Vi] . (94)

Recall that we defined Cγ in (59) by

Cγ =
4(1− pc)γ2

pc − 4Ad

[
B +

2 + pc

pc
B̄ +

Bσ
Aσ −Ad

(
C +

2 + pc

pc
C̄

)]
.

Hence, using (94) we get that

E [Vk] ≤
(

1− pc

4

)k
E [V0] +

4(1− pc)γ2Dσ

Aσ(pc − 4Ad)

(
C +

2 + pc

pc
C̄

)
+

4(1− pc)γ2

pc

(
D +

2 + pc

pc
D̄

)
+

Cγ

Ad

(
1 +

2BdBσ
Ad(Aσ −Ad)

)(
Dd +

BdDσ

Aσ

)
+

8 (1− τ) (b− 1) γd

bpc

+

(
4(1− pc)γ2 (1−Ad)k

pc − 4Ad

(
C +

2 + pc

pc
C̄

)
+

9CγBd (1− α)
k

4 (Aσ −Ad)

)
E
[
σ2

0

]
+

9

4
Cγ (1− α)

k E
[
d2

0

]
+ Cγ (1− α)

k−2
(Ad − α) (1−Ad)

(
S1 +

Ad − α
1−Ad

S0

)
+

[
9γ2 (1− pc)Cσ

pc − 4Ad

(
C +

2 + pc

pc
C̄

)
+ 3Cγ

(
Cd +

BdCσ
Aσ −Ad

)] k−2∑
i=0

(1− α)
k−i−1 E [Vi] .

Finally, we conclude the proof remarking that

Cγ (1− α)
k−2

(Ad − α) [(1−Ad)S1 + (Ad − α)S0]

≤ Cγ (1− α)
k−2

(Ad − α)
[
(2−Ad − α)E

[
d2

0

]
+BdE

[
σ2

0

]
+ CdE [V0] +Dd

]
≤ Cγ (1− α)

k (
4E
[
d2

0

]
+ 2BdE

[
σ2

0

]
+ 2CdE [V0] + 2Dd

)
.

In order to ease notation, with the definitions used in HX4 and (59), consider for any γ ∈ R+ the variable Cγε ∈ R+ defined
by

Cγε = CγV E [V0] + CγdE
[
d2

0

]
+ CγσE

[
σ2

0

]
+ 2Dd (95)

In addition, with the previous notations consider

δ =
2 (1−Ad/2)

−1
Cγr

1 +

√
1 + 4 (1−Ad/2)

−1
Cγr

and define

γV =
p

1/2
c

(2− 2pc)1/2
[
A+ (1 + 2/pc)Ā

]1/2 .
Lemma 11. Assume HX3, HX4 hold with 4Cγr ≤ Ad < min(Aσ/2, pc/4), AdAσ ≥ 8BdBσ and let γ ∈ (0, γV ]. Then,
for any k ≥ 1, we have

E [Vk] ≤
(

1− Ad
4

)k (
2Cγε +

4CγrCγδ
Ad

)
+ Cγδ ,

where Vk is defined in (24), Cγε ,C
γ
r ,C

γ
δ in (59) and (95).

Proof. Let k in N be fixed. Since the assumptions of Lemma 10 are satisfied, we know that

E [Vk] ≤ (1− α)
k

Cγε + Cγr

k−2∑
l=0

(1− α)
k−l−1 E [Vl] + Cγδ ,



Vincent Plassier, Alain Durmus, Éric Moulines

where α is defined in (60). In addition, Lemma 9 shows that Ad/2 ≤ α. Hence, multiplying the last inequality by the weight
ωk defined for any l ∈ N, by

ωl = (1−Ad/2)
−l
,

we obtain the following inequality

ωkE [Vk] ≤ Cγε +
Cγr

1−Ad/2

k−2∑
l=0

ωlE [Vl] + Cγδωk .

Applying the sharp Grönwall inequality (Holte, 2009), we get

ωkE [Vk] ≤ Cγε + ωkCγδ +
Cγr

1−Ad/2

k−1∑
l=0

(Cγε + ωlC
γ
δ )

(
1 +

Cγr
1−Ad/2

)k−l−1

.

Therefore, a calculation shows that

ωkE [Vk] ≤ Cγε + ωkCγδ + Cγε

(
1 +

Cγr
1−Ad/2

)k
+

CγrCγδ
1−Ad/2

k−1∑
l=0

ωl

(
1 +

Cγr
1−Ad/2

)k−l−1

,

and simplifying the previous inequality gives the following upper bound:

E [Vk] ≤ Cγδ + ω−1
k Cγε + Cγε

(
1− Ad

2
+ Cγr

)k
+ CγrCγδ

k−1∑
l=0

(
1− Ad

2
+ Cγr

)k−l−1

. (96)

In addition, using 4Cγr < Ad < pc/4 implies 0 < 1−Ad/2 + Cγr < 1 which combined with (96) gives

E [Vk] ≤ Cγδ + ω−1
k Cγε + Cγε

(
1− Ad

2
+ Cγr

)k
+

CγrCγδ
Ad/2− Cγr

(
1− Ad

2
+ Cγr

)k
.

Eventually, combining the last inequality with the assumption 4Cγr < Ad completes the proof.

With the notation of the assumptions HX3 and HX4, we define

αd =
4γ2

pcAd
max

{
pcB + 3B̄,

4Bσ
Aσ

(
pcC + 3C̄

)}
, ασ =

4γ2
(
pcC + 3C̄

)
pcAσ

. (97)

The following lemma is used in the convergence proof of VR-FALD? (see Lemma 26).

Lemma 12. Assume HX3, HX4 hold with

Ad ≤ min
(
Aσ,

pc

4

)
, αdCd + ασCσ ≤

pc

8
, αdBd + γ2

(
C +

3

pc
C̄

)
≤ ασAσ

2
,

and consider γ ≤ p1/2
c (2− 2pc)−1/2[A+ (1 + 2/pc)Ā]−1/2. Then, for any k ∈ N, we have

E [Vk] + αdE
[
d2
k

]
+ ασE

[
σ2
k

]
≤
(

1− Ad
2

)k (
E [V0] + αdE

[
d2

0

]
+ ασE

[
σ2

0

])
+

2(1− pc)γ2

Ad

(
D +

2 + pc

pc
D̄

)
+

2αdDd + 2ασDσ

Ad
+

4 (1− τ) (b− 1) γd

bAd
,

where Vk is defined in (24).

Proof. Let k ∈ N?, using for i ∈ [b] the definitions (20), (23) of Xi
k and Xk

Xi
k+1 = Xi

k − γGik +
√

2γ
(√

τ/b Z̃k+1 +
√

1− τ Z̃ik+1

)
,
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Xk+1 = Xk −
γ

b

b∑
j=1

Gik +

√
2γτ

b
Z̃k+1 +

√
2(1− τ)γ

b

b∑
i=1

Zik+1 .

Substracting the two above equations combined with the Jensen inequality give

E [Vk+1] =
1

b

b∑
i=1

E
[∥∥Xi

k+1 −Xk+1

∥∥2
]

=
1− pc

b

b∑
i=1

E


∥∥∥∥∥∥(Xi

k −Xk)− γ(Gik −Gk) +
√

2(1− τ)γZik+1 −
√

2(1− τ)γ

b

b∑
j=1

Zjk+1

∥∥∥∥∥∥
2


=
1− pc

b

b∑
i=1

E
[∥∥(Xi

k −Xk)− γ(Ḡik − Ḡk)
∥∥2
]

+
(1− pc)γ2

b

b∑
i=1

E
[∥∥(Gik − Ḡik)− (Gk − Ḡk)

∥∥2
]

+ 2(1− τ)γE


∥∥∥∥∥∥Zik+1 −

1

b

b∑
j=1

Zjk+1

∥∥∥∥∥∥
2


Hence, we get

E [Vk+1] ≤ 1− pc

b

b∑
i=1

E
[∥∥(Xi

k −Xk)− γ(Ḡik − Ḡk)
∥∥2
]

+
(1− pc)γ2

b

b∑
i=1

E
[∥∥Gik − Ḡik∥∥2

]
+ 2 (1− τ) (1− 1/b) γd

≤ (1− pc)(1 + pc/2)

b

b∑
i=1

E
[∥∥Xi

k −Xk

∥∥2
]

+
(1− pc)γ2

b

b∑
i=1

E
[∥∥Gik − Ḡik∥∥2

]
+

(1− pc)(1 + 2/pc)γ2

b

b∑
i=1

E
[∥∥Ḡik − Ḡk∥∥2

]
+ 2 (1− τ) (1− 1/b) γd .

We finally obtain

E [Vk+1] ≤ (1− pc/2)E [Vk] +
(1− pc)(2 + pc)γ2

pcb

b∑
i=1

E
[∥∥Ḡik∥∥2

]
+

(1− pc)γ2

b

b∑
i=1

E
[∥∥Gik − Ḡik∥∥2

]
+ 2 (1− τ)

(
1− 1

b

)
γd .

Combining the last inequality with HX4 shows

E [Vk+1] ≤
(

1− pc

2
+ (1− pc)γ2

[
A+

2 + pc

pc
Ā

])
E [Vk] + (1− pc)γ2

(
D +

2 + pc

pc
D̄

)
+ (1− pc)γ2

(
B +

2 + pc

pc
B̄

)
E
[
d2
k

]
+ (1− pc)γ2

(
C +

2 + pc

pc
C̄

)
E
[
σ2
k

]
+ 2 (1− τ)

(
1− 1

b

)
γd .

Since γ ≤ p1/2c

2(1−pc)1/2[A+(1+2/pc)Ā]
1/2 , the above inequality implies that

E [Vk+1] ≤
(

1− pc

4

)
E [Vk] + (1− pc)γ2

(
D +

2 + pc

pc
D̄

)
+ 2 (1− τ) (1− 1/b) γd

+ (1− pc)γ2

(
B +

2 + pc

pc
B̄

)
E
[
d2
k

]
+ (1− pc)γ2

(
C +

2 + pc

pc
C̄

)
E
[
σ2
k

]
.

The previous bound combined with HX3 gives that
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E [Vk+1] + αdE
[
d2
k+1

]
+ ασE

[
σ2
k+1

]
≤
[(

1− pc

4

)
+ αdCd + ασCσ

]
E [Vk]

+

[
αd(1−Ad) + ασBσ + (1− pc)γ2

(
B +

2 + pc

pc
B̄

)]
E
[
d2
k

]
+

[
ασ(1−Aσ) + αdBd + (1− pc)γ2

(
C +

2 + pc

pc
C̄

)]
E
[
σ2
k

]
+ (1− pc)γ2

(
D +

2 + pc

pc
D̄

)
+ 2 (1− τ)

(b− 1)

b
γd+ αdDd + ασDσ . (98)

By assumption, we have
αdCd + ασCσ ≤

pc

8
,

αdBd + γ2

(
C +

3

pc
C̄

)
≤ ασAσ

2
,

(99)

and by definition of αd, ασ given in (97), we know that ασBσ + γ2(B + 3B̄/pc) ≤ αdAd/2. In addition, since we suppose
that Ad ≤ min(pc/4, Aσ), the last inequalities combined with (99) imply

1− pc

4
+ αdCd + ασCσ ≤ 1− Ad

2

1−Ad +
ασ
αd
Bσ +

(1− pc)γ2

αd

(
B +

2 + pc

pc
B̄

)
≤ 1− Ad

2

1−Aσ +
αd
ασ
Bd +

(1− pc)γ2

ασ

(
C +

2 + pc

pc
C̄

)
≤ 1− Ad

2
.

(100)

Thus, by taking up (98) and using (100), we get

E [Vk+1] + αdE
[
d2
k+1

]
+ ασE

[
σ2
k+1

]
≤
(

1− Ad
2

)(
E [Vk] + αdE

[
d2
k

]
+ ασE

[
σ2
k

])
+ (1− pc)γ2

(
D +

2 + pc

pc
D̄

)
+ 2 (1− τ)

(
1− 1

b

)
γd+ αdDd + ασDσ .

Finally, the stated result follows by induction.

7 Main results

Section 7 is divided into four subsections in which we prove theoretical results for the FALD and VR-FALD? algorithms.
These analyses are presented in Theorem 20 and Theorem 28. The proofs are based on Lemma 11 proved in Section 6.3
to ensure that the local parameters {Xi

k}i∈[b] do not deviate too much from Xk, then we apply the general result given in
Section 6 to obtain explicit upper bounds for W2(π, µ

(γ)
k ).

Until the end of the paper, we consider a family of independent random variables (ξi)bi=1 distributed according to ν⊗bξ ,
and we denote (Hi)bi=1 a family of functions defined on Rd × E→ Rd such that for each i ∈ [b], x ∈ Rd, Hi(x, ξi(·)) is
measurable on (E, E) and satisfies the following condition:

A4. Assume there exists L̂ ≥ 0, such that for any i ∈ [b], x, y ∈ Rd, we have

E
[
Hi(x, ξi)

]
= ∇U i(x) ,

E
[∥∥Hi(y, ξi)−Hi(x, ξi)

∥∥2
]
≤ L̂2 ‖y − x‖2 .

The assumption A4 is equivalent to A2 written in the main paper, though for clarity we prefer to replace the stochastic
gradient ∇̂U ik by Hi(·, ξi). To simplify the notation, in what follows we consider the random variable ξ = (ξ1, . . . , ξb), and
we denote

H :

{
Rd × Eb → Rd

(x, z) 7→
∑b
i=1H

i(x, zi)
.
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Thus, for each x ∈ Rd, with this notation we have H(x, ξ) =
∑b
i=1H

i(x, ξi). We also introduce the averaged versions
Ū , H̄ of the local potentials {U i}i∈[b] and the stochastic gradients {Hi}i∈[b] defined by

Ū(x) =
1

b

b∑
i=1

U i(x) , H̄(x, z) =
1

b

b∑
i=1

Hi(x, zi) .

Remark 13. In the mini-batch scenario without replacement, the ith client draws a mini-batch Ji subset[Ni] of size ni =
|Ji| ∈ [Ni] amongNi data and computes its stochastic gradient, which for x ∈ Rd is given byHi(x, ξi) =

∑
j∈Ji ∇U

i,j(x).
Using the result provided in Vono et al. (2022b, Lemma S4), we know that

E
[∥∥Hi(y, ξi)−Hi(x, ξi)

∥∥2
]

=
∥∥∇U i(y)−∇U i(x)

∥∥2
+ Var

(
Hi(y, ξi)−Hi(x, ξi)

)
≤

(
1 +

ni(Ni − ni) maxNij=1 L
i
j

Ni(Ni − 1)L

)
L2 ‖y − x‖2 .

Therefore, A4 is satisfied for a choice of L̂ > 0 such that

L̂ ≤ L
√

1 +
b

max
i=1

{
ni(Ni − ni)[Ni(Ni − 1)]−1(maxNij=1 L

i
j)L
−1
}
.

A5. For i ∈ [b], j ∈ [Ni], assume that U i,j is continuously differentiable, convex and there exists Lij > 0 such that for any
x, y ∈ Rd,

U i,j(y) ≤ U i,j(x) +
〈
∇U i,j(x), y − x

〉
+
Lij
2
‖y − x‖2 .

A6. Assume there exists ω̃ > 0 such that for any x ∈ Rd,

E
[
‖H(x, ξ)−H(x?, ξ)−∇U(x)‖2

]
≤ ω̃b2 ‖x− x?‖2 .

A1 combined with A4 implies A6 with ω̃ = 2L2 + 2L̂2. However, this new assumption A6 is interesting because without
stochastic gradient we obtain ω̃ = 0, which allows us to recover the classical Langevin bounds.

Remark 14. Consider the same scenario as detailed in Remark 13 and define

ω̃ =

(
b∑
i=1

ni(Ni − ni) maxNij=1 L
i
j

b2Ni(Ni − 1)

)
L .

Applying Vono et al. (2022b, Lemma S4) we have the following lines

E
[∥∥H̄(x, ξ)− H̄(x?, ξ)−∇Ū(x)

∥∥2
]

= Var
(
H̄(x, ξ)− H̄(x?, ξ)

)
=

1

b2

b∑
i=1

Var
(
Hi(x, ξi)−Hi(x?, ξ

i)
)
≤ ω̃ ‖x− x?‖2 .

Therefore, A6 is satisfied and in the deterministic case where all data are used to calculate the gradient, we have ω̃ = 0.

To deal with variance reduction based algorithms, we consider the following assumption A7, which is also implied by
A1-A4, however the constant ω vanishes with exact gradient computation.

A7. Assume there exists ω ≥ 0 such that for any i ∈ [b] and x, y ∈ Rd,

E
[∥∥Hi(x, ξi)−Hi(y, ξi)−∇U i(x) +∇U i(y)

∥∥2
]
≤ ω ‖x− y‖2 .

Remark 15. In the mini-batch scenario without replacement detailed in Remark 13, the use of Vono et al. (2022b, Lemma
S4) implies that

E
[∥∥Hi(x, ξi)−Hi(y, ξi)−∇U i(x) +∇U i(y)

∥∥2
]

= Var
(
Hi(x, ξi)−Hi(y, ξi)

)



Vincent Plassier, Alain Durmus, Éric Moulines

≤ ni(Ni − ni)
Ni(Ni − 1)

L
Ni

max
j=1

Lij ‖x− y‖
2
.

Thus, A7 is satisfied by setting

ω =
b

max
i=1

{
ni(Ni − ni)
Ni(Ni − 1)

Ni
max
j=1

Lij

}
L .

In the deterministic case, we obtain ω = 0. Similarly, in the mini-batch scenario with replacement it is sufficient to set

ω =
Ni − ni
ni

Ni∑
j=1

(
Lij
)2

to ensure that A7 holds.

7.1 Study of FALD

7.1.1 Remark on the theoretical analysis of Deng et al. (2021)

FALD has been proposed in Deng et al. (2021), the authors develop an MCMC algorithm targeting the distribution
proportional to exp(−b−1

∑b
i=1 U

i) and also establish non-asymptotic bounds. They introduce (Deng et al., 2021, Lemma
B.2) the stochastic processes {(θ̄it)t≥0}i∈[b] satisfying the Langevin stochastic differential equations for t ≥ 0, dθ̄it =

−∇U i(θ̄it) +
√

2bdWi
t where {(Wi

t)t≥0}i∈[b] are independent d-dimensional standard Brownian motion and define θ̄t =

b−1
∑b
i=1 θ̄

i
t. Then, it is asserted (Deng et al., 2021, Lemma B.5) that (θ̄t) is solution of the Langevin stochastic differential

equation dθ̄t = −b−1
∑b
i=1∇U i(θ̄t) +

√
2 dWt, where Wt = b−1/2

∑b
i=1 W

i
t. However, this statement cannot hold in all

generalities, and we give a counter-example. For instance, consider the Gaussian potentials {U i : x ∈ Rd 7→ Σ−1
i (x −

mi)}i∈[b] where {(mi,Σi)}i∈[b] are the mean and the covariance parameters; if for i ∈ [b], θ̄i0 is distributed according
to exp(−U i), then b−1

∑b
i=1 θ̄

i
t follows N(b−1

∑b
i=1 mi, b−2

∑b
i=1 Σi) whereas exp(−b−1

∑b
i=1 U

i) corresponds to the
density of the Gaussian N(

∑b
i=1(Σ̄Σ−1

i )mi, bΣ̄) where Σ̄ = (
∑b
i=1 Σ−1

i )−1. Therefore, for any t ≥ 0, in this case θ̄t is
distributed according to N(b−1

∑b
i=1 mi, b−2

∑b
i=1 Σi) and thus cannot be distributed according to exp(−b−1

∑b
i=1 U

i)
as crucially used in the proof of Deng et al. (2021, Lemma B.5).

7.1.2 Theoretical analysis

In this section, we prove the first theoretical guarantee on FALD stated in Theorem 1. Similar to McMahan et al. (2017),
the clients update their local parameters {Xi

k}i∈[b] several times before transmitting them to the server with probability
pc ∈ (0, 1]. Then, the server aggregates the local parameters to update its own parameterXk as in (23). For all i ∈ [b], k ∈ N,
consider the stochastic gradients defined by

Gik = Hi(Xi
k, ξ

i
k+1) , (101)

Ḡik = ∇U i(Xi
k) . (102)

Lemma 16. Assume A1, A4 and A6 hold. Then for any k ∈ N, we have

1

b

b∑
i=1

E
[
‖Ḡik‖

2
]
≤ 3L2E [Vk] + 3L2E

[
d2
k

]
+

3

b

b∑
i=1

‖∇U i(x?)‖2 ,

1

b

b∑
i=1

E
[
‖Gik − Ḡik‖

2
]
≤ 3L̂2E [Vk] + 3ω̃E

[
d2
k

]
+ 3E

[∥∥H̄(x?, ξ)
∥∥2
]
.

For any i ∈ [b], k ∈ N, recall the stochastic gradients Gik, Ḡ
i
k are defined in (101) and (102), respectively
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Algorithm 2 Stochastic Averaging Langevin Dynamics - FALD

Input: initial vectors (Xi
0)i∈[b], noise parameter τ ∈ [0, 1], number of communication rounds K, probability pc of

communication, step-size γ.
for k = 0 to K − 1 do

// On each client
Draw Bk+1 ∼ B(pc), Z̃k+1 ∼ N(0d, Id)
// In parallel on the b clients
for i = 1 to b do

Draw ξik+1 ∼ νξ and Z̃ik+1 ∼ N(0d, Id)
Compute Gik = Hi(Xi

k, ξ
i
k+1)

Set X̃i
k+1 = Xi

k − γGik +
√

2γ (
√
τ/b Z̃k+1 +

√
1− τ Z̃ik+1)

if Bk+1 = 1 then
Broadcast X̃i

k+1 to the server
else

Update Xi
k+1 ← X̃i

k+1

if Bk+1 = 1 then
// On the central server
Update then broadcast the global parameter Xk+1 = 1

b

∑b
i=1 X̃

i
k+1

// On each client
Update the local parameter Xi

k+1 ← Xk+1

Output: samples {X`}{`∈[K] :B`=1}.

Proof. Using the Young inequality combined with the Lipschitz property A1 of the gradients (U i)bi , for k ≥ 0 we get

1

b

b∑
i=1

E
[
‖Ḡik‖

2
]

=
1

b

b∑
i=1

E
[
‖∇U i(Xi

k)−∇U i(Xk) +∇U i(Xk)−∇U i(x?) +∇U i(x?)‖2
]

≤ 3L2E [Vk] + 3L2E
[
d2
k

]
+

3

b

b∑
i=1

‖∇U i(x?)‖2 .

In addition, since the random variables (Gik − Ḡik)bi=1 are centered and independent, the Young and the Jensen inequality
imply that

1

b

b∑
i=1

E
[∥∥∥Gik − Ḡik∥∥∥2

]
= E

∥∥∥∥∥1

b

b∑
i=1

(
Gik − Ḡik

)∥∥∥∥∥
2


= E

[∥∥∥∥1

b

b∑
i=1

Hi(Xi
k, ξ

i
k+1)− H̄(Xk, ξk+1) + H̄(Xk, ξk+1)− H̄(x?, ξk+1)

+ H̄(x?, ξk+1)−∇Ū(Xk) +∇Ū(Xk)− 1

b

b∑
i=1

∇U i(Xi
k)

∥∥∥∥2
]

≤ 3E

∥∥∥∥∥1

b

b∑
i=1

Hi(Xi
k, ξ

i
k+1)− H̄(Xk, ξk+1)

∥∥∥∥∥
2


+ 3E
[∥∥H̄(Xk, ξk+1)−∇Ū(Xk)− H̄(x?, ξk+1)

∥∥2
]

+ 3E
[∥∥H̄(x?, ξ)

∥∥2
]

≤ 3L̂2E [Vk] + 3ω̃E
[
d2
k

]
+ 3E

[∥∥H̄(x?, ξ)
∥∥2
]
.

Lemma 17. Assume A1 and A4 hold. Then, for any γ ∈ (0,m(6L̂2)−1], we have

E
[
d2
k+1

]
≤
(

1− γm

2

)
E
[
d2
k

]
+

2γL2

m
E [Vk] + 3γ2E

[
‖H̄(x?, ξ)‖2

]
+

2γd

b
,
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where Vk, dk are defined in (24) and (25).

Proof. Let k be in N. Rewriting the expression of Xk+1 defined in (23), we obtain

E
[
d2
k+1

]
= E

[
‖Xk+1 − x?‖2

]
= E

∥∥∥∥∥Xk − x? −
γ

b

b∑
i=1

Hi(Xi
k, ξ

i
k+1) +

√
2γ

(√
τ

b
Z̃k+1 +

√
1− τ
b

b∑
i=1

Zik+1

)∥∥∥∥∥
2


= E
[
‖Xk − x?‖2

]
− 2γE

[〈
Xk − x?,

1

b

b∑
i=1

Hi(Xi
k, ξ

i
k+1)

〉]

+ γ2E

∥∥∥∥∥1

b

b∑
i=1

Hi(Xi
k, ξ

i
k+1)

∥∥∥∥∥
2
+

2γd

b
. (103)

Further, the Young inequality combined with A4 give

E

∥∥∥∥∥1

b

b∑
i=1

Hi(Xi
k, ξ

i
k+1)

∥∥∥∥∥
2
 ≤ 3

b

b∑
i=1

E
[∥∥Hi(Xi

k, ξ
i
k+1)−Hi(Xk, ξ

i
k+1)

∥∥2
]

+ 3E
[
‖H̄(x?, ξ)‖2

]
+ 3E

[∥∥H̄(Xk, ξk+1)− H̄(x?, ξ)
∥∥2
]

≤ 3L̂2E [Vk] + 3L̂2E
[
d2
k

]
+ 3E

[
‖H̄(x?, ξ)‖2

]
. (104)

In addition, using the fact that for any vectors a, b ∈ Rd, 2 |〈a, b〉| ≤ m ‖a‖2 + ‖b‖2 /m we can upper bound the inner
product derived in (103) as follows

−E

[〈
Xk − x?,

1

b

b∑
i=1

Hi(Xi
k, ξ

i
k+1)

〉]
= −E

[〈
Xk − x?,∇Ū(Xk)

〉]
+ E

[〈
Xk − x?,

1

b

b∑
i=1

[
Hi(Xk, ξ

i
k+1)−Hi(Xi

k, ξ
i
k+1)

]〉]
≤ −E

[〈
Xk − x?,∇Ū(Xk)

〉]
+mE

[
d2
k

]
/2 + L2E [Vk] /(2m)

≤ −mE
[
d2
k

]
/2 + L2E [Vk] /(2m) . (105)

Therefore, plugging (104) and (105) in (103) shows

E
[
d2
k+1

]
≤
(

1− γ
[
m− 3γL̂2

])
E
[
d2
k

]
+ γ

(
3γL̂2 +

L2

m

)
E [Vk] + 3γ2E

[∥∥H̄(x?, ξ)
∥∥2
]

+
2γd

b
.

Eventually, the assumption γ ≤ m(6L̂2)−1 completes the proof.

For any γ ∈ (0,m(6L̂2)−1], under A1, A4 and A6 using Lemma 16 and Lemma 17 we have shown that HX3 and HX4
hold with the following quantities

A = 3L̂2 , B = 3ω̃ , C = 0 , D = 3E
[∥∥H̄(x?, ξ)

∥∥2
]
,

Ā = 3L2 , B̄ = 3L2 , C̄ = 0 , D̄ = (3/b)
∑b
i=1 ‖∇U i(x?)‖2 ,

Ad = γm/2 , Bd = 0 , Cd = 2γL2/m , Dd = 3γ2E
[∥∥H̄(x?, ξ)

∥∥2
]

+ 2γd/b ,

Aσ = 1 , Bσ = 0 , Cσ = 0 , Dσ = 0 .

(106)

For any γ > 0, consider the following variables

Cγ =
4(1− pc)γ2

pc − 4Ad

(
B +

2 + pc

pc
B̄

)
, Cγr = 3CγCd , CγV = 1 + 2CdC

γ ,

Cγε = CγV E [V0] + 7CγE
[
d2

0

]
+ 2Dd , Cγδ =

4(1− pc)γ2

pc

(
D +

2 + pc

pc
D̄

)
+

CγDd

Ad
+

8 (1− τ) (b− 1) γd

bpc
.

(107)
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We also introduce γ1 and Iγ , which are defined for any γ > 0 by

γ1 =
p

1/2
c

(2− 2pc)
1/2 [

A+ (1 + 2/pc)Ā
]1/2 ∧ m

6L̂2
∧ pc

2m
∧ qc

m
,

Iγ = {γ ∈ (0, γ1) : γm ≥ 8Cγr} .

Based on Lemma 11, we derive the following result.

Lemma 18. Assume A1, A4 and A6 hold. Then, for any γ ∈ Iγ and k ≥ 1, we have

E [Vk] ≤
(

1− Ad
4

)k (
2Cγε +

4CγδCγr
Ad

)
+ Cγδ .

where Vk is defined in (24) and Cγε ,C
γ
r ,C

γ
δ in (107).

Proof. For any γ ∈ Iγ , we have 4Cγr ≤ Ad and moreover it is easy to check that Ad < min(Aσ/2, pc/4), AdAσ ≥
8BdBσ = 0. In addition, since A1, A4 and A6 are satisfied we can apply Lemma 16 and Lemma 17 which show that HX3,
HX4 hold with the variables introduced in (106). Therefore, we can use Lemma 11 to complete the proof.

Based on the results presented in this section, we can rewrite the upper bound on (E [Vk])k∈N given in Lemma 18 into the
format of H2. We consider for γ > 0,

v1 = 2Cγε +
4CγδCγr
Ad

, v2 = Cγδ . (108)

Lemma 19. Assume A1, H1, A4 hold and let γ ≤ 2(3L)−1. Then for any k ∈ N, we have

E
[
‖X(k+1)γ −Xk+1‖2

]
≤
[
1− γm (1− 3γL) + 3γ2L̂2

]
E
[
‖Xkγ −Xk‖2

]
+ γ

(
2L2

m
+ 3γ(L2 + L̂2)

)
E [Vk]

+

(
2

γm
E
[∥∥EFk [Ik]

∥∥2
]

+ 3E
[
‖Ik‖2

])
+

3γ2

b2

∫
Rd

VarF0 (H(x, ξ))π(dx) .

Proof. For any k ∈ N, recall that Fk is defined in (22) and using Proposition 4 we obtain

EFk
[
‖X(k+1)γ −Xk+1‖2

]
≤ [1− γm (1− 3γL)] ‖Xkγ −Xk‖2 + γ

(
2L2

m
+ 3γL2

)
Vk

+

(
2

γm

∥∥EFk [Ik]
∥∥2

+ 3EFk
[
‖Ik‖2

])
+ γ2 VarFk

(
1

b

b∑
i=1

Gik

)
. (109)

Since the stochastic gradients (Hi(·, ξik+1))bi=1 are unbiased, A4 with the Young inequality imply that

VarFk

(
1

b

b∑
i=1

Gik

)
= EFk

∥∥∥∥∥1

b

b∑
i=1

[
Hi(Xi

k, ξ
i
k+1)−∇U i(Xi

k)
]∥∥∥∥∥

2


= EFk
[∥∥∥∥∥1

b

b∑
i=1

Hi(Xi
k, ξ

i
k+1)− H̄(Xk, ξk+1)− 1

b

b∑
i=1

∇U i(Xi
k) +∇Ū(Xk)

+ H̄(Xk, ξk+1)− H̄(Xkγ , ξk+1)−∇Ū(Xk) +∇Ū(Xkγ) + H̄(Xikγ , ξk+1)−∇Ū(Xkγ)

∥∥∥∥∥
2]

≤ 3L̂2Vk + 3L̂2‖Xk − Xkγ‖2 + 3 VarFk
(
H̄(Xkγ , ξk+1)

)
.

Taking the expectation and using that Xkγ has distribution π combined with (109) complete the proof.
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For notational convenience, we also introduce the time step-size γ2 defined by

γ2 =
pc

4m
∧ 1

6(L+ L̂2/m)
∧ pcm

38(1− pc)1/2 (pcω̃ + 3L2)
1/2

L
.

Theorem 20. Assume A1, A4 and A6 hold and let γ ∈ (0, γ1∧γ2). Then, for any initial probability measure µ(F)
0 ∈ P2(Rd),

k ∈ N, we have

W2
2

(
µ

(F)
k , π

)
≤
(

1− γm

2

)k
W2

2

(
µ

(F)
0 , π

)
+

8L2

m2
v1

(
1− γm

8

)k
+

6L2

m2
v2 +

6γd

bm2
κI

+
6γ

b2m

∫
Rd

VarF0 (H (x, ξ1))π(dx) .

where v1, v2 are defined in (108) and κI = L2(1 + γL2/m). If in addition we suppose HX1, set κI = 2γ(L3 + dL̃2/b).

Proof. We know that H1 is satisfied since for any i ∈ [b], x ∈ Rd the stochastic gradient Hi(x, ξi1) is unbiased. The
constraint γ ≤ γ1 combined with Lemma 17 implies HX3 and plugging the expression of Ad, Aσ, Bd, C, C̄, Cd, Cσ
provided in (106) into Cγr defined in (107) gives that

Cγr =
72γ3(1− pc)L2

(
ω̃ + (1 + 2/pc)L2

)
(pc − 2γm)m

.

For any γ ∈ (0, γ2], we have (pc − 2γm)m2 ≥ 576(1− pc)γ2L2
(
ω̃ + (1 + 2/pc)L2

)
which shows that γ ∈ Iγ . Thus, we

can apply Lemma 18 which proves that H2 holds with qc = γm and αv = 1−Ad/4 and v1, v2 defined in (108). Since the
assumptions of Lemma 19 are satisfied, HX2 holds, and therefore we can apply Theorem 8 with

(1− qc)α0 = 1− γm (1− 3γL) + 3γ2L̂2 , α1 = 0 , (1− qc)α2 = γ

(
2L2

m
+ 3γ(L2 + L̂2)

)
, α3 = 0 ,

(1− qc)α4 =

(
2

γm
E
[∥∥EFk [Ik]

∥∥2
]

+ 3E
[
‖Ik‖2

])
+

3γ2

b2

∫
Rd

VarF0 (H(x, ξ1))π(dx) .

Furthermore, using Lemma 7 we have

2

γm
E
[
‖EFk [Ik] ‖2

]
+ 3E

[
‖Ik‖2

]
≤ 3γ2dL2

bm

(
1 +

19γL2

36m

)
. (110)

Moreover, if we suppose HX1, we obtain

2

γm
E
[
‖EFk [Ik] ‖2

]
+ 3E

[
‖Ik‖2

]
≤ γ3d

bm

(
5L3 +

4dL̃2

3b

)
. (111)

Finally, with the notation of Theorem 8 we obtain 1 + δ = 0, and using γ ≤ (6(L+m−1L̂2))−1 combined with (110) or
(111) if we suppose HX1 give the expected result.

Now, consider the time stepsizes γ3 and γ? defined by

γ3 =
pcm

3L2 + pcω̃
, γ? = γ1 ∧ γ2 ∧ γ3 .

From the previous result, the next corollary controls the asymptotic bias obtained by Algorithm 2.
Corollary 21. Assume A1, A4 and A6 hold and let γ ∈ (0, γ?), τ = 1. Then, for any initial probability measure
µ

(F)
0 ∈ P2(Rd), k ∈ N, we have

6−4b

γd
lim sup
k→∞

W2
2

(
µ

(F)
k , π

)
≤
∫
Rd VarF0 (H (x, ξ1))π(dx)

bdm
+
κ̃I
m2

+
(1− pc)γL2

p2
cm

2

(
1

d

b∑
i=1

∥∥∇U i(x?)∥∥2
+
pc

bd
E
[
‖H(x?, ξ)‖2

]
+
L2 + pcω̃

m

)
.

where κ̃I = L2 and if we suppose HX1, κ̃I = γ(L3 + dL̃2/b).
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Proof. Using Theorem 20 combined with γ ≤ γ1 ∧ γ2 gives that

lim sup
k→∞

W2
2

(
µ

(F)
k , π

)
≤ 6γ

b2m

∫
Rd

VarF0 (H (x, ξ1))π(dx) +
6γd

bm2
κI +

6L2

m2
v2 . (112)

Further, recall that Ad, B, B̄,D, D̄,Dd are provided in (106) and Cγδ is defined in (107) by

Cγδ =
4(1− pc)γ2

pc

(
D +

2 + pc

pc
D̄

)
+

CγDd

Ad
+

8 (1− τ) (b− 1) γd

bpc

≤ 12(1− pc)γ2

pc

[
1 +

12γ

m

(
ω̃ +

3

pc
L2

)]
E
[∥∥H̄(x?, ξ)

∥∥2
]

+
8 (1− τ) (b− 1) γd

bpc

+
36(1− pc)γ2

p2
cb

b∑
i=1

∥∥∇U i(x?)∥∥2
+

96(1− pc)γ2d

pcbm

(
ω̃ +

3

pc
L2

)

≤ 156(1− pc)γ2

pc
E
[∥∥H̄(x?, ξ)

∥∥2
]

+
36(1− pc)γ2

p2
cb

b∑
i=1

∥∥∇U i(x?)∥∥2

+
96(1− pc)γ2d

pcbm

(
ω̃ +

3

pc
L2

)
+

8 (1− τ) (b− 1) γd

bpc
. (113)

Finally, setting τ = 1 combined with (112) and (113) show that

lim sup
k→∞

W2
2

(
µ

(F)
k , π

)
≤ 6γ

b2m

∫
Rd

VarF0 (H (x, ξ1))π(dx) +
6γd

bm2
κI

+
8(1− pc)γ2L2

bpcm2

[
156

b
E
[
‖H(x?, ξ)‖2

]
+

36

pc

b∑
i=1

∥∥∇U i(x?)∥∥2
+

96d

m

(
ω̃ +

3

pc
L2

)]
.

7.2 Study of VR-FALD?

In this alternative of FALD derived in Section 7.1, we introduce control variates to cope with both heterogeneity and
variance in local gradients. Instead of using Hi(Xi

k) to update the local parameter Xi
k, this time the ith client uses the

proxy Hi(Xi
k, ξ

i
k+1)−Hi(Yk, ξ

i
k+1) +∇U i(Yk) based on an analog of the SVRG algorithm (Johnson and Zhang, 2013;

Karimireddy et al., 2020) and where Yk is a global reference point updated with probability qc ∈ (0, 1]. We derive an explicit
upper bound on the Wasserstein distance between the distribution of the server parameter Xkγ and the target distribution π.
We also show how this new global control variate mitigates the effect of heterogeneity in the convergence rate. To do so, we
consider the stochastic gradients defined for any i ∈ [b], k ∈ N, by

Gik = Hi(Xi
k, ξ

i
k+1)−Hi(Yk, ξ

i
k+1) + Ck , (114)

Ḡik = ∇U i(Xi
k)−∇U i(Yk) + Ck (115)

and denote

σk =

(
1

b

b∑
i=1

EFk
[∥∥Hi(Yk, ξ

i
k+1)−Hi(x?, ξ

i
k+1)

∥∥2
])1/2

. (116)

Lemma 22. Assume A1, A4 and A6 hold. Then for any k ∈ N, we have

1

b

b∑
i=1

E
[
‖Ḡik‖

2
]
≤ 3L2E [Vk] + 3L2E

[
d2
k

]
+ 3E

[
σ2
k

]
,

1

b

b∑
i=1

E
[
‖Gik − Ḡik‖

2
]
≤ 3L̂2E [Vk] + 3ω̃E

[
d2
k

]
+ 3E

[
σ2
k

]
.

For any i ∈ [b], k ∈ N, recall the stochastic gradients Gik, Ḡ
i
k are defined in (114) and (115), respectively
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Algorithm 3 VR-FALD?

Input: initial vectors (Xi
0)i∈[b], noise parameter τ ∈ [0, 1], number of communication rounds K, probability pc of

communication, probability qc to update the control variates, step-size γ and batch size r.
Initialize Y0 = (1/b)

∑b
i=1X

i
0 and C0 = (1/b)∇U(Y0)

for k = 0 to K − 1 do
// On each client
Draw Bk+1 ∼ B(pc), Z̃k+1 ∼ N(0d, Id)
// In parallel on the b clients
for i = 1 to b do

Draw ξik+1 ∼ νξ, Z̃ik+1 ∼ N(0d, Id)
Compute Gik = Hi(Xi

k, ξ
i
k+1)−Hi(Yk, ξ

i
k+1) + Ck

Set X̃i
k+1 = Xi

k − γGik +
√

2γ (
√
τ/b Z̃k+1 +

√
1− τ Z̃ik+1)

if Bk+1 = 1 then
Broadcast X̃i

k+1 to the server
else

Update Xi
k+1 ← X̃i

k+1

if B̃k+1 = 1 then
Broadcast Xi

k to the server
else

Update Yk+1 ← Yk and Ck+1 ← Ck

if Bk+1 = 1 then
// On the central server
Update then broadcast the global parameter Xk+1 ← (1/b)

∑b
i=1 X̃

i
k+1

// On each client
Update the local parameter Xi

k+1 ← Xk+1

if B̃k+1 = 1 then
// On the central server
Update then broadcast Yk+1 ← (1/b)

∑b
i=1X

i
k

// On each client
Compute and broadcast∇U i(Yk+1)
// On the central server
Update then broadcast Ck+1 ← (1/b)∇U(Yk+1)

Output: samples {X`}{`∈[K] :B`=1}.
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Proof. For k ≥ 0, Lipschitz property of {∇U i}i∈[b] supposed in A1 gives that

1

b

b∑
i=1

E
[
‖Ḡik‖

2
]

=
1

b

b∑
i=1

E
[
‖∇U i(Xi

k)−∇U i(Yk) +∇Ū(Yk)‖2
]

≤ 3

b

b∑
i=1

E
[
‖∇U i(Xi

k)−∇U i(Xk)‖2
]

+
3

b

b∑
i=1

E
[
‖∇U i(Yk)−∇U i(x?)‖2

]
+

3

b

b∑
i=1

E
[
‖∇U i(Xk)−∇U i(x?)‖2

]
≤ 3L2E [Vk] + 3L2E

[
d2
k

]
+ 3E

[
σ2
k

]
and the proof is concluded by noting that A4 gives

1

b

b∑
i=1

E‖Gik − Ḡik‖
2 = E

[
VarFk

(
1

b

b∑
i=1

Gik

)]

≤ E

∥∥∥∥∥1

b

b∑
i=1

Hi(Xi
k, ξ

i
k+1)− H̄(Xk, ξk+1)

∥∥∥∥∥
2


≤ 3E

∥∥∥∥∥1

b

b∑
i=1

Hi(Xi
k, ξ

i
k+1)− H̄(Xk, ξk+1)

∥∥∥∥∥
2
+ 3E

[∥∥H̄(Yk, ξk+1)− H̄(x?, ξk+1)
∥∥2
]

+ 3E
[∥∥H̄(Xk, ξk+1)− H̄(x?, ξk+1)−∇Ū(Xk)

∥∥2
]
.

Lemma 23. Assume A1 and A4 hold. Then, for any γ ∈ (0,m(6L̂2)−1], we have

E
[
d2
k+1

]
≤
(

1− γm

2

)
E
[
d2
k

]
+

2γL2

m
E [Vk] + 4γ2E

[
σ2
k

]
+ 10γ2E

[
‖H̄(x?, ξ)‖2

]
+

2γd

b
,

where Vk, dk, σk are defined in (24), (25) and (116).

Proof. Let k be in N. Writing the expression of Xk+1 defined in (23) and developing the expectation of the squared norm
give

E
[
d2
k+1

]
= E

[
‖Xk+1 − x?‖2

]
= E

[∥∥∥∥Xk − x? −
γ

b

b∑
i=1

Hi(Xi
k, ξ

i
k+1) + γH̄(Yk, ξk+1)− γ∇Ū(Yk) +

√
2γ

(√
τ

b
Z̃k+1 +

√
1− τ
b

b∑
i=1

Zik+1

)∥∥∥∥2
]

= E
[
‖Xk − x?‖2

]
− 2γE

[〈
Xk − x?,

1

b

b∑
i=1

Hi(Xi
k, ξ

i
k+1)

〉]
+ γ2E

∥∥∥∥∥1

b

b∑
i=1

Hi(Xi
k, ξ

i
k+1)

∥∥∥∥∥
2


− 2γ2E

[〈
1

b

∑
i=1

Hi(Xi
k, ξ

i
k+1), H̄(Yk, ξk+1)− γ∇Ū(Yk)

〉]
+ γ2E

[∥∥H̄(Yk, ξk+1)−∇Ū(Yk)
∥∥2
]

+
2γd

b

= E
[
d2
k

]
− 2γE

[〈
Xk − x?,

1

b

b∑
i=1

∇U i(Xi
k)

〉]
+ 2γ2E

∥∥∥∥∥1

b

b∑
i=1

Hi(Xi
k, ξ

i
k+1)

∥∥∥∥∥
2


+ 2γ2E
[∥∥H̄(Yk, ξk+1)−∇Ū(Yk)

∥∥2
]

+
2γd

b
. (117)

Using the Young inequality combined with A4 show

E

∥∥∥∥∥1

b

b∑
i=1

Hi(Xi
k, ξ

i
k+1)

∥∥∥∥∥
2
 ≤ 3

b

b∑
i=1

E
[∥∥Hi(Xi

k, ξ
i
k+1)−Hi(Xk, ξ

i
k+1)

∥∥2
]
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+ 3E
[∥∥H̄(Xk, ξk+1)− H̄(x?, ξ)

∥∥2
]

+ 3E
[
‖H̄(x?, ξ)‖2

]
≤ 3L̂2E [Vk] + 3L̂2E

[
d2
k

]
+ 3E

[
‖H̄(x?, ξ)‖2

]
. (118)

We also have that

E
[∥∥H̄(Yk, ξk+1)−∇Ū(Yk)

∥∥2
]
≤ 2E

[∥∥H̄(Yk, ξk+1)− H̄(x?, ξk+1)
∥∥2
]

+ 2E
[
‖H̄(x?, ξ)‖2

]
≤ 2E

[
σ2
k

]
+ 2E

[
‖H̄(x?, ξ)‖2

]
. (119)

In addition, using the fact that for any vectors a, b ∈ Rd, 2 |〈a, b〉| ≤ m ‖a‖2 + ‖b‖2 /m, we can upper bound the inner
product derived in (117) as follows

−E

[〈
Xk − x?,

1

b

b∑
i=1

∇U i(Xi
k)

〉]
= −E

[〈
Xk − x?,∇Ū(Xk)

〉]
+ E

[〈
Xk − x?,

1

b

b∑
i=1

[
Hi(Xk, ξ

i
k+1)−Hi(Xi

k, ξ
i
k+1)

]〉]
≤ −E

[〈
Xk − x?,∇Ū(Xk)

〉]
+mE

[
d2
k

]
/2 + L2E [Vk] /(2m)

≤ −mE
[
d2
k

]
/2 + L2E [Vk] /(2m) . (120)

Hence, combining (117), (118), (119) and (120) implies that

E
[
d2
k+1

]
≤
(

1− γm+ 6γ2L̂2
)
E
[
d2
k

]
+

(
γL2

m
+ 6γ2L̂2

)
E [Vk] + 4γ2E

[
σ2
k

]
+ 10γ2E

[
‖H̄(x?, ξ)‖2

]
+

2γd

b
.

Using the assumption on γ completes the proof.

Lemma 24. Assume the L-smoothness of the potentials {U i}i∈[b] and A4 hold. Then, for any k ∈ N, we have

E
[
σ2
k+1

]
≤ (1− qc)E

[
σ2
k

]
+ 2qL̂2E

[
d2
k

]
+ 2qL̂2E [Vk] ,

where Vk, dk, σk are defined in (24), (25) and (116).

Proof. Let’s consider k ≥ 0, using A4 implies that

E
[
σ2
k+1

]
=

1

b

b∑
i=1

E
[∥∥Hi(Y ik+1, ξ

i
k+1)−Hi(x?, ξ

i
k+1)

∥∥2
]

=
1− qc

b

b∑
i=1

E
[∥∥Hi(Y ik , ξ

i
k+1)−Hi(x?, ξ

i
k+1)

∥∥2
]

+
qc

b

b∑
i=1

E
[∥∥Hi(Xi

k, ξ
i
k+1)−Hi(x?, ξ

i
k+1)

∥∥2
]

= (1− qc)E
[
σ2
k

]
+

2q

b

b∑
i=1

E
[∥∥Hi(Xi

k, ξ
i
k+1)−Hi(Xk, ξ

i
k+1)

∥∥2
+
∥∥Hi(Xk, ξ

i
k+1)−Hi(x?, ξ

i
k+1)

∥∥2
]

≤ (1− qc)E
[
σ2
k

]
+ 2qL̂2E

[
d2
k

]
+ 2qL̂2E [Vk] .

Which shows the expected result.

For any γ ∈ (0,m(6L̂2)−1], under A1, A4 and A6 we have shown that Lemma 22 and Lemma 23 imply HX3 and HX4
with

A = cV = 3L̂2 , B = cd = 3ω̃ , C = cσ = 3 , D = c = 0 ,

Ā = 3L2 , B̄ = 3L2 , C̄ = 3 , D̄ = 0 ,

Ad = γm/2 , Bd = 4γ2 , Cd = 2γL2/m , Dd = (10γ2)E
[∥∥H̄(x?, ξ)

∥∥2
]

+ 2γd/b ,

Aσ = q , Bσ = 2qL̂2 , Cσ = 2qL̂2 , Dσ = 0 .

(121)
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For any γ > 0, consider the following variables

αd =
4γ2

pcAd
max

{
pcB + 3B̄,

4Bσ
Aσ

(
pcC + 3C̄

)}
, ασ =

4γ2
(
pcC + 3C̄

)
pcAσ

. (122)

Lemma 25. Assume A1, A4 and A6 hold with

Ad ≤ min
(
Aσ,

pc

4

)
, αdCd + ασCσ ≤

pc

8
, αdBd + γ2

(
C +

3

pc
C̄

)
≤ ασAσ

2
,

and consider γ ≤ m(6L̂2)−1 ∧ p1/2
c (2− 2pc)−1/2[A+ (1 + 2/pc)Ā]−1/2. Then, for any k ∈ N, we have

E [Vk] ≤
(

1− Ad
2

)k (
E [V0] + αdE

[
d2

0

]
+ ασE

[
σ2

0

])
+

2αdDd

Ad
+

4 (1− τ) (b− 1) γd

bAd
,

where Vk is defined in (24).

Proof. Applying Lemma 12 with the variables provided in (121) gives the result.

Let’s introduce γ1 > 0 such that

γ1 ≤
m

128L̂2
∧ m

8 max
(

3L2 + pcω̃, 24L̂2
) ∧ 2q

m
∧ pc

2m
∧ pc[

2(1− pc)(pcA+ 3Ā)
]1/2

∧ pc

8
[
6
(
L2

m2 max
(

3L2 + pcω̃, 24L̂2
))

+ 2
qc

]1/2 .
Under A1, A4 and A6, for all γ ∈ (0, γ1] the assumptions of Lemma 25 are satisfied. The upper bound on (E [Vk])k∈N
derived in Lemma 25 can be rewritten into the format of H2 by considering

ṽ1 = E [V0] + αdE
[
d2

0

]
+ ασE

[
σ2

0

]
, ṽ2 =

2αdDd

Ad
+

4 (1− τ) (b− 1) γd

bAd
. (123)

In addition, for any γ > 0, consider the following variables

Cγ =
4(1− pc)γ2

pc − 4Ad

[
B +

2 + pc

pc
B̄ +

Bσ
Aσ −Ad

(
C +

2 + pc

pc
C̄

)]
,

Cγr =
9γ2 (1− pc)Cσ

pc − 4Ad

(
C +

2 + pc

pc
C̄

)
+ 3Cγ

(
Cd +

BdCσ
Aσ −Ad

)
,

Cγσ =
4(1− pc)γ2

pc − 4Ad

(
C +

2 + pc

pc
C̄

)
+ CγBd

(
2 +

3

Aσ −Ad

)
,

Cγd = 7Cγ , CγV = 1 + 2CγCd ,

Cγδ =
CγDd

Ad

(
1 +

2BdBσ
Ad(Aσ −Ad)

)
+

8 (1− τ) (b− 1) γd

bpc
,

Cγε = CγV E [V0] + CγdE
[
d2

0

]
+ CγσE

[
σ2

0

]
+ 2Dd .

(124)

Based on Lemma 10, we derive the following result.

Lemma 26. Assume A1, A4 and A6 hold and consider γ ∈ (0, γ1]. Then, for any k ∈ N, we have

E [Vk] ≤
(

1− Ad
4

)k (
Cγε +

4Cγr ṽ1

Ad

)
+

2Cγr ṽ2

Ad
+ Cγδ ,

where Vk is defined in (24) and Cγε ,C
γ
r ,C

γ
δ in (124).



Vincent Plassier, Alain Durmus, Éric Moulines

Proof. Since we suppose A1, A4 and A6 hold with γ ≤ γ1, the assumptions of Lemma 25 are satisfied. Therefore, for any
l ∈ N, we obtain

E [Vl] ≤
(

1− Ad
2

)l
ṽ1 + ṽ2 . (125)

Moreover, the condition γ ≤ m/128L̂2 ensures that AdAσ = qγm/2 ≥ 8BdBσ = 64qγ2L̂2, hence we can apply
Lemma 10. Then, plugging (125) in the bound derived in Lemma 10 gives

E [Vk] ≤ (1− α)
k

Cγε + Cγr

k−2∑
i=0

(1− α)
k−i−1 E [Vi] + Cγδ , (126)

where α is defined in (60) by

α = Ad −
2(Aσ −Ad)−1BdBσ

1 +
√

1 + 4(1−Ad)−1(Aσ −Ad)−1BdBσ
.

Using Lemma 9, we know that Ad/2 < α ≤ Ad and combining this bound with (125) and (126) leads to

E [Vk] ≤
(

1− Ad
4

)k (
Cγε +

4Cγr ṽ1

Ad

)
+

2Cγr ṽ2

Ad
+ Cγδ .

In order to rewrite the upper bound on (E [Vk])k∈N given in Lemma 26 in the format of H2, we consider for γ > 0

v1 = Cγε +
4Cγr ṽ1

Ad
, v2 =

2Cγr ṽ2

Ad
+ Cγδ . (127)

Lemma 27. Assume A1, A7, H1 and hold and let γ ≤ (6L)−1. Using the convention that
∑−1

0 = 0, then for any k ∈ N,
we have

E
[
‖X(k+1)γ −Xk+1‖2

]
≤
[
1− γm+ γ2 (3mL+ 4ω)

]
E
[
‖Xkγ −Xk‖2

]
+ 4γ2ωqc

k−1∑
l=0

(1− qc)k−l−1E
[
‖Xlγ −Xl‖2

]
+ γ

(
2L2

m
+ 3γL2 + 4γω

)
E [Vk]

+

(
2

γm
E
[∥∥EFk [Ik]

∥∥2
]

+ 3E
[
‖Ik‖2

])
+

16γ3ωd

bqc

(
1 +

γL

qc

)
.

Proof. For k ∈ N, using the independence of (ξik+1)i∈[b] combined with H1 and A7, we obtain

VarFk

(
1

b

b∑
i=1

Gik

)
= EFk

∥∥∥∥∥1

b

b∑
i=1

[
∇U i(Xi

k)−∇U i(Yk)−Hi(Xi
k, ξ

i
k+1) +Hi(Yk, ξ

i
k+1)

]∥∥∥∥∥
2


=
1

b

b∑
i=1

EFk
[∥∥∇U i(Xi

k)−∇U i(Yk)−Hi(Xi
k, ξ

i
k+1) +Hi(Yk, ξ

i
k+1)

∥∥2
]

≤ ω

b

b∑
i=1

∥∥Xi
k − Yk

∥∥2
. (128)

Denote tk ∈ N the time when the reference point of the control variate is updated, therefore we have

tk =

{
0 , if k = 0

max
{
l ∈ {0, . . . , k − 1} : Yk = b−1

∑b
i=1X

i
k

}
, if k ≥ 1

. (129)
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Hence, for any i ∈ [b], k ≥ 0, we have

Xi
k − Yk = (Xi

k −Xk) + (Xk − Xkγ) + (Xkγ − Xtkγ) + (Xtkγ − Yk) .

Thus for k ≥ 0, combining the previous line with Young’s inequality, it yields that

1

b

b∑
i=1

E
[∥∥Xi

k − Yk
∥∥2
]
≤ 4E [Vk] + 4E

[
‖Xk − Xkγ‖2

]
+ 4E

[
‖Xkγ − Xtkγ‖2

]
+ 4E

[
‖Xtkγ − Yk‖2

]
. (130)

For k ≥ 1, by definition of tk, we have

E [Vtk ] =

k−1∑
l=0

P (tk = l)E [Vl] = q

k−1∑
l=0

(1− qc)k−l−1E [Vl] .

Moreover, for k ≥ 1 we get

E
[
‖Xkγ − Xtkγ‖

2
]

=
k−1∑
l=0

P (tk = l)E
[
‖Xkγ − Xlγ‖2

]

= q

k−1∑
l=0

(1− qc)k−l−1E

∥∥∥∥∥−
∫ kγ

lγ

∇Ū(Xs)ds+

√
2

b
(Wkγ −Wlγ)

∥∥∥∥∥
2


≤ 2γq

k−1∑
l=0

(k − l)(1− qc)k−l−1

(∫ kγ

lγ

E
[∥∥∇Ū(Xs)

∥∥2
]

ds+
2d

b

)
. (131)

Using Dalalyan (2017, Lemma 2) with s ∈ R+, we obtain

E
[
‖∇Ū(Xs)‖2

]
≤ dL/b .

Using by convention that
∑0
l=1 = 0, for any k ∈ N and x 6= 1 we have

k∑
l=1

l2xl−1 = (1− x)−3
(
1 + x− xk [2x+ kx(1− x) + (k + 1)(1 + k(1− x))(1− x)]

)
.

Thus, setting x = 1− q inside the last shows that

k∑
l=1

l2(1− qc)l−1 ≤ 2/q3
c .

Hence, the above line combined with
∑k
l=1 l(1 − qc)l−1 = q−2

[
1− (1 + kq)(1− qc)k

]
and (131) yield the following

upper bound

E
[
‖Xkγ − Xtkγ‖

2
]
≤ 2γdq

b

k−1∑
l=0

[
(k − l)(1− qc)k−l−1 (2 + (k − l)γL)

]
≤ 2γdq

b

k−1∑
l=0

[
(k − l)(1− qc)k−l−1 (2 + (k − l)γL)

]
≤ 4γd

bqc

(
1 +

γL

qc

)
. (132)

In addition, by definition (129) of tk, we immediately get for any k ≥ 1, that

E
[
‖Xtkγ −Xtk‖

2
]

=

k−1∑
l=0

P (tk = l)E
[
‖Xlγ −Xl‖2

]
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= q

k−1∑
l=0

(1− qc)k−l−1E
[
‖Xlγ −Xl‖2

]
.

Combining (128), (130) with (132), for any k ≥ 1 we obtain

E

[
VarFk

(
1

b

b∑
i=1

Gik

)]
≤ 4ωE

[
‖Xk − Xkγ‖2

]
+ 4ωqc

k−1∑
l=0

(1− qc)k−l−1E
[
‖Xlγ −Xl‖2

]
+ 4ωE [Vk] +

16γωd

bqc

(
1 +

γL

qc

)
. (133)

Since Y0 = b−1
∑
i=1X

i
0, we have VarFk(b−1

∑b
i=1G

i
k) ≤ ωVk and therefore the above inequality also holds for k = 0.

Lastly, using Proposition 4 gives

EFk
[
‖X(k+1)γ −Xk+1‖2

]
≤ [1− γm (1− 3γL)] ‖Xkγ −Xk‖2 + γ

(
2L2

m
+ 3γL2

)
Vk

+

(
2

γm

∥∥EFk [Ik]
∥∥2

+ 3EFk
[
‖Ik‖2

])
+ γ2 VarFk

(
1

b

b∑
i=1

Gik

)
.

Hence, plugging (133) in the above inequality yields the expected result.

Based on Lemma 27, for any γ > 0 introduce the following notations

α0 = (1− qc)
−1 [

1− γm+ γ2 (3mL+ 4ω)
]
, α1 =

4γ2ωq

(1− qc)
2 , (134)

α2 =
γ

1− qc

(
2L2

m
+ 3γL2 + 4γω

)
, α3 = 0 ,

α4 = (1− qc)−1

(
2 supl∈N
γm

E
[∥∥EFl [Il]

∥∥2
]

+ 3 sup
l∈N

E
[
‖Il‖2

]
+

16γ3ωd

bqc

(
1 +

γL

qc

))
.

For ease of reading, we also introduce the time step-size γ2 defined by

γ2 ≤
qc

L
∧ qc

2m
∧ 1

6(L+ 4m−1ω)
.

Theorem 28. Assume A1, A4, A6, A7 and let γ ∈ (0, γ1 ∧ γ2). Then, for any initial probability measure µ(Vr?)
0 ∈ P2(Rd),

k ∈ N, we have

W2
2

(
µ

(Vr?)
k , π

)
≤
(

1− γm

2

)k
W2

2

(
µ

(Vr?)
0 , π

)
+
(

1− γm

8

)k 3L2

m2
v1 +

6L2

m2
v2 +

6γd

bm2
κI +

32γ2ωd

bmq
,

where v1, v2 are defined in (127) and κI = L2(1 + γL2/m). If in addition we suppose HX1, set κI = 2γ(L3 + dL̃2/b).

Proof. We know that H1 is satisfied since for any i ∈ [b], x ∈ Rd the stochastic gradient Hi(x, ξi) is unbiased. Lemma 26
proves that H2 holds with αv = 1−Ad/4 and v1, v2 defined in (127). Lemma 27 implies that HX2 holds with the choice
of (αi)

4
i=0 detailed in (134). Finally, since HX2 and H2 hold, we can apply Theorem 8 to show that

W2
2

(
µ

(Vr?)
k , π

)
≤ (1 + α0 + δ)

k
(1− qc)

k
W2

2

(
µ

(Vr?)
0 , π

)
+ (1− qc)v1

(
α2 +

α3

α0 + δ

)
αkv − (1 + α0 + δ)

k
(1− qc)

k

αv − (1 + α0 + δ) (1− qc)

+
1− qc

qc − (1− qc)(α0 + δ)

[(
α2 +

α3

α0 + δ

)
v2 + α4

]
, (135)
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where δ = 2−1(
√

(α0 − 1)2 + 4α1 − 1− α0) is defined in (45). Using for any a > 0, b ≥ 0, that
√
a+ b ≤

√
a+b/(2

√
a),

we obtain

α0 +
√

(α0 − 1)2 + 4α1 = 1 + (α0 − 1)

(
1 +

√
1 +

4α1

(α0 − 1)
2

)

≤ 1 + 2 (α0 − 1)

(
1 +

α1

(α0 − 1)
2

)
= 2α0 − 1 +

2α1

α0 − 1
.

Since γ ≤ γ2 ≤ q(2m)−1 ∧ {6(L+ 4m−1ω)}−1, the previous line implies that

2 (1− qc) (1 + α0 + δ) = (1− qc)
(

1 + α0 +
√

(α0 − 1)2 + 4α1

)
≤ 2(1− qc)

(
α0 +

α1

α0 − 1

)
= 2

(
1− γm+ γ2

(
3mL+ 4ω +

4qω

qc − γm+ γ2 (3mL+ 4ω)

))
≤ 2 (1− γm/2) . (136)

This upper bound gives that

(1− qc)(α0 + δ) = (1− qc) (1 + α0 + δ) + q − 1 ≤ q − γm/2 .

Thus, we deduce that
1

qc − (1− qc)(α0 + δ)
≤ 2

γm
. (137)

Further, using γ ≤ γ2 combined with the definitions of α0, α2, α3, αv and δ show that

αkv − (1 + α0 + δ)
k

(1− qc)
k

αv − (1 + α0 + δ) (1− qc)
≤ 8

3γm

(
1− γm

8

)k
,

α2 +
α3

α0 + δ
=

γ

1− qc

(
2L2

m
+ 3γL2 + 4γω

)
≤ 3γL2

(1− qc)m
.

(138)

Lastly, plugging (136), (137) and (138) in (135) yields

W2
2

(
µ

(Vr?)
k , π

)
≤
(

1− γm

2

)k
W2

2

(
µ

(Vr?)
0 , π

)
+
(

1− γm

8

)k 3L2

m2
v1 +

6L2

m2
v2 +

2(1− qc)α4

γm
. (139)

In addition, following the lines provided in the proof of Theorem 20, we deduce

2(1− qc)α4

γm
≤ 6γdL2

bm2

(
1 +

19γL2

36m

)
+

32γ2ωd

bmq
. (140)

If in addition we suppose HX1, then we obtain

2(1− qc)α4

γm
≤ γmL2

(
1 +

γL2

2m
+
γ2L2

12

)
+

4γ

9

(
L3 +

dL̃2

b

)
+

32γ2ωd

bmq
. (141)

Finally, plugging (140) or (141) if HX1 holds inside (139) combined with γ ≤ qL−1 lead to the expected result.

Now, consider the time stepsizes γ3 and γ? defined by

γ3 =
pcm

3L2 + 16L̂2 + pcω̃
, γ? = γ1 ∧ γ2 ∧ γ3 .

From the previous result, the next corollary controls the asymptotic bias obtained by Algorithm 3.
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Corollary 29. Assume A1, A4, A6, A7 and let γ ∈ (0, γ?) with τ = 1. Then, for any initial probability measure
µ

(Vr?)
0 ∈ P2(Rd), k ∈ N, we have

9−9b

γd
lim sup
k→∞

W2
2

(
µ

(Vr?)
k , π

)
≤ κI
m2

+
γω

mq

+
(1− pc)γL2

p2
cm

5

(
L2 + L̂2 + pcω̃

)(
1 +

γ

bd
E
[
‖H(x?, ξ)‖2

])(
L2 +

qc

pc
L̂2

)
,

where κ̃I = L2(1 + γL2m−1) and if we suppose HX1, κ̃I = γ(L3 + dL̃2b−1).

Proof. Applying Theorem 28 with γ ∈ (0, γ1 ∧ γ2) shows that

lim sup
k→∞

W2
2

(
µ

(Vr?)
k , π

)
≤ 6L2

m2
v2 +

6γd

bm2
κI +

32γ2ωd

bmq

≤
6L2Cγδ
m2

+
12L2Cγr ṽ2

Adm2
+

6γd

bm2
κI +

32γ2ωd

bmq
. (142)

Plugging the definitions of ṽ1, ṽ2 provided in (123) combined with the previous inequality, we obtain

lim sup
k→∞

W2
2

(
µ

(Vr?)
k , π

)
≤

6L2Cγδ
m2

+
24L2CγrαdDd

A2
dm

2
+

48L2Cγr (1− τ) (b− 1) γd

bA2
dm

2
+

6γd

bm2
κI +

32γ2ωd

bmq
.

Further, recall that Ad, B, B̄,D, D̄,Dd are provided in (121) and αd is defined in (122) by

αd =
4γ2

pcAd
max

{
pcB + 3B̄,

4Bσ
Aσ

(
pcC + 3C̄

)}
=

24γ

pcm
max

{
3L2 + pcω̃, 8(pc + 3)L̂2

}
≤ 768γ

pcm

(
L2 + L̂2 + pcω̃

)
.

Moreover, Cγδ ,C
γ
r are defined in (124) by

Cγδ =
CγDd

Ad

(
1 +

2BdBσ
Ad(Aσ −Ad)

)
+

8 (1− τ) (b− 1) γd

bpc

=
10Cγ

m

(
1 +

64γqL̂2

(2q − γm)m

)(
5γE

[∥∥H̄(x?, ξ)
∥∥2
]

+
d

b

)
+

8 (1− τ) (b− 1) γd

bpc

≤ 360(1− pc)γ2

mp2
c

(
3L2 + 11L̂2 + pcω̃

)(
5γE

[∥∥H̄(x?, ξ)
∥∥2
]

+
d

b

)
+

8 (1− τ) (b− 1) γd

bpc
, (143)

Cγr =
9γ2 (1− pc)Cσ

pc − 4Ad

(
C +

2 + pc

pc
C̄

)
+ 3Cγ

(
Cd +

BdCσ
Aσ −Ad

)
≤ 144γ2(1− pc)

p2
c

[
3qL̂2 + γ

(
L2

m
+ 8γL̂2

)(
pcω̃ + 3L2 + 16L̂2

)]
≤ 432γ2(1− pc)

p2
c

(
pcL

2 + qL̂2
)

Eventually, for the specific choice τ = 1 combined with (142) and (143), it yields that

lim sup
k→∞

W2
2

(
µ

(Vr?)
k , π

)
≤ 6γd

bm2
κI +

32γ2ωd

bmq
+

18432γCγrDdL
2

A2
dm

3pc

(
L2 + L̂2 + pcω̃

)
+

2160(1− pc)γ2L2

p2
cm

3

(
3L2 + 11L̂2 + pcω̃

)(
5γE

[∥∥H̄(x?, ξ)
∥∥2
]

+
d

b

)
. (144)

Therefore, using (143) and (144) we can finally conclude that

99 lim sup
k→∞

W2
2

(
µ

(Vr?)
k , π

)
≤ γd

bm2
κI +

γ2ωd

bmq

+
(1− pc)γ2L2

p2
cm

5

(
L2 + L̂2 + pcω̃

)(
γE
[∥∥H̄(x?, ξ)

∥∥2
]

+
d

b

)(
L2 +

qc

pc
L̂2

)
.
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The single client case corresponds to b = pc = 1 and leads for k ≥ 0 to Vk = 0. Moreover, the assumption H2 holds with
v1 = v2 = 0. Thus, we obtain a convergence bound for SVRG-LD from Theorem 28.

Theorem 30. Assume A1, A4, A6, A7 and let γ ∈ (0, γ1 ∧ γ2). Then, for any initial probability measure µ(Vr?)
0 ∈ P2(Rd),

k ∈ N, we have

W2
2

(
µ

(Vr?)
k , π

)
≤
(

1− γm

2

)k
W2

2

(
µ

(Vr?)
0 , π

)
+

6γd

bm2
κI +

32γ2ωd

mq
,

where κI = L2(1 + γL2/2m+ γ2L2/12). If in addition we suppose HX1, set κI = 3γ(L3 + dL̃2/b).

Remark 31.

• The constants obtained in this result can be refined by directly using that E[Vk] = 0 in the proof of Lemma 27 and by
simplifying the calculations detailed in Theorem 28.

• The proof given in Chatterji et al. (2018, Theorem 4.2-Option 2) on the convergence of SVRG-LD seems to have
some gaps since the authors use Grönwall’s inequality (Clark, 1987) as if ♠ = τ2

(
8δd+ 4Mδ2d+ 4δ2MΩ1

)
were

constant, which is not the case because Ω1 = 〈∇f(yk)−∇f(xk), yk − xk〉 depends on the iteration k. If we denote
♠k instead of ♠ and adopt their other notation (we also correct a typography in the right-hand term), we obtain

E
[
‖xk − x̃‖22

]
≤ ♠k +

k−1∑
j=τs

E
[
‖xj − x̃‖22

]
. (145)

Then, it is claimed in the proof of Chatterji et al. (2018, Theorem 4.2-Option 2) that (145) implies E[‖xk − Xk‖2] ≤
♠k exp(τρ). But this inequality cannot hold in all generalities, for example if we consider : τs = 0, for j < k, ♠j = 1,
xj = x̃ +

√
2j/d · 1 and ♠k = 0, xk = x̃ + 1/

√
d, then (145) holds for j ∈ [k] but E[‖xk − Xk‖2] = 1 whereas

♠k exp(τρ) = 0.

8 Lower bound on the heterogeneity in a Gaussian case

In this section, we want to illustrate the heterogeneity problem by lower bounding the Wasserstein distance W2 in a simple
case. To simplify the calculations, we assume that each client performs 2 local iterations following the FALD update before
communicating its local parameter to the central server. More specifically, take (µ1, µ2, σ1, σ2) ∈ R2 × (R∗+)2 and define
the potentials U1 : x ∈ Rd 7→ σ−2

1 (x− µ1)
2, U2 : x ∈ Rd 7→ σ−2

2 (x− µ2)
2. Thus, the global posterior distribution π is

Gaussian with mean m̄ and variance σ̄2 given by

m̄ =
µ1σ

2
2 + µ2σ

2
1

σ2
1 + σ2

2

σ̄ =

(
1

σ2
1

+
1

σ2
2

)−1/2

. (146)

The objective is to illustrate the problem of heterogeneity in the basic version of FALD. To do so, we first show that this
algorithm generates samples targeting a distribution πγ ∈ P2(Rd) where the distance W2(π, πγ) is lower bounded by a
heterogeneity term. To this end, we introduce the Markov kernel, which for each γ > 0,B ∈ B(Rd) is given by

Pγ(x,B) =

∫
B

exp

−
∥∥∥x′ − (1− γ

σ̄2 + γ2

2

(
1
σ4
1

+ 1
σ4
2

))
x− γm̄

σ̄2 + γ2

2

(
µ1

σ4
1

+ µ2

σ4
2

)∥∥∥2

2γ
(

1 +
(
1− γ

2σ̄2

)2)
 dx′

(2π)d/2
,

and we define the stochastic processes (Ak, Ãk)k≥0 on Rd × Rd starting from (X0, X0) = (x, x̃) and following the
recursion for k ≥ 0,

Ak+1 = Ak −
γ

σ̄2
(Ak − m̄) +

γ2

2

(
Ak − µ1

σ4
1

+
Ak − µ2

σ4
2

)
+
√
γ
[(

1− γ

2σ̄2

)
Zk+1 + Zk+2

]
,

Ãk+1 = Ãk −
γ

σ̄2

(
Ãk − m̄

)
+
γ2

2

(
Ãk − µ1

σ4
1

+
Ãk − µ2

σ4
2

)
+
√
γ
[(

1− γ

2σ̄2

)
Zk+1 + Zk+2

]
.

(147)

It is possible to verify that (Ak, Ãk) is distributed according to (δxP
k
γ , δx̃P

k
γ ).
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Lemma 32. Let γ ∈
(
0, 2(σ1σ2)4[σ̄2(σ4

1 + σ4
2)]−1

)
. Then, there exists πγ ∈ P2(Rd) such that for any distribution

π0 ∈ P2(Rd), the sequence (π0P kγ )k∈N converges to πγ in P2(Rd).

Proof. Let k ∈ N and consider the stochastic processes (Al, Ãl)l∈N defined in (147), subtracting the two recursions we
obtain

Ak+1 − Ãk+1 =

(
1− γ

σ̄2
+
γ2

2

(
1

σ4
1

+
1

σ4
2

))(
Ak − Ãk

)
.

Since 0 < γ < 2(σ1σ2)4[σ̄2(σ4
1 + σ4

2)]−1, taking the norm in the previous inequality implies that

‖Ak+1 − Ãk+1‖ =

(
1− γ

σ̄2
+
γ2

2

(
1

σ4
1

+
1

σ4
2

))
‖Ak − Ãk‖ . (148)

Finally, combining (148) with Douc et al. (2018, Lemma 20.3.2), we deduce that the c-Dobrushin coefficient of Pγ is
upper bounded by 1− γ/σ̄2 + γ2/2

(
1/σ4

1 + 1/σ4
2

)
. Hence, applying Douc et al. (2018, Theorem 20.3.4) we deduce the

existence and uniqueness of a stationary distribution πγ ∈ P2(Rd) for the Markov Kernel Pγ such that W2(π0P kγ , π) ≤(
1− γ/σ̄2 + γ2/2

(
1/σ4

1 + 1/σ4
2

))k
W2(π0, πγ).

Lemma 32 shows the existence of a invariant distribution πγ ∈ P2(Rd) for Pγ and the next lemma specifies this distribution
of πγ .

Lemma 33. Assume γ ∈
(
0, 2(σ1σ2)4[σ̄2(σ4

1 + σ4
2)]−1

)
. Then, the stationarity distribution πγ is Gaussian with parameters

given by

m(γ) =
m̄− γσ̄2

2

(
µ1

σ4
1

+ µ2

σ4
2

)
1− γσ̄2

2

(
1
σ4
1

+ 1
σ4
2

) , σ2
(γ) =

σ̄2 − γ
2 + γ2

8σ2

1− γ
2

(
σ̄2

σ4
1

+ σ̄2

σ4
2

)
− γ

2

(
1
σ̄ −

γ
2

(
σ̄
σ4
1

+ σ̄
σ4
2

))2 .

Proof. First, let k ∈ N be fixed and introduce

α = 1− γ

σ̄2
+
γ2

2

(
1

σ4
1

+
1

σ4
2

)
, β =

γm̄

σ̄2
− γ2

2

(
µ1

σ4
1

+
µ2

σ4
2

)
,

Z̃k =
(

1− γ

2σ̄2

)
Z2k−1 + Z2k .

Moreover, consider (Al)l∈N the stochastic process following (147) and initialized at πγ . By induction, we know that

Ak = αkA0 + β

k−1∑
l=0

αl +
√
γ

k−1∑
l=0

αk−l−1Z̃l . (149)

SinceAk is distributed according to πγP kγ , we have thatAk follows πγ . Denote νkγ the distribution of
√
γ
∑k−1
l=0 α

k−l−1Z̃l−
β
∑k−1
l=0 α

l, combining (149) with the definition of the Wasserstein, we have

W2
2

(
πγ , ν

k
γ

)
≤ E

∥∥∥∥∥Ak −√γ
k−1∑
l=0

αk−l−1Z̃l − β
k−1∑
l=0

αl

∥∥∥∥∥
2
 = α2kE

[
‖A0‖2

]
. (150)

Since A0 is distributed according to πγ belonging to P2(Rd), we deduce that E[‖A0‖2] <∞. Consequently, (150) implies
that (νkγ )k∈N converges to πγ , but using the fact that (νkγ )k∈N converges to a Gaussian distribution, we obtain by uniqueness
of the limit in metric space (P2(Rd),W2) that πγ is a Gaussian distribution. Recalling that m(γ) denotes the expectation of
the random variable distributed according to πγ , using (147) at stationarity yields

m(γ) = m(γ) −
γ

σ̄2

(
m(γ) − m̄

)
+
γ2

2

(
m(γ) − µ1

σ4
1

−
m(γ) − µ2

σ4
2

)
Thus, we deduce that

m(γ) =
m̄− (γσ̄2/2)

(
µ1/σ

4
1 + µ2/σ

4
2

)
1− (γσ̄2/2) (1/σ4

1 + 1/σ4
2)

.
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In addition, we can obtain the standard deviation σ(γ) of πγ since we have

Var

(
β

k−1∑
l=0

αl +
√
γ

k−1∑
l=0

αk−l−1Z̃l

)
= γVar

(
k−1∑
l=0

αk−l−1Z̃l

)
=
γ(1− α2k)

1− α2
Var(Z̃0)

−−−−→
k→∞

γVar(Z̃0)

1− α2

=
γ
(

2− γ
σ̄2 + γ2

4σ̄4

)
1−

(
1− γ

σ̄2 + γ2

2

(
1
σ4
1

+ 1
σ4
2

))2

=
1− γ

2σ̄2 + γ2

8σ̄4

1
σ̄2 − γ

2

(
1
σ4
1

+ 1
σ4
2

)
− γ

2

(
1
σ̄2 − γ

2

(
1
σ4
1

+ 1
σ4
2

))2 .

Theorem 34. Assume γ ∈
(
0, 2(σ1σ2)4[σ̄2(σ4

1 + σ4
2)]−1

)
. Then, the Wasserstein distance between the stationnary

distribution πγ and the target π of FALD is lower bounded as

W2 (πγ , π) ≥ γ

2
|µ1 − µ2|

∣∣∣∣ σ̄2

σ2
1

− σ̄2

σ2
2

∣∣∣∣ .
Proof. Based on Lemma 33, we know that πγ is Gaussian with parameters (m(γ), σ

2
(γ)) and using that π is Gaussian too

with parameters (m̄, σ̄2) given in (146), we have that

W2
2 (πγ , π) =

(
m(γ) − m̄

)2
+
(
σ(γ) − σ̄

)2 ≥ γ2σ̄4

4

∣∣∣∣( 1

σ4
1

+
1

σ4
2

)
m̄− µ1

σ4
1

− µ2

σ4
2

∣∣∣∣2
=
γ2σ̄4 (µ1 − µ2)

2

4

(
1

σ2
1

− 1

σ2
2

)2

.

9 Analysis of the complexity and communication cost

In this section, we study the optimal choices of k, γ when pc is fixed. For c0, c1, c2 ≥ 0 fixed, we consider the following
optimization problem: {

mink∈N?,γ>0 {k}
Subject to

{
c0 exp (−8kγ/m) + c1γ + c2γ

2 ≤ ε2
} .

Using that the constraint must be saturated at the optimum (which can be proved), we can write k as a function of γ. Hence,
the problem becomes {

mink,γ

{
8
γm log

(
c0

ε2−c1γ−c2γ2

)}
Subject to 0 < γ and ε2 − c1γ − c2γ2 > 0

. (151)

Let us introduce x ∈ R∗+, defined by x = ε−2γ and let c̃2 = ε2c2. We can rewrite (151) as{
mink,x

{
8

ε2mx log
(

c0
ε2(1−c1x−c̃2x2)

)}
Subject to 0 < x and 1− c1x− c̃2x2 > 0

. (152)

Consider µ = −c1/(2c̃2), σ =
√
c21/(4c̃

2
2) + 1/c̃2, and denote z = (x− µ)/σ. Since x = µ + zσ, we can verify that

1− c1x− c̃2x2 = c̃2σ
2(1− z2). Hence, (153) is equivalent to{

mink,γ

{
8

ε2m(µ+zσ) log
(

c0
ε2c̃2σ2(1−z2)

)}
Subject to − µ/σ < z < 1

. (153)
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According to the intermediate value theorem, we have the existence of zε (not necessarily unique, but we can consider one
of the solutions) such that

zε = arg max
−µ/σ<z<1

{
log(1− z2)

µ+ zσ

}
.

Thus, the solution is

γε = ε2 × z2
ε + (4ε2c2)−1(z2

ε − 1)c21

c1/2 + zε
√

4−1 c21 + ε2c2
,

Kε =
8
(
c1/2 + zε

√
4−1 c21 + ε2c2

)
ε2m (z2

ε + (4ε2c2)−1(z2
ε − 1)c21)

log

(
c0

ε2(c21/4 + ε2c2)1/2(1− z2
ε )

)
.

FALD. According to the Theorem 1, we have
c0 = I(µ0)

c1 = Vπ + (1− 1HX1) J/b+ (1− τ)(1− b−1)d/pc

c2 = 1HX1J/b+ (1− pc) {H + pcVε + d/b} /p2
c

.

If c1 > 0, define w = ε2c2/c
2
1. For ε ∈ (0, c1/

√
2c2], we have 0 < w ≤ 1/2. Consider z = 1− w, we get that(µ

σ

)2

=
1

1 + 4ε2c2/c21
<

1

1 + 2w
≤ 1− w ≤ 1− 2w + w2 = z2 < 1 .

Hence, the previous inequalities show that −µ/σ < z < 1, and for this choice

c1/2 + z
√

4−1c21 + ε2c2
z2 + (4ε2c2)−1(z2 − 1)c21

≤
c1 + ε(1− w)

√
c2

7/8 + (w − 2 + 1/64)w
.

Thus, for any ε ∈ (0, c1(2
√
c2)−1], we deduce thatw < 1/4. Therefore, we have shown thatKε = Õ((ε2m)−1(c1 +ε

√
c2)).

Moreover, this result is immediately valid when c1 = 0 since zε = arg max0<z<1{z−1 log(1− z2)}. Furthermore, when
pc,ε ↓ 0+, pc,εKε = Õ((εm)−1

√
b−1J) as stressed in the main paper.

VR-FALD?. Using Theorem 3, we obtain
c0 = IVr?(µ0)

c1 = (1− 1HX1) J/b+ (1− τ)(1− b−1)d/pc

c2 = 1HX1J/b+ (1− pc) {pcVε + d/b} /p2
c

.

When assuming HX1 and τ = 1, we have c1 = 0. Hence, zε = arg max0<z<1{z−1 log(1− z2)} and therefore

Kε =
8
√
c2

εmzε
log

(
c0

ε3
√
c2(1− z2

ε )

)
.

When pc,ε ↓ 0+, the minimum number of communications becomes pc,εKε = Õ(ε−1
√
b−1d). Finally, setting pc,ε = 1

gives Kε = Õ(ε−1
√
b−1J + b−1ωd).

Table 5: Complexity and communication settings of Figure 1.

PARAMETER d m ω H J Vπ V?

VALUE 10 1 10 100 20 10 30
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10 Numerical experiments

10.1 Gaussian example

In this first experiment, we consider b = 100 clients associated with potentials: ∀i ∈ [b], U i : x ∈ Rd 7→ (1/2)(x −
µi)
>Σ−1

i (x−µi) in dimension d = 20. In this particular case, we know, that the posterior distribution π ∝ exp(−
∑b
i=1 U

i)

is Gaussian with mean x? =
∑b
i=1(Σ?Σ

−1
i µi) and covariance Σ? = (

∑b
i=1 Σ−1

i )−1. Also, we have a close formula
to calculate

∫
‖x − x?‖2dπ(x), since this quantity is equal to Tr(Σ?). To speed up the calculations, we initialize all

chains at x?, we discard the first 10% of the samples and keep all others. Moreover, we consider the step size γ̄ =
2[λmin(Σ−1

? ) + λmax(Σ−1
? )]−1 for Langevin Monte Carlo (Dalalyan and Karagulyan, 2019; Durmus and Moulines, 2019),

and we run the algorithms for the step sizes γ ∈ {pcγ̄2 , pcγ̄5 , pcγ̄10 } associated with pc ∈ { 1
5 ,

1
10 ,

1
20}. We set the probability of

updating the control variates qc = pc so as not to increase the communication cost too much. We also consider the two
extreme values of the parameter τ ∈ {0, 1} to determine whether it is preferable to have independent Gaussian noise on
each client or if it is better to have a common one.

10.2 Bayesian Logistic Regression

The second experiment is performed on the Titanic dataset, which is in the public domain and licensed under the Commons
Public Domain Dedication License (PDDL-1.0). We distribute this dataset heterogeneously across b = 10 clients by
drawing a Dirichlet random variable for each label on the standard b− 1 simplex. Since the sum of the coordinates of these
random variables equals 1, each coordinate indicates the fraction of labels to be distributed to each client. To have access to
ground truth, we also implement Langevin Stochastic Dynamics (LSD). We compute K = 250000 iterations, each time
considering a burn-in period of length 10% initialized with a warm start provided by SGD. The ith client uses its local
dataset {(zij , oij) ∈ R4 × {0, 1} : j ∈ [Ni]} to calculate the local potential U i(x) =

∑Ni
j=1[oij log(1 + exp(−zTijx)) +

(1− oij) log(1 + exp(zTijx))] + λ‖x‖2, where λ = 1 is associated with the Gaussian prior. Denote Ztrain the matrix whose
lines are the covariates zTij , and write Σ = ZTtrainZtrain. We run the algorithms with mini-batches of size ni = 1; a step size
γ = 2[λmin(Σ) + λmax(Σ)]−1 for FALD, VR-FALD? and equal to γ/b for LSD with thinning inversely proportional to the
step size. Moreover, we consider a communication probability of pc = 1/20 and clients update their control variables with
probability qc = pc. Finally, to evaluate the obtained results, we consider the accuracy, agreement, and total variation, as
well as the calibration results such as ECE, BS, and NLL, which are described below.

Accuracy. Based on samples from the approximate posterior distribution, we compute the minimum mean squared
estimator (i.e., which corresponds to the posterior mean) and use it to make predictions for the test dataset. The Accuracy
metric corresponds to the percentage of well-predicted labels.

Agreement. Let pref and p denote the predictive densities associated with HMC and an approximate simulation-based
algorithm, respectively. Similar to Izmailov et al. (2021), we define the agreement between pref and p as the proportion of
test data points for which the top-1 predictions of pref and p, i.e.

agreement(pref , p) =
1

|Dtest|
∑

x∈Dtest

1

{
arg max

y′
pref(y

′ | x) = arg max
y′

p(y′ | x)

}
.

Total variation (TV). By denoting Y as the set of possible labels, we consider the total variation metric between pref and
p, i.e.

TV(pref , p) =
1

2|Dtest|
∑

x∈Dtest

∑
y′∈Y

|pref(y
′ | x)− p(y′ | x)| .

Expected Calibration Error (ECE). To measure the difference between the accuracy and confidence of the predictions,
we group the data into M ≥ 1 buckets defined for each m ∈ [M ] by Bm = {(x, y) ∈ Dtest : p(ypred(x)|x) ∈
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](m− 1)/M,m/M ]}. As in the previous work of Ovadia et al. (2019), we denote the model accuracy on Bm by

acc (Bm) =
1

|Bm|
∑

(x,y)∈Bm

1ypred(x)=y

and define the confidence on Bm by

conf (Bm) =
1

|Bm|
∑

(x,y)∈Bm

p(ypred(x)|x) .

As emphasized in Guo et al. (2017), for any m ∈ [M ] the accuracy acc (Bm) is an unbiased and consistent estimator of
P (ypred(x) = y | (m− 1)/M < p(ypred(x)|x) ≤ m/M). Therefore, the ECE is defined by

ECE =

M∑
m=1

|Bm|
|Dtest|

|acc (Bm)− conf (Bm)|

and is an estimator of
E(x,y)

[∣∣ PP (ypred(x) = y | p(ypred(x)|x))− p(ypred(x)|x)
∣∣].

Thus, the ECE measures the absolute difference between the confidence level of a prediction and its accuracy.

Brier Score (BS). The BS is a proper scoring rule (see for example Dawid and Musio (2014)) that can only evaluate
random variables taking a finite number of values. Denote by Y the finite set of possible labels, the BS measures the
confidence of the model in its predictions and is defined by

BS =
1

|Dtest|
∑

(x,y)∈Dtest

∑
c∈Y

(p(y = c|x)− 1y=c)
2 .

Normalized Negative Log Likelihood (nNLL). This classical score defined by

nNLL = − 1

|Dtest|
∑

(x,y)∈Dtest

log p(y|x)

measures the ability of the model to predict good labels with high probability.

Highest posterior density (HPD). Under the Bayesian paradigm, we are interested in quantifying uncertainty by
estimating the regions of high probability. For all α ∈ (0, 1), we run each algorithm to estimate ηalgo

α > 0 such
that

∫
Rα

π(x)dx = 1 − α, where Rα = {x ∈ Rd : π(x) ≥ exp(−ηalgo
α )}. Then we define the relative HPD error as

|ηalgo
α /ηLSD

α − 1|, where ηLSD
α is estimated based on the samples drawn with the Langevin Stochastic Dynamics method.

10.3 Bayesian Neural Network: MNIST

To investigate the behavior of the proposed algorithms in a highly non-convex setting, we perform a first Deep Learning
experiment on the MNIST dataset (Deng, 2012), which can be publicly downloaded using the torchvision package and is
available under the Creative Commons Attribution-Share Alike 3.0 license. To this end, we distribute the entire dataset
across b = 20 clients in a highly heterogeneous manner to train the LeNet5 neural network (LeCun et al., 1998). The MNIST
real-world dataset consists of 70000 grayscale images of size 28× 28 associated with the 10 digits. This dataset is divided
into two subsets: the training set, which contains 60000 images, and the test set, which consists of the remaining 10000
images. We report the median of the scores with their associated hyperparameters in Table 6. The burn-in corresponds to
the number of steps performed before we start storing the samples, and the thinning is the frequency with which we keep
the samples. We also consider a Gaussian prior which corresponds to a squared norm regularizer with weight decay. We
initialized FSGLD (El Mekkaoui et al., 2021) with a global SGD warm start combined with local SWAG (Maddox et al.,
2019) to learn Gaussian conducive gradients.
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METHOD SGLD pSGLD FALD VR-FALD? FSGLD

Accuracy 99.1± 0.1 99.2± 0.1 99.1± 0.1 99.2± 0.1 98.5± 0.2
103×ECE 6.88± 27.07 21.6± 11.1 4.07± 0.80 4.34± 1.26 6.34± 1.90
102×BS 1.66± 1.76 1.45± 0.12 1.47± 0.45 1.39± 0.07 2.39± 1.72
102×nNLL 3.53± 5.08 4.24± 1.14 3.06± 0.43 3.43± 0.37 4.87± 0.51
Weight Decay 5 5 5 5 5
Batch Size 64 64 8 8 64
Learning rate 1e-07 1e-08 1e-07 1e-07 1e-08
Local steps N/A N/A 20 20 20
Burn-in 100epch. 100epch. 1e04 1e04 1e04
Thinning 1 1 1e03 1e03 1e03
Training 1e03epch. 1e03epch. 1e05it. 1e05it. 1e05it.

Table 6: Performance of Bayesian FL algorithms on MNIST.

METHOD HMC SGD DEEP ENS. SGLD FALD VR-FALD?

Accuracy 89.6± 0.25 91.57± 0.34 91.68± 0.17 89.96± 0.72 92.54± 0.04 92.03± 0.09
Agreement 94.0± 0.25 90.99± 0.35 91.03± 0.43 92.43± 0.03 91.53± 0.39 91.12± 0.39
10× TV 0.74± 0.03 1.45± 0.05 1.49± 0.05 1.03± 0.03 1.42± 0.01 1.39± 0.01
102×ECE 5.9±NA 4.71± 1.35 5.44± 0.67 4.41± 0.37 3.79± 0.11 3.26± 0.09
10×BS 1.4±NA 1.69± 0.11 1.45± 0.10 1.53± 0.10 1.16± 0.03 1.20± 0.03
10×nNLL 3.07±NA 3.35± 0.70 3.81± 0.51 3.15± 0.21 2.75± 0.04 2.63± 0.04

Table 7: Performance of Bayesian FL algorithms on CIFAR10.

10.4 Bayesian Neural Network: CIFAR10

In this last experiment, we consider the more challenging dataset CIFAR10 (Krizhevsky, 2009), which is available under
license MIT and contains images of size (3, 32, 32). We used different approaches to sample the weights for the ResNet-20
model (He et al., 2016), which is publicly available in the pytorchcv library. We initialized the algorithms with 10 different
parameters using SGD (400 epochs) trained with a OneCycleLR scheduler (Smith and Topin, 2019), and we also use data
augmentation with a mini-batch of size 128 and a learning rate of 2e-7. Based on these initializations, we ran 10 chains in
parallel for SGLD, FALD, and VR-FALD? with step sizes of 1e-7, 2e-8, 1e-8. We considered 1e4 iterations with only
one stored sample every 1e3 iterations (we did not keep the initial weights obtained by SGD to make the predictions). For
each chain, we can see that Bayesian model averaging increases the accuracy. To compare the behavior of the mentioned
algorithms, we compute the accuracy, the agreement, i.e., the percentage of time the top-1 prediction of an algorithm
matches that given by the HMC, and the total variation (TV) between the predictive distribution given by an algorithm with
the one associated with the HMC sampler. We also give some classical calibration scores (Guo et al., 2017), such as the
expected calibration error (ECE), the Brier score (BS), and the negative log-likelihood (nNLL).
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