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Abstract

Stochastic gradient MCMC (SGMCMC) offers
a scalable alternative to traditional MCMC, by
constructing an unbiased estimate of the gradi-
ent of the log-posterior with a small, uniformly-
weighted subsample of the data. While efficient
to compute, the resulting gradient estimator may
exhibit a high variance and impact sampler per-
formance. The problem of variance control has
been traditionally addressed by constructing a bet-
ter stochastic gradient estimator, often using con-
trol variates. We propose to use a discrete, non-
uniform probability distribution to preferentially
subsample data points that have a greater impact
on the stochastic gradient. In addition, we present
a method of adaptively adjusting the subsample
size at each iteration of the algorithm, so that we
increase the subsample size in areas of the sam-
ple space where the gradient is harder to estimate.
We demonstrate that such an approach can main-
tain the same level of accuracy while substantially
reducing the average subsample size that is used.

1 INTRODUCTION

Markov chain Monte Carlo (MCMC) algorithms are a pop-
ular family of methods to conduct Bayesian inference. Un-
fortunately, running MCMC on large datasets is generally
computationally expensive, which often limits the use of
MCMC by practitioners. The Metropolis- Hastings algo-
rithm (Metropolis et al., 1953; Hastings, 1970), in particular,
requires a scan of the full dataset at each iteration to calcu-
late the acceptance probability.

Stochastic gradient Markov chain Monte Carlo (SGMCMC)
algorithms are a family of scalable methods, which aim
to address this issue (Welling and Teh, 2011; Nemeth and
Fearnhead, 2021). These algorithms aim to leverage the
efficiency of gradient-based MCMC proposals (Roberts and
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Tweedie, 1996; Neal, 2011). They reduce the per-iteration
computational cost by constructing an unbiased, noisy esti-
mate of the gradient of the log-posterior, using only a small
data subsample. In this paper, we focus on samplers that
rely on the overdamped Langevin diffusion (Roberts and
Tweedie, 1996), however, our proposed methodology can
be applied more generally to other SGMCMC algorithms,
such as those based on Hamiltonian dynamics (Chen et al.,
2014).

The high variance inherently present in the stochastic gradi-
ent estimator can degrade sampler performance and lead to
poor convergence. As such, variance control has become an
important area of research within the SGMCMC literature,
and is often required to make these algorithms practical
(Dubey et al., 2016; Chatterji et al., 2018; Baker et al., 2019;
Chen et al., 2019).

In this paper, we propose a new method designed to reduce
the variance in the stochastic gradient. We use a discrete,
non-uniform probability distribution to preferentially sub-
sample data points and to re-weight the stochastic gradient.
In addition, we present a method for adaptively adjusting
the size of the subsample chosen at each iteration.

2 STOCHASTIC GRADIENT MCMC

Let θ ∈ Rd be a parameter vector and denote indepen-
dent observations x = {xi}Ni=1 (N ≫ 1). The probabil-
ity density of the i-th observation, given parameter θ, is
p(xi|θ) and the prior density for the parameters is p(θ). In
a Bayesian context, the target of interest is the posterior
density, π(θ) := p(θ|x) ∝ p(θ)

∏N
i=1 p(xi|θ).

For convenience, we define fi(θ) = − log p(xi|θ) for i =
1, . . . , N , with f0(θ) = − log p(θ) and f(θ) = f0(θ) +∑N

i=1 fi(θ). In this setting, the posterior density can be
rewritten as, π(θ) ∝ exp(−f(θ)).

2.1 The Langevin diffusion

The Langevin diffusion, θ(t), is defined by the stochastic
differential equation,

dθ(t) = −1

2
∇f(θ(t))dt+ dBt, (1)
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where ∇f(θ(t))dt is a drift term and Bt denotes a d-
dimensional Wiener process. Under certain regularity con-
ditions, the stationary distribution of this diffusion is the
posterior π (Roberts and Tweedie, 1996). In practice, we
need to discretise Eq. (1) in order to simulate from it and this
introduces error. For a small step-size ϵ > 0, the Langevin
diffusion can be approximated by

θ(t+1) = θ(t) − ϵ

2
∇f
(
θ(t)
)
+
√
ϵ η(t), (2)

where the noise η(t) ∼ Nd(0, Id×d) is drawn independently
at each update. The dynamics implied by Eq. (2) provide
a simple way to sample from the Langevin diffusion. The
level of discretisation error in the approximation is con-
trolled by the size of ϵ and we can achieve any required
degree of accuracy if we choose ϵ small enough.

The unadjusted Langevin algorithm (ULA) (Parisi, 1981)
is a simple sampler that simulates from Eq. (2) but does
not use a Metropolis-Hastings correction (Metropolis et al.,
1953; Hastings, 1970). Thus, the samples obtained from
ULA produce a biased approximation of π. The per-
iteration computational cost of ULA is smaller than that
of the Metropolis-adjusted Langevin algorithm (Roberts
and Rosenthal, 1998) due to the removal of the Metropolis-
Hastings step. However, the computational bottleneck for
ULA lies in the O(N) calculation of the full data gradient
∇f
(
θ(t)
)
= ∇f0

(
θ(t)
)
+
∑N

i=1∇fi
(
θ(t)
)

at every itera-
tion. This calculation can be problematic if N is large.

2.2 Stochastic gradient Langevin dynamics
The stochastic gradient Langevin dynamics (SGLD) algo-
rithm attempts to improve the per-iteration computational
burden of ULA by replacing the full-data gradient with an
unbiased estimate (Welling and Teh, 2011). Let the full-data
gradient of f(θ) be given by

g(t) = ∇f
(
θ(t)
)
= ∇f0

(
θ(t)
)
+

N∑
i=1

∇fi
(
θ(t)
)
.

The unbiased estimate of g(t) proposed by Welling and Teh
(2011) takes the form

ĝ(t) = ∇f0
(
θ(t)
)
+

N

n

∑
i∈St

∇fi
(
θ(t)
)
, (3)

where St is a subset of {1, . . . , N} and |St| = n (n≪ N )
is the subsample size. A single update of SGLD is thus
given by,

θ(t+1) ← θ(t) − ϵ(t)

2
· ĝ(t) + ξ(t), (4)

where ξ(t) ∼ Nd(0, ϵ
(t)Id×d) and {ϵ(t)} corresponds to a

schedule of step-sizes which may be fixed (Vollmer et al.,
2016) or decreasing (Teh et al., 2016). The full SGLD
pseudocode is provided in Algorithm 1.

Algorithm 1 SGLD

1: Input: initialise θ(1), batch size n, step-sizes {ϵ(t)}.
2: for t = 1, 2, . . . , T do
3: Sample indices St ⊂ {1, . . . , N} with or without

replacement.
4: Calculate ĝ(t) using Eq. (3).
5: Update parameters according to Eq. (4).
6: end for
7: return θ(T+1)

Welling and Teh (2011) note that if the step-size ϵ(t) → 0
as t → ∞, then the Gaussian noise (generated by ξ(t))
dominates the noise in the stochastic gradient term. For large
t, the algorithm approximately samples from the posterior
using an increasingly accurate discretisation of the Langevin
diffusion. In practice, SGLD does not mix well when the
step-size is decreased to zero and so a small fixed step-size
ϵ is typically used instead.

2.3 Control variates for SGLD

The naive stochastic gradient proposed by Welling and Teh
(2011) may exhibit a relatively high variance for small sub-
samples of data. The more faithful a stochastic gradient
estimator is to the full-data gradient, the better we can ex-
pect SGLD to perform. Therefore, it is natural to consider
alternatives to the estimator given in Eq. (3) which minimise
the variance.

Let θ̂ be a fixed value of the parameter, typically chosen to
be close to the mode of the target posterior density. The
control variate gradient estimator proposed by Baker et al.
(2019) takes the form,

ĝ(t)cv =
[
∇f(θ̂) +∇f0

(
θ(t)
)
−∇f0(θ̂)

]
+ (5)

N

n

∑
i∈St

[
∇fi

(
θ(t)
)
−∇fi(θ̂)

]
.

When θ(t) is close to θ̂, the variance of the gradient estimator
will be small. This is shown formally in Lemma 1 of Baker
et al. (2019).

The SGLD-CV algorithm is the same as SGLD given in
Algorithm 1, except with ĝ

(t)
cv substituted in place of ĝ(t).

Implementing the SGLD-CV estimator involves a one-off
pre-processing step to find θ̂, which is typically done us-
ing stochastic gradient descent (SGD) (Bottou et al., 2018;
Baker et al., 2019). The gradient terms ∇fi

(
θ̂) are cal-

culated and stored. While these steps are both O(N) in
computational cost, the optimisation step to find the mode
can replace the typical burn-in phase of the SGLD chain.
The MCMC chain can then be initialised at the posterior
mode itself. The full pseudocode for SGLD-CV is provided
in Algorithm 3 within Appendix B.
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3 PREFERENTIAL DATA SUBSAMPLING
Let S be a subsample of size n generated with replacement,
such that the probability that the i-th data point, xi, appears
in S is pi. The expected number of times xi is drawn from
the dataset is npi. A standard implementation of SGLD
would assume uniform subsampling, i.e. that pi = 1

N for
all i. However, if the observations vary in their information
about the parameters, then assigning a larger probability to
the more informative observations would be advantageous.
Preferential subsampling assigns a strictly-positive, user-
chosen weight to each data point, such that we minimise the
variance of the estimator of the gradient.

We need to construct a discrete probability distribution
p(t) = (pt1, . . . , p

t
N )T (where p

(t)
i > 0 for all i and∑

i p
t
i = 1) that can be used to draw subsamples of size n

at each iteration t and to reweight the stochastic gradient
accordingly. If p(t) is time-invariant (i.e. p(t)i = pi for all i),
the preferential subsampling scheme is static. Otherwise, the
subsampling weights will be dynamic or state-dependent.

For a given stochastic gradient g̃, the noise term associated
with g̃ is given by ξ(t) = g̃(t) − g(t). Taking expectations
over p(t), a simple scalar summary of the variance of the
noise ξ(t) can be found by evaluating:

E
(∥∥ξ(t)∥∥2) = tr

(
Cov

(
g̃(t)
))

. (6)

We will refer to Eq. (6) as the pseudo-variance1 of g̃(t),
V
(
g̃(t)
)
, from now on. We intend to use the pseudo-variance

as a proxy for the variance of the stochastic gradient.2 In all
further analysis, ∥ · ∥ refers to the Euclidean norm.

In order to minimise the pseudo-variance, we need to find a
preferential subsampling distribution p∗ which minimises
the following problem:

min
p(t), pt

i∈[0,1],
∑

i p
t
i=1

V
(
g̃(t)
)
. (7)

Existing non-asymptotic convergence results for SGLD-
type methods3 demonstrate the importance in controlling
the variance of the stochastic gradient. These results give
the error of SGLD in terms of bounds on the (bias and)
variance of the estimator of the gradient of the log posterior.
Therefore, constructing a better stochastic gradient estimator
- for instance via preferential subsampling - will lead to
a reduction in the error bound of the underlying SGLD
method.

1See Appendix A.1 for a full derivation of the pseudo-variance.
2Note that g̃ is a d-dimensional random vector (where typically

d > 1). Eq. (6) is the sum of the variances of the elements of
g̃. The term “pseudo-variance" allows us to easily distinguish
between Eq. (6) and the variance-covariance matrix of g̃.

3Theorem 4 of Dalalyan and Karagulyan (2019) and Theorem
1 of Baker et al. (2019) are two such examples.

3.1 SGLD with preferential subsampling
An alternative gradient estimator for SGLD can be given by
reweighting the simple estimator defined in Eq. (3) (Welling
and Teh, 2011),

g̃(t) = ∇f0
(
θ(t)
)
+

1

n

∑
i∈St

1

pti
∇fi

(
θ(t)
)
, (8)

where St ⊂ {1, . . . , N} is selected according to p(t) and
|St| = n (n ≪ N). The pseudocode for the SGLD with
preferential subsampling (SGLD-PS) algorithm is outlined
in Algorithm 4 within Appendix B.

As we correct for the non-uniform subsampling of data
points by reweighting each gradient term, it follows that the
stochastic gradient estimator given in Eq. (8) is unbiased.
This is synonymous with the standard properties of impor-
tance sampling estimators (Robert and Casella, 2004). We
note that there is an extra O(n) computational cost associ-
ated with reweighting the stochastic gradient in this manner
at each iteration.

The following result obtains the optimal solution to Prob-
lem (7).

Lemma 3.1. For the unbiased SGLD-PS gradient estimator
in Eq. (8), minimising Problem (7) is equivalent to minimis-
ing the following

min
p(t)

1

n

N∑
i=1

1

pti

∥∥∇fi(θ(t))∥∥2. (9)

The optimal weights which minimise the pseudo-variance
are thus given by

pti =
∥∇fi

(
θ(t)
)
∥∑N

k=1 ∥∇fk
(
θ(t)
)
∥

for i = 1, . . . , N. (10)

Although a solution to Eq. (9) can be found, the resulting
sampling algorithm would not be practical, as the optimal
weights depend on the current state θ(t). Therefore the
subsampling distribution given in Eq. (10) requires N gra-
dient calculations per iteration. For large datasets, these
weights would be very expensive to store and calculate at
each iteration, making the algorithm impractical.

We can instead approximate the optimal weights given in
Eq. (10), such that they are not state-dependent and therefore
do not need to be updated at each iteration. These approxi-
mate weights can be calculated as an initial pre-processing
step before the main sampling algorithm is run.

A fairly simple approximation of the optimal weights given
in Eq. (10) for SGLD-PS would require substituting the
current state θ(t) with some alternative fixed point. The pos-
terior mode, θ̂, is a sensible choice as it represents the most
probable estimate of the parameters in a Bayesian paradigm.
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In this case, the approximate subsampling scheme would be
given by,

pi =
∥∇fi

(
θ̂
)
∥∑N

k=1 ∥∇fk
(
θ̂
)
∥

for i = 1, . . . , N. (11)

As with SGLD-CV, the posterior mode could be estimated
using SGD and the MCMC chain could then be initialised
at the posterior mode.

In practice, the subsampling weights in Eq. (11) are calcu-
lated only once with an O(N) preprocessing step and then
used statically (i.e without update). The resulting SGLD-PS
algorithm would calculate the stochastic gradient given in
Eq. (8) using these fixed weights.

3.2 SGLD-CV with preferential subsampling
The control-variates gradient estimator can be modified to
accommodate a preferential subsampling scheme in a simi-
lar manner. In this case, we would obtain

g̃(t) =
[
∇f(θ̂) +∇f0

(
θ(t)
)
−∇f0(θ̂)

]
+ (12)

1

n

∑
i∈St

1

pti

[
∇fi

(
θ(t)
)
−∇fi(θ̂)

]
.

The pseudocode for the modified SGLD-CV algorithm
(SGLD-CV-PS) is given in Algorithm 5 within Appendix
B. The following result provides the optimal solution to
Problem (7).

Lemma 3.2. For the unbiased SGLD-CV-PS gradient esti-
mator in Eq. (12), minimising Problem (7) is equivalent to
minimising the following

min
p(t)

1

n

N∑
i=1

1

pti

∥∥∇fi(θ(t))−∇fi(θ̂)∥∥2. (13)

The optimal weights which minimise the pseudo-variance
are thus given by

pti =
∥∇fi

(
θ(t)
)
−∇fi(θ̂))∥∑N

k=1 ∥∇fk
(
θ(t)
)
−∇fk(θ̂)∥

(14)

for i = 1, . . . , N .

As in Section 3.1, we can derive a solution to Eq. (13). How-
ever, the resulting sampling algorithm would once again
depend on the current state of the chain θ(t). The process
of finding a suitable approximation to the optimal weights
given in Eq. (14) for the control-variate gradient estimator
is non-trivial. Our approach will be to choose a set of sub-
sampling weights that could be used for all iterations of the
MCMC chain.

We consider an alternative minimisation problem

min
p(t), pt

i∈[0,1],
∑

i p
t
i=1

Eθ

[
V
(
g̃(t)
)]
, (15)

where the outer expectation is taken with respect to the
posterior distribution. Due to the linearity of expectation,
Eq. (15) is equivalent to solving the following problem:

min
p(t)

Eθ

[
1

n

N∑
i=1

1

pti

∥∥∇fi(θ(t))−∇fi(θ̂)∥∥2].
This can easily be shown by using a modified version of
the argument given for Lemmas 3.1 and 3.2. The optimal
subsampling weights in Eq. (14) can be approximated by

pi ∝

√
tr
(
∇2fi(θ̂) Σ̂∇2fi(θ̂)T

)
for i = 1, . . . , N, (16)

where ∇2fi(·) is the Hessian matrix of fi(·) and Σ̂ is the
covariance matrix of the Gaussian approximation to the
target posterior centred at the mode.

See Appendix A.4 for a full discussion of how these weights
can be obtained analytically and Appendix D for an as-
sessment of the computational cost associated with calcu-
lating them as a preprocessing step. The computational
cost required to calculate the Hessian matrix means that
this approach can be computationally expensive for high-
dimensional parameters.

3.3 Adaptive subsampling
In this section, we present a method for adaptively adjusting
the size of the subsample chosen at each iteration. We do
this by first finding an upper bound for the pseudo-variance
of the stochastic gradient estimator given in Eq. (12) and
then by rearranging the result to find a lower bound on the
subsample size.

Let us begin by placing a Lipschitz condition on each of the
likelihood terms.

Assumption 1. (Lipschitz continuity of gradients)
There exists constants L0, . . . , LN such that

∥∇fi(θ)−∇fi(θ′)∥ ≤ Li∥θ − θ′∥ (17)

for i = 0, . . . , N .

We can then obtain the following result using Assumption 1.

Lemma 3.3. Under Assumptions 1, the pseudo-variance of
the stochastic gradient estimator defined in Eq. (12) can be
bounded above by

V(g̃) ≤ 1

n
∥θ(t) − θ̂∥2

( N∑
i=1

L2
i

pti

)
. (18)

where p(t) = (pt1, . . . , p
t
N )T is a set of user-defined discrete

weights.

We can minimise the upper bound provided in Eq. (18) if
we plug in the optimal weights given in Eq. (14). In prac-
tice, however, it is advantageous to choose the preferential
subsampling scheme based on its ease of computation.
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The bound provided in Lemma 3.3 can still be used more
generally to control the size of the pseudo-variance of the
stochastic gradient estimator given in Eq. (12). If we want
to set the upper threshold of the pseudo-variance to be some
fixed value V0 > 0, we need to ensure that

1

n
∥θ(t) − θ̂∥2

( N∑
i=1

L2
i

pti

)
< V0,

for all iterations t = 1, . . . , T . We can rearrange the in-
equality above to obtain the following lower bound on the
subsample size,

n >
1

V0
∥θ(t) − θ̂∥2

( N∑
i=1

L2
i

pti

)
. (19)

For a given preferential subsampling scheme p(t), we can
control the noise of the stochastic gradient estimator given
in Eq. (12) by choosing the subsample size n ∝ ∥θ(t)− θ̂∥2.
This means that the subsample size can be set adaptively
according to the current state of the chain.

Our proposed algorithm is provided in Algorithm 2. The
subsample size at iteration t, n(t), will be updated using
the lower bound obtained in Eq. (19). For a fixed noise
threshold V0, it will be possible to decrease or increase the
size of n(t) depending on how far or close θ(t) is to the
posterior mode, θ̂.

This method is suitable for use on models that satisfy As-
sumption 1. Appendix C provides a selection of examples
where the Lipschitz constants can be calculated exactly.

Algorithm 2 Adaptive SGLD-CV with preferential subsam-
pling (ASGLD-CV-PS)

1: Input: initialise θ(1) close to θ̂, gradients ∇fi
(
θ̂),

weights p(1), step-size ϵ, noise threshold V0, Lipschitz
constants {Li}Ni=1.

2: for t = 1, 2, . . . , T do
3: Update p(t).
4: Find smallest possible n(t) using Eq. (19).
5: Sample n(t) indices St according to p(t) with re-

placement.
6: Calculate g̃(t) using Eq. (12)
7: Update parameters according to Eq. (4).
8: end for
9: return θ(T+1)

4 RELATED WORK
The idea of using a non-uniform discrete distribution to
draw subsamples and reweight a gradient estimator has been
well-explored within the stochastic optimisation literature.
Typically, the aim of these methods is to control the variance
of the gradient estimator, in order to improve the speed of
convergence of the algorithm.

Various papers explore the use of a static or time-invariant
subsampling schemes. Zhao and Zhang (2014b, 2015) and
Kern and Gyorgy (2016) propose the use of an importance
sampling approach for SGD-type algorithms, where the
subsampling weights are chosen according to the Lipschitz
smoothness constants of N individual cost functions, i.e.
pi =

Li∑N
j=1 Lj

. Zhao and Zhang (2014a) consider a strat-

ified sampling approach, where data points are assigned
the the same weight if they belong to the same strata or
cluster. Zhang et al. (2017) propose the use of determinan-
tal point processes to diversify the subsamples selected for
SGD, constructing a soft similarity measure to reweight data
points.

Inspired by active learning methods, Salehi et al. (2017)
create a multi-armed bandit (MAB) framework to dynami-
cally update the subsampling weights over several iterations
of the SGD algorithm. Feedback is collected via the most
recent stochastic gradients and passed into the MAB at each
iteration. Liu et al. (2020) adapts the work of Salehi et al.
and extends it to the minibatch setting for the ADAM algo-
rithm (Kingma and Ba, 2016).

There have only been a handful of papers considering simi-
lar ideas within the stochastic gradient MCMC literature. Fu
and Zhang (2017) extend the stratified sampling methodol-
ogy of Zhao and Zhang (2014a) to the general class of SGM-
CMC algorithms. Li et al. (2021) meanwhile propose an
exponentially weighted stochastic gradient method, which
can be combined with other variance reduction techniques.

5 NUMERICAL EXPERIMENTS

In the experiments to follow, we compare our proposed
preferential subsampling approaches in a number of differ-
ent scenarios. Our aim here is to demonstrate the value
of preferential subsampling as a variance control measure.
To communicate the idea succinctly, we only include the
benchmark methods SGLD and SGLD-CV in our results.

We evaluate the performance of our proposed methods on
both real and synthetic data. Please refer to Appendix C for
detailed information about the datasets considered.

A fixed step-size scheme for ϵ is used throughout, as sug-
gested by Vollmer et al. (2016). To ensure a fair comparison,
all samplers were run with the same step-size (with ϵ ≈ 1

N ).
This allowed us to control for discretisation error and to
independently assess the performance benefits offered by
preferential subsampling. See Appendix E for further de-
tails.

For samplers where the burn-in phase is replaced by an opti-
miser, we have opted to use an off-the-shelf implementation
of ADAM (Kingma and Ba, 2016) to find the posterior mode.
Unless stated otherwise, all samplers are implemented using
sampling with replacement.
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Computing environment We used the jax autograd
module to implement the SGMCMC methods. Our re-
sults were obtained on a four-core 3.00GHz Intel Xeon(R)
Gold virtual desktop. The code for this paper is hosted on
GitHub4.

5.1 Models
We compare sampler performance on the following three
models: (i) bivariate Gaussian, (ii) binary logistic regression
and (iii) linear regression. Full model details (including the
derivation gradients and Lipschitz constants) are provided
in Appendix C.

The examples have been deliberately chosen to be simple
and our reasons for doing so are threefold. Firstly, our pro-
posed methods rely upon being able to estimate the posterior
mode well and as such, we are prioritising models where
the mode is easy to find. Secondly, the Lipschitz constants
for these models are known and this allows us to test our
adaptive subsampling approach. And lastly, the SGLD-CV-
PS subsampling scheme outlined in Eq. (16) requires the
Hessian matrix, ∇2fi(·), to be computed for all data points
and this is a costly preprocessing step for large parameter
spaces5.

5.1.1 Bivariate Gaussian
We simulate independent data from Xi|θ ∼ N2(θ,Σx)
for i = 1, . . . , N. It is assumed that θ is unknown and
Σx is known. The conjugate prior for θ is set to be
θ ∼ N2(µ0,Λ0). The prior hyperparameters of the prior
are µ0 = (0, 0)T and Λ0 = diag(1×103, 2). The target pos-
terior is a non-isotropic Gaussian with negatively correlated
parameters.

5.1.2 Binary logistic regression
Suppose we have data x1, . . . , xN of dimension d taking
values in Rd, where each xi = (1, xi1, . . . , xip)

T (where
d = p + 1). Let us suppose that we also have the corre-
sponding response variables y1, . . . , yN taking values in
{0, 1}. Then a logistic regression model with parameters
θ = (β0, β1, . . . , βp) will have the following density func-
tion

p(yi|xi, θ) =

(
1

1 + e−θT xi

)yi
(
1− 1

1 + e−θT xi

)1−yi

.

The prior for θ is set to be θ ∼ Nd(µ0,Λ0). The hyper-
parameters of the prior are µ0 = (0, . . . , 0)T and Λ0 =
diag(10, d).

5.1.3 Linear regression
Suppose we have data x1, . . . , xN of dimension d taking
values in Rd, where each xi = (1, xi1, . . . , xip)

T (d =

4Repository: https://github.com/srshtiputcha/
sgmcmc_preferential_subsampling

5We have provided an extended discussion of the preprocessing
costs associated with SGLD-CV-PS in Appendix D.

p+ 1). Let us suppose that we also have the corresponding
response variables y1, . . . , yN taking values on the real line.

We define the following linear regression model,

yi = xT
i θ + ηi, ηi ∼ N (0, 1),

with parameters θ = (β0, β1, . . . , βp). The prior for θ is the
same as above.

5.2 Metrics
We assess the performance of our samplers using the follow-
ing metrics.

5.2.1 Kullbeck-Leibler (KL) divergence
The KL divergence is a measure of difference between two
probability distributions with densities p(·) and q(·) and is
given by,

DKL(p||q) =
∫

p(θ) log
p(θ)

q(θ)
dθ.

In the case of our bivariate Gaussian model, we know that
the target posterior is conjugate and the KL divergence
between two Gaussians can be written analytically. We use
the KL divergence to measure the difference between the
target posterior and our generated samples in Figure 4(a).

5.2.2 Log-loss
The log-loss is a popular metric for assessing the predictive
accuracy of the logistic regression model on a test dataset,
T ∗. For binary classification, the log-loss is given by

l(θ, T ∗) = − 1

|T ∗|
∑

i∈|T ∗|

log p(y∗i |x∗
i , θ).

We compute the log-loss for our logistic regression example
in Figure 2(b)(ii).

5.2.3 Kernel Stein discrepancy
We measure the sample quality of our MCMC chains using
the kernel Stein discrepancy (KSD). The KSD assesses the
discrepancy between the target posterior π and the empirical
distribution π̃K formed by SGMCMC samples {θ}Kk=1 (Liu
et al., 2016; Gorham and Mackey, 2017). A key benefit of
the KSD is that it penalises the bias present in our MCMC
chains. We can define the KSD as,

KSD(π̃K , π) =

d∑
j=1

√√√√ K∑
k,k′=1

k0j (θk, θk′)

K2
, (20)

where the Stein kernel for j ∈ {1, . . . , d} is given by,

k0j (θ, θ
′) =

1

π(θ)π(θ′)
∇θj∇θ′

j

(
π(θ)K(θ, θ′)π(θ′)

)
(21)

and K(·, ·) is a valid kernel function. Gorham and Mackey
(2017) recommend using the inverse multi-quadratic ker-
nel, K(θ, θ′) =

(
c2 + ∥θ − θ′∥22

)β
, which detects non-

convergence for c > 0 and β ∈ (−1, 0). In practice, the
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full-data gradients in Eq. (21) can be replaced by noisy, un-
biased estimates. We compute the KSD for our linear and lo-
gistic regression examples in Figures 2(a) - (b)(i), 3(a), 4(b)
and 5(a).

5.3 Numerical results
5.3.1 Evaluating the quality of the stochastic gradients
In this experiment, our objective was to compare the pseudo-
variance of our proposed gradient estimators against the
proportion of data used in a subsample, n

N . We consider
three scenarios: (a) bivariate Gaussian (b) balanced bivariate
logistic regression, and (c) imbalanced bivariate logistic
regression. For ease of computation, a synthetic dataset of
size N = 103 was used for all models.

In each scenario, we generated ten candidate draws of θ and
calculated an empirical estimate of the pseudo-variance at
each. The candidate draws were sampled either from the
posterior (for scenario (a)) or from a normal approximation
to the posterior (for scenarios (b) and (c)). We plot the
mean empirical estimate of the pseudo-variance for various
subsample sizes.

Figure 1(a) compares the stochastic gradients for SGLD
with and without replacement (WR and WOR respectively)
and for SGLD-PS with exact and approximate subsampling
schemes. Figures 1(b) and (c) additionally compare the
gradient estimators of SGLD-CV and those of SGLD-CV-
PS with exact and approximate subsampling schemes.6

SGLD and SGLD-CV with replacement offer the best vari-
ance reduction for larger subsamples, as n

N tends towards
1. For more reasonable subsample sizes of n ≤ 0.2N ,
however, there is no major benefit in generating subsam-
ples without replacement. Figure 1 illustrates that there is a
marked reduction in the pseudo-variance when a preferential
subsampling scheme is used.

SGLD-PS and SGLD-CV-PS consistently outperform their
vanilla counterparts and there seems to be very little differ-
ence between the exact and approximate schemes for SGLD-
PS. Whereas, there is a difference in performance between
the exact and approximate subsampling schemes for SGLD-
CV-PS. This difference is noticeable in Figure 1(c) for the
synthetic imbalanced logistic regression data. Practically, it
is not feasible to use the exact subsampling weights, but as
illustrated here, using approximate preferential weights is
always better than using uniform weights.

5.3.2 Performance with varying subsample size
In Figure 2, we compare the sampler performance of SGLD,
SGLD-CV, SGLD-PS and SGLD-CV-PS for a subsample
size of 0.1% of the dataset size over 10 passes of the data.

6In the case of a Gaussian posterior, the SGLD-CV stochastic
gradient offers optimal variance reduction, with optimal weights
pi =

1
N

. For this reason, there is no extra improvement gain to be
obtained here by implementing SGLD-CV-PS

We have run ten MCMC chains allowing for an equal num-
ber of iterations for both burn-in and sampling.

Figure 2(a) plots the KSD results for the linear regression
model fitted on the CASP dataset. The CASP dataset has
been obtained from the UCI Machine Learning repository
and contains 45,730 instances and 9 features.

Furthermore, Figure 2(b) plots the results of fitting the lo-
gistic regression model to the covertype dataset (Blackard
and Dean, 1998). The covertype dataset contains 581,012
instances and 54 features. The KSD results are shown in
Figure 2(b)(i) and the log-loss (evaluated every 10 iterations)
is computed on the test set in Figure 2(b)(ii).

In addition, we separately compare the sampler performance
of SGLD and SGLD-PS in Figure 4 (see Appendix F) for
subsample sizes of 1%, 5% and 10% of the dataset size,
over 500 passes of the data. As before, ten MCMC chains
were run for each subsample size tested, allowing for an
equal number of iterations for both burn-in and sampling

Figure 4(a) plots the KL divergence for the bivariate Gaus-
sian model fitted on synthetic data of size N = 104. Fig-
ure 4(b) plots the KSD for the logistic regression model
fitted on the covertype dataset (Blackard and Dean, 1998).

We can see that SGLD-CV-PS exhibits the best performance
overall. More generally, we find that there is a benefit in
implementing preferential subsampling for vanilla SGLD
as well. In practice, we find that the largest performance
gains are found for preferential subsampling when the sub-
sampling size is reasonably small.

5.3.3 Performance of adaptive subsampling
We are interested in assessing the sampler performance
of ASGLD-CV and ASGLD-CV-PS over 104 iterations.
In this experiment, we considered two scenarios: (i) the
logistic regression model on balanced synthetic data of size
N = 104; and (ii) the linear regression model on the CASP
data. The results for scenario (i) are plotted in Figure 3.
Please refer to Figure 5 in Appendix F for the results of
scenario (ii). Both models satisfy Assumption 1.

In order to implement the adaptive subsampling methods,
we had to first pick a suitable pseudo-variance threshold, V0.
We generated ten chains of SGLD-CV and SGLD-CV-PS
for a fixed subsample of size 0.1% of the dataset size. For
each chain, we then:

1. calculated the squared Euclidean distances between the
mode and the samples, ∥θ − θ̂∥2,

2. found the 95-th percentile of the array of squared dis-
tances, and

3. calculated a proposal for V0 using the bound in
Eq. (18).

We set V0 to be the largest proposal amongst the ten chains.
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Figure 1: Empirical pseudo-variance against proportion of data in a subsample, n
N . (a) bivariate Gaussian, (b) balanced

logistic regression, (c) imbalanced logistic regression

Figure 3(a) plots the KSD for all four methods and Fig-
ure 3(b) displays the adaptive subsample sizes selected
along one chain of ASGLD-CV-PS. Figure 3(c) compares
the number of passes through the data considered by fixed
subsampling versus ASGLD-CV-PS over 104 iterations.

Overall, we see that the performance of ASGLD-CV-PS is
somewhat better than that of ASGLD-CV. We cannot always
presume that the adaptive subsampling methods will outper-
form their fixed subsampling counterparts (see Figure 5(a)
for instance) in terms of sample quality. However, it is clear
that the adaptive subsampling methods successfully process
far less of the data over 104 iterations with no significant
reduction in statistical accuracy.

6 CONCLUSIONS
We have used preferential subsampling to reduce the vari-
ance of the stochastic gradient estimator for both SGLD
and SGLD-CV. In addition, we have extended SGLD-CV to
allow for adaptive subsampling.

We have empirically studied the impact of preferential sub-
sampling on a range of synthetic and real-world datasets.
Our numerical experiments successfully demonstrate the
performance improvement from both preferential subsam-
pling and adaptively selecting the subsample size.

Future work in this area could explore the potential for using
multi-armed bandits to preferentially select data subsamples
for SGMCMC. These concepts have only been previously
considered within the context of stochastic optimisation
(Salehi et al., 2017; Liu et al., 2020).

The methods outlined in this paper are not limited to
Langevin dynamics and can be applied to other SGMCMC

samplers. Furthermore, it would be worth considering how
preferential subsampling could be extended for other vari-
ance control methods, such as SAGA-LD or SVRG-LD
(Dubey et al., 2016). This could potentially be done by
adapting the ideas presented in Schmidt et al. (2015), Kern
and Gyorgy (2016) and Schmidt et al. (2017). Arguments
that mirror those presented in Lemmas 3.1 and 3.2 could be
used to obtain the optimal preferential subsampling scheme
in each new case.
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Figure 2: Sampler performance of SGLD, SGLD-CV, SGLD-PS and SGLD-CV-PS for 0.1% subsample size over 10 passes
through the data. (a) linear regression model on the CASP data (y-axis: KSD); (b) logistic regression on the covertype data
(y-axis: (i) KSD, (ii) log-loss).
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Figure 3: A logistic regression model fitted on balanced synthetic data of size N = 104. (a) KSD comparison of SGLD-CV,
SGLD-CV-PS, ASGLD-CV and ASGLD-CV-PS over 104 iterations; (b) adaptive subsample sizes selected along one
ASGLD-CV-PS chain; (c) the number of passes through the data considered by fixed versus adaptive subsampling.
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A RESULTS FROM SECTION 3

A.1 Full derivation of the pseudo-variance

The pseudo-variance g̃(t) is given by:

V
(
g̃(t)
)
= E

(∥∥g̃(t) − g(t)
∥∥2) (22)

= E
((

g̃(t) − g(t)
)T (

g̃(t) − g(t)
))

(23)

=

d∑
j=1

E
((

g̃
(t)
j − g

(t)
j

)2)
(decompose expectation over d parameters) (24)

=

d∑
j=1

E
((

g̃
(t)
j − E

[
g̃
(t)
j

])2)
(25)

=
d∑

j=1

Var
(
g̃
(t)
j

)
(26)

= tr

(
Cov

(
g̃(t)
))

. (27)

A.2 Proof of Lemma 3.1

Proof. From Section A.1, we know that

V
(
g̃(t)
)
= E

[∥∥g̃(t) − g(t)
∥∥2] =

d∑
j=1

Var
(
g̃
(t)
j

)
. (28)

Taking expectations with respect to p(t), we know that the j-th component of the sum in Eq. (28) is given by:

Var
(
g̃
(t)
j

)
= Var

(
∇jf0

(
θ(t)
)
+

1

n

∑
i∈St

1

pti
∇jfi

(
θ(t)
))

= Var

(
1

n

∑
i∈St

1

pti
∇jfi

(
θ(t)
))

.

Given that all stochastic gradient estimators are unbiased with the same mean, we know that minimising V
(
g̃(t)
)

with respect

to p(t) is equivalent to minimising the component-wise sum of second moments,
∑d

j=1 E

((
1
n

∑
i∈St

1
pt
i
∇jfi

(
θ(t)
))2

)
.

So, for j = 1, . . . , d, we consider

E

((
1

n

∑
i∈St

1

pti
∇jfi

(
θ(t)
))2

)
=

1

n2
E

(∑
i∈St

(
1

pti
∇jfi

(
θ(t)
))2

+
∑
i∈St

∑
k∈St, i ̸=k

1

pti
· 1
ptk
· ∇jfi

(
θ(t)
)
· ∇jfk

(
θ(t)
))

=
1

n
E

((
1

pti
∇jfi

(
θ(t)
))2

)
+

n(n− 1)

n2
E

(
1

pti
∇jfi

(
θ(t)
))2

=
1

n

N∑
i=1

1

pti

[
∇jfi

(
θ(t)
)]2

+
n− 1

n

(
N∑
i=1

∇jfi
(
θ(t)
))2

=
1

n

N∑
i=1

1

pti

[
∇jfi

(
θ(t)
)]2

+ Cj ,
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where Cj is a constant that does not depend on p(t). Adding up over all components, we see that,

d∑
j=1

E

((
1

n

∑
i∈St

1

pti
∇jfi

(
θ(t)
))2

)
=

d∑
j=1

[
1

n

N∑
i=1

1

pti

[
∇jfi

(
θ(t)
)]2

+ Cj

]

=
1

n

N∑
i=1

1

pti
∥∇fi

(
θ(t)
)
∥2 + C ′.

Therefore,

min
p(t), pt

i∈[0,1],
∑

i p
t
i=1

V
(
g̃(t)
)
⇐⇒ min

p(t), pt
i∈[0,1],

∑
i p

t
i=1

1

n

N∑
i=1

1

pti

∥∥∇fi(θ(t))∥∥2.
The minimisation problem of interest is

min
p(t), pt

i∈[0,1],
∑

i p
t
i=1

1

n

N∑
i=1

1

pti

∥∥∇fi(θ(t))∥∥2.
We know that via the Cauchy-Schwarz inequality7,

1

n

N∑
i=1

1

pti

∥∥∇fi(θ(t))∥∥2 =
1

n

(
N∑
i=1

1

pti
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.

The equality is only obtained when there exists a constant c ∈ R such that
(pt1)

−1
∥∥∇f1(θ(t))∥∥2

(pt2)
−1
∥∥∇f2(θ(t))∥∥2

...
(ptN )−1

∥∥∇fN(θ(t))∥∥2

 = c


pt1
pt2
...

ptN

 ,

which is equivalent to writing

(pt1)
−2
∥∥∇f1(θ(t))∥∥2 = (pt2)

−2
∥∥∇f2(θ(t))∥∥2 = . . . = (ptN )−2

∥∥∇fN(θ(t))∥∥2.
Under this constraint, Problem (13) is minimised. We can therefore conclude that the optimal weights which minimise the
pseudo-variance are,

pti =
∥∇fi

(
θ(t)
)
∥∑N

k=1 ∥∇fk
(
θ(t)
)
∥

for i = 1, . . . , N.

7The Cauchy-Schwarz inequality states that for d-dimensional real vectors u,v ∈ Rd, of all inner product space it is true that

|⟨u,v⟩| ≤ ⟨u,u⟩ · ⟨v,v⟩

Furthermore, the equality holds only when either u or v is a multiple of the other.
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A.3 Proof of Lemma 3.2

Proof. By the similar argument to that used for Lemma 3.1, we can show that

min
p(t), pt

i∈[0,1],
∑

i p
t
i=1

V
(
g̃(t)
)
⇐⇒ min

p(t), pt
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1

n

N∑
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1

pti

∥∥∇fi(θ(t))−∇fi(θ̂)∥∥2.
Once again, using the Cauchy-Schwarz inequality allows us to see that the optimal weights which minimise the pseudo-
variance are,

pti =
∥∇fi

(
θ(t)
)
−∇fi(θ̂))∥∑N

k=1 ∥∇fk
(
θ(t)
)
−∇fk(θ̂)∥

for i = 1, . . . , N.

A.4 Deriving approximate weights for the control variates gradient
The minimisation problem of interest is

min
p(t), pt

i∈[0,1],
∑

i p
t
i=1

Eθ

[
1

n

N∑
i=1

1

pti

∥∥∇fi(θ(t))−∇fi(θ̂)∥∥2].
So,

Eθ

[
1

n

N∑
i=1

1

pti

∥∥∇fi(θ(t))−∇fi(θ̂)∥∥2] = 1

n

N∑
i=1

1

pti
Eθ

[∥∥∇fi(θ(t))−∇fi(θ̂)∥∥2] (linearity of Eθ)

=

(
1

n

)( N∑
i=1

1

pti
Eθ

[∥∥∇fi(θ(t))−∇fi(θ̂)∥∥2])( N∑
i=1

pti

)

≥ 1

n

( N∑
i=1

√
1

pti
Eθ

[∥∥∇fi(θ(t))−∇fi(θ̂)∥∥2]pti ) (Cauchy-Schwarz)

=
1

n

( N∑
i=1

√
Eθ

[∥∥∇fi(θ(t))−∇fi(θ̂)∥∥2] )2

.

The problem is minimised when

pti ∝

√
Eθ

[∥∥∇fi(θ(t))−∇fi(θ̂)∥∥2] for i = 1, . . . , N.

Let’s assume that θ ∼̇ N (θ̂, Σ̂) at stationarity, where Σ̂ = −H(θ̂)−1. Using a first-order Taylor expansion about θ̂,∥∥∇fi(θ(t))−∇fi(θ̂)∥∥2 ≈ ∥∇fi(θ̂) +∇2fi(θ̂)(θ
(t) − θ̂)−∇fi(θ̂)

∥∥2 =
∥∥∇2fi(θ̂)(θ

(t) − θ̂)
∥∥2.

We know that (θ − θ̂) ∼̇ N (0, Σ̂). So,

∇2fi(θ̂)(θ
(t) − θ̂) ∼̇ N

(
0,∇2fi(θ̂)Σ̂∇2fi(θ̂)

T
)
.

Then,

Eθ

[∥∥∇fi(θ(t))−∇fi(θ̂)∥∥2] ≈ Eθ

[∥∥∇2fi(θ̂)(θ
(t) − θ̂)

∥∥2]
= tr

(
Cov

(
∇2fi(θ̂)

(
θ(t) − θ̂

)))
≈ tr

(
∇2fi(θ̂) Σ̂∇2fi(θ̂)

T

)
.

So, we can set

pi ∝

√
tr
(
∇2fi(θ̂) Σ̂∇2fi(θ̂)T

)
for i = 1, . . . , N.
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A.5 Proof of Lemma 3.3

Proof. We know that the pseudo-variance can be decomposed into

V(g̃) = E [∥g̃ − g∥2]

=
1

n

N∑
i=1

1

pti
∥∇fi

(
θ(t)
)
−∇fi(θ̂)∥2 −

1

n

∥∥∥∥ N∑
i=1

[
∇jfi

(
θ(t)
)
−∇jfi(θ̂)

]∥∥∥∥2︸ ︷︷ ︸
≥0

≤ 1

n

N∑
i=1

1

pti
∥∇fi

(
θ(t)
)
−∇fi(θ̂)∥2.

Under Assumption 1, we know that

V(g̃) ≤ 1

n
∥θ(t) − θ̂∥2

( N∑
i=1

L2
i

pti

)
.

B PSEUDOCODE FOR ALGORITHMS

Algorithm 3 SGLD-CV

1: Input: initialise θ(1) = θ̂, gradients ∇fi
(
θ̂), batch size n, step-size ϵ.

2: for t = 1, 2, . . . , T do
3: Sample indices St ⊂ {1, . . . , N} with or without replacement.
4: Calculate ĝ

(t)
cv in Eq. (5).

5: Update parameters according to Eq. (4).
6: end for
7: return θ(T+1)

Algorithm 4 SGLD with preferential subsampling (SGLD-PS)

1: Input: initialise θ(1), weights p(1), batch size n, step-size ϵ.
2: for t = 1, 2, . . . , T do
3: Update p(t).
4: Sample indices St according to p(t) with replacement.
5: Calculate g̃(t) using Eq. (8).
6: Update parameters θ(t+1) ← θ(t) − ϵ

2 · g̃
(t) +Nd(0, ϵtId×d)

7: end for
8: return θ(T+1)

Algorithm 5 SGLD-CV with preferential subsampling (SGLD-CV-PS)

1: Input: initialise θ(1) close to the mode θ̂, gradients∇fi
(
θ̂), weights p(1), batch size n, step-size ϵ.

2: for t = 1, 2, . . . , T do
3: Update p(t).
4: Sample indices St according to p(t) with replacement.
5: Calculate g̃(t) using Eq. (12).
6: Update parameters θ(t+1) ← θ(t) − ϵ

2 · g̃
(t) +Nd(0, ϵtId×d)

7: end for
8: return θ(T+1)
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C MODEL DETAILS
C.1 Bivariate Gaussian
C.1.1 Model specification
We want to simulate independent data from:

Xi|θ ∼ N2(θ,Σx) for i = 1, . . . , N.

It is assumed that that θ is unknown and Σx is known. The likelihood for a single observation is given by:

p(xi|θ) =
1√

(2π)2|Σx|
exp

(
− 1

2
(xi − θ)TΣ−1

x (xi − θ)

)
.

The likelihood function for N observations is

p(x|θ) =
N∏
i=1

1√
(2π)2|Σx|

exp

(
− 1

2
(xi − θ)TΣ−1

x (xi − θ)

)

∝ |Σx|−
N
2 exp

(
− 1

2

N∑
i=1

(xi − θ)TΣ−1
x (xi − θ)

)
.

The log-likelihood is a quadratic form in θ, and therefore the conjugate prior distribution for θ is the multivariate normal
distribution. The conjugate prior for θ is set to be

θ ∼ N2(µ0,Λ0).

The conjugate posterior that we are ultimately trying to simulate from using SGLD is known to be:

π(θ|x) ∝ exp

(
− 1

2
(θ − µ1)

TΛ−1
1 (θ − µ1)

)
D
= N2(µ1,Λ1),

where
µ1 = (Λ−1

0 +NΣ−1
x )−1(Λ−1

0 µ0 +NΣ−1
x x̄),

and
Λ−1
1 = Λ−1

0 +NΣ−1
x .

C.1.2 Model gradient
For the prior,

log p(θ) = −1

2
(θ − µ0)

TΛ−1
0 (θ − µ0)

Therefore,

∇f0(θ) = −∇ log p(θ) = Λ−1
0 (θ − µ0).

We know that for i ∈ {1, . . . , N},

fi(θ) = − log p(xi|θ) =
1

2
(xi − θ)TΣ−1

x (xi − θ) + constant

Therefore,
∇fi(θ) = Σ−1

x (θ − xi) and ∇2fi(θ) = Σ−1
x .
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C.1.3 Synthetic data

To generate the synthetic data, N data points are drawn from the model with θ =

(
0
1

)
and Σx =

(
1× 105 6× 104

6× 104 2× 105

)
.

The hyperparameters of the prior are µ0 =

(
0
0

)
and Λ0 =

(
1× 103 0

0 1× 103

)
. Synthetic datasets of sizes N = 103 and

N = 104 were generated for use in Figures 1(a) and 4(a) respectively.

C.2 Logistic regression
C.2.1 Model specification
Suppose we have data x1, . . . , xN of dimension d taking values in Rd, where each xi = (1, xi1, . . . , xip)

T (d = p + 1).
Let us suppose that we also have the corresponding response variables y1, . . . , yN taking values in {0, 1}. Then, a logistic
regression model with parameters θ = (β0, β1, . . . , βp) representing the coefficients βj for j = 1, . . . , p and bias β0 will
have likelihood

p(X, y|θ) =
N∏
i=1

[
1

1 + e−θT xi

]yi
[
1− 1

1 + e−θT xi

]1−yi

The prior for θ is set to be θ ∼ Nd(µ0,Λ0). The hyperparameters of the prior are µ0 = (0, . . . , 0)T and Λ0 = diag(10, d).

C.2.2 Model gradient and Hessian
For the prior,

log p(θ) = −1

2
(θ − µ0)

TΛ−1
0 (θ − µ0) = −

1

2
θTΛ−1

0 θ.

Therefore,

∇f0(θ) = − log p(θ) = Λ−1
0 θ.

We know that i ∈ {1, . . . , N}, the log-density

log p(yi|xi, θ) = yi log

(
1

1 + exp(−θTxi)

)
+ (1− yi) log

(
1− 1

1 + exp(−θTxi)

)
= yi log

(
1

1 + exp(−θTxi)

)
+ (1− yi) log

(
exp(−θTxi)

1 + exp(−θTxi)

)
= yi log

(
1

1 + exp(−θTxi)
· 1 + exp(−θTxi)

exp(−θTxi)

)
+ log

(
exp(−θTxi)

1 + exp(−θTxi)

)
= yi log(exp(θ

Txi)) + log

(
1

1 + exp(θTxi)

)
= yiθ

Txi − log(1 + exp(θTxi))

Therefore,

fi(θ) = − log p(yi|xi, θ) = log(1 + exp(θTxi))− yiθ
Txi,

and the corresponding gradient vector is

∇fi(θ) =
exp(θTxi)

1 + exp(θTxi)
· xi − yi · xi =

1

1 + exp(−θTxi)
· xi − yi · xi

The corresponding Hessian is

∇2fi(θ) =
exp(−θTxi)

(1 + exp(−θTxi))2
· xix

T
i .

We know that for the function h(a) = log(1 + exp(−a)), h′′(a) = exp(−a)
(1+exp(−a))2 ≤

1
4 . Therefore,
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∇2fi(θ) =
exp(−θTxi)

(1 + exp(−θTxi))2
· xix

T
i ⪯

1

4
xix

T
i .

Using results from Durmus and Moulines (2019) and Dwivedi et al. (2018), we know that fi(θ) is Li-continuous with
Li =

1
4λmax(xix

T
i ).

C.2.3 Synthetic data
We used the Python module sklearn to produce our synthetic classification data with four features (d = 5). We have
generated N training data points and Ntest = 0.5N test data points.

Two types of synthetic data were generated:

1. Balanced classification data, where 50% of instances have yi = 1. Synthetic datasets of sizes N = 103 and N = 104

were used for Figures 1(b) and 3 respectively.

2. Highly imbalanced classification data, where 95% of the instances have yi = 1. Synthetic data of size N = 103 was
used for Figure 1(c).

C.2.4 Real data
We used the covertype dataset (Blackard and Dean, 1998) for Figures 2(b)-(c) and 4(b). The covertype dataset contains
581,012 instances and 54 features. In particular, we have used a transformed version of this dataset that is available via
the LIBSVM repository8. We split the covertype dataset into training and test sets with 75% and 25% of the instances
respectively.

C.3 Linear regression
C.3.1 Model specification
Suppose we have data x1, . . . , xN of dimension d taking values in Rd, where each xi = (1, xi1, . . . , xip)

T (d = p+1). Let
us suppose that we also have the corresponding response variables y1, . . . , yN taking values on the real line.

We define the following linear regression model,

yi = xT
i θ + ηi, ηi ∼ N (0, 1)

with parameters θ = (β0, β1, . . . , βp) representing the coefficients βj for j = 1, . . . , p and bias β0. The regression model
will thus have likelihood

p(X, y|θ) =
N∏
i=1

[
1√
2π

exp

(
− 1

2
(yi − xT

i θ)
2

)]
.

The prior for θ is set to be θ ∼ Nd(µ0,Λ0). The hyperparameters of the prior are µ0 = (0, . . . , 0)T and Λ0 = diag(10, d).

C.3.2 Model gradient and Hessian

log p(θ) = −1

2
(θ − µ0)

TΛ−1
0 (θ − µ0) = −

1

2
θTΛ−1

0 θ.

Therefore,

∇f0(θ) = −∇ log p(θ) = Λ−1
0 θ.

We know that i ∈ {1, . . . , N}, the log-density

log p(yi|xi, θ) = −
1

2
(yi − xT

i θ)
2 − 1

2
log(2π)

Therefore,

fi(θ) = − log p(yi|xi, θ) =
1

2
(yi − xT

i θ)
2 +

1

2
log(2π)

8https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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and the corresponding gradient vector is

∇fi(θ) = −(yi − xT
i θ) · xi.

The corresponding Hessian is

∇2fi(θ) = xix
T
i .

Using results from Dwivedi et al. (2018), we know that fi(θ) is Li-continuous with Li = λmax(xix
T
i ).

C.3.3 Real data
We used the CASP9 dataset from the UCI Machine Learning repository for Figures 2(a) and 5. The CASP dataset contains
45,730 instances and 9 features.

D COMPUTATIONAL COSTS FOR THE SGLD-CV-PS APPROXIMATE SUBSAMPLING
WEIGHTS

Recall that the optimal subsampling weights in Eq. (14) can be approximated by the following scheme,

pi ∝

√
tr
(
∇2fi(θ̂) Σ̂∇2fi(θ̂)T

)
for i = 1, . . . , N.

Here, ∇2fi(·) is the Hessian matrix of fi(·) and Σ̂ is the covariance matrix of the Gaussian approximation to the target
posterior centred at the mode.

In practice, these weights should be evaluated as a one-off preprocessing step before the SGLD-CV-PS chain is run. We now
assess the total computational cost associated with this preprocessing step.

• The hessians of each fi(·) need to evaluated at the mode. For each log-density function, this step costs O(d2).

• The covariance matrix of the Gaussian approximation of the posterior needs to calculated once. This involves inverting
the observed information matrix at a cost of O(d3).

• The cost of multiplying three d× d square matrices is O(d3)

• The cost of calculating the trace of a d× d matrix is O(d).

• The cost of calculating the square root of a scalar is O(1).

Therefore, the cost of calculating these weights for all N data points is O(Nd3). As such, we recognise that there will be
limits to where the SGLD-CV-PS algorithm can be used. The SGLD-CV-PS has been implemented with success on the
covertype dataset Blackard and Dean (1998) (with 54 features and 581,012 instances and 54 features) in Section 5.3.2. We
recommend that this method is not implemented for models with more than d > 60 parameters in practice.

E NUMERICAL EXPERIMENT SET-UP
E.1 Step-size selection
SGLD-type algorithms do not mix well when the step-size is decreased to zero. It is therefore common (and in practice
easier) to implement SGLD with a fixed step-size, as suggested by Vollmer et al. (2016). For Figures 2 - 5, all samplers were
run with the same step-size (with ϵ ≈ 1

N ). This allowed us to control for discretisation error and to independently assess the
performance benefits offered by preferential subsampling. We list the step-sizes used for each experiment in Table 1 below.

Table 1: Step-size selection

FIGURE DATA SIZE OF DATA STEP-SIZE

4(a) synthetic bivariate Gaussian 10, 000 1× 10−4

4(b) synthetic balanced logistic regression 10, 000 1× 10−4

2(b)-(c), 3 covertype 581, 012 1× 10−6

2(a), 5 CASP 45, 730 1× 10−5

9https://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein+Tertiary+
Structure
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E.2 Initialisation
Throughout our experiments, we were consistent in how we picked our initial start values, θ(0), for SGLD and the ADAM
optimiser. We sampled θ(0) from the prior for the bivariate Gaussian model. Whereas, we set θ(0) = 0 for the linear and
logistic regression models.

F ADDITIONAL EXPERIMENTS
F.1 Performance comparison of SGLD and SGLD-PS
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Figure 4: Sampler performance of SGLD and SGLD-PS for 1%, 5% and 10% subsample sizes over 500 passes through the
data. (a) bivariate Gaussian model on synthetic data of size N = 104 (y-axis: KL divergence); (b) logistic regression on the
covertype data (y-axis: KSD).

F.2 Performance of adaptive subsampling
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Figure 5: The linear regression model fitted on the CASP data. (a) KSD comparison of SGLD-CV, SGLD-CV-PS, ASGLD-
CV and ASGLD-CV-PS over 104 iterations; (b) the number of passes through the data achieved by fixed subsampling versus
ASGLD-CV; (c) the number of passes through the data achieved by fixed subsampling versus ASGLD-CV-PS.


