
Catalyst Acceleration of Error Compensated Methods Leads to Better
Communication Complexity

Xun Qian Hanze Dong Tong Zhang Peter Richtárik
Shanghai Artificial

Intelligence Lab
Shanghai, China

The Hong Kong University of
Science and Technology

Hong Kong

The Hong Kong University of
Science and Technology

Hong Kong

King Abdullah University of
Science and Technology
Thuwal, Saudi Arabia

Abstract

Communication overhead is well known to be
a key bottleneck in large scale distributed learn-
ing, and a particularly successful class of methods
which help to overcome this bottleneck is based
on the idea of communication compression. Some
of the most practically effective gradient com-
pressors, such as TopK, are biased, which causes
convergence issues unless one employs a well de-
signed error compensation/feedback mechanism.
Error compensation is therefore a fundamental
technique in the distributed learning literature. In
a recent development, Qian et al (NeurIPS 2021)
showed that the error-compensation mechanism
can be combined with acceleration/momentum,
which is another key and highly successful op-
timization technique. In particular, they devel-
oped the error-compensated loop-less Katyusha
(ECLK) method, and proved an accelerated linear
rate in the strongly convex case. However, the de-
pendence of their rate on the compressor parame-
ter does not match the best dependence obtainable
in the non-accelerated error-compensated meth-
ods. Our work addresses this problem. We pro-
pose several new accelerated error-compensated
methods using the catalyst acceleration technique,
and obtain results that match the best dependence
on the compressor parameter in non-accelerated
error-compensated methods up to logarithmic
terms.

Proceedings of the 26th International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2023, Valencia, Spain. PMLR:
Volume 206. Copyright 2023 by the author(s).

1 INTRODUCTION

In large scale machine learning optimization problems, the
data and training need to be distributed among many ma-
chines [Verbraeken et al., 2019]. Also in federated learn-
ing [Konečný et al., 2016b,a, McMahan et al., 2017, Li
et al., 2019], training occurs on edge devices such as mobile
phones and smart home devices, where the data is originally
captured. In these applications, the distributed machine
learning can be characterized as the following composite
finite-sum problem

min
x∈Rd

P (x) :=

{
1

n

n∑
τ=1

f (τ)(x) + ψ(x)

}
, (1)

where {f (τ)(x)}nτ=1 are smooth convex functions dis-
tributed over n nodes, and ψ : Rd → R ∪ {+∞}
is a regularizer, which is a proper closed convex
but possibly non-smooth function. On each node τ ,

f (τ)(x) := 1
m

m∑
i=1

f
(τ)
i (x) is the average loss over the train-

ing data stored on this node and each f (τ)
i is smooth and

convex.

In distributed and especially federated settings, communica-
tion is generally much slower than the local training, which
makes the communication overhead become a key bottle-
neck. In order to overcome this bottleneck, several methods
were proposed in the literature, such as using large mini-
batches [Goyal et al., 2017, You et al., 2017], asynchronous
learning [Tsitsiklis et al., 1986, Agarwal and Duchi, 2011,
Lian et al., 2015, Recht et al., 2011], and gradient compres-
sion [Seide et al., 2014, Alistarh et al., 2017, Bernstein et al.,
2018, Wen et al., 2017, Mishchenko et al., 2019]. In this
work, we focus on the error-compensated method, which is
a gradient compression method and is capable to deal with
some effective but biased compressors, such as the TopK
compressor.

Related Work. The error compensation/feedback mecha-
nism was first introduced in 1-bit SGD [Seide et al., 2014].
Then the error-compensated SGD (ECSGD) was proved

Catalyst Acceleration of Error Compensated Methods Leads to Better Communication Complexity

to have the same convergence rate as vanilla SGD in the
strongly convex case [Stich et al., 2018] and non-convex
case [Karimireddy et al., 2019, Tang et al., 2019] when
P is smooth. ECSGD was further studied in [Stich and
Karimireddy, 2020] under weaker assumptions. When P is
non-smooth, it was shown that ECSGD converges at the rate
ofO(1/

√
δT) in [Karimireddy et al., 2019], where T denotes

the iteration number and δ is the compressor parameter de-
fined in (2). The non-accelerated linear convergence can be
obtained in EC-LSVRG-DIANA [Gorbunov et al., 2020]
in the smooth case, and in the error-compensated loop-less
SVRG, Quartz, and SDCA [Qian et al., 2021a] in the com-
posite case. In a recent development, the error-compensated
loop-less Katyusha was proposed in [Qian et al., 2021c],
and the accelerated linear rate was achieved.

Compressor. In error-compensated methods, contraction
compressors are generally used. A randomized map Q :
Rd → Rd is called a contraction compressor if there exists
a constant δ ∈ (0, 1] such that

E
[
‖x−Q(x)‖2

]
≤ (1− δ)‖x‖2, ∀x ∈ Rd. (2)

Some frequently used contraction compressors include
TopK [Alistarh et al., 2018] and RandK [Stich et al., 2018].
Let 1 ≤ K ≤ d. The TopK compressor is defined as

(TopK(x))π(i) =

{
(x)π(i) if i ≤ K,

0 otherwise,

where π is a permutation of {1, 2, ..., d} such that
(|x|)π(i) ≥ (|x|)π(i+1) for i = 1, ..., d − 1. For TopK and
RandK compressors, we have δ ≥ K/d [Stich et al., 2018].

The unbiased compressor is also frequently used in com-
pression algorithms, which is defined as a randomized map
Q̃ : Rd → Rd, where there exists a constant ω ≥ 0 such
that E[Q̃(x)] = x, and

E
[
‖Q̃(x)‖2

]
≤ (ω + 1)‖x‖2, ∀x ∈ Rd. (3)

Some frequently used unbiased compressors include ran-
dom dithering [Alistarh et al., 2017], random sparsification
[Stich et al., 2018], and natural compression [Horváth et al.,
2019b]. For any Q̃ satisfying (3), 1

ω+1 Q̃ is a contraction
compressor satisfying (2) with δ = 1/(ω+1)[Beznosikov
et al., 2020]. Furthermore, unbiased compressors and con-
traction compressors can be composed to generate new con-
traction compressors [Qian et al., 2021a].

1.1 Motivation

Communication Complexity of ECLK. There are two
contraction compressors Q and Q1 in ECLK [Qian et al.,
2021c] with parameter δ and δ1 respectively. We first claim
that when Q and Q1 in ECLK are the same type of con-
traction compressor, but with possibly different compressor
parameters (for example, Q and Q1 are both TopK, but with

different values of K), we could always choose the same
compressor parameters for Q and Q1 such that the total
communication complexity is less than before or remains
the same order as before.

First, from the iteration complexity results for ECLK, it is
easy to verify that the iteration complexity will decrease as
δ or δ1 increases. Without less of generality, we assume the
communication cost of Q(x) is higher than that of Q1(x).
Since Q and Q1 are the same type of compressor, we will
have δ1 ≤ δ. Then we can change Q1 to be Q. In this way,
the total communication cost of Q(x) and Q1(x) at each
iteration is at most twice as before, but δ1 will increase to δ,
which implies that the iteration complexity will decrease and
the communication complexity is at most twice as before.
Thus, for simplicity, we consider Q = Q1 for ECLK.

Dependence on δ for the Iteration Complexity of ECLK.
We introduce the following assumption for Problem (1).

Assumption 1.1 1
n

∑n
τ=1 f

(τ) is Lf -smooth, f (τ) is L̄-
smooth, f (τ)

i is L-smooth, and ψ is λ-strongly convex.

Under Assumption 1.1, from Theorem 3.8 in [Qian et al.,
2021c], the iteration complexity is

O
((

1
δ + 1

δ1
+ 1

p +

√
Lf
λ +

√
L2

λp

)
log 1

ε

)
,

where

L2 = 6L
n + 112(1−δ)L̄

3δ2 + 28(1−δ)L
3δ + 224(1−δ)L̄p

δ2δ1

(
1 + 2p

δ1

)
and p ∈ (0, 1] is the update frequency of the check point.
Considering δ1 = δ, it is easy to see that the iteration com-

plexity of ECLK is at least O
(√

1−δ
δ
√
δ

√
L̄
λ log 1

ε

)
. Hence,

when 1− δ = Θ(1), the dependence on δ of the communi-
cation complexity of ECLK would be 1/δ

3
2 , which is worse

than EC-LSVRG in the smooth case and EC-SDCA in the
composite case [Qian et al., 2021a], where the dependence
on δ is 1/δ only. This leads to the following question:

Can we design provably accelerated gradient-type
methods that work with contractive compressors
and the dependence on the compressor parameter
δ is 1/δ.

Let us first recall the results for the error-compensated non-
accelerated methods. In the composite case, the depen-
dence on the compressor parameter δ of EC-SDCA is better
than that of EC-LSVRG [Qian et al., 2021a]. Noticing that
L-SVRG [Hofmann et al., 2015, Kovalev et al., 2019] is
a primal method and SDCA [Shalev-Shwartz and Zhang,
2012] is a primal-dual method, the better dependence on δ
of EC-SDCA than EC-LSVRG indicates that primal-dual
methods may be more suitable for the error feedback mech-
anism. Therefore, it is natural to apply error feedback to

Xun Qian, Hanze Dong, Tong Zhang, Peter Richtárik

Table 1: Communication Complexity Results for Different Error-Compensated Algorithms (rQ represents the communication
cost of the compressed vector Q(x) for x ∈ Rd. For simplicity, we choose Q = Q1, and assume Lf ≥ λ, R2

/γ ≥ λ, where
R is defined in Algorithm 4, hence the term 1/δ is omitted.)

Algorithm Communication complexity
when δ ≤ 1/m

Communication complexity under
Assumption 2.3 when δ ≤ 1/m

EC-LSVRG
Smooth Case [Qian et al., 2021a] O

(
rQ
δ

√
Lf L̄

λ
log 1

ε

)
O
(
rQ
δ

Lf
λ

log 1
ε

)
EC-SDCA

[Qian et al., 2021a] O
(
rQ
δ
RR̄
λγ

log 1
ε

)
O
(
rQ
δ
R2

λγ
log 1

ε

)
ECLK

[Qian et al., 2021c] O
(

rQ

δ
√
δ

√
L̄
λ
log 1

ε

)
O
(

rQ

δ
√
δ

√
Lf
λ

log 1
ε

)
ECSPDC

This work O
(

rQ
δ2
√
m

√
R̄2

λγ
log 1

ε

)
O
(

rQ
δ2
√
m

√
R2

λγ
log 1

ε

)
EC-LSVRG + Catalyst

Smooth Case This work Õ
(
rQ
δ

√
L̄
λ
log 1

ε

)
Õ
(
rQ
δ

√
Lf
λ

log 1
ε

)
EC-SDCA + Catalyst

This work Õ
(
rQ
δ

√
R̄2

λγ
log 1

ε

)
Õ
(
rQ
δ

√
R2

λγ
log 1

ε

)

Table 2: Communication Complexity Results for EC-LSVRG + Catalyst in the Smooth Case (rQ represents the com-
munication cost of the compressed vector Q(x) for x ∈ Rd. The common Assumptions 1.1 and 2.1 are omitted.
A1 := δLf + δL/n +

√
1− δ(

√
Lf L̄+

√
δLfL) and A2 := δLf + δL/n +

√
1− δLf .)

Assumptions Communication complexity

A1 ≥ λ
κ = A1 − λ Õ

 rQ√
λ

√Lf
δ

+
√

L
δn

+
(
√

1−δ(
√
Lf L̄+

√
δLfL))

1
2

δ
+
√

1−δ(
√
L̄+
√
δL)

δ

 log 1
ε


A1 < λ
κ = 0

Õ
(
rQ

(
1
δ
+

Lf
λ

+ L
nλ

+
√

1−δ(
√
Lf L̄+

√
δLfL)

δλ
+
√

1−δ(
√
L̄+
√
δL)

δ
√
λ

)
log 1

ε

)
Assumption 2.3

A2 ≥ λ
κ = A2 − λ

Õ

 rQ√
λ

√Lf
δ

+
√

L
δn

+
(1−δ)

1
4
√
Lf

δ

 log 1
ε


Assumption 2.3

A2 < λ
κ = 0

Õ
(
rQ
(

1
δ
+

Lf
λ

+ L
nλ

+
√

1−δLf
δλ

)
log 1

ε

)

SPDC [Zhang and Xiao, 2017], which is an accelerated
primal-dual algorithm, and expect better dependence on the
compressor parameter than ECLK. We first propose error-
compensated SPDC (Algorithm 4), but unfortunately, we
show that the dependence on δ of error-compensated SPDC
is at least 1/δ

3
2 . This fact makes us to consider the indirect

accelerated methods.

In this work, we give a confirmed answer to the above
question by applying Catalyst [Lin et al., 2015], which is
a generic method for accelerating first-order algorithms in
the sense of Nesterov, to non-accelerated error-compensated
methods, where the dependence on δ of the communication
complexity could be Õ (1/δ). Here Õ hides some logarith-
mic terms.

More specific, we use EC-LSVRG and EC-SDCA [Qian
et al., 2021a] in Section 3 and Section 4, respectively, to
solve the subproblem in Catalyst [Lin et al., 2015]. A key
point in Catalyst is the initialization of the algorithm which
solves the subproblem. In both Section 3 and Section 4, we

first use some naive initialization ways for EC-LSVRG and
EC-SDCA. However, then the expected total communica-
tion cost will involve an additional term Ud/rQ (defined in
Section 3.1), which may be much larger than 1/δ. While
the additional term Ud/rQ in the expected total communi-
cation cost is actually caused by communicating uncom-
pressed vectors, to avoid this additional term, we propose
new initialization ways where only compressed vectors are
communicated.

1.2 Contributions

1, First, we propose the error-compensated SPDC (EC-
SPDC), which is a combination of the error feedback mach-
anism and SPDC [Zhang and Xiao, 2017], and achieve the
accelerated linear convergence rate. In the special case
where δ = 1, ECSPDC is also an extension of SPDC in the
sense that Aiτ in problem (4) is a matrix rather than a vec-
tor, and the convergence rate is actually better than SPDC.
Specifically, their convergence result does not achieve linear

Catalyst Acceleration of Error Compensated Methods Leads to Better Communication Complexity

Table 3: Communication Complexity Results for EC-SDCA + Catalyst (rQ represents the communication cost of the

compressed vector Q(x) for x ∈ Rd. The common Assumptions 2.1 and 2.2 are omitted. A3 := (
R2
m

nγ + R2

γ +
√

1−δRR̄
δγ +

√
1−δRRm√

δγ
)
/

(1
δ +m) and A4 := (

R2
m

nγ + R2

γ +
√

1−δR2

δγ)
/

(1
δ +m) , where R, R̄,Rm are defined in Algorithm 4.)

Assumptions Communication complexity
A3 ≥ λ

κ = A3 − λ Õ
(
rQ log

1
ε√

λ

(√
1+δm
δ

√
R2
m
nγ

+ R2

γ
+
√

1−δRR̄
δγ

+
√

1−δRRm√
δγ

+
√

(1−δ)(R̄2+δR2
m)

δ2γ

))
A3 < λ
κ = 0

Õ
(
rQ

(
1
δ
+m+

R2
m

λnγ
+ R2

λγ
+
√

1−δRR̄
δλγ

+
√

1−δRRm√
δλγ

+
√

(1−δ)(R̄2+δR2
m)

δ2λγ

)
log 1

ε

)
Assumption 2.3

A4 ≥ λ
κ = A4 − λ

Õ
(
rQ√
λ

(√
1
δ
+m

√
R2
m
nγ

+ R2

γ
+
√

1−δR2

δγ

)
log 1

ε

)
Assumption 2.3

A4 < λ
κ = 0

Õ
(
rQ
(

1
δ
+m+

R2
m

nλγ
+ R2

λγ
+
√

1−δR2

δλγ

)
log 1

ε

)

speed up with respect to the number of nodes, while ours
can obtain linear speed up when the number of nodes is in a
certain range.

2, We apply Catalyst [Lin et al., 2015] to EC-LSVRG in
the smooth case and EC-SDCA in the composite case [Qian
et al., 2021a], respectively. The accelerated linear conver-
gence rates are obtained for both cases, and the dependence
on δ of the communication complexities is Õ(1/δ), which
matches the best dependence on the compressor parameter
in non-accelerated error-compensated methods up to loga-
rithmic terms. The communication complexities of them
are summarized in Table 2 and Table 3, and the comparison
of the communication complexity results of different error-
compensated algorithms when δ ≤ 1/m are summarized in
Table 1.

2 ERROR COMPENSATED SPDC

For primal-dual methods, the following problem is usually
studied:

min
x∈Rd

P (x) := 1
N

n∑
τ=1

m∑
i=1

φiτ (A>iτx) + g(x), (4)

where N = mn and Aiτ ∈ Rd×t. Problem (4) is actually
equivalent to Problem (1). First, by choosing f (τ)

i (x) =
φiτ (A>iτx) and ψ = g, Problem (4) is a special case of
Problem (1). On the other hand, by choosing Aiτ to be
the identity matrix, φiτ = f

(τ)
i , and g = ψ, Problem (4)

becomes Problem (1). For simplicity, we assume Lf =
R2
/γ, L̄ = R̄2

/γ, and L = R2
m/γ, where R2, R̄2, and R2

m

are defined in Algorithm 4. To save space, we only list the
assumptions and main results here. The rest can be found in
the Appendix.

Assumption 2.1 The two compressors Q and Q1 are con-
traction compressors with parameters δ and δ1, respectively.

Assumption 2.2 Each φiτ : Rt → R is convex and 1/γ-
smooth. The regularizer g : Rd → R is λ-strongly convex.

Sometimes, we will use the following assumption on the
contraction compressor to get better results.

Assumption 2.3 E[Q(x)] = δx and E[Q1(x)] = δ1x.

Under Assumption 2.1 and Assumption 2.2 , the iteration
complexity of ECSPDC is

O
((

1
δ + 1

δ1
+m+R2

√
m
λγ

)
log 1

ε

)
,

where

R2
2 = 2R2 +

2R2
m

n

+ 3(1−δ)
4

(
14R̄2

δ2 +
7R2

m

2δ + 84(1−δ1)R̄2

δ2δ21m
2 +

42R2
m

δ2δ1m2

)
.

If Assumption 2.3 is further invoked, the iteration complex-
ity is improved to O

((
1
δ + 1

δ1
+m+R3

√
m
λγ

)
log 1

ε

)
,

where

R2
3 = 2R2 +

2R2
m

n + 21(1−δ)
4

(
2R2

δ2 +
11R2

m

2δn

+ 12(1−δ)R̄2

δ2n
12R2

5δ2δ21m
2 +

228R2
m

5δ2δ1m2n + 432(1−δ1)R̄2

5δ2δ21m
2n

)
.

Comparison to SPDC. If there is no compression in EC-
SPDC, i.e., δ = δ1 = 1, the iteration complexity becomes

O
((

N
n + (

√
nR+Rm)
n

√
N
λγ

)
log 1

ε

)
,

which is better than that of SPDC obtained in [Zhang and
Xiao, 2017]: O

((
N
n +Rm

√
N
nλγ

)
log 1

ε

)
. Moreover, our

result achieves linear speed up with repect to n when n ≤
R2
m/R2.

Dependence on δ. Consider Q = Q1 in ECSPDC.
When 1/m ≤ δ, the iteration complexity is at least

Xun Qian, Hanze Dong, Tong Zhang, Peter Richtárik

O
(
R̄
δ

√
m
λγ log 1

ε

)
≥ O

(
1
δ
√
δ

R̄√
λγ

log 1
ε

)
. When δ ≤ 1/m,

we have δ ≤ R̄2
/R2

m. Then the iteration complexity becomes

O
((

1
δ + 1

δ2
√
m

R̄√
λγ

)
log 1

ε

)
≥ O

(
1
δ
√
δ

R̄√
λγ

log 1
ε

)
.

Hence, the dependence of ECSPDC on δ is at least 1/δ
3
2 .

3 EC-LSVRG + CATALYST IN THE
SMOOTH CASE

EC-LSVRG [Qian et al., 2021a] is a combination of L-
SVRG algorithm [Hofmann et al., 2015, Kovalev et al., 2019,
Qian et al., 2021b] and error feedback technique [Seide
et al., 2014], and the iteration complexity has the better
dependence on the compressor parameter in the smooth case
than that in the non-smooth case. In this section, we apply
Catalyst [Lin et al., 2015] to EC-LSVRG in the smooth case.
First, we restate the Catalyst algorithm and convergence
result as follows.

Algorithm 1 Catalyst
1: Parameters: κ ≥ 0, α0, sequence {εk}k≥0

2: Initialization: y0 = x0 ∈ Rd; q = λ/(λ+ κ)
3: for k = 1, 2, 3, ... do
4: Find an approximate solution of the following problem

xk ≈ arg min
x∈Rd

{
Gk(x) := P (x) + κ

2 ‖x− y
k−1‖2

}
such that Gk(xk)−G∗k ≤ εk

5: Compute αk ∈ (0, 1) from equation α2
k = (1 −

αk)α2
k−1 + qαk

6: Compute

yk = xk + βk(xk − xk−1) with βk = αk−1(1−αk−1)
α2
k−1+αk

7: end for

Theorem 3.1 [Lin et al., 2015] Choose α0 =
√
q with

q = λ/(λ+κ) and

εk = 2
9 (P (x0)− P ∗)(1− ρ0)k with ρ0 <

√
q.

Then, Algorithm 1 generates iterates {xk}k≥0 such that

P (xk)− P ∗ ≤ C(1− ρ0)k+1(P (x0)− P ∗). (5)

with C = 8
(
√
q−ρ0)2 .

In Catalyst (Algorithm 1), G∗k represents the minimum of
Gk. In Theorem 3.1, P ∗ is the minimum of P , and as
discussed in [Lin et al., 2015], the term P (x0)− P ∗ in εk
can be replaced by its upper bound, which only affects the
corresponding constant in (5).

We use EC-LSVRG to solve the subproblem in Catalyst for
the smooth case where ψ is smooth in Problem (1). The
main challenge is proposing suitable initial conditions for
the subproblem and estimate the corresponding expected
inner iteration number.

To save space, we restate EC-LSVRG (and also EC-SDCA)
in the Appendix. It should be noticed that EC-LSVRG in the
smooth case is applied to the problem without the regularizer
term. Thus, to minimize Gk, we move ψ and the quadratic
term κ

2 ‖x − yk−1‖2 to each f (τ)
i . We use subscript (k)

and superscript K to denote the variables at the k-th outer
iteration and K-th inner iteration (for example, xK(k), x̄

K
(k),

x∗(k), e
K
τ,(k), and hKτ,(k)), respectively.

Next, we consider how to initialize EC-LSVRG to obtain
the accelerated convergence rate. In [Lin et al., 2015], the
Catalyst acceleration was applied to the first-order methods
whose convergence rate has the following form

Gk(zt)−G∗k ≤ A(1− θ)t(Gk(z0)−G∗k), (6)

where A is some constant. If we initialize h0
τ,(k) by the

gradient of f (τ)
i +ψ+ κ

2 ‖ ·−y
k−1‖2 at x0

(k). Then the form
of the convergence rate of EC-LSVRG becomes form (6),
and we can get the following lemma.

Lemma 3.2 Under Assumptions 1.1, 2.1 and the premise
of Theorem 3.1, let us run EC-LSVRG (Algorithm 2) to min-
imize Gk and output xk := x̄Tk(k), where Tk := inf{K ≥
1, Gk(x̄K(k)) − G∗k ≤ εk}. For the initialization of EC-
LSVRG at the k-th outer iteration, we choose p = Θ(δ1),
x0

(k) = xk−1, e0
τ,(k) = 0 and h0

τ,(k) = ∇f (τ)(x0
(k)) +

∇ψ(x0
(k)) + κ(x0

(k) − y
k−1). Then

E[Tk] ≤ Õ
(

1
δ + 1

δ1
+

√
(1−δ)(Lf+λ+κ)(L̄+λ+κ)

δ(λ+κ)

+
Lf
λ+κ + L

n(λ+κ) +

√
(1−δ)(Lf+λ+κ)(L+λ+κ)

√
δ(λ+κ)

)
,

where the notation Õ hides some universal constants and
some logarithmic dependencies in δ, δ1, λ, κ, Lf , and N .

Remark 3.3 1, It is easy to verify that an optimal choice of
p in EC-LSVRG is Θ(δ1). Hence, we choose p = Θ(δ1) in
Lemma 3.2 (and also in Lemma 3.4) for simplicity.

2, As discussed in [Lin et al., 2015], the stopping criteria
in the inner loop can be checked by calculating some upper
bound of Gk(x̄K(k))−G

∗
k, such as the duality gap. However,

this would cause additional computation and also communi-
cation cost. Hence, we can actually view the inner iteration
number as a parameter and use Lemma 3.2 as the guidance.

If we further invoke Assumption 2.3, we can get the follow-
ing lemma. Since the proof is similar to that of Lemma 3.2,
we omit it.

Catalyst Acceleration of Error Compensated Methods Leads to Better Communication Complexity

Lemma 3.4 Under Assumptions 1.1, 2.1, 2.3, and the
premise of Theorem 3.1, let us run EC-LSVRG to mini-
mize Gk. Choose the output xk, Tk, and the initialization
of EC-LSVRG at the k-th outer iteration be the same as that
in Lemma 3.2. Then

E[Tk] ≤ Õ
(

1
δ + 1

δ1
+

Lf
λ+κ + L

n(λ+κ) +
√

1−δ(Lf+λ+κ)
δ(λ+κ)

)
.

3.1 Communication Complexity

In this subsection, we discuss the total communication cost
by using EC-LSVRG + Catalyst. Same as the claim in the
discussion of the communication complexity of ECLK, for
simplicity, we choose Q = Q1 in EC-LSVRG.

Denote the communication cost of an vector in Rd as Ud
and the communication cost of the compressed vector in
Rd by using the compressor Q as rQ. From Theorem 3.1,
to achieve P (xk) − P ∗ ≤ ε, the outer iteration number is
Õ
(√

λ+κ√
λ

log 1
ε

)
, and from Lemma 3.2, the expected inner

iteration number is

Õ
(

1
δ +

Lf+L/n
λ+κ +

√
(1−δ)(Lf+λ+κ)(L̄+λ+κ)

δ(λ+κ)

+

√
(1−δ)(Lf+λ+κ)(L+λ+κ)

√
δ(λ+κ)

)
= Õ

(
1
δ + a1

λ+κ + b1√
λ+κ

)
,

where we denote a1 := Lf+ L
n +

√
1−δ(
√
Lf L̄+

√
δLfL)

δ and

b1 :=
√

1−δ(
√
L̄+
√
δL)

δ . Noticing that at each outer iteration,
we need to communicate the uncompressed vector h0

τ,(k),
the expected total communication cost becomes

Õ
((√

λ+κ√
λ

(
1
δ + a1

λ+κ + b1√
λ+κ

)
rQ +

√
λ+κ√
λ
Ud

)
log 1

ε

)
= Õ

(
rQ√
λ

log 1
ε

((
1
δ + Ud

rQ

)√
λ+ κ+ a1√

λ+κ
+ b1

))
.

Optimal κ. Since κ ≥ 0 in Catalyst, it is easy to get the
optimal κ for minimizing the expected total communication
cost. Let λ1 := a1/

(
1
δ + Ud

rQ

)
. If λ ≤ λ1, then the opti-

mal κ is λ1 − λ. If λ > λ1, then the optimal κ is 0. Or
equivalently, the optimal κ = max{λ1, λ} − λ.

Similarly, under the additional Assumption 2.3, from Theo-
rem 3.1 and Lemma 3.4, the expected total communication
cost is

Õ
(
rQ√
λ

log 1
ε

((
1
δ + Ud

rQ

)√
λ+ κ+ a2√

λ+κ

))
,

where a2 := Lf + L
n +

√
1−δLf
δ . Let λ2 := a2/

(
1
δ + Ud

rQ

)
.

Then the optimal κ = max{λ2, λ} − λ.

For TopK, if we use 64 bits for each element in Rd, UdrQ =

64d
(64+log d)K = Θ

(
d

K log d

)
. Even though the theoretical δ

for TopK is K/d, the actual value could be much larger than
K/d in practice. Then Ud/rQ may not be able to be bounded
by O(1/δ), and thus the communication complexity may be
even worse than ECLK and ECSPDC. Next, we consider
how to avoid the additional term Ud/rQ in the expected total
communication cost.

3.2 Remove the Dependence on Ud/rQ

Due to the communication of uncompressed vectors at each
outer iteration of the stratergies in Lemmas 3.2 and 3.4,
the expected total communication complexities depend on
Ud/rQ, which may be much larger than 1/δ. In this sub-
section, we show that we can actually remove the depen-
dence on Ud/rQ by communicating the compressed vector
only. The initialization procedures and estimations of the
expected inner iteration number are states in the following
two lemmas.

Lemma 3.5 Under Assumptions 1.1, 2.1, and the premise
of Theorem 3.1, let us run EC-LSVRG to minimize
Gk and output xk := xTk(k), h

Tk
τ,(k), and eTkτ,(k), where

Tk := inf{K ≥ 1,ΦK3,(k) + Gk(xK(k)) − G
∗
k ≤ εk}. For

the initialization of EC-LSVRG at the k-th outer iteration,
we choose p = Θ(δ1), x0

(k) = xk−1, e0
τ,(k) = 0 or eTk−1

τ,(k−1),

and h0
τ,(k) = h

Tk−1

τ,(k−1) or hTk−1

τ,(k−1) + κ(yk−2 − yk−1)

(y−1 = y0). Then

E[Tk] ≤ Õ
(

1
δ + 1

δ1
+

√
(1−δ)(Lf+λ+κ)(L̄+λ+κ)

δ(λ+κ)

+
Lf
λ+κ + L

n(λ+κ) +

√
(1−δ)(Lf+λ+κ)(L+λ+κ)

√
δ(λ+κ)

)
,

where the notation Õ hides some universal constants and
some logarithmic dependencies in δ, δ1, λ, κ, Lf , and N .

Lemma 3.6 Under Assumptions 1.1, 2.1, 2.3, and the
premise of Theorem 3.1, let us run EC-LSVRG to mini-
mize Gk and output xk := xTk(k), h

Tk
τ,(k), and eTkτ,(k), where

Tk := inf{K ≥ 1,ΦK4,(k) +Gk(xK(k))−G
∗
k ≤ εk}. Choose

the initialization of EC-LSVRG at the k-th outer itera-
tion be the same as that in Lemma 3.5. Then E[Tk] ≤

Õ
(

1
δ + 1

δ1
+

Lf
λ+κ + L

n(λ+κ) +

√
(1−δ)(Lf+λ+κ)

δ(λ+κ)

)
.

Communication Complexity. Same as the analysis in
Section 3.1, the expected total communication cost of EC-
LSVRG + Catalyst with the output and initialization pre-
cedures in Lemmas 3.5 and 3.6 can be obtained by sim-
ply replacing Ud/rQ with 0. It is evident that the com-
munication complexity depends on 1/δ only up to loga-
rithmic terms. In particular, if 1 − δ = Θ(1), δ ≤
min{L̄/L, n2Lf/L} and Lf ≥ λ, then an optimal κ is√
Lf L̄ − λ, and the corresponding communication com-

plexity is Õ
(
rQ
δ

√
L̄
λ log 1

ε

)
. If Assumption 2.3 is further

Xun Qian, Hanze Dong, Tong Zhang, Peter Richtárik

invoked, when 1− δ = Θ(1), δ ≤ nLf/L, and Lf ≥ λ, an
optimal κ is Lf − λ, and the corresponding communication

complexity is Õ
(
rQ
δ

√
Lf
λ log 1

ε

)
.

4 EC-SDCA + CATALYST

In this section, we consider Problem (4). Let ξ := 1
λg. Then

ξ is 1-strongly convex if g is λ-strongly convex. We apply
the catalyst to problem (4), and for the subproblem, we use
the error-compensated SDCA (Algorithm 3) in [Qian et al.,
2021a] to solve it. At the k-th outer iteration, we use EC-
SDCA to minimize Gk(x) := P (x) + κ

2 ‖x− y
k−1‖2, and

we also use subscript (k) and superscript K to denote the
variables at the k-th outer iteration and K-th inner iteration
(for instance, xK(k), α

K
(k), e

K
τ,(k), e

K
(k), and uK(k)).

To apply EC-SDCA at the k-th outer iteration in Algorithm
1, we need to initialize α0

iτ,(k). It is natural to use the values
of αiτ in the last inner loop to initialize α0

iτ,(k), and this
is indeed the case in [Shalev-Shwartz and Zhang, 2014],
where the accelerated SDCA was studied. Then in order
to initialize u0

(k) = 1
(λ+κ)N

∑n
τ=1

∑m
i=1Aiτα

0
iτ,(k), the

uncompressed vector Aiτα0
iτ,(k) need to be communicated.

We state the initialization procedures formally and estimate
the expected inner iteration number in the next two lemmas.

Lemma 4.1 Assume δ < 1. Under Assumptions
2.1, 2.2, and the premise of Theorem 3.1, let us run
EC-SDCA (Algorithm 3) to minimize Gk and output
(xk, αk) := (xTk+1

(k) , αTk(k)), where Tk := inf{K ≥
1,
√

4n+ δmnΨK
3,(k) +2(Gk(xK+1

(k))−G∗k) ≤ εk}. For the
initialization of EC-SDCA at the k-th iteration, we choose
α0

(k) = αk−1 (α0 = 0) and e0
τ,(k) = 0. Then

E[Tk] ≤ Õ
(

1
δ +m+ a3

λ+κ + b3√
λ+κ

)
,

where a3 :=
R2
m

nγ + R2

γ +
√

1−δRR̄
δγ +

√
1−δRRm√

δγ
,

b3 := 1
δ

√
(1−δ)(R̄2+δR2

m)
γ and the notation Õ hides some

universal constants and some logarithmic dependencies in
δ, λ, κ, R, and N .

Remark 4.2 In EC-SDCA, R2
/γ ≥ λ+κ is assumed. How-

ever, by adding the term b3√
λ+κ

log 1
ε to the iteration com-

plexity, the assumption R2
/γ ≥ λ+ κ is no longer needed,

which can be seen easily from the proof of Theorem 3.3 in
[Qian et al., 2021a].

If we further invoke Assumption 2.3 on the compressors
in EC-SDCA, we can get the following better result. The
proof is similar to that of Lemma 4.1, thus we omit it.

Lemma 4.3 Assume δ < 1. Under Assumptions 2.1, 2.2,
2.3, and the premise of Theorem 3.1, let us run EC-SDCA to

minimize Gk and output (xk, αk) := (xTk+1
(k) , αTk(k)), where

Tk := inf{K ≥ 1, 3
√

2 + δmΨK
4,(k) + 2(Gk(xK+1

(k)) −
G∗k) ≤ εk}. For the initialization of EC-SDCA at the k-th
iteration, we choose α0

(k) = αk−1 (α0 = 0) and e0
τ,(k) = 0.

Then E[Tk] ≤ Õ
(

1
δ +m+ a4

λ+κ

)
, where a4 :=

R2
m

nγ +

R2

γ +
√

1−δR2

δγ .

4.1 Communication Complexity

In this subsection, we discuss the total communication
cost by using EC-SDCA + Catalyst. From Theorem 3.1,
to get P (xk) − P ∗ ≤ ε, the outer iteration number is
Õ
(√

λ+κ√
λ

log 1
ε

)
, and from Lemma 4.1, the expected inner

iteration number is Õ
(

1
δ +m+ a3

λ+κ + b3√
λ+κ

)
. Noticing

that at each outer iteration, we need to communicate the
uncompressed vector to initialize u0

(k), the expected total
communication cost is

Õ
((√

λ+κ√
λ

(
1
δ +m+ a3

λ+κ + b3√
λ+κ

)
rQ

+
√
λ+κ√
λ
Ud

)
log 1

ε

)
= Õ

(
rQ√
λ

log 1
ε

((
1+δm
δ + Ud

rQ

)√
λ+ κ+ a3√

λ+κ
+ b3

))
.

Optimal κ. Since λ + κ ≥ λ, it is easy to obtain the
optimal κ for minimizing the expected total communication
cost. Let λ3 := a3/(

1
δ +m+ Ud

rQ
). Then the optimal κ is

max{λ, λ3} − λ.

Similarly, under the additional Assumption 2.3, from Theo-
rem 3.1 and Lemma 4.3, the expected total communication
cost is

Õ
(
rQ√
λ

log 1
ε

((
1
δ +m+ Ud

rQ

)√
λ+ κ+ a4√

λ+κ

))
.

Let λ4 := a4/(
1
δ +m+ Ud

rQ
). Then the optimal κ is

max{λ, λ4} − λ.

The term Ud/rQ also shows up in the expected total commu-
nication cost of EC-SDCA + Catalyst. As we analyzed in
Section 3.1, the presence of Ud/rQ may make the communi-
cation complexity worse than ECLK and ECSPDC. In next
subsection, we try to remove the dependence on Ud/rQ.

4.2 Remove the Dependence on Ud/rQ

As we can see from the analysis of the communication
complexity, the term Ud/rQ shows up because of the com-
munication of uncompressed vectors. Hence, in order
to remove the dependence on Ud/rQ, we need to find
initialization procedures that do not need the communi-
cation of uncompressed vectors. Fortunately, by inves-
tigating the proofs of EC-SDCA, we find out that the
relation u0

(k) = 1
(λ+κ)N

∑n
τ=1

∑m
i=1Aiτα

0
iτ,(k) in the

Catalyst Acceleration of Error Compensated Methods Leads to Better Communication Complexity

Figure 1: The Communication Complexity Performance of ECSDCA-Catalyst, ECLSVRG-Catalyst, and ECSPDC Used
with Compressors: Top1 VS Random Dithering VS Natural Compression VS No Compression on a9a Data Set

Figure 2: The Communication Complexity Performance of ECSDCA-Catalyst VS ECLSVRG-Catalyst VS ECSPDC VS
ECLK for Top1 Compressor on a9a, w6a, and mushrooms Data Sets

initialization is not necessary, and the relation ũK(k) =
1

(λ+κ)N

∑n
τ=1

∑m
i=1Aiτα

K
iτ,(k) is actually essential in the

proofs, and need to be maintained. This leads to the initial-
ization procedures in the next two lemmas, and the commu-
nication of uncompressed vectors is actually not needed for
the initialization at each outer iteration.

Lemma 4.4 Assume δ < 1. Under Assumptions 2.1, 2.2,
and the premise of Theorem 3.1, let us run EC-SDCA to
minimize Gk and output xk := xTk+1

(k) , αk := αTk(k), u
Tk
(k),

and eTkτ,(k), where Tk := inf{K ≥ 1,
√

4n+ δmnΨK
3,(k) +

2(Gk(xK+1
(k)) − G∗k) ≤ εk}. For the initialization of

EC-SDCA at the k-th iteration, we choose α0
(k) = αk−1

(α0 = 0), u0
(k) = u

Tk−1

(k−1) (u0
(1) = 0), and e0

τ,(k) = e
Tk−1

τ,(k−1)

(e0
τ,(1) = 0). Then E[Tk] ≤ Õ

(
1
δ +m+ a3

λ+κ + b3√
λ+κ

)
.

Lemma 4.5 Assume δ < 1. Under Assumptions 2.1, 2.2,
2.3, and the premise of Theorem 3.1, let us run EC-SDCA
to minimize Gk and output xk := xTk+1

(k) , αk := αTk(k), u
Tk
(k),

and eTkτ,(k), where Tk := inf{K ≥ 1, 3
√

2 + δmΨK
4,(k) +

2(Gk(xK+1
(k))−G∗k) ≤ εk}. Choose the initialization of EC-

SDCA at the k-th iteration be the same as that in Lemma

4.4. Then E[Tk] ≤ Õ
(

1
δ +m+ a4

λ+κ

)
.

Communication Complexity. Same as the analysis in
Section 4.1, the expected total communication cost of EC-
SDCA + Catalyst with the output and initialization prece-
dures in Lemmas 4.4 and 4.5 can be obtained by simply
replacing Ud/rQ with 0, and only depends on 1/δ up tp loga-
rithmic terms. In particular, if δ ≤ 1/m and RR̄/γ ≥ λ, then
an optimal κ is RR̄/γ − λ, and the corresponding commu-

nication complexity is Õ
(
rQ
δ

√
R̄2

λγ log 1
ε

)
. If Assumption

2.3 is further invoked, when δ ≤ 1/m and R2
/γ ≥ λ an opti-

mal κ is R2
/γ − λ, and the corresponding communication

complexity is Õ
(
rQ
δ

√
R2

λγ log 1
ε

)
.

5 EXPERIMENTS

In this section, we implement our algorithms on the real
world binary logistic regression tasks:

x 7→ log
(
1 + exp(−yiA>i x)

)
+ λ

2 ‖x‖
2,

where Ai, yi are training sample pairs. We use the data sets:
a9a, w6a, phishing, and mushrooms from LIBSVM

Xun Qian, Hanze Dong, Tong Zhang, Peter Richtárik

Figure 3: The Communication Complexity Performance of ECLSVRG VS ECLSVRG-Catalyst for Top1 Compressor on
a9a, w6a, and mushrooms Data Sets

Figure 4: The Communication Complexity Performance of EC-SDCA VS ECSDCA-Catalyst for Top1 Compressor on a9a,
w6a, and mushrooms Data Sets

Library [Chang and Lin, 2011]. More experiments can be
found in the Appendix.

Compressors. In the experiments, we use Top1 and some
contraction compressors transformed by unbiased ones such
as random dithering (s =

√
d) and natural compression.

Parameters. We set λ = 1 × 10−5 and n = 20. For all
experiments, we use grid search to obtain the learning rate
{10−t, t = 0, 1, 2 · · · }. For ECSPDC, we use bisect method
to obtain the argmax operator, θ is chosen by Theorem C.7.
For ECLSVRG and ECLK, we set Q = Q1 and p = δ. For
Catalyst, we choose κ by grid search {10tλ : t ∈ Z}. For
the stopping criteria of the inner loop, a heuristic strategy
was proposed for Catalyst in [Lin et al., 2015], where the
inner loop is constrained to perform at most mn iterations.
We employ this strategy similarly and the inner loop size
is searched from {kd : k = 1, 2, 5, 10, 100}, where d is the
dimension of data.

5.1 Effectiveness of TopK Compressor

First, we demonstrate the effectiveness of TopK compressor
compared with random dithering, natural compression, and
no compression. Figure 1 shows that compression can im-
prove the performance with respect to the communication

complexity in general, and TopK is specifically effective.

5.2 Comparison of Different Accelerated Error
Compensated Algorithms

We compare Catalyst-based error-compensated algorithms
and ECSPDC with ECLK, and also use the Top1 compressor.
Figure 2 shows that the performance of ECSDCA-Catalyst
is the best for our tested data sets, which indicates the po-
tential of the Catalyst-based error-compensated algorithm.

5.3 Improvements from Catalyst Acceleration

In this subsection, we compare Catalyst-based error-
compensated algorithms with their baselines, namely, ECS-
DCA and ECLSVRG, where Top1 compressor is used. Fig-
ures 3 and 4 show that Catalyst acceleration can indeed
boost the speed of both ECSDCA and ECLSVRG with re-
spect to the communication complexity significantly, which
matches our theory.

Acknowledgements

The work of Xun Qian and Peter Richtárik was supported
by the Extreme Computing Research Center at KAUST, and

Catalyst Acceleration of Error Compensated Methods Leads to Better Communication Complexity

the work of Peter Richtárik was also partially supported by
the SDAIA-KAUST Center of Excellence in Data Science
and Artificial Intelligence.

References

A. Agarwal and J. C. Duchi. Distributed delayed stochastic
optimization. Advances in Neural Information Processing
Systems, pages 873–881, 2011.

D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic.
QSGD: Communication-efficient SGD via gradient quan-
tization and encoding. In Advances in Neural Information
Processing Systems (NIPS), pages 1709–1720, 2017.

D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov,
S. Khirirat, and C. Renggli. The convergence of sparsified
gradient methods. In Advances in Neural Information
Processing Systems (NeurIPS), pages 5973–5983, 2018.

J. Bernstein, Y. X. Wang, K. Azizzadenesheli, and A. Anand-
kumar. Signsgd: Compressed optimisation for non-
convex problems. The 35th International Conference
on Machine Learning, pages 560–569, 2018.

A. Beznosikov, S. Horváth, P. Richtárik, and M. Safaryan.
On biased compression for distributed learning. arXiv
preprint arXiv:2002.12410, 2020.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library
for support vector machines. ACM Transactions on Intel-
ligent Systems and Technology (TIST), 2(3):1–27, 2011.

Eduard Gorbunov, Dmitry Kovalev, Dmitry Makarenko,
and Peter Richtárik. Linearly converging error compen-
sated SGD. In Neural Information Processing Systems
(NeurIPS), 2020.

P. Goyal, P. Dollár, R. Girshick, P. Noordhuis,
L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He.
Accurate, large minibatch sgd: Training imagenet in 1
hour. arXiv: 1706.2677, 2017.

Thomas Hofmann, Aurelien Lucchi, Simon Lacoste-Julien,
and Brian McWilliams. Variance reduced stochastic gra-
dient descent with neighbors. In Advances in Neural
Information Processing Systems, pages 2305–2313, 2015.

S. Horváth, D. Kovalev, K. Mishchenko, S. Stich, and
P. Richtárik. Stochastic distributed learning with gra-
dient quantization and variance reduction. arXiv preprint
arXiv:1904.05115, 2019a.

Samuel Horváth, Chen-Yu Ho, L’udovít Horvath,
Atal Narayan Sahu, Marco Canini, and Peter Richtárik.
Natural compression for distributed deep learning. arXiv
preprint arXiv:1905.10988, 2019b.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian U
Stich, and Martin Jaggi. Error feedback fixes SignSGD
and other gradient compression schemes. arXiv preprint
arXiv:1901.09847, 2019.

Jakub Konečný, H. Brendan McMahan, Daniel Ram-
age, and Peter Richtárik. Federated optimization: dis-
tributed machine learning for on-device intelligence.
arXiv:1610.02527, 2016a.

Jakub Konečný, H. Brendan McMahan, Felix Yu, Peter
Richtárik, Ananda Theertha Suresh, and Dave Bacon.
Federated learning: strategies for improving communi-
cation efficiency. In NIPS Private Multi-Party Machine
Learning Workshop, 2016b.

D. Kovalev, S. Horváth, and P. Richtárik. Don’t jump
through hoops and remove those loops: Svrg and
katyusha are better without the outer loop. arXiv:
1901.08689, 2019.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia
Smith. Federated learning: challenges, methods, and
future directions. arXiv preprint arXiv:1908.07873, 2019.

X. Lian, Y. Huang, Y. Li, and J. Liu. Asynchronous parallel
stochastic gradient for nonconvex optimization. Advances
in Neural Information Processing Systems, pages 2737–
2745, 2015.

Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. A uni-
versal catalyst for first-order optimization. arXiv preprint
arXiv:1506.02186, 2015.

H Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Agüera y Arcas. Communication-
efficient learning of deep networks from decentralized
data. In Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics (AISTATS), 2017.

K. Mishchenko, E. Gorbunov, M. Takáč, and P. Richtárik.
Distributed learning with compressed gradient differ-
ences. arXiv: 1901.09269, 2019.

Xun Qian, Hanze Dong, Peter Richtárik, and Tong
Zhang. Error compensated loopless SVRG, Quartz,
and SDCA for distributed optimization. arXiv preprint
arXiv:2109.10049, 2021a.

Xun Qian, Zheng Qu, and Peter Richtárik. L-svrg and l-
katyusha with arbitrary sampling. Journal of Machine
Learning Research, 22:1–49, 2021b.

Xun Qian, Peter Richtárik, and Tong Zhang. Error compen-
sated distributed SGD can be accelerated. In A. Beygelz-
imer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, edi-
tors, Advances in Neural Information Processing Systems,
2021c. URL https://openreview.net/forum?
id=dSqtddFibt2.

B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A
lock-free approach to parallelizing stochastic gradient
descent. Advances in Neural Information Processing
Systems, pages 693–701, 2011.

F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-bit stochas-
tic gradient descent and its application to data- parallel
distributed training of speech DNNs. Fifteenth Annual

https://openreview.net/forum?id=dSqtddFibt2
https://openreview.net/forum?id=dSqtddFibt2

Xun Qian, Hanze Dong, Tong Zhang, Peter Richtárik

Conference of the International Speech Communication
Association, 2014.

S. Shalev-Shwartz and T. Zhang. Proximal stochastic dual
coordinate ascent. arXiv: 1211.2717, 2012.

Shai Shalev-Shwartz and Tong Zhang. Accelerated proxi-
mal stochastic dual coordinate ascent for regularized loss
minimization. In International conference on machine
learning, pages 64–72. PMLR, 2014.

S. U. Stich, J. B. Cordonnier, and M. Jaggi. Sparsified
SGD with memory. In Advances in Neural Information
Processing Systems (NeurIPS), pages 4447–4458, 2018.

Sebastian U Stich and Sai Praneeth Karimireddy. The error-
feedback framework: Better rates for sgd with delayed
gradients and compressed updates. Journal of Machine
Learning Research, 21:1–36, 2020.

H. Tang, X. Lian, T. Zhang, and J. Liu. DoubleSqueeze: Par-
allel stochastic gradient descent with double-pass error-
compensated compression. In Proceedings of the 36th
International Conference on Machine Learning (ICML),
pages 6155–6165, 2019.

John Tsitsiklis, Dimitri Bertsekas, and Michael Athans. Dis-
tributed asynchronous deterministic and stochastic gra-
dient optimization algorithms. Automatic Control, IEEE
Transactions on, 31(9):803–812, 1986.

Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen
Kloppenburg, Tim Verbelen, and Jan S Rellermeyer. A
survey on distributed machine learning. ACM Computing
Surveys, 2019.

W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, and H. Li. Tern-
grad: Ternary gradients to reduce communication in dis-
tributed deep learning. Advances in Neural Information
Processing Systems, pages 1509–1519, 2017.

Y. You, I. Gitman, and B. Ginsburg. Scaling sgd batch size
to 32k for imagenet training. arXiv: 1708.03888, 2017.

Yuchen Zhang and Lin Xiao. Stochastic primal-dual coordi-
nate method for regularized empirical risk minimization.
Journal of Machine Learning Research, 18:1–42, 2017.

Catalyst Acceleration of Error Compensated Methods Leads to Better Communication Complexity

Contents

1 INTRODUCTION 1

1.1 Motivation . 2

1.2 Contributions . 3

2 ERROR COMPENSATED SPDC 4

3 EC-LSVRG + CATALYST IN THE SMOOTH CASE 5

3.1 Communication Complexity . 6

3.2 Remove the Dependence on Ud/rQ . 6

4 EC-SDCA + CATALYST 7

4.1 Communication Complexity . 7

4.2 Remove the Dependence on Ud/rQ . 7

5 EXPERIMENTS 8

5.1 Effectiveness of TopK Compressor . 9

5.2 Comparison of Different Accelerated Error Compensated Algorithms 9

5.3 Improvements from Catalyst Acceleration . 9

A EXTRA EXPERIMENTS 13

A.1 Effectiveness of TopK Compressor . 13

B EC-LSVRG AND EC-SDCA ALGORITHMS 14

C ERROR COMPENSATED SPDC 16

D PROOFS OF LEMMA C.1, LEMMA C.4, LEMMA C.5, AND THEOREM C.7 20

D.1 Proof of Lemma C.1 . 20

D.2 Proof of Lemma C.4 . 20

D.3 Proof of Lemma C.5 . 21

D.4 Proof of Theorem C.7 . 23

E PROOFS FOR EC-LSVRG + CATALYST 30

E.1 Proof of Lemma 3.2 . 30

E.2 Proof of Lemma 3.5 . 30

F PROOFS FOR EC-SDCA + CATALYST 33

F.1 Proof of Lemma 4.1 . 33

F.2 Proof of Lemma 4.4 . 34

Xun Qian, Hanze Dong, Tong Zhang, Peter Richtárik

Appendix
A EXTRA EXPERIMENTS

A.1 Effectiveness of TopK Compressor

We demonstrate the effectiveness of TopK compressor compared with random dithering, natural compression, and no
compression. Figures 5, 6, and 7 show that compression can improve the performance with respect to the communication
complexity in general, and TopK is specifically effective.

Figure 5: The Communication Complexity Performance of ECSDCA-Catalyst, ECLSVRG-Catalyst, and ECSPDC Used
with Compressors: Top1 VS Random Dithering VS Natural Compression VS No Compression on w6a Data Set

Figure 6: The Communication Complexity Performance of ECSDCA-Catalyst, ECLSVRG-Catalyst, and ECSPDC Used
with Compressors: Top1 VS Random Dithering VS Natural Compression VS No Compression on mushrooms Data Set

Figure 7: The Communication Complexity Performance of ECSDCA-Catalyst, ECLSVRG-Catalyst, and ECSPDC Used
with Compressors: Top1 VS Random Dithering VS Natural Compression VS No Compression on phishing Data Set.

Catalyst Acceleration of Error Compensated Methods Leads to Better Communication Complexity

B EC-LSVRG AND EC-SDCA ALGORITHMS

In this section, we restate the two algorithms: EC-LSVRG and EC-SDCA in [Qian et al., 2021a].

Algorithm 2 Error compensated loopless SVRG (EC-LSVRG)
1: Parameters: stepsize η > 0; probability p ∈ (0, 1]
2: Initialization: x0 = w0 ∈ Rd; e0

τ = 0 ∈ Rd; u0 = 1 ∈ R; h0
τ ∈ Rd; h0 = 1

n

∑n
τ=1 h

0
τ

3: for k = 0, 1, 2, . . . do
4: for τ = 1, . . . , n do
5: Sample iτk uniformly and independently in [m] on each node
6: gkτ = ∇f (τ)

iτk
(xk)−∇f (τ)

iτk
(wk) +∇f (τ)(wk)− hkτ

7: ykτ = Q(ηgkτ + ekτ), ek+1
τ = ekτ + ηgkτ − ykτ

8: zkτ = Q1(∇f (τ)(wk)− hkτ), hk+1
τ = hkτ + zkτ

9: uk+1
τ = 0 for τ = 2, . . . , n

10: uk+1
1 =

{
1 with probability p
0 with probability 1− p

11: Send ykτ , zkτ , and uk+1
τ to the other nodes

12: Receive ykτ , zkτ , and uk+1
τ from the other nodes

13: yk = 1
n

∑n
τ=1 y

k
τ , zk = 1

n

∑n
τ=1 z

k
τ

14: uk+1 =
∑n
τ=1 u

k+1
τ

15: xk+0.5 = xk − (yk + ηhk)
16: xk+1 = proxηψ(xk+0.5)

17: wk+1 =

{
xk if uk+1 = 1
wk otherwise

18: hk+1 = hk + zk

19: end for
20: end for

Xun Qian, Hanze Dong, Tong Zhang, Peter Richtárik

Algorithm 3 Error compensated SDCA (EC-SDCA)
1: Parameters: θ > 0; Rm := maxi,τ ‖Aiτ‖; R̄2 := maxτ∈[n]{ 1

mλmax(
∑m
i=1AiτA

>
iτ)};

R2 := 1
N λmax(

∑n
τ=1

∑m
i=1AiτA

>
iτ); piτ = 1

m ∈ R for i ∈ [m] and τ ∈ [n]; positive constants viτ = R2
m+nR2 ∈ R

for i ∈ [m] and τ ∈ [n]
2: Initialization: α0 ∈ RtN ; x0 ∈ Rd; u0 = 1

λN

∑n
τ=1

∑m
i=1Aiτα

0
iτ ∈ Rd; e0

τ = 0 ∈ Rd for τ ∈ [n]
3: for k = 0, 1, 2, . . . do
4: for τ = 1, . . . , n do
5: xk+1 = ∇g∗(uk)
6: αk+1

iτ = αkiτ for i ∈ [m]
7: Sample iτk uniformly and independently in [m] on each node
8: ∆αk+1

iτkτ
= −θp−1

iτkτ
αkiτkτ

− θp−1
iτkτ
∇φiτkτ (A>iτkτ

xk+1)

9: αk+1
iτkτ

= αkiτkτ
+ ∆αk+1

iτkτ

10: ykτ = Q
(

1
λmAiτkτ∆αk+1

iτkτ
+ ekτ

)
11: ek+1

τ = ekτ + 1
λmAiτkτ∆αk+1

iτkτ
− ykτ

12: Send ykτ to the other nodes
13: Receive ykτ from the other nodes
14: uk+1 = uk + 1

n

∑n
τ=1 y

k
τ

15: end for
16: end for

Catalyst Acceleration of Error Compensated Methods Leads to Better Communication Complexity

C ERROR COMPENSATED SPDC

In problem (4), we can replace each φiτ (A>iτx) by convex conjugation, i.e.,

φiτ (A>iτx) = sup
y∈Rt
{〈y,A>iτx〉 − φ∗iτ (y)},

where φ∗iτ is the conjugate function of φiτ . This leads to the following convex-concave saddle point problem

min
x∈Rd

max
Y ∈RtN

f(x, Y) := g(x) + 1
N

n∑
τ=1

m∑
i=1

(〈yiτ , A>iτx〉 − φ∗iτ (yiτ))),

where Y = (y>11, ..., y
>
m1, ..., y

>
n1, ..., y

>
mn)> ∈ RtN and yiτ ∈ Rt.

Algorithm 4 Error Compensated SPDC (ECSPDC)
1: Parameters: stepsize parameters σ > 0; η > 0; θ ∈ (0, 1) ; Rm := maxi,τ ‖Aiτ‖;
R̄2 := maxτ∈[n]{ 1

mλmax(
∑m
i=1AiτA

>
iτ)}; R2 := 1

N λmax(
∑n
τ=1

∑m
i=1AiτA

>
iτ)

2: Initialization: x0 = z0 ∈ Rd; e0
τ = 0 ∈ Rd; y0

iτ ∈ Rt; u0
τ = 1

m

∑m
i=1Aiτy

0
iτ ; h0

τ ∈ Rd; h0 = 1
n

∑n
τ=1 h

0
τ

3: for k = 0, 1, 2, ... do
4: for τ = 1, ..., n do in parallel
5: Sample iτk uniformly and independently in [m] on each node

6: yk+1
iτ =

{
arg maxy∈Rt

{
〈y,A>iτzk〉 − φ∗iτ (y)− 1

2σ‖y − y
k
iτ‖2

}
if i = iτk

ykiτ if i 6= iτk
7: ∆k

τ = Q(Aiτkτ (yk+1
iτkτ
− ykiτkτ) + ukτ − hkτ + ekτ)

8: uk+1
τ = ukτ + 1

mAiτkτ (yk+1
iτkτ
− ykiτkτ), hk+1

τ = hkτ +Q1(ukτ − hkτ)

9: ek+1
τ = ekτ +Aiτkτ (yk+1

iτkτ
− ykiτkτ) + ukτ − hkτ −∆k

τ

10: Send ∆k
τ and Q1(ukτ − hkτ) to the other nodes

11: Receive ∆k
τ and Q1(ukτ − hkτ) from the other nodes

12: ∆k = 1
n

∑n
τ=1 ∆k

τ

13: xk+1 = arg minx∈Rd
{
g(x) + 〈hk + ∆k, x〉+ ‖x−xk‖2

2η

}
14: hk+1 = hk + 1

n

∑n
τ=1Q1(ukτ − hkτ), zk+1 = xk+1 + θ(xk+1 − xk)

15: end for
16: end for

Description of error-compensated SPDC (Algorithm 4). In distributed SPDC, the search direction at the k-th iteration is

1

n

n∑
τ=1

(
1

m

m∑
i=1

Aiτy
k
iτ +Aiτkτ (yk+1

iτkτ
− ykiτkτ)

)
,

where iτk is sampled uniformly and independently in [m] := {1, 2, ...,m} on each node. When yiτ goes to the optimal
solution, the term yk+1

iτkτ
− ykiτkτ will go to zero, while another term 1

m

∑m
i=1Aiτyiτ may not. Then in the presence of the

compression error, the linear convergence rate could not be achieved by compressing this search direction directly. Hence,
like ECLK, we introduce a vector hkτ to learn ukτ = 1

m

∑m
i=1Aiτyiτ iteratively. This learning scheme was first proposed in

DIANA [Horváth et al., 2019a] with the unbiased compressor. More precisely, we perform the following update on each
node

hk+1
τ = hkτ +Q1(ukτ − hkτ),

where Q1 is a contraction compressor. Now we apply the compression and error feedback mechanism to

ukτ − hkτ +Aiτkτ (yk+1
iτkτ
− ykiτkτ), (7)

and add hk := 1
n

∑n
τ=1 h

k
τ back after aggregation. We use ekτ to denote the compression error on each node, and add it to

(7) before compression. After compression, ekτ is updated by the compression error at the current step:

ek+1
τ = ekτ + ukτ − hkτ +Aiτkτ (yk+1

iτkτ
− ykiτkτ)−Q(ekτ + ukτ − hkτ +Aiτkτ (yk+1

iτkτ
− ykiτkτ)),

Xun Qian, Hanze Dong, Tong Zhang, Peter Richtárik

where Q is also a contraction compressor. The rest steps are the same as SPDC [Zhang and Xiao, 2017]. Next we introduce
some useful variables.

Let ek := 1
n

∑n
τ=1 e

k
τ and uk := 1

n

∑n
τ=1 u

k
τ for k ≥ 0. Define x̃k = xk − ηek for k ≥ 0. We denote the optimal solution

of the above saddle point problem as (x∗, Y ∗), where

Y ∗ = ((y∗11)>, ..., (y∗m1)>, ..., (y∗n1)>, ..., (y∗mn)>)>.

Now we are ready to construct some Lyapunov functions. For k ≥ 0, define

Φk2 :=
(

1
2η + λ

4

)
‖x̃k − x∗‖2 +

(
1

4σ + γ
2

)
1
n

n∑
τ=1

m∑
i=1

‖ykiτ − y∗iτ‖2 + 3(η+λη2)
δn

n∑
τ=1

‖ekτ‖2

+ f(xk, Y ∗)− f(x∗, Y ∗) +m
(
f(x∗, Y ∗)− f(x∗, Y k)

)
+ 42(1−δ)(η+λη2)

δ2δ1n

n∑
τ=1

‖hkτ − ukτ‖2,

where Y k = ((yk11)>, ..., (ykm1)>, ..., (ykn1)>, ..., (ykmn)>)>, and

Ψk
2 :=

(
1
2η + λ

4

)
‖x̃k − x∗‖2 +

(
1

4σ + γ
2

)
1
n

n∑
τ=1

m∑
i=1

‖ykiτ − y∗iτ‖2 + f(xk, Y ∗)− f(x∗, Y ∗)

+m
(
f(x∗, Y ∗)− f(x∗, Y k)

)
+ 3(η+λη2)

δ ‖ek‖2 + 21(1−δ)(η+λη2)
δn2

n∑
τ=1

‖ekτ‖2

+ 84(1−δ)(η+λη2)
5δ2δ1

‖hk − uk‖2 + 1512(1−δ)(η+λη2)
5δ2δ1n2

n∑
τ=1

‖hkτ − ukτ‖2.

First, we introduce Lemma C.1, which is useful in the analysis of samplings in distributed systems.

Lemma C.1 Let S = {(iτ , τ)| iτ is chosen from [m] uniformly and independently for all τ ∈ [n]}. For any given wiτ ∈
Rt for i ∈ [m] and τ ∈ [n], we have

E

∥∥∥∥∥
n∑
τ=1

Aiττwiττ

∥∥∥∥∥
2
 ≤ (nR2 +R2

m

m

) n∑
τ=1

m∑
i=1

‖wiτ‖2.

The following two lemmas show the evolution of the error terms
∑n
τ=1 ‖ekτ‖2 and ‖ek‖2. The proofs are similar to that of

Lemmas 3.4 and B.4 in [Qian et al., 2021c], hence we omit them.

Lemma C.2 We have

1

n

n∑
τ=1

Ek[‖ek+1
τ ‖2] ≤

(
1− δ

2

)
1

n

n∑
τ=1

‖ekτ‖2 +
4(1− δ)
δn

n∑
τ=1

‖ukτ − hkτ‖2

+
(1− δ)
mn

(
4R̄2

δ
+R2

m

) n∑
τ=1

m∑
i=1

‖ỹkiτ − ykiτ‖2.

Lemma C.3 Under Assumption 2.3, we have

Ek‖ek+1‖2 ≤
(

1− δ

2

)
‖ek‖2 +

2(1− δ)δ
n2

n∑
τ=1

‖ekτ‖2 +
4(1− δ)δ

n2

n∑
τ=1

‖ukτ − hkτ‖2

+
4(1− δ)

δ
‖uk − hk‖2 +

(1− δ)
mn

(
4R2

δ
+

5R2
m

n

) n∑
τ=1

m∑
i=1

‖ỹkiτ − ykiτ‖2.

We analyze the evolution of
∑n
τ=1 ‖hkτ − ukτ‖2 and ‖hk − uk‖2 in the next two lemmas.

Catalyst Acceleration of Error Compensated Methods Leads to Better Communication Complexity

Lemma C.4 We have

1

n

n∑
τ=1

Ek[‖hk+1
τ − uk+1

τ ‖2] ≤
(

1− δ1
2

)
1

n

n∑
τ=1

‖hkτ − ukτ‖2

+
1

m3n

(
2(1− δ1)R̄2

δ1
+R2

m

) n∑
τ=1

m∑
i=1

‖ỹkiτ − ykiτ‖2.

Lemma C.5 Under Assumption 2.3, we have

Ek‖hk+1 − uk+1‖2 ≤ (1− δ1) ‖hk − uk‖2 +
δ1
n2

n∑
τ=1

‖hkτ − ukτ‖2

+
1

m3n

(
R2

δ1
+
R2
m

n

) n∑
τ=1

m∑
i=1

‖ỹkiτ − ykiτ‖2.

The dual problem of problem (4) is

max
Y ∈RtN

D(Y) := min
x∈Rd

f(x, Y) = − 1
N

n∑
τ=1

m∑
i=1

φ∗iτ (yiτ)− g∗
(
− 1
NAY

)
, (8)

where g∗ is the conjugate function of g and

A = [A11, ..., Am1, ..., An1, ..., Amn] ∈ Rd×tN . (9)

Recall that R2 = 1
N λmax(

∑n
τ=1

∑m
i=1AiτA

>
iτ) = 1

N ‖A‖
2. We have the following lemma.

Lemma C.6 [Lemma 3 in Zhang and Xiao, 2017] Let Assumption 2.2 hold. Then for any point (x, Y) ∈ dom(f(x, Y)),
we have

P (x) ≤ f(x, Y ∗) + R2

2γ ‖x− x
∗‖2, and D(Y) ≥ f(x∗, Y)− R2

2λN ‖Y − Y
∗‖2.

Theorem C.7 Let Assumption 2.1 and Assumption 2.2 hold. Set σ = 1
2R1

√
mλ
γ , η = 1

2R1

√
γ
mλ , and θ =

1 − min

{
1

m+4R1

√
m/(λγ)

, δ6 ,
δ1
6

}
, where R1 > 0 will be chosen later. (i) Let R2

1 = R2
2 := 2R2 +

2R2
m

n +

3(1−δ)
4

(
14R̄2

δ2 +
7R2

m

2δ + 84(1−δ1)R̄2

δ2δ21m
2 +

42R2
m

δ2δ1m2

)
. Assume R

2
2

λγ ≥ 1. Then

E[Φk2] ≤ ε

(
Φ0

2 + 1
4σn

n∑
τ=1

m∑
i=1

‖y0
iτ − y∗iτ‖2

)
,

as long as k ≥ O
((

1
δ + 1

δ1
+m+R2

√
m
λγ

)
log 1

ε

)
. In particular, if 1

m ≤ O(δ1), then the iteration complexity becomes

k ≥ O
(((

R+ Rm√
n

+

√
(1−δ)R̄
δ +

√
(1−δ)Rm√

δ

)√
m
λγ

1
δ +m

)
log 1

ε

)
.

(ii)LetR2
1 = R2

3, where

R2
3 := 2R2 +

2R2
m

n + 21(1−δ)
4

(
2R2

δ2 +
11R2

m

2δn + 12(1−δ)R̄2

δ2n
12R2

5δ2δ21m
2 +

228R2
m

5δ2δ1m2n + 432(1−δ1)R̄2

5δ2δ21m
2n

)
.

Let Assumption 2.3 hold and assume R
2
3

λγ ≥ 1. Then E[Ψk
2] ≤ ε

(
Ψ0

2 + 1
4σn

∑n
τ=1

∑m
i=1 ‖y0

iτ − y∗iτ‖2
)

as long as k ≥

O
((

1
δ + 1

δ1
+m+R3

√
m
λγ

)
log 1

ε

)
. If 1

m ≤ O(δ1), then the iteration complexity becomes

k ≥ O
(((

R+ Rm√
n

+

√
(1−δ)R
δ +

√
(1−δ)Rm√

δn

)√
m
λγ + 1

δ +m

)
log 1

ε

)
.

Xun Qian, Hanze Dong, Tong Zhang, Peter Richtárik

From Lemma C.6, same as Corollary 4 in [Zhang and Xiao, 2017], we can bound the primal-dual gap in the following
theorem.

Theorem C.8 Let Assumption 2.2 hold. Then we have

P (xk)−D(Y k) ≤
(

1 + R2

λγ

) (
f(xk, Y ∗)− f(x∗, Y ∗) +m

(
f(x∗, Y ∗)− f(x∗, Y k)

))
.

Since f(xk, Y ∗) − f(x∗, Y ∗) + m(f(x∗, Y ∗) − f(x∗, Y k)) is bounded by Φk2 or Ψk
2 , the iteration complexity of the

primal-dual gap can be deduced easily from Theorem C.7. Hence, we omit it.

Catalyst Acceleration of Error Compensated Methods Leads to Better Communication Complexity

D PROOFS OF LEMMA C.1, LEMMA C.4, LEMMA C.5, AND THEOREM C.7

D.1 Proof of Lemma C.1

Let W = (w>11, ..., w
>
m1, w

>
12, ..., w

>
m2, ..., w

>
n1, ..., w

>
mn)> ∈ RtN . We have

E

∥∥∥∥∥
n∑
τ=1

Aiττwiττ

∥∥∥∥∥
2


= E

 ∑
τ1 6=τ2

〈Aiτ1τ1wiτ1τ1 , Aiτ2τ2wiτ2τ2〉

+ E

[
n∑
τ=1

‖Aiττwiττ‖2
]

=
∑
τ1 6=τ2

〈
1

m

m∑
i=1

Aiτ1wiτ1 ,
1

m

m∑
j=1

Ajτ2wjτ2

〉
+

1

m

n∑
τ=1

m∑
i=1

‖Aiτwiτ‖2

=
1

m2

∑
τ1 6=τ2

m∑
i,j=1

〈Aiτ1wiτ1 , Ajτ2wjτ2〉+
1

m

n∑
τ=1

m∑
i=1

‖Aiτwiτ‖2

=
1

m2

n∑
τ1,τ2=1

m∑
i,j=1

〈Aiτ1wiτ1 , Ajτ2wjτ2〉 −
1

m2

n∑
τ=1

m∑
i,j=1

〈Aiτwiτ , Ajτwjτ 〉+
1

m

n∑
τ=1

m∑
i=1

‖Aiτwiτ‖2

=
1

m2
‖AW‖2 − 1

m2

n∑
τ=1

∥∥∥∥∥
m∑
i=1

Aiτwiτ

∥∥∥∥∥
2

+
1

m

n∑
τ=1

m∑
i=1

‖Aiτwiτ‖2

≤ 1

m2
‖AW‖2 +

1

m

n∑
τ=1

m∑
i=1

‖Aiτwiτ‖2

≤ NR2

m2

n∑
τ=1

m∑
i=1

‖wiτ‖2 +
1

m
R2
m

n∑
τ=1

m∑
i=1

‖wiτ‖2

=

(
nR2

m
+

1

m
R2
m

) n∑
τ=1

m∑
i=1

‖wiτ‖2,

where in the second equality, we use the fact that iτ1 is indpendent of iτ2 for τ1 6= τ2, and in the last inequality, we use
‖Aiτ‖ ≤ maxi,τ ‖Aiτ‖ = Rm and

1

N
λmax(AA>) =

1

N
λmax(

n∑
τ=1

m∑
i=1

AiτA
>
iτ) = R2.

D.2 Proof of Lemma C.4

First, we have

Ek‖hk+1
τ − uk+1

τ ‖2

= Ek
∥∥hk+1

τ − ukτ − Ek[uk+1
τ − ukτ] + Ek[uk+1

τ − ukτ]− (uk+1
τ − ukτ)

∥∥2

= Ek
∥∥hk+1

τ − ukτ − Ek[uk+1
τ − ukτ]

∥∥2
+ Ek

∥∥Ek[uk+1
τ − ukτ]− (uk+1

τ − ukτ)
∥∥2

= Ek
∥∥hk+1

τ − ukτ − Ek[uk+1
τ − ukτ]

∥∥2
+ Ek‖uk+1

τ − ukτ‖2 −
∥∥Ek[uk+1

τ − ukτ]
∥∥2

≤ (1 + β)Ek‖hk+1
τ − ukτ‖2 +

(
1 +

1

β
− 1

)∥∥Ek[uk+1
τ − ukτ]

∥∥2
+ Ek‖uk+1

τ − ukτ‖2 (10)

≤ (1− δ1)(1 + β)‖hkτ − ukτ‖2 +
1

β

∥∥Ek[uk+1
τ − ukτ]

∥∥2
+ Ek‖uk+1

τ − ukτ‖2

=

(
1− δ1

2

)
‖hkτ − ukτ‖2 +

2(1− δ1)

δ1

∥∥Ek[uk+1
τ − ukτ]

∥∥2
+ Ek‖uk+1

τ − ukτ‖2,

Xun Qian, Hanze Dong, Tong Zhang, Peter Richtárik

where we use Young’s inequality for any β > 0 in the first inequality, in the second inequality we use the contraction
property of Q1, in the last equality we choose β = δ1

2(1−δ1) when δ1 < 1. When δ1 = 1, it is easy to see that the above
inequality also holds.

Since uk+1
τ − ukτ = 1

mAiτkτ (yk+1
iτkτ
− ykiτkτ), we have

Ek‖uk+1
τ − ukτ‖2 ≤

R2
m

m2
Ek
∥∥∥yk+1
iτkτ
− ykiτkτ

∥∥∥2

=
R2
m

m3

m∑
i=1

‖ỹkiτ − ykiτ‖2.

From Ek[uk+1
τ − ukτ] = 1

m2

∑m
i=1Aiτ (ỹkiτ − ykiτ), we can get

∥∥Ek[uk+1
τ − ukτ]

∥∥2
=

1

m4

∥∥∥∥∥
m∑
i=1

Aiτ (ỹkiτ − ykiτ)

∥∥∥∥∥
2

≤ 1

m4
‖[A1τ , ..., Amτ]‖2 ·

m∑
i=1

‖ỹkiτ − ykiτ‖2

=
1

m4
λmax

(
m∑
i=1

AiτA
>
iτ

)
m∑
i=1

‖ỹkiτ − ykiτ‖2

≤ R̄2

m3

m∑
i=1

‖ỹkiτ − ykiτ‖2.

Combining the above three inequalities, we arrive at

Ek‖hk+1
τ − uk+1

τ ‖2 ≤
(

1− δ1
2

)
‖hkτ − ukτ‖2 +

1

m3

(
2(1− δ1)R̄2

δ1
+R2

m

) m∑
i=1

‖ỹkiτ − ykiτ‖2.

Summing up the above inequality from τ = 1 to n and dividing both sides of the resulting inequality by n , we can get the
result.

D.3 Proof of Lemma C.5

First, same as (10), we can obtain

Ek‖hk+1 − uk+1‖2 ≤ (1 + β)‖hk+1 − uk‖2 +
1

β

∥∥Ek[uk+1 − uk]
∥∥2

+ Ek‖uk+1 − uk‖2,

for any β > 0.

Under Assumption 2.3, same as the analysis of Ek‖hk+1 −∇f(wk)‖2 in Lemma B.5 of [Qian et al., 2021c], we can get

Ek‖hk+1 − uk‖2 ≤ (1− δ1)2‖hk − uk‖2 +
(1− δ1)δ1

n2

n∑
τ=1

‖hkτ − ukτ‖2.

Combining the above two inequalities yields that

Ek‖hk+1 − uk+1‖2 ≤ (1 + β)(1− δ1)2‖hk − uk‖2 +
(1 + β)(1− δ1)δ1

n2

n∑
τ=1

‖hkτ − ukτ‖2

+
1

β

∥∥Ek[uk+1 − uk]
∥∥2

+ Ek‖uk+1 − uk‖2

= (1− δ1) ‖hk − uk‖2 +
δ1
n2

n∑
τ=1

‖hkτ − ukτ‖2

+
(1− δ1)

δ1

∥∥Ek[uk+1 − uk]
∥∥2

+ Ek‖uk+1 − uk‖2,

Catalyst Acceleration of Error Compensated Methods Leads to Better Communication Complexity

where we choose β = δ1
1−δ1 when δ1 < 1. When δ1 = 1, hk+1 = uk, thus the above inequality also holds.

Since uk+1
τ − ukτ = 1

mAiτkτ (yk+1
iτkτ
− ykiτkτ), we have

Ek‖uk+1 − uk‖2 = Ek

∥∥∥∥∥ 1

mn

n∑
τ=1

Aiτkτ (yk+1
iτkτ
− ykiτkτ)

∥∥∥∥∥
2

= Ek

∥∥∥∥∥ 1

mn

n∑
τ=1

Aiτkτ (ỹkiτkτ − y
k
iτkτ

)

∥∥∥∥∥
2

Lemma C.1
≤ nR2 +R2

m

m3n2

n∑
τ=1

m∑
i=1

‖ỹkiτ − ykiτ‖2.

From Ek[uk+1 − uk] = 1
m2n

∑n
τ=1

∑m
i=1Aiτ (ỹkiτ − ykiτ), we can obtain

∥∥Ek[uk+1 − uk]
∥∥2 ≤ 1

m4n2
‖A‖2

n∑
τ=1

m∑
i=1

‖ỹkiτ − ykiτ‖2

=
R2

m3n

n∑
τ=1

m∑
i=1

‖ỹkiτ − ykiτ‖2,

where A is defined in (9). Combining the above three inequalities, we can get the result.

Xun Qian, Hanze Dong, Tong Zhang, Peter Richtárik

D.4 Proof of Theorem C.7

(i) Let ỹkiτ := arg maxy∈Rt
{
〈y,A>iτzk〉 − φ∗iτ (y)− 1

2σ‖y − y
k
iτ‖2

}
. Then similar to (47) in [Zhang and Xiao, 2017], we

can get (
1

2σ
+

(m− 1)γ

2m

)
1

n

n∑
τ=1

m∑
i=1

‖ykiτ − y∗iτ‖2

≥
(

1

2σ
+
γ

2

)
1

n

n∑
τ=1

m∑
i=1

Ek‖yk+1
iτ − y∗iτ‖2 +

1

2σn

n∑
τ=1

m∑
i=1

Ek‖yk+1
iτ − ykiτ‖2

+
1

n
Ek

[
n∑
τ=1

(φ∗iτkτ (yk+1
iτkτ

)− φ∗iτkτ (ykiτkτ))

]

+
1

N

n∑
τ=1

m∑
i=1

(φ∗iτ (ykiτ)− φ∗iτ (y∗iτ))− Ek〈uk − u∗ +m(uk+1 − uk), zk〉, (11)

where uk = 1
N

∑n
τ=1

∑m
i=1Aiτy

k
iτ and u∗ = 1

N

∑n
τ=1

∑m
i=1Aiτy

∗
iτ .

From the update rule of xk+1 and optimality condition, we have

∂g(xk+1) + hk + ∆k +
1

η
(xk+1 − xk) = 0.

For hk + ∆k, we have

hk + ∆k =
1

n

n∑
τ=1

(hkτ + ∆k
τ)

=
1

n

n∑
τ=1

(hkτ + ekτ +Aiτkτ (yk+1
iτkτ
− ykiτkτ) + ukτ − hkτ − ek+1

τ)

=
1

n

n∑
τ=1

(ekτ − ek+1
τ +m(uk+1

τ − ukτ))

= ek − ek+1 + uk +m(uk+1 − uk).

By using the above two equalities, we can obtain

x̃k+1 = xk+1 − ηek+1

= xk − η(∂g(xk+1) + hk + ∆k)− ηek+1

= xk − η(∂g(xk+1) + ek − ek+1 + uk +m(uk+1 − uk)− ek+1)

= x̃k − η(∂g(xk+1) + uk +m(uk+1 − uk)).

Then similar to Lemma B.3 in [Qian et al., 2021c], we can get

〈uk +m(uk+1 − uk), x∗ − xk+1〉 ≥
(

1

2η
+
λ

4

)
‖x̃k+1 − x∗‖2 − 1

2η
‖x̃k − x∗‖2 − η

2
‖ek‖2

−
(
η

2
+
λη2

2

)
‖ek+1‖2 +

1

4η
‖xk+1 − xk‖2 + g(xk+1)− g(x∗).

Rearranging terms and taking conditional expectation, we arrive at

1

2η
‖x̃k − x∗‖2 ≥

(
1

2η
+
λ

4

)
Ek‖x̃k+1 − x∗‖2 +

1

4η
Ek‖xk+1 − xk‖2 + Ek[g(xk+1)− g(x∗)]

+ Ek〈uk +m(uk+1 − uk), xk+1 − x∗〉 − η

2
‖ek‖2 −

(
η

2
+
λη2

2

)
Ek‖ek+1‖2. (12)

Catalyst Acceleration of Error Compensated Methods Leads to Better Communication Complexity

Similar to (51) in [Zhang and Xiao, 2017], we can get

f(xk+1, Y ∗)− f(x∗, Y ∗) +m
(
f(x∗, Y ∗)− f(x∗, Y k+1)

)
− (m− 1)

(
f(x∗, Y ∗)− f(x∗, Y k)

)
=

1

N

n∑
τ=1

m∑
i=1

(
φ∗iτ (ykiτ)− φ∗iτ (y∗iτ)

)
+

1

n

n∑
τ=1

(
φ∗iτkτ (yk+1

iτkτ
)− φ∗iτkτ (ykiτkτ)

)
+ g(xk+1)− g(x∗)

+ 〈u∗, xk+1〉 − 〈uk, x∗〉+m〈uk − uk+1, x∗〉.

Combining (11), (12), and the above equality after taking conditional expectation, we can obtain

1

2η
‖x̃k − x∗‖2 +

(
1

2σ
+

(m− 1)γ

2m

)
1

n

n∑
τ=1

m∑
i=1

‖ykiτ − y∗iτ‖2 + (m− 1)
(
f(x∗, Y ∗)− f(x∗, Y k)

)
≥
(

1

2η
+
λ

4

)
Ek‖x̃k+1 − x∗‖2 +

(
1

2σ
+
γ

2

)
1

n

n∑
τ=1

m∑
i=1

Ek‖yk+1
iτ − y∗iτ‖2 +

1

4η
Ek‖xk+1 − xk‖2

+
1

2σmn

n∑
τ=1

m∑
i=1

‖ỹkiτ − ykiτ‖2 + Ek
[
f(xk+1, Y ∗)− f(x∗, Y ∗) +m

(
f(x∗, Y ∗)− f(x∗, Y k+1)

)]
+ Ek〈uk − u∗ +m(uk+1 − uk), xk+1 − zk〉 − η

2
‖ek‖2 −

(
η

2
+
λη2

2

)
Ek‖ek+1‖2, (13)

where we also use the fact that
∑n
τ=1

∑m
i=1 Ek‖y

k+1
iτ − ykiτ‖2 = 1

m

∑n
τ=1

∑m
i=1 ‖ỹkiτ − ykiτ‖2.

Next we estimate the term Ek〈uk − u∗ +m(uk+1 − uk), xk+1 − zk〉. We have

〈uk − u∗ +m(uk+1 − uk), xk+1 − zk〉

=
1

N
〈AY k −AY ∗ +mA(Y k+1 − Y k), xk+1 − xk − θ(xk − xk−1)〉

=
1

N
〈AY k+1 −AY ∗, xk+1 − xk〉 − θ

N
〈AY k −AY ∗, xk − xk−1〉

+
m− 1

N
〈AY k+1 −AY k, xk+1 − xk〉+

mθ

N
〈AY k+1 −AY k, xk − xk−1〉, (14)

where we define x−1 := x0 to guarantee z0 = x0. By Cauchy-Schwarz inequality, we have

|〈AY k+1 −AY k, xk+1 − xk〉| ≤ n

8η
‖xk+1 − xk‖2 +

2η

n
‖A(Y k+1 − Y k)‖2.

By Lemma C.1, we further have

Ek‖A(Y k+1 − Y k)‖2 = Ek

∥∥∥∥∥
n∑
τ=1

Aiτkτ (yk+1
iτkτ
− ykiτkτ)

∥∥∥∥∥
2

= Ek

∥∥∥∥∥
n∑
τ=1

Aiτkτ (ỹkiτkτ − y
k
iτkτ

)

∥∥∥∥∥
2

Lemma C.1
≤ nR2 +R2

m

m

n∑
τ=1

m∑
i=1

‖ỹkiτ − ykiτ‖2.

Thus, we arrive at

Ek〈AY k+1 −AY k, xk+1 − xk〉 ≥ − n

8η
Ek‖xk+1 − xk‖2 − 2η(nR2 +R2

m)

N

n∑
τ=1

m∑
i=1

‖ỹkiτ − ykiτ‖2.

Simiarly, we can get

Ek〈AY k+1 −AY k, xk − xk−1〉 ≥ − n

8η
‖xk − xk−1‖2 − 2η(nR2 +R2

m)

N

n∑
τ=1

m∑
i=1

‖ỹkiτ − ykiτ‖2.

Xun Qian, Hanze Dong, Tong Zhang, Peter Richtárik

Combining the above two inequalities with (13) and (14), we have

1

2η
‖x̃k − x∗‖2 +

(
1

2σ
+

(m− 1)γ

2m

)
1

n

n∑
τ=1

m∑
i=1

‖ykiτ − y∗iτ‖2 + (m− 1)
(
f(x∗, Y ∗)− f(x∗, Y k)

)
+ θ

(
f(xk, Y ∗)− f(x∗, Y ∗)

)
+

θ

8η
‖xk − xk−1‖2 +

θ

N
〈AY k −AY ∗, xk − xk−1〉

≥
(

1

2η
+
λ

4

)
Ek‖x̃k+1 − x∗‖2 +

(
1

2σ
+
γ

2

)
1

n

n∑
τ=1

m∑
i=1

Ek‖yk+1
iτ − y∗iτ‖2 +

1

8η
Ek‖xk+1 − xk‖2

+ Ek
[
f(xk+1, Y ∗)− f(x∗, Y ∗) +m

(
f(x∗, Y ∗)− f(x∗, Y k+1)

)]
+

1

N
Ek〈AY k+1 −AY ∗, xk+1 − xk〉

+
1

2N

(
1

σ
− 8η(nR2 +R2

m)

n

) n∑
τ=1

m∑
i=1

‖ỹkiτ − ykiτ‖2 −
η

2
‖ek‖2 −

(
η

2
+
λη2

2

)
Ek‖ek+1‖2, (15)

where we add the nonnegative term θ
(
f(xk, Y ∗)− f(x∗, Y ∗)

)
to the left-hand side of the above inequality.

From Lemma C.2, we have

3(η + λη2)

δn

n∑
τ=1

Ek‖ek+1
τ ‖2 +

η

2n

n∑
τ=1

‖ekτ‖2 +
η + λη2

2n

n∑
τ=1

Ek‖ek+1
τ ‖2

≤ η + λη2

n

((
3

δ
+

1

2

)(
1− δ

2

)
+

1

2

) n∑
τ=1

‖ekτ‖2 +
4(1− δ)(η + λη2)

δn

(
3

δ
+

1

2

) n∑
τ=1

‖hkτ − ukτ‖2

+
(1− δ)(η + λη2)

mn

(
3

δ
+

1

2

)(
4R̄2

δ
+R2

m

) n∑
τ=1

m∑
i=1

‖ỹkiτ − ykiτ‖2

≤ 3(η + λη2)

δn

(
1− δ

6

) n∑
τ=1

‖ekτ‖2 +
14(1− δ)(η + λη2)

δ2n

n∑
τ=1

‖hkτ − ukτ‖2

+
(1− δ)(η + λη2)

mn

(
14R̄2

δ2
+

7R2
m

2δ

) n∑
τ=1

m∑
i=1

‖ỹkiτ − ykiτ‖2. (16)

From Lemma C.4, we have

42(1− δ)(η + λη2)

δ2δ1n

n∑
τ=1

Ek‖hk+1
τ − uk+1

τ ‖2 +
14(1− δ)(η + λη2)

δ2n

n∑
τ=1

‖hkτ − ukτ‖2

≤ 42(1− δ)(η + λη2)

δ2δ1n

(
1− δ1

2
+
δ1
3

) n∑
τ=1

‖hkτ − ukτ‖2

+
42(1− δ)(η + λη2)

δ2δ1m3n

(
2(1− δ1)R̄2

δ1
+R2

m

) n∑
τ=1

m∑
i=1

‖ỹkiτ − ykiτ‖2. (17)

Catalyst Acceleration of Error Compensated Methods Leads to Better Communication Complexity

From (15), (16), (17), and the fact that ‖ek‖2 ≤ 1
n

∑n
τ=1 ‖ekτ‖2, we arrive at(

1

2η
+
λ

4

)
Ek‖x̃k+1 − x∗‖2 +

(
1

2σ
+
γ

2

)
1

n

n∑
τ=1

m∑
i=1

Ek‖yk+1
iτ − y∗iτ‖2 +

1

8η
Ek‖xk+1 − xk‖2

+ Ek
[
f(xk+1, Y ∗)− f(x∗, Y ∗) +m

(
f(x∗, Y ∗)− f(x∗, Y k+1)

)]
+

1

N
Ek〈AY k+1 −AY ∗, xk+1 − xk〉

+
3(η + λη2)

δn

n∑
τ=1

Ek‖ek+1
τ ‖2 +

42(1− δ)(η + λη2)

δ2δ1n

n∑
τ=1

Ek‖hk+1
τ − uk+1

τ ‖2

≤ 1

2η
‖x̃k − x∗‖2 +

(
1

2σ
+

(m− 1)γ

2m

)
1

n

n∑
τ=1

m∑
i=1

‖ykiτ − y∗iτ‖2 + (m− 1)
(
f(x∗, Y ∗)− f(x∗, Y k)

)
+ θ

(
f(xk, Y ∗)− f(x∗, Y ∗)

)
+

θ

8η
‖xk − xk−1‖2 +

θ

N
〈AY k −AY ∗, xk − xk−1〉

+
3(η + λη2)

δn

(
1− δ

6

) n∑
τ=1

‖ekτ‖2 +
42(1− δ)(η + λη2)

δ2δ1n

(
1− δ1

6

) n∑
τ=1

‖hkτ − ukτ‖2

− 1

mn

(
1

2σ
− 4η(nR2 +R2

m)

n
− (1− δ)(η + λη2)

(
14R̄2

δ2
+

7R2
m

2δ
+

84(1− δ1)R̄2

δ2δ2
1m

2
+

42R2
m

δ2δ1m2

))
·
n∑
τ=1

m∑
i=1

‖ỹkiτ − ykiτ‖2. (18)

Define

Φk1 :=

(
1

2η
+
λ

4

)
‖x̃k − x∗‖2 +

(
1

2σ
+
γ

2

)
1

n

n∑
τ=1

m∑
i=1

‖ykiτ − y∗iτ‖2 +
1

8η
‖xk − xk−1‖2

+ f(xk, Y ∗)− f(x∗, Y ∗) +m
(
f(x∗, Y ∗)− f(x∗, Y k)

)
+

1

N
〈AY k −AY ∗, xk − xk−1〉

+
3(η + λη2)

δn

n∑
τ=1

‖ekτ‖2 +
42(1− δ)(η + λη2)

δ2δ1n

n∑
τ=1

‖hkτ − ukτ‖2,

for k ≥ 0, where x−1 = x0. Assume R
2
2

λγ ≥ 1. Then λη = 1
2R2

√
λγ
m ≤

1
2 , and thus

4η(nR2 +R2
m)

n
+ (1− δ)(η + λη2)

(
14R̄2

δ2
+

7R2
m

2δ
+

84(1− δ1)R̄2

δ2δ2
1m

2
+

42R2
m

δ2δ1m2

)
≤ 4η(nR2 +R2

m)

n
+

3(1− δ)η
2

(
14R̄2

δ2
+

7R2
m

2δ
+

84(1− δ1)R̄2

δ2δ2
1m

2
+

42R2
m

δ2δ1m2

)
= 2ηR2

2 =
1

2σ
.

From (18), the above inequality, and the definition of Φk1 , we can get

Ek[Φk+1
1] ≤ θΦk1 ,

where we use
(
1− δ

6

)
≤ θ,

(
1− δ1

6

)
≤ θ,

m− 1

m
= 1− 1

m
≤ θ, 1

2η

/(
1

2η
+
λ

4

)
= 1− 1

1 + 4R2

√
m/(λγ)

≤ θ,

and (
1

2σ
+

(m− 1)γ

2m

)/(
1

2σ
+
γ

2

)
= 1− 1

m+m/(γσ)
= 1− 1

m+ 2R2

√
m/(λγ)

≤ θ.

By the tower property, we further have E[Φk+1
1] ≤ θE[Φk1]. Apply this relation recursively, we can obtain

E[Φk1] ≤ θkΦ0
1. (19)

Xun Qian, Hanze Dong, Tong Zhang, Peter Richtárik

From the definition of Φk2 , we know that

Φk1 = Φk2 +
1

4σn

n∑
τ=1

m∑
i=1

‖ykiτ − y∗iτ‖2 +
1

8η
‖xk − xk−1‖2 +

1

N
〈AY k −AY ∗, xk − xk−1〉.

From Young’s inequality, we have

1

N

∣∣〈AY k −AY ∗, xk − xk−1〉
∣∣ ≤ ‖xk − xk−1‖2

8η
+
‖A‖2‖Y k − Y ∗‖2

N2/(2η)

=
‖xk − xk−1‖2

8η
+

2ηR2

N

n∑
τ=1

m∑
i=1

‖ykiτ − y∗iτ‖2

≤ ‖x
k − xk−1‖2

8η
+
ηR2

2

n

n∑
τ=1

m∑
i=1

‖ykiτ − y∗iτ‖2

=
‖xk − xk−1‖2

8η
+

1

4σn

n∑
τ=1

m∑
i=1

‖ykiτ − y∗iτ‖2, (20)

which indicates that Φk2 ≤ Φk1 for k ≥ 0. Therefore, from (19) we have

E[Φk2] ≤ θkΦ0
1 = θk

(
Φ0

2 +
1

4σn

n∑
τ=1

m∑
i=1

‖y0
iτ − y∗iτ‖2

)
.

Finally, from R2
m

m ≤ R̄2, we can get the results.

(ii) Under Assumption 2.3, from Lemma C.2 and Lemma C.3, we have

3(η + λη2)

δ
Ek‖ek+1‖2 +

21(1− δ)(η + λη2)

δn2

n∑
τ=1

Ek‖ek+1
τ ‖2 +

η

2
‖ek‖2 +

η + λη2

2
Ek‖ek+1‖2

≤ 3(η + λη2)

δ

(
1− δ

6

)
‖ek‖2 +

21(1− δ)(η + λη2)

δn2

(
1− δ

6

) n∑
τ=1

‖ekτ‖2

+
14(1− δ)(η + λη2)

δ2
‖hk − uk‖2 +

84(1− δ)(η + λη2)

δ2n2

n∑
τ=1

‖hkτ − ukτ‖2

+
7(1− δ)(η + λη2)

δmn

(
2R2

δ
+

11R2
m

2n
+

12(1− δ)R̄2

δn

) n∑
τ=1

m∑
i=1

‖ỹkiτ − ykiτ‖2.

From Lemma C.4 and Lemma C.5, we have

84(1− δ)(η + λη2)

5δ2δ1
Ek‖hk+1 − uk+1‖2 +

1512(1− δ)(η + λη2)

5δ2δ1n2

n∑
τ=1

Ek‖hk+1
τ − uk+1

τ ‖2

+
14(1− δ)(η + λη2)

δ2
‖hk − uk‖2 +

84(1− δ)(η + λη2)

δ2n2

n∑
τ=1

‖hkτ − ukτ‖2

≤ 84(1− δ)(η + λη2)

5δ2δ1

(
1− δ1

6

)
‖hk − uk‖2 +

1512(1− δ)(η + λη2)

5δ2δ1n2

(
1− δ1

6

) n∑
τ=1

‖hkτ − ukτ‖2

+
84(1− δ)(η + λη2)

5δ2δ1m3n

(
R2

δ1
+

19R2
m

n
+

36(1− δ1)R̄2

δ1n

) n∑
τ=1

m∑
i=1

‖ỹkiτ − ykiτ‖2.

Catalyst Acceleration of Error Compensated Methods Leads to Better Communication Complexity

Combining the above two inequalities and (15), we arrive at(
1

2η
+
λ

4

)
Ek‖x̃k+1 − x∗‖2 +

(
1

2σ
+
γ

2

)
1

n

n∑
τ=1

m∑
i=1

Ek‖yk+1
iτ − y∗iτ‖2 +

1

8η
Ek‖xk+1 − xk‖2

+ Ek
[
f(xk+1, Y ∗)− f(x∗, Y ∗) +m

(
f(x∗, Y ∗)− f(x∗, Y k+1)

)]
+

3(η + λη2)

δ
Ek‖ek+1‖2 +

21(1− δ)(η + λη2)

δn2

n∑
τ=1

Ek‖ek+1
τ ‖2 +

1

N
Ek〈AY k+1 −AY ∗, xk+1 − xk〉

+
84(1− δ)(η + λη2)

5δ2δ1
Ek‖hk+1 − uk+1‖2 +

1512(1− δ)(η + λη2)

5δ2δ1n2

n∑
τ=1

Ek‖hk+1
τ − uk+1

τ ‖2

≤ 1

2η
‖x̃k − x∗‖2 +

(
1

2σ
+

(m− 1)γ

2m

)
1

n

n∑
τ=1

m∑
i=1

‖ykiτ − y∗iτ‖2 + (m− 1)
(
f(x∗, Y ∗)− f(x∗, Y k)

)
+ θ

(
f(xk, Y ∗)− f(x∗, Y ∗)

)
+

θ

8η
‖xk − xk−1‖2 +

θ

N
〈AY k −AY ∗, xk − xk−1〉

+
3(η + λη2)

δ

(
1− δ

6

)
‖ek‖2 +

21(1− δ)(η + λη2)

δn2

(
1− δ

6

) n∑
τ=1

‖ekτ‖2

+
84(1− δ)(η + λη2)

5δ2δ1

(
1− δ1

6

)
‖hk − uk‖2 +

1512(1− δ)(η + λη2)

5δ2δ1n2

(
1− δ1

6

) n∑
τ=1

‖hkτ − ukτ‖2

− 1

mn

n∑
τ=1

m∑
i=1

‖ỹkiτ − ykiτ‖2 ·
(

1

2σ
− 4η(nR2 +R2

m)

n
− 7(1− δ)(η + λη2)

·
(

2R2

δ2
+

11R2
m

2δn
+

12(1− δ)R̄2

δ2n
+

12R2

5δ2δ2
1m

2
+

228R2
m

5δ2δ1m2n
+

432(1− δ1)R̄2

5δ2δ2
1m

2n

))
. (21)

Define

Ψk
1 :=

(
1

2η
+
λ

4

)
‖x̃k − x∗‖2 +

(
1

2σ
+
γ

2

)
1

n

n∑
τ=1

m∑
i=1

‖ykiτ − y∗iτ‖2 +
1

8η
‖xk − xk−1‖2

+ f(xk, Y ∗)− f(x∗, Y ∗) +m
(
f(x∗, Y ∗)− f(x∗, Y k)

)
+

1

N
Ek〈AY k −AY ∗, xk − xk−1〉

+
3(η + λη2)

δ
‖ek‖2 +

21(1− δ)(η + λη2)

δn2

n∑
τ=1

‖ekτ‖2

+
84(1− δ)(η + λη2)

5δ2δ1
‖hk − uk‖2 +

1512(1− δ)(η + λη2)

5δ2δ1n2

n∑
τ=1

‖hkτ − ukτ‖2,

for k ≥ 0, where x−1 = x0.

Assume R
2
3

λγ ≥ 1. Then λη = 1
2R3

√
λγ
m ≤

1
2 , and thus

4η(nR2 +R2
m)

n
+ 7(1− δ)(η + λη2)

·
(

2R2

δ2
+

11R2
m

2δn
+

12(1− δ)R̄2

δ2n
+

12R2

5δ2δ2
1m

2
+

228R2
m

5δ2δ1m2n
+

432(1− δ1)R̄2

5δ2δ2
1m

2n

)
≤ 2ηR2

3 =
1

2σ
.

From (21), the above inequality, and the definition of Ψk
1 , we can get

Ek[Ψk+1
1] ≤ θΨk

1 .

By the tower property, we further have E[Ψk+1
1] ≤ θE[Ψk

1]. Apply this relation recursively, we can obtain

E[Ψk
1] ≤ θkΨ0

1. (22)

Xun Qian, Hanze Dong, Tong Zhang, Peter Richtárik

From the definition of Ψk
2 , we know

Ψk
1 = Ψk

2 +
1

4σn

n∑
τ=1

m∑
i=1

‖ykiτ − y∗iτ‖2 +
1

8η
‖xk − xk−1‖2 +

1

N
〈AY k −AY ∗, xk − xk−1〉.

From (20), we have Ψk
2 ≤ Ψk

1 for k ≥ 0. Thus, from (22) we can obtain

E[Ψk
2] ≤ θkΨ0

1 = θk

(
Ψ0

2 +
1

4σn

n∑
τ=1

m∑
i=1

‖y0
iτ − y∗iτ‖2

)
.

At the end, from R2
m

m ≤ R̄2 and R̄2

n ≤ R
2, we can get the results.

Catalyst Acceleration of Error Compensated Methods Leads to Better Communication Complexity

E PROOFS FOR EC-LSVRG + CATALYST

E.1 Proof of Lemma 3.2

First, from Theorem 2.10 in [Qian et al., 2021a] and the initialization rules of h0
τ,(k) and e0

τ,(k), we have

E[Gk(x̄K(k))−G
∗
k] ≤

9(λ+ κ)‖x0
(k) − x

∗
(k)‖

2 + 2(Gk(x0
(k))−G

∗
k)

1− (1− θ̃)K+1
(1− θ̃)K ,

where we denote θ̃ := min{ (λ+κ)η
2 , δ4 ,

δ1
4 ,

p
4}. Since Gk is (λ+ κ)-strongly convex, we have

Gk(x)−G∗k ≥
λ+ κ

2
‖x− x∗(k)‖

2,

for any x ∈ Rd, which indicates that

E[Gk(x̄K(k))−G
∗
k] ≤

18(Gk(x0
(k))−G

∗
k)

1− (1− θ̃)K+1
(1− θ̃)K .

Noticing that ln(1− a) + a ≤ 0 for any a ∈ (0, 1), we have (1− θ̃)
1
θ̃ ≤ 1

e < 0.37. Now we first let K ≥ 1
θ̃

, then we have
(1− θ̃)K+1 ≤ 0.37, which yields

E[Gk(x̄K(k))−G
∗
k] ≤ 30(Gk(x0

(k))−G
∗
k)(1− θ̃)K .

Then similar to the proof of Lemma C.1 in [Lin et al., 2015], but choosing T0 as

T0 = max

{
1

θ̃
,

1

θ̃
log

(
1

1− e−θ̃
30(Gk(x0

(k))−G
∗
k)

εk

)}

instead, we can obtain

E[Tk] ≤ max

{
1

θ̃
,

1

θ̃
log

(
60(Gk(x0

(k))−G
∗
k)

θ̃εk

)}
+ 1.

Within the above inequality, similar to the proof of Proposition 3.2 in [Lin et al., 2015], we can get E[Tk] ≤ Õ(1/θ̃), where
the notation Õ hides some constants and some logorithmic dependencies in λ, κ, and θ̃. At last, by the stepsize rule in
Theorem 2.10 in [Qian et al., 2021a], we can obtain the result.

E.2 Proof of Lemma 3.5

From the inequality above (27) in the proof of Theorem 2.10 in [Qian et al., 2021a], we have

E[Gk(xK(k))−G
∗
k] ≤ 18

η
E[ΦK3,(k)] ≤

18

η
(1− θ̃1)KΦ0

3,(k),

where we denote θ̃1 := min
{

(λ+κ)η
2 , δ4 ,

δ1
4 ,

p
4

}
. Thus, we can get

E[ΦK3,(k) +Gk(xK(k))−G
∗
k] ≤

(
1 +

18

η

)
(1− θ̃1)KΦ0

3,(k).

Then from Lemma C.1 in [Lin et al., 2015], we know

E[Tk] ≤ Õ

(
1

θ̃1

log

(
(1 + 18/η)Φ0

3,(k)

εk

))
= Õ

(
1

θ̃1

log

(
Φ0

3,(k)

εk

))
.

Xun Qian, Hanze Dong, Tong Zhang, Peter Richtárik

Next we will show that log

(
Φ0

3,(k)

εk

)
≤ Õ(1), which concludes the proof. From the definition of ΦK3,(k) and the initialization

rule at each outer iteration, we have

Φ0
3,(k) = ‖xk−1 − e0

(k) − x
∗
(k)‖

2 +
12(Lf+κ)η

nδ

n∑
τ=1

‖e0
τ,(k))‖

2 + η̃(Gk(xk−1)−G∗k)

+
192(1−δ)(Lf+κ)η3

δ2δ1n

n∑
τ=1

‖h0
τ,(k) −∇f

τ (xk−1)−∇ψ(xk−1)− κ(xk−1 − yk−1)‖2,

where we denote η̃ = 4
3p

(
48(1−δ)(Lf+κ)η3

δ

(
4(L̄+κ)

δ + L+ κ+ 16(L̄+κ)p
δδ1

(
1 + 2p

δ1

))
+ 4(L+κ)η2

n

)
. We estimate each

term in the above equality respectively. Since Gk is (λ+ κ)-strongly convex, we have

‖xk−1 − e0
(k) − x

∗
(k)‖

2 ≤ 2‖xk−1 − x∗(k)‖
2 + 2‖e0

(k)‖
2 ≤ 4

λ+ κ
(Gk(xk−1)−G∗k) + 2‖e0

(k)‖
2.

For the third term, define G(τ)
k (x) := f (τ)(x) + ψ(x) + κ

2 ‖x− y
k−1‖2 for simplicity. If h0

τ,(k) = h
Tk−1

τ,(k−1), then we have

1− δ
n

n∑
τ=1

‖h0
τ,(k) −∇f

τ (xk−1)−∇ψ(xk−1)− κ(xk−1 − yk−1)‖2

=
1− δ
n

n∑
τ=1

‖hTk−1

τ,(k−1) −∇f
τ (xk−1)−∇ψ(xk−1)− κ(xk−1 − yk−1)‖2

=
1− δ
n

n∑
τ=1

‖hTk−1

τ,(k−1) −∇G
τ
k(xk−1)‖2

≤ 3(1− δ)
n

n∑
τ=1

(
‖hTk−1

τ,(k−1) −∇G
(τ)
k−1(w

Tk−1

(k−1))‖
2

+‖∇G(τ)
k−1(w

Tk−1

(k−1))−∇G
(τ)
k−1(xk−1)‖2 + ‖∇G(τ)

k−1(xk−1)−∇G(τ)
k (xk−1)‖2

)
.

Since Φ
Tk−1

3,(k−1) +Gk−1(x
Tk−1

(k−1))−G
∗
k−1 ≤ εk−1, we have

3(1− δ)
n

n∑
τ=1

‖hTk−1

τ,(k−1) −∇G
(τ)
k−1(w

Tk−1

(k−1))‖
2 ≤ δ2δ1

192(Lf + κ)η3
Φ
Tk−1

3,(k−1) ≤
δ2δ1

192(Lf + κ)η3
εk−1.

From the smoothness of G(τ)
k−1, we have

1

n

n∑
τ=1

‖∇G(τ)
k−1(w

Tk−1

(k−1))−∇G
(τ)
k−1(xk−1)‖2

≤ 2

n

n∑
τ=1

‖∇G(τ)
k−1(w

Tk−1

(k−1))−∇G
(τ)
k−1(x∗(k−1))‖

2 +
2

n

n∑
τ=1

‖∇G(τ)
k−1(xk−1)−∇G(τ)

k−1(x∗(k−1))‖
2

≤ 4(L̄+ κ)
(
Gk−1(w

Tk−1

(k−1))−G
∗
k−1 +Gk−1(xk−1)−G∗k−1

)
≤ 4(L̄+ κ)

η̃
Φ
Tk−1

3,(k−1) + 4(L̄+ κ)(Gk−1(xk−1)−G∗k−1)

≤ 4(L̄+ κ)

(
1

η̃
+ 1

)
εk−1.

For 1
n

∑n
τ=1 ‖∇G

(τ)
k−1(xk−1)−∇G(τ)

k (xk−1)‖2, we have

1

n

n∑
τ=1

‖∇G(τ)
k−1(xk−1)−∇G(τ)

k (xk−1)‖2 = κ2‖yk−1 − yk−2‖2.

Catalyst Acceleration of Error Compensated Methods Leads to Better Communication Complexity

For the third term, if h0
τ,(k) = h

Tk−1

τ,(k−1) + κ(yk−2 − yk−1), then we have

1− δ
n

n∑
τ=1

‖h0
τ,(k) −∇f

τ (xk−1)−∇ψ(xk−1)− κ(xk−1 − yk−1)‖2

=
1− δ
n

n∑
τ=1

‖hTk−1

τ,(k−1) −∇f
τ (xk−1)−∇ψ(xk−1)− κ(xk−1 − yk−2)‖2

=
1− δ
n

n∑
τ=1

‖hTk−1

τ,(k−1) −∇G
τ
k−1(xk−1)‖2

≤ 3(1− δ)
n

n∑
τ=1

(
‖hTk−1

τ,(k−1) −∇G
(τ)
k−1(w

Tk−1

(k−1))‖
2 + ‖∇G(τ)

k−1(w
Tk−1

(k−1))−∇G
(τ)
k−1(xk−1)‖2

)
.

If e0
τ,(k) = 0, then ‖e0

(k)‖
2 = ‖e0

τ,(k)‖
2 = 0. If e0

τ,(k) = e
Tk−1

τ,(k−1), then

‖e0
τ,(k)‖

2 ≤ 1

n

n∑
τ=1

‖e0
τ,(k)‖

2 ≤ δ

12(Lf + κ)η
Φ
Tk−1

3,(k−1) ≤
δ

12(Lf + κ)η
εk−1.

Moreover, for any a ≥ 1 and b ≥ 1, we have log(a + b) ≤ log(2 max{a, b}) ≤ log(a) + log(b) + 1. Using the above
estimations, we conclude that

log

(
Φ0

3,(k)

εk

)
≤ Õ

(
Gk(xk−1)−G∗k

εk

)
+ Õ

(
‖yk−1 − yk−2‖2

εk

)
+O(1)

Finally, from Lemmas B.1 and B.2 in [Lin et al., 2015], and similar to the proof of Proposition 3.2 in [Lin et al., 2015], we

can get log

(
Φ0

3,(k)

εk

)
≤ Õ(1).

Xun Qian, Hanze Dong, Tong Zhang, Peter Richtárik

F PROOFS FOR EC-SDCA + CATALYST

F.1 Proof of Lemma 4.1

In the proof, we borrow the methodology of [Shalev-Shwartz and Zhang, 2014] for an accelerated proximal stochastic dual
coordinate ascent method. First, from Theorem 3.5 in [Qian et al., 2021a], we have

E[ΨK
3,(k)] ≤

(
1−min

{
θ,
δ

4

})K
ε0D,(k),

for K ≥ 1, and θ is chosen as in (9) in [Qian et al., 2021a]. Moreover, from the proof of Theorem 3.5 in [Qian et al., 2021a],
it is easy to verify that for K ≥ 1

E[εKP,(k)] = E[Gk(xK(k))−G
∗
k] ≤ 1

θ

(
1−min

{
θ,
δ

4

})K
ε0D,(k).

Combining the above two inequalities, we get

E[
√

4n+ δmnΨK
3,(k) + 2(Gk(xK+1

(k))−G∗k)] ≤
(√

4n+ δmn+
2

θ

)(
1−min

{
θ,
δ

4

})K
ε0D,(k), (23)

for K ≥ 1. Then from (23) and similar to Lemma C.1 in [Lin et al., 2015], we know E[T1] ≤ Õ
(

1
δ +m+ M1

λ+κ

)
. Next we

consider k > 1 case.

Define λ̃ = λ+κ, ξ̃(x) = λ
λ̃
ξ(x)+ κ

2λ̃
‖x‖2, and ξk(x) = λ

λ̃
ξ(x)+ κ

2λ̃
‖x−yk−1‖2. Denote the objective function of the dual

problem of minimizing Gk as Dk(α) and v(α) = 1
λ̃N

∑n
τ=1

∑m
i=1Aiταiτ . Then Gk(x) = 1

N

∑n
τ=1

∑m
i=1 φiτ (A>iτx) +

λ̃ξk(x) and Dk(α) = − 1
N

∑n
τ=1

∑m
i=1 φ

∗
iτ (−αiτ)− λ̃ξ∗k(v(α)). Noticing that

ξ∗k(u) = max
x
〈x, u+

κ

λ̃
yk−1〉 − ξ̃(x)− κ

2λ̃
‖yk−1‖2 = ξ̃∗

(
u+

κ

λ̃
yk−1

)
− κ

2λ̃
‖yk−1‖2, (24)

we can also write Dk(α) = − 1
N

∑n
τ=1

∑m
i=1 φ

∗
iτ (−αiτ)− λ̃ξ̃∗

(
v(α) + κ

λ̃
yk−1

)
+ κ

2 ‖y
k−1‖2. Then we have

−Dk(αk−1) +Dk−1(αk−1)

= λ̃ξ̃∗
(
v(αk−1) +

κ

λ̃
yk−1

)
− λ̃ξ̃∗

(
v(αk−1) +

κ

λ̃
yk−2

)
+
κ

2
‖yk−2‖2 − κ

2
‖yk−1‖2

≤ κ〈∇ξ̃∗
(
v(αk−1) +

κ

λ̃
yk−2

)
, yk−1 − yk−2〉+

κ2

2λ̃
‖yk−1 − yk−2‖2 +

κ

2
‖yk−2‖2 − κ

2
‖yk−1‖2

= κ〈∇ξ∗k−1

(
v(αk−1)

)
, yk−1 − yk−2〉+

κ2

2λ̃
‖yk−1 − yk−2‖2 +

κ

2
‖yk−2‖2 − κ

2
‖yk−1‖2, (25)

where we use ξ̃∗ is 1-smooth in the first inequality and (24) in the last equality. From (33) in [Qian et al., 2021a], we know
ũ
Tk−1

(k−1) = v(α
Tk−1

(k−1)) = v(αk−1) = u
Tk−1

(k−1) + e
Tk−1

(k−1). Moreover, from the update of EC-SDCA, we know the output at the

k-th outer iteration xk−1 = x
Tk−1+1
(k−1) = ∇ξ∗k−1(u

Tk−1

(k−1)). Thus, for 〈∇ξ∗k−1

(
v(αk−1)

)
, yk−1 − yk−2〉, we have

〈∇ξ∗k−1

(
v(αk−1)

)
, yk−1 − yk−2〉 − 〈xk−1, yk−1 − yk−2〉

= 〈∇ξ∗k−1

(
ũ
Tk−1

(k−1)

)
−∇ξ̃∗k−1(u

Tk−1

(k−1)), y
k−1 − yk−2〉

≤ 1

2
‖∇ξ∗k−1

(
ũ
Tk−1

(k−1)

)
−∇ξ∗k−1(u

Tk−1

(k−1))‖
2 +

1

2
‖yk−1 − yk−2‖2

≤ 1

2
‖eTk−1

(k−1)‖
2 +

1

2
‖yk−1 − yk−2‖2,

where we use ξ∗k−1 is 1-smooth in the last inequality. From (25), the above inequality, and λ̃ > κ, we arrive at

−Dk(αk−1) +Dk−1(αk−1)

≤ κ〈xk−1, yk−1 − yk−2〉+
κ

2
‖eTk−1

(k−1)‖
2 + κ‖yk−1 − yk−2‖2 +

κ

2
‖yk−2‖2 − κ

2
‖yk−1‖2.

Catalyst Acceleration of Error Compensated Methods Leads to Better Communication Complexity

Furthermore, we have

Gk(xk−1) = Gk−1(xk−1) +
κ

2
‖yk−1‖2 − κ

2
‖yk−2‖2 + κ〈xk−1, yk−2 − yk−1〉.

Combining the above two inequalities, we obtain

Gk(xk−1)−Dk(αk−1) ≤ Gk−1(xk−1)−Dk−1(αk−1) +
κ

2
‖eTk−1

(k−1)‖
2 + κ‖yk−1 − yk−2‖2.

Since R̄2 ≤ nR2 and R2
m ≤ mnR2, we have

ΨK
3,(k) ≥ G

∗
k −Dk(αK(k)) +

2ρ

δ
‖eK(k)‖

2 ≥ G∗k −Dk(αK(k)) +
λ+ κ√

2n+ δmn
‖eK(k)‖

2,

which implies that

G∗k−1 −Dk−1(αk−1) ≤
√

4n+ δmn

2
Ψ
Tk−1

3,(k−1) ≤
1

2
εk−1,

and
κ

2
‖eTk−1

(k−1)‖
2 ≤
√

2n+ δmn

2
· λ+ κ√

2n+ δmn
‖eTk−1

(k−1)‖
2 ≤
√

2n+ δmn

2
Ψ
Tk−1

3,(k−1) ≤
εk−1

2
.

Moreover, it is easy to see that Gk−1(xk−1)−G∗k−1 = Gk−1(x
Tk−1+1
(k−1))−G∗k−1 ≤ 1

2εk−1. Therefore,

ε0D,(k) ≤ Gk(xk−1)−Dk(αk−1) ≤ 3

2
εk−1 + κ‖yk−1 − yk−2‖2.

Then similar to the proofs of Proposition 3.2 and Lemma C.1 in [Lin et al., 2015], we can get E[Tk] ≤

Õ
(

1
δ +m+ M1

λ+κ + 1
δ

√
(1−δ)(R̄2+δR2

m)
(λ+κ)γ

)
.

F.2 Proof of Lemma 4.4

From the equality above (33) in the proof of Theorem 3.3 in [Qian et al., 2021a], we know

ũK+1
(k) − ũ

K
(k) =

1

(λ+ κ)N

n∑
τ=1

AiτKτ∆αK+1
iτKτ,(k),

where ũK(k) = uK(k) + eK(k). Hence, as long as

ũ0
(k) =

1

(λ+ κ)N

n∑
τ=1

m∑
i=1

Aiτα
0
iτ,(k), (26)

we will have ũK(k) = 1
(λ+κ)N

∑n
τ=1

∑m
i=1Aiτα

K
iτ,(k) for all K ≥ 0. From the initialization rule at each outer iteration, it is

easy to see that (26) is satisfied for all k ≥ 1. Therefore,

ũK(k) =
1

(λ+ κ)N

n∑
τ=1

m∑
i=1

Aiτα
K
iτ,(k), (27)

for all k ≥ 1 and K ≥ 0. Moreover, from the proofs for EC-SDCA, it is easy to verify that the convergence results still
hold as long as (27) is satisfied, and it does not matter whether u0

(k) equal to 1
(λ+κ)N

∑n
τ=1

∑m
i=1Aiτα

0
iτ,(k) or not. Then

similar to the proof of Lemma 4.1, we have

E[
√

4n+ δmnΨK
3,(k) + 2(Gk(xK+1

(k))−G∗k)]

≤
(√

4n+ δmn+
2

θ

)(
1−min

{
θ,
δ

4

})K (
ε0D,(k) +

2(ρ+ θ(λ+ κ))

δn

n∑
τ=1

‖e0
τ,(k)‖

2

)
,

Xun Qian, Hanze Dong, Tong Zhang, Peter Richtárik

and
ε0D,(k) ≤

3

2
εk−1 + κ‖yk−1 − yk−2‖2.

Moreover, from the initialization of e0
τ,(k), we have

2(ρ+ θ(λ+ κ))

δn

n∑
τ=1

‖e0
τ,(k)‖

2 ≤ Φ
Tk−1

3,(k−1) ≤
1

2
εk−1.

Then similar to the proofs of Proposition 3.2 and Lemma C.1 in [Lin et al., 2015], we can get the result.

	INTRODUCTION
	Motivation
	Contributions

	ERROR COMPENSATED SPDC
	EC-LSVRG + CATALYST IN THE SMOOTH CASE
	Communication Complexity
	Remove the Dependence on UdrQ

	EC-SDCA + CATALYST
	Communication Complexity
	Remove the Dependence on UdrQ

	EXPERIMENTS
	Effectiveness of TopK Compressor
	Comparison of Different Accelerated Error Compensated Algorithms
	Improvements from Catalyst Acceleration

	EXTRA EXPERIMENTS
	Effectiveness of TopK Compressor

	EC-LSVRG AND EC-SDCA ALGORITHMS
	ERROR COMPENSATED SPDC
	PROOFS OF LEMMA C.1, LEMMA C.4, LEMMA C.5, AND THEOREM C.7
	Proof of Lemma C.1
	Proof of Lemma C.4
	Proof of Lemma C.5
	Proof of Theorem C.7

	PROOFS FOR EC-LSVRG + CATALYST
	Proof of Lemma 3.2
	Proof of Lemma 3.5

	PROOFS FOR EC-SDCA + CATALYST
	Proof of Lemma 4.1
	Proof of Lemma 4.4

