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Abstract

Clustering time-series data in healthcare is crucial
for clinical phenotyping to understand patients’
disease progression patterns and to design treat-
ment guidelines tailored to homogeneous patient
subgroups. While rich temporal dynamics en-
able the discovery of potential clusters beyond
static correlations, two major challenges remain
outstanding: i) discovery of predictive patterns
from many potential temporal correlations in the
multi-variate time-series data and ii) association
of individual temporal patterns to the target label
distribution that best characterizes the underlying
clinical progression. To address such challenges,
we develop a novel temporal clustering method,
T-Phenotype, to discover phenotypes of predictive
temporal patterns from labeled time-series data.
We introduce an efficient representation learning
approach in frequency domain that can encode
variable-length, irregularly-sampled time-series
into a unified representation space, which is then
applied to identify various temporal patterns that
potentially contribute to the target label using a
new notion of path-based similarity. Through-
out the experiments on synthetic and real-world
datasets, we show that T-Phenotype achieves the
best phenotype discovery performance over all
the evaluated baselines. We further demonstrate
the utility of T-Phenotype by uncovering clini-
cally meaningful patient subgroups characterized
by unique temporal patterns.

Proceedings of the 26th International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2023, Valencia, Spain. PMLR:
Volume 206. Copyright 2023 by the author(s).

1 INTRODUCTION

Discovering predictive patterns of disease progression has
been a long pursuit in healthcare. Clinicians have considered
specific clinical (disease) status and the associated patterns
as a phenotype to uncover the heterogeneity of diseases and
to design therapeutic guidelines tailored to homogeneous
subgroups (Hripcsak and Albers, 2013; Richesson et al.,
2016). While rule-based phenotypes identified by domain
experts have been widely used (Denny et al., 2013; Riches-
son et al., 2016), designing and validating such rules require
tremendous effort. Unfortunately, disease progression can
manifest through a broad spectrum of clinical factors, col-
lected as a sequence of measurements in electronic health
records (EHRs), that may vary greatly across individual pa-
tients. This makes it even more daunting for domain experts
to transform such raw and complex clinical observations
into clinically relevant and interpretable patterns.

Temporal clustering has been recently used as a data-driven
framework for phenotyping to partition patients with se-
quences of observations into homogeneous subgroups. To
discover different temporal patterns, traditional notions of
similarity focus on either adjusting similarity measures
(Zhang et al., 2019; Baytas et al., 2017) or finding low-
dimensional representations (Ho et al., 2014; Giannoula
et al., 2018) for longitudinal observations. These approaches
are purely unsupervised and discard valuable information
about the disease status that is often available in the clinical
data. More recently, predictive clustering methods (Lee and
van der Schaar, 2020; Lee et al., 2020; 2022; Aguiar et al.,
2022) have introduced a new notion of similarity such that
each cluster shares similar disease status to provide a better
prognostic value. Despite the effort to understand temporal
dynamics in their mutual context, these clustering methods
fail to capture the full picture of disease progression as re-
flected by covariate trajectories of prognostic characteristics,
i.e., temporal patterns associated with specific disease status.
Figure 1 illustrates a pictorial depiction of the notion of
phenotypes behind different temporal clustering methods.

Contribution. In this paper, we propose a novel temporal
clustering method to correctly uncover predictive temporal



T-Phenotype

Phenotype 1

Phenotype 2

Trajectory-oriented

phenotypes

Outcome-oriented

phenotypes

Phenotype 2

Phenotype 1

Comprehensive

phenotypes

Similar trajectories

Similar outcomes

Phenotype 1

Phenotype 2

Phenotype 3

Past observed patient

Past observed patient

Past observed patient

Past observed patient

Past observed patient

New arrival patients

A

B

C

Similar outcomes

Similar temporal 

patterns 

(predictive)

Figure 1: Different Notions of Temporal Phenotypes. Purely unsupervised clustering approaches focus on trajectory-oriented
phenotypes (blue) and disregard the valuable information in patient outcomes. Predictive clustering methods aim at discovering outcome-
oriented phenotypes (purple) which may not reflect the heterogeneity in patient trajectories despite the same diagnosis outcome. A
desirable phenotyping method shall address both types of similarity and discover comprehensive phenotypes (red).

patterns descriptive of the underlying disease progression
from the labeled time-series data. First, we formally define
the notion of temporal phenotypes as predictive temporal
patterns. Then, the association of individual temporal pat-
terns with the target disease status is assessed by proposing
a novel path-based similarity score. For effective evaluation
of the path-based similarity, we introduce a representation
learning approach based on the Laplace transform to convert
variable-length, irregularly sampled time-series data into
unified embeddings. Finally, based on the resulting path-
based similarity graph, we formulate the task of temporal
phenotyping as a temporal predictive clustering problem that
can be efficiently solved by adopting the graph-constrained
K-means clustering.

We validate our approach through experiments on synthetic
and real-world time-series datasets. Our method discov-
ers temporal phenotypes that provide superior prediction
performance compared to state-of-the-art benchmarks, and
we corroborate the interpretability of our discovered pheno-
types with supporting medical and scientific literature.

2 TEMPORAL PHENOTYPING

Suppose disease progression manifests through a multi-
variate continuous-time trajectory x(t) ∈ X defined on
t ∈ [0, 1], where X is the functional space of all pos-
sible patient trajectories.1 Each trajectory consists of

1Trajectories defined within the interval R+ can be simply
scaled to the unit interval [0, 1].

dimx-dimensional time-varying covariates, i.e., x(t) =
[x1(t), . . . , xdimx

(t)]⊤, each of which can be described by
a continuous-time function xi in L2

[0,1] (i.e., L2-space under
the interval [0, 1]).2 Thus, the considered trajectory space
can be given as X =

⊗
dimx

L2
[0,1]. Each trajectory x is cor-

related with a target label vector y = [y1, . . . , ydimy
]⊤ ∈ Y

that describes the clinical status of the underlying disease
progression (e.g., clinical endpoints). Throughout the paper,
we focus our description on the case where the outcome of
interest y is categorical and represented by a one-hot vector,
i.e., Y = {0, 1}dimy .

Let p(x,y) be the joint distribution of the continuous-
time trajectory and the label vector. To discover tempo-
ral patterns that are predictive of the clinical status of pa-
tients, we first define a vector-valued function g(x) =
[p(y1|x), . . . , p(ydimy

|x)]⊤ which implies the categorical
conditional distribution p(y|x). We assume the clinical sta-
tus conditioned on a patient trajectory can be represented
by one of the δ-separable modes in g(x). These modes
are δ-separable such that they can be separated based on
a proper distance metric dy with some threshold δ > 0.
Here, we choose the Jensen–Shannon (JS) divergence as
our distance metric, i.e., dy(v,u) = 1

2KL(g(v)||m) +
1
2KL(g(u)||m), where KL is the Kullback-Leibler diver-
gence, m = g(v)+g(u)

2 .

2In many practical scenarios, the continuous-time functions for
time-varying covariates are bounded and fall into the L2-space
which has a natural extension of Euclidean distance.
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2.1 Phenotypes: Predictive Temporal Patterns

In this subsection, we introduce the formal definition of
phenotypes as temporal patterns that are predictive of dis-
ease progression. To this goal, we start by describing how
the temporal patterns in continuous-time trajectories can be
discovered and how the specific disease progression can be
associated with each individual pattern.

Temporal Patterns. A temporal pattern characterizes
some temporal dynamics that are shared by a subset of
trajectories in X . Here, we introduce a novel definition
to describe temporal patterns in the general form based on
connectivity in trajectory space X . Given two trajectories
x1,x2 ∈ X , we define a translation from x1 to x2, denoted
as Γ(x1 → x2), as a continuous path Γ connecting the two
trajectories in space X . Typically, Γ(x1 → x2) can contin-
uously morph the shape of x1 into that of x2. Then, we for-
mally define a temporal pattern as a connected set Φ ⊂ X
such that all the trajectories in Φ can be inter-connected
by translations within Φ. That is, there exists a series of
translations from any trajectory to any other trajectory in Φ.

Phenotypes. Considering multivariate continuous-time
trajectories, a variety of temporal patterns may exist in X
while only a few of them are relevant to the target label. In
the meantime, the clinical status marked by the same target
label may manifest in patient trajectories through different
temporal characteristics. For instance, in lung transplant
referral of cystic fibrosis patients, (i) low lung function score,
(ii) rapid declining lung function score, and (iii) multiple
exacerbations requiring intravenous antibiotics are identified
as distinct predictive temporal patterns (Ramos et al., 2019)
among various temporal dynamics.

To provide insights on disease progression, desirable pheno-
types shall be defined based on distinct predictive temporal
patterns. In line with such notion of phenotypes, we propose
a new path-based similarity score that measures the varia-
tion of conditional label distribution (described by function
g(x)) along a translation between two trajectories. Specifi-
cally, consider two continuous-time trajectories x1,x2 and
a translation Γ(x1 → x2), the score function evaluates the
similarity between x1 and x2 via their impact on label y
through path Γ as follows:

dΓ(x
1,x2) = max

x∈Γ(x1→x2)
i∈{1,2}

dy(g(x), g(x
i)). (1)

Small value of dΓ(x1,x2) indicates that trajectories x1 and
x2 share similar clinical status y and contain similar tempo-
ral patterns that are predictive of their associated label.

Finally, we provide a formal definition of phenotype as a
predictive temporal pattern associated with a distinct clinical
status as follows:

Definition 1. (Phenotype) Let v be the centroid of a δ-
separable mode in g(x). Then, there exists a unique pheno-

type, denoted as a tuple (v,Φ) with Φ as a set of trajectories,
that satisfies the following two properties:

(Similar clinical status) max
x∈Φ

dy(g(x),v) ≤
δ

2
,

(Similar predictive pattern) max
x1,x2∈Φ

Γ⊆Φ

dΓ(x
1,x2) ≤ δ,

and any trajectory x ∈ X \ Φ is either not connected to Φ
or has a different mode.

Intuitively, the homogeneity of each phenotype (v,Φ) guar-
antees that the continuous-time trajectories exhibiting a sim-
ilar temporal pattern will lead to a similar clinical status,
which in turn provides a prognostic value on the underlying
disease progression.

2.2 Predictive Temporal Clustering

In practice, the continuous-time trajectories of a patient are
systematically collected in EHRs as discrete observations
with irregular intervals during his/her regular follow-ups or
stay at hospital. Hence, we focus this subsection on for-
mulating the task of discovering phenotypes given discrete
observations of trajectories as a novel clustering problem.

Suppose we have a dataset D = {(ti,Xi,yi)}Ni=1 compris-
ing discrete observations on the underlying continuous-time
trajectories and target labels. Here, we denote discrete ob-
servations as time-series X = [x(t1),x(t2), . . . ,x(tT )]
which contains sequential observations of a trajectory x
at observation time stamps t = [t1, t2, . . . , tT ]

⊤ with
0 ≤ t1 ≤ . . . ≤ tT ≤ 1. The label vector y ∈ Y describes
the clinical status sampled from the conditional distribution
p(y|x). From this point forward, we will slightly abuse the
notation and interchangeably write X to denote the discrete
time-series and the associated time stamps.

Path-Based Connectivity. Note that the property of a
phenotype in Definition 1 requires all trajectories in that
phenotype share a similar predictive pattern. Consider two
time-series X1,X2 with underlying continuous-time tra-
jectories x1,x2 from the same phenotype (v,Φ). There
must exist a translation Γ from trajectory x1 to x2 such that
the condition in dΓ(x

1,x2) ≤ δ holds. Violating such a
condition implies a significant difference between the two
trajectories suggesting they are from different phenotypes.
Therefore, we utilize the path-based connectivity test, i.e.,
∃Γ(x1 → x2), dΓ(x

1,x2) ≤ δ, to assesses the phenotype
similarity between two given trajectories X1 and X2. This
enables discovery of predictive temporal patterns without
access to the ground-truth phenotypes. Evaluation of the
path-based connectivity on all possible pairs of time-series
in dataset D generates a distance matrix S. Element-wise
comparison of S and threshold δ yields a similarity graph Gδ
with edges between similar samples. We will discuss how
we can approximately achieve the path-based connectivity
test based on the discrete observations in the next section.
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Figure 2: Overview of T-Phenotype.

Temporal Phenotyping. To discover phenotypes from
dataset D, we assume that we have a proper approximator
f(X) of the conditional label distribution g(x) from dis-
crete observations in X . Thus, similarity graph Gδ can be
constructed based on the path-based connectivity test with
approximator f(X). Now, we formulate the task of tem-
poral phenotyping as a predictive clustering problem (Lee
and van der Schaar, 2020) to group time-series into different
clusters on top of Gδ. More specifically, the clusters (with
distinct phenotypes) are discovered by solving the following
constrained optimization problem:

min
C

∑
Ck∈C

∑
X∈Ck

dy(f(X),vk),

s.t. ∀X1,X2 ∈ Ck, X1 Gδ←→X2,

(2)

where C = {C1, C2, . . . , CK} is a feasible set of K ∈
N clusters each of which has a centroid vk as the av-
erage density f(X), Since threshold δ is usually un-
known in advance, we set its value according to δ =
2maxCk∈C,X∈Ck

dy(f(X),vk) for consistency with Defi-

nition 1. Here, X1 Gδ←→X2 implies that there exists a path
over graph Gδ such that X1 and X2 are interconnected. In
(2), the objective function encourages the cluster centroids
to be clearly distinguished in approximated label distribution
f(X) while the constraint on similarity graph Gδ ensures
that samples in the same cluster are of similar phenotypes.
Each discovered cluster Ck represents a unique phenotype
with centroid vk describing the associated clinical status
and allows us to explain the predictive temporal pattern in
terms of the collection of time-series in Ck.

Unfortunately, the optimization problem in (2) is highly
non-trivial due to the following two challenges: First, it
requires to learn a proper approximation of the conditional
label distribution from irregularly-sampled discrete time-
series. Second, an efficient evaluation of the path-based
connectivity test is required to construct similarity graph Gδ
given discrete time-series in D.

3 METHOD: T-PHENOTYPE

In this section, we propose a novel temporal clustering
framework, T-Phenotype, that effectively discovers phe-
notypes from discrete time-series data. To estimate the
conditional label distribution from discrete time-series, we
introduce two networks, an encoder and a predictor. The en-
coder, fE , comprises dimx feature-wise Laplace encoders,
each of which transforms a single feature dimension of dis-
crete time-series X into a fixed-length latent embedding.
The predictor, fP , takes embeddings from dimx Laplace
encoders as the input z in the latent space and estimates
the conditional label distribution. The proposed Laplace
encoders, fL, allow us to establish (approximately) equiva-
lence translation in the latent space and thereby to efficiently
evaluate the path-based connectivity test between discrete
time-series in dataset D. Then, given an approximate sim-
ilarity graph Gδ constructed from the result of pair-wise
connectivity test, we propose a graph-constrained K-means
algorithm to discover distinct phenotypes. The overview of
steps involved in T-Phenotype is illustrated in Figure 2.

3.1 Time-Series Embedding via Laplace Encoder

Now, we introduce a novel time-series encoder which en-
codes each dimension of a given discrete time-series into a
unified parametric function in the frequency domain as an
approximation of the Laplace transform.

Laplace Encoder. Let x(t) = [x(t1), . . . , x(tT )]
⊤ ∈

RT be a time-series of discrete observations on a univariate
trajectory x(t) at time stamps t = [t1, . . . , tT ]

⊤ in the unit
interval. The Laplace encoder (parameterized by θL), fL :
RT → Cn(d+1), encodes discrete time-series x(t) into a
rational function on the complex plane with n ∈ N poles of
maximum degree of d ∈ N as follows:

Fw(s) =

n∑
m=1

d∑
l=1

cm,l
(s− pm)l

, cm,l, pm ∈ C. (3)
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Here, w ≜ fL(x(t)) = [p1, . . . , pn, c1,1, . . . , cn,d]
⊤ is

the Laplace embedding comprising the poles and the cor-
responding coefficients. Note that the poles in (3) are
distinct and are in a lexical order, i.e., pm ≤ pm+1 for
m = 1, . . . , n− 1 where pm ≤ pn if and only if Re(pm) <
Re(pn) or Re(pm) = Re(pn) ∧ Im(pm) ≤ Im(pn) holds.
Then, the time-domain function can be efficiently recon-
structed via the inverse Laplace transform:

x̂(t) =
1

2πj
lim
T→∞

∫ σ+jT

σ−jT
estFw(s)ds, (4)

where j2 = −1 and σ is some suitable complex number
such that Re(σ) > maxpm∈w Re(pm). With a sufficient
number of poles, the Laplace embedding w becomes an
equivalent description of the underlying trajectory x(t).
That is, the orthonormal basis {e2πjmt,m ∈ Z} of L2

[0,1] is
covered by the reconstruction x̂(t) when n→∞.

Given a dataset of N discrete univariate time-series, i.e.,
{xi(t)}Ni=1, we train the Laplace encoder utilizing the fol-
lowing loss function that consists of the time-series recon-
struction error and the regularization term specifically de-
signed to encourage unique Laplace embeddings:

Llaplace(θL) = Lmse(θL) + αLunique(θL) (5)

where α is a balancing coefficient. The former term, i.e.,
Lmse(θL) =

1
N

∑N
i=1 ∥xi(t) − x̂i(t)∥22, is the reconstruc-

tion error from our Laplace embeddings, and the latter term,
i.e., Lunique(θL) = 1

N(N−1)

∑
i̸=j ℓunique(x̂

i(t), x̂j(t)),
encourages the uniqueness of the Laplace embedding. More
specifically, ℓunique focuses on three aspects – (i) the ob-
tained poles are distinct, (ii) the reconstructed trajectories
are real-valued, and (iii) no two distinct Laplace embed-
dings generate the same trajectory. We further elaborate the
uniqueness regularization in the Appendix.

From Trajectory Space to Latent Space. Utilizing
dimx feature-wise Laplace encoders as our encoder, fE , any
discrete observations of a continuous-time trajectory x ∈ X
can be transformed into a fixed-length embedding z ∈ Z
in the latent space as a composition of dimx Laplace em-
beddings, i.e., z ≜ [fL(x1(t)), . . . , fL(xdimx(t))]

⊤. The
following proposition builds a strong connection between
the trajectory space X and the latent space Z:

Proposition 1. Without loss of generality, consider uni-
variate continuous-time trajectories x̂1, x̂2 ∈ X and their
corresponding latent embeddings z1, z2 ∈ Z , respectively.
Then, the distance between two trajectories can be bounded
by ∥x̂1 − x̂2∥2

L2
[0,1]

≤ ψ∥z1 − z2∥22, where ψ > 0 is a

constant and ∥x(t)∥2
L2

[0,1]

=
∫ 1

0
x(t)x(t)dt.

The detailed proof can be found in the Appendix. Consider
a subset of latent variables Φz and the corresponding trajec-
tory set Φ of their time-domain representations. The upper

bound in Proposition 1 implies that continuity of Φz in the
latent space leads to the continuity of Φ in the trajectory
space. This property allows efficient evaluation of the path-
based connectivity test in the latent space as illustrated in
the following subsection.

3.2 Efficient Evaluation of Path-based Similarity

Construction of similarity graph Gδ involves iterative eval-
uation of the path-based similarity score dΓ in (1) for all
possible pairs of time-series samples in D. This requires
a substantial number of computations in both construct-
ing translation Γ and calculating conditional g(x) on all
available continuous-time trajectories x ∈ Γ. Instead, we
efficiently approximate the similarity graph Gδ via path-
based connectivity test in the latent space and estimate the
conditional g(x) via neural networks.

Translation in Latent Space. Consider two trajecto-
ries x̂1, x̂2 ∈ X with the corresponding latent embedding
z1, z2 ∈ Z . For any translation Γ(x̂1 → x̂2) ⊆ X in tra-
jectory space, we can always find a continuous path in the
latent space, i.e., γ(z1 → z2) ⊆ Z , such that the distance
between its time-domain reconstruction and Γ is minimized.
We consider γ to be an (approximately) equivalent transla-
tion of Γ.3 This enables us to capitalize on the translation in
the latent space without constructing intermediate trajecto-
ries along path Γ, which significantly reduces computations
in obtaining the path-based similarity in (1).

Predictor. To estimate the function g(x), we utilize the
time-series encoder fE , which consists of dimx Laplace
encoders, and a predictor fP (an MLP parameterized by θP )
to construct the approximator as f(X) ≜ fP ◦ fE(X) ≈
g(x) where X is the discrete observation of trajectory x.
The predictor fP is trained based on the cross-entropy loss:

Lpredictor(θP ) = −
1

N

N∑
i=1

dimy∑
c=1

yic log fP (z
i)c, (6)

where z = fE(X) and subscript c indicates the c-th element
in the output space. To maintain the property of the Laplace
encoders, we only update the predictor via the signal from
the label during training.

Consider a trajectory translation Γ(x̂1 → x̂2) and its equiv-
alent translation γ(z1 → z2) in latent space, the path-based
similarity can be approximately calculated as

dΓ(x̂
1, x̂2) ≈ dγ(z

1, z2) = max
z∈γ,i=1,2

dy(fP (z), fP (z
i)).

(7)
Hence, given two discrete time-series X1 and X2, the path-
based connectivity test can be efficiently performed along
translation γ in the latent space without assessing the corre-
sponding translation in the trajectory space X .

3The equivalence is strict when all trajectories along translation
Γ have rational Laplace transform as described in (3).
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Approximate Similarity Graph. Consider a phenotype
(v,Φ) where centroid v represents a specific clinical status
and Φ is the associated predictive temporal pattern. The
encoder fE is trained to map time-series X sampled from
trajectories in Φ into a connected area Φz in latent space
Z via Laplace encoders. Given time-series X that is ob-
served from trajectory x ∈ Φ, Definition 1 implies that we
have dy(f(X),v) ≤ δ

2 where f(X) = fP (z) and z =
fE(X) ∈ Φz . Hence, for two embeddings z1, z2 ∈ Φz ,
there always exist a translation γ(z1 → z2) ⊆ Φz such
that dγ(z1, z2) ≤ δ due to the connectivity of Φz in the
latent space. If two latent embeddings z1, z2 are located in
the same convex subset of Φz , linear path γ̄(z1 → z2) =
{z|(1 − a)z1 + az2, a ∈ [0, 1]} suffices the connectivity
test. When z1 and z2 are in different convex subsets, the
connectivity of Φz guarantees that there exists a series of
intermediate points zm1 , zm2 , . . . ,zml such that composite
path γ(z1 → z2) = γ̄(z1 → zm1)∪ . . .∪ γ̄(zml → z2) is
inside Φz and can be used for connectivity test. Therefore,
in this work, we simplify the path-based connectivity test to
the linear paths between latent variables as the similarity be-
tween two time-series can be inferred based on these linear
paths. Overall, given two time-series Xi and Xj , we cal-
culate the approximate distance dγ̄(fE(X

i), fE(X
j)) via

discrete points along path γ̄, which is stored in element Sij
of path-based distance matrix S. The approximate similar-
ity graph Gδ is then constructed with edges between samples
Xi and Xj if and only if Si,j ≤ δ.

3.3 Predictive Clustering on Similarity Graph

Unfortunately, solving the clustering objective in (2) is a NP-
hard combinatorial problem. Thus, we introduce a greedy
approach to discover the temporal clusters from the path-
based distance matrix S defined in the previous subsection.

The objective function in (2) has the following upper bound:

J ≜
∑
Ck∈C

∑
X∈Ck

dy(f(X),vk),

≤
∑
Ck∈C

1

|Ck|
∑

Xi,Xj∈Ck

dy(f(X
i), f(Xj)),

≤
∑
Ck∈C

∑
Xi,Xj∈Ck

dγ̄(z
i, zj),

=
∑
Ck∈C

∑
Xi,Xj∈Ck

Sij ≜ J̄(S),

(8)

where zi = fE(X
i), latent translation γ̄ is a linear path

connecting two embeddings zi and zj . The first inequality
comes from the convexity of the JS divergence, and the
second inequality establishes from equation (7) and the fact
that |Ck| ≥ 1. Local minimum of the upper bound J̄(S) can
be achieved via a greedy K-partitioning algorithm based on
pair-wise sample distances in matrix S.

Utilizing the approximate solution in (8) as warm-start, we

propose a graph-constrained K-means clustering approach
to solve problem (2) via a greedy breadth-first search algo-
rithm GK-means (details in Appendix). The overview of
our predictive clustering method, T-Phenotype, is given in
Algorithm 1. More details about the algorithm are provided
in the Appendix.

Algorithm 1 T-Phenotype
Input: dataset D, number of clusters K
Output: C = {C1, C2, . . . , CK}

calculate distance matrix S based on (7)
C ← argminC J̄(S) ▷ warm-start
δ ← log(2) ▷ upper bound of dJS

while not converged do
for k = 1, 2, . . . ,K do

update cluster seed ek via (9)
end for
δ′ ← 2maxCk∈C,X∈Ck dy(f(X),vk)
δ ← min(δ, δ′) ▷ upper bound J ≤ Nδ
create similarity graph Gδ from Si,j ≤ δ
C ← GK-means(J |e1, e2, . . . , eK ,Gδ)

end while

The cluster seeds in Algorithm 1 are used to perform greedy
cluster expansion over similarity graph Gδ. For the k-th
cluster, the cluster seed ek = (vk,X

(k)) can be given as

vk =
1

|Ck|
∑

X∈Ck

f(X), X(k)= argmin
X∈Ck

dy(f(X),vk),

(9)
where vk is the cluster centroid and X(k) is the representa-
tive time-series in cluster Ck with closest conditional to that
of the centroid.

4 RELATED WORK

Different strands of clustering methods have been increas-
ingly investigated for knowledge discovery from time-series
data with various similarity notions accustomed to specific
application scenarios. One strand is unsupervised clustering
methods that adopt the traditional notion of similarity into
the time-series setting. To flexibly incorporate with variable-
length irregularly-sampled time-series observations, the tra-
ditional methods applied K-means clustering by either find-
ing fixed-length and low-dimensional representations using
deep learning-based sequence-to-sequence model (Ma et al.,
2019; Zhang et al., 2019) or on modifying the similarity
measure such as dynamic time warping (DTW) (Giannoula
et al., 2018) and the associated graph Laplacian (Lei et al.,
2019; Hayashi et al., 2005). Alternatively, Bahadori et al.
(2015) focused on sample affinities to conduct spectral clus-
tering, and Chen et al. (2022) proposed a deep generative
model whose parametric space is then used for clustering.
Further, advanced hidden Markov models (Ceritli et al.,
2022) and Gaussian processes (Schulam et al., 2015) have
also been utilized together with hierarchical graph models
in disease subtype discovery. In general, these methods are
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Table 1: Comparison of Temporal Clustering Methods. The difference in the notion of phenotypes and similarity measure are
highlighted together with two desiderata: (i) clusters are outcomes associated; and (ii) with interpretable insights on cluster assignment.

METHOD PHENOTYPE SIMILARITY MEASURE (I) (II)

Deep temporal K-means Distance-based Euclidean distance ✓ ✗
Bahadori et al. (2015) Affinity-based Self-expression ✗ ✗
Chen et al. (2022) Pattern-oriented Latent distance ✗ ✓
Aguiar et al. (2022) Attention&outcome-oriented KL-divergence ✓ ✓
Lee and van der Schaar (2020) Outcome-oriented KL-divergence ✓ ✗
T-Phenotype (Ours) Predictive pattern-oriented Path-based connectivity ✓ ✓

limited by some model specifications such as the linear sub-
space assumptions and graphical models for the underlying
data generation process.

Clusters identified through these methods are purely unsu-
pervised – they do not account for patients’ clinical out-
comes that are often available in EHRs – which may lead
to heterogeneous outcomes even for patients in the same
cluster. To overcome this issue, another strand of cluster-
ing methods combine predictions on the future outcomes
with clustering. Lee and van der Schaar (2020) proposed
an actor-critic approach to divide time-series of patient tra-
jectories into subgroups based on their associated clinical
status. The discovered patient subgroups allow clinicians to
investigate the temporal patterns related to the transition of
disease stages. Aguiar et al. (2022) extended it to capture
phenotype-related feature contributions by employing an at-
tention mechanism. Given predicted clusters, visualizing the
associated attention map provides additional interpretability
about the underlying disease progression.

Unfortunately, actionable information that can be inferred
from the aforementioned temporal predictive clusters is still
limited. These methods primarily focus on finding the dis-
crete representations that can best describe the outcome
labels rather without properly associating with temporal pat-
terns that can be found among time-series samples. In this
paper, we propose a novel temporal clustering method to
correctly uncover predictive temporal patterns descriptive
of the underlying disease progression from the labeled time-
series data. Therefore, our method not only can provide
clusters that have a prognostic value but also can offer inter-
pretable information about the disease progression patterns.

5 EXPERIMENTS

In this section, we evaluate the clustering performance and
the prognostic value of T-Phenotype with one synthetic
dataset and two real-world datasets (detailed statistics are
provided in the Appendix).

Synthetic Dataset. We construct a synthetic dataset of
N = 1200 samples with ground truth cluster labels. Each
sample comprises discrete observations of a 2-dimensional
trajectory x(t) and the target binary outcome. We design the

two elements x1(t) and x2(t) to model trend and periodicity
of a trajectory, respectively: we set x1(t) = ι · sigmoid(a ·
(t − b − φ)) with sign ι ∈ {−1, 1}, a = 10, b = 0.5,
and φ ∼ exp( 3

10 ) and set x2(t) = sin(c · (t − φ)) with
c ∈ {4, 6, 8} and φ identical to that of x1. The trajectory
x = [x1, x2]

⊤ is irregularly observed over 20 time stamps
in t ∈ [0, 2] with a white noiseN (0, 0.12) for each variable.
We set c as the ground truth phenotype label representing
different periodicity and set the target outcome label y as
y = 0 when c = 6 and y = 1 otherwise.

ADNI Dataset. The Alzheimer’s Disease Neuroimaging
Initiative4 (ADNI) dataset includes records on the progres-
sion of Alzheimer’s disease (AD) of N = 1346 patients
with regular follow-ups every six months. Each patient
is associated with various biomarkers, evaluation of MRI
and PET images, and cognitive tests results. We set the
target outcome at each time stamp as the three diagnostic
groups – i.e., normal brain functioning (NL), mild cogni-
tive impairment (MCI), and AD – which is used to indicate
different stages of AD progression. We focus on three im-
portant temporal variables – i.e., the genetic biomarker of
apolipoprotein (APOE) ε4 gene, the hippocampus evalua-
tion from MRI, and the cognitive test result of CDRSB – to
predict the AD progression.

ICU Dataset. The PhysioNet ICU5 (Goldberger et al.,
2000) dataset contains temporal observations on 42 covari-
ates of adult patients over the first 48 hours of ICU stay.
We extract N = 1554 records of adult patients admitted
to the medical or surgical ICU. Temporal covariates used
in the experiments are age, gender, Glasgow Coma Scale
(GCS), and partial pressure of arterial CO2 (PaCO2) with
a time resolution of 1 hour, and we set patient mortality as
the target binary outcome of interest.

Baselines. We compare the performance of T-Phenotype
with the following benchmarks ranging from traditional
method to recently developed deep learning-based methods,
where each clustering method reflects a different notion
of temporal phenotypes: 1) K-means with warping-based
distance (KM-DTW); 2) deep temporal K-means with the
encoder-predictor (E2P) structure introduced in (Lee and

4
https://adni.loni.usc.edu

5
https://physionet.org/content/challenge-2012/

https://adni.loni.usc.edu
https://physionet.org/content/challenge-2012/
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van der Schaar, 2020), i.e., KM-E2P(z) and KM-E2P(y); 3)
K-means on top of our proposed Laplace encoder (KM-L);
4) sequence-to-sequence with K-means friendly represen-
tation space (SEQ2SEQ); and 5) the state-of-the-art tempo-
ral clustering approach AC-TPC (Lee and van der Schaar,
2020). Detailed description can be found in Appendix. In
addition, we consider the ablation study of T-Phenotype with
joint optimization for the Laplace encoders and predictor
fP and denote such model with T-Phenotype (J).

Throughout the experiments, time stamps of discrete time-
series are scaled into t ∈ [0, 1]. For the synthetic and ADNI
datasets, we use 64/16/20 train/validation/test splits in exper-
iments. To get reliable clustering performance measurement
on the ICU dataset, we use 48/12/40 train/validation/test
splits for experiments. Hyperparameters of T-Phenotype
and baselines are optimized through 3-fold cross-validation.
For comparison of clustering performance, the number of
clusters K for each dataset is shared by all methods. We
select K as a hyperparameter of T-Phenotype, and the opti-
mal cluster numbers are determined to be K = 3 (ground
truth), K = 4 and K = 3 for the synthetic, ADNI and ICU
dataset, respectively. Details can be found in the Appendix.

Table 2: Clustering Performance on the Synthetic Dataset.

METHOD PURITY RAND NMI

KM-E2P(y) 0.663±0.019 0.477±0.033 0.569±0.045
KM-E2P(z) 0.677±0.029 0.418±0.024 0.485±0.047
KM-DTW 0.469±0.017 0.068±0.021 0.077±0.022
KM-L 0.687±0.033 0.395±0.058 0.447±0.059
SEQ2SEQ 0.378±0.008 -0.003±0.003 0.005±0.003
AC-TPC 0.659±0.020 0.487±0.035 0.596±0.043

T-Phenotype (J) 0.655±0.021 0.440±0.051 0.543±0.064
T-Phenotype 0.965±0.018‡ 0.902±0.048‡ 0.875±0.050‡

Purity score, Rand index and normalized mutual information (NMI) are used to evaluate the
clustering performance with ground truth phenotype labels. Best performance is highlighted in
bold, and ‡ indicates p-value < 0.01.

Table 3: Benchmark Result on Two Real-world Datasets.

METHOD AUROC AUPRC HROC HPRC

A
D

N
I

KM-E2P(y) 0.893±0.005 0.728±0.017 0.770±0.013 0.701±0.012
KM-E2P(z) 0.884±0.012 0.711±0.020 0.763±0.018 0.690±0.013
KM-DTW 0.743±0.013 0.522±0.020 0.752±0.027 0.618±0.021
KM-L 0.697±0.029 0.465±0.019 0.753±0.019 0.593±0.018
SEQ2SEQ 0.775±0.023 0.550±0.030 0.773±0.012 0.642±0.022
AC-TPC 0.861±0.012 0.665±0.020 0.788±0.014 0.694±0.013

T-Phenotype (J) 0.867±0.020 0.679±0.040 0.768±0.011 0.684±0.021
T-Phenotype 0.891±0.005 0.716±0.015 0.791±0.013 0.713±0.009‡

IC
U

KM-E2P(y) 0.697±0.014 0.593±0.012 0.682±0.029 0.628±0.025
KM-E2P(z) 0.677±0.030 0.579±0.018 0.686±0.031 0.633±0.024
KM-DTW 0.539±0.030 0.515±0.011 0.636±0.023 0.621±0.021
KM-L 0.577±0.019 0.532±0.009 0.682±0.009 0.649±0.004
SEQ2SEQ 0.592±0.024 0.539±0.012 0.690±0.011 0.653±0.004
AC-TPC 0.660±0.008 0.573±0.003 0.695±0.014 0.644±0.011

T-Phenotype (J) 0.697±0.025 0.595±0.017 0.691±0.056 0.636±0.048
T-Phenotype 0.681±0.017 0.585±0.015 0.703±0.007 0.648±0.008

The area under the curve of receiving-operator characteristic (AUROC) and area under the curve
of precision-recall (AUPRC) are used to assess the prognostic value of the discovered clusters on
predicting target outcomes. Two composite metrics HROC and HPRC , calculated as harmonic
means between predictive accuracy (AUROC or AUPRC) and a cluster consistency metric AUSIL,
are used to measure the phenotype discovery performance. Please refer to the Appendix for details.
Best performance is highlighted in bold, and ‡ indicates p-value < 0.01.

Benchmark. The clustering performance of T-Phenotype
is compared with six baselines, with all results reported
using 5 random train/validation/test splits of the correspond-
ing dataset. Benchmark results on synthetic dataset and
two real-world datasets are provided in Table 2 and Table
3, respectively. Complete benchmark tables are available in
the Appendix. On the synthetic dataset, T-Phenotype out-
performs all baselines with significant gaps in considered
clustering accuracy metrics. Similarly, T-Phenotype has the
best (or very close to best) outcome prediction performance
on both ADNI and ICU datasets and outperforms AC-TPC
and most other baselines in phenotype discovery on the two
datasets. The baseline of KM-E2P(y) directly discovers
clusters over predicted outcome distributions and achieves
the best prediction performance on the ADNI dataset, which
is within expectation. However, its clustering performance,
particularly HROC, is inferior to that of T-Phenotype due
to the negligence of similarity in temporal patterns. On the
ICU dataset, while T-Phenotype has close phenotype discov-
ery performance HPRC to baseline SEQ2SEQ, the clusters
discovered by our method provide greater prognostic values
as reflected in the outcome prediction accuracy.

Phenotypes of AD Progression. The CDRSB score mea-
sures the impairment on both cognitive abilities and brain
function (Coley et al., 2011) and is widely used in AD pro-
gression assessment and staging (Kim et al., 2020; O’Bryant
et al., 2008). The temporal patterns in CDRSB trajectory
vary in different disease stages and show stable prognos-
tic power on patient outcomes (Delor et al., 2013). On
the ADNI dataset, four phenotypes are discovered by T-
Phenotype. We examine these phenotypes by plotting the
CDRSB scores of Ntest = 270 test samples separately in
corresponding clusters. As shown in Figure 3b, normal and
high-risk patients with divergent cognitive test trajectories
are correctly identified in phenotype 1 and 4 by T-Phenotype.
In the meantime, for the predicted outcome of MCI, two
subtypes of patients are clearly separated into two pheno-
types (2 and 3) with different growth rates in CDRSB score.
In comparison, AC-TPC fails to distinguish between these
two subtypes as illustrated in Figure 3a, which impedes the
prognostic value of clusters discovered by AC-TPC.

Prognostic Value of T-Phenotype. We further demon-
strate the prognostic value of T-Phenotype with the temporal
phenotyping results obtained on a typical patient from the
ADNI dataset. The studied patient had a positive biomarker
of APOE ε4 gene which contributes to an increased risk of
AD (Yamazaki et al., 2019). Consecutive observations of pa-
tient covariates at three time stamps are plotted in Figure 3c.
Hippocampus volume (green triangle) and CDRSB score
(blue dot) are displayed together with diagnosis obtained at
the next follow-up (yellow bar). The temporal phenotype
assignment via T-Phenotype is shown at the bottom. As a
predictive factor of early-stage AD (Rao et al., 2022), fast
decrease in hippocampus volume leads to the initial diag-
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(a) Three phenotypes from AC-TPC.

(b) Four phenotypes from T-Phenotype.
(c) Prognostic values of T-Phenotype and AC-TPC.

Figure 3: Comparison of Phenotypes Discovered by T-Phenotype and AC-TPC on the ADNI Dataset.

nosis of phenotype 2 (MCI) in Figure 3b by T-Phenotype
despite a low CDRSB score from cognitive test. Then, with
a clear trend of increase appearing in CDRSB trajectory, the
studied patient is classified into phenotypes (2 → 3 → 4)
that reflect the growing risk in developing AD. In contrast,
as shown on the top of Figure 3c, AC-TPC simply assigns
the same phenotype to the patient throughout the considered
time period and is unable to provide comparable insights on
AD progression from the patient trajectory.

6 CONCLUSION

In this paper, we propose a novel phenotype discovery ap-
proach T-Phenotype to uncover predictive patterns from
labeled time-series data. A representation learning method
in frequency-domain is developed to efficiently embed the
variable-length, irregularly sampled time-series into a uni-
fied latent space that provides insights on their temporal
patterns. With our new notion of path-based phenotype sim-
ilarity, a graph-constrained K-means approach is utilized to
discover clusters representing distinct phenotypes. Through-
out experiments on synthetic and real-world datasets, we
show that T-Phenotype outperforms all baselines in phe-
notype discovery. The utility of T-Phenotype to discover
clinically meaningful phenotypes is further demonstrated
via comparison with the the state-of-the-art temporal pheno-
typing method AC-TPC on real-world healthcare datasets.

7 LIMITATIONS

Our proposed method, T-Phenotype, leverages Laplace en-
coders as a general approach to capture temporal patterns
from time-series data as distinct Laplace embeddings. How-
ever, there may exist some complex temporal patterns, e.g.,
interactions between patient covariates at two specific time
points, that cannot be encoded in this manner. To address
this issue, additional representations (e.g., representation

via attention mechanism) from the input time-series can be
introduced to augment the Laplace embedding, which we
leave as a future work. In the meantime, the phenotype
discovery performance of T-Phenotype is highly dependent
on the quality of predictor fP . Unstable predictions from
fP will directly lead to inaccuracies in phenotype assign-
ment. Thus, effective regularization of the predictor network
would be another important future direction.

8 SOCIETAL IMPACT

Discovery of phenotypes from disease trajectories is a long
pursuit in healthcare. In line with the target of precision
medicine, the phenotype connects temporal patterns in pa-
tient trajectory and clinical outcomes is of great prognostic
value since it allows clinicians to make more accurate di-
agnosis and issue the most appropriate treatment to their
patients. By combining notions of similarity in both patient
trajectories and clinical outcomes, our method, T-Phenotype,
can effectively identify phenotypes of desired property. The
discovered patient subgroups can be used to improve current
clinical guidelines and help clinicians to better understand
the disease progression of their patients. Nevertheless, the
association between temporal patterns and clinical outcome
in a phenotype cannot be interpreted as causal relationship
without careful tests and examinations. Application of T-
Phenotype without audits from human experts may lead to
undesirable outcome of patients in certain edge cases.
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Appendix

The appendix is organized in the following structure.

A Detailed discussion of the Laplace encoder.

B Proof of Proposition 1 and relevant discussions.

C The graph-constrained K-means algorithm

D Experiment setup.

E Hyperparameter Selection.

F Complete benchmark results.

G Additional analyses of results obtained on the two real-world datasets.

A summary of major notations used in this paper is provided below.

NOMENCLATURE

x Continuous-time disease trajectory of a patient

y Label vector indicating clinical status of a patient

t A vector of time stamps

z A vector of latent variables

w A vector of Laplace embedding

X Discrete-time observation to disease trajectory x(t)

Φ A connected set of patient trajectories which represents a temporal pattern

g(x) Vector-valued function that describes the conditional distribution p(y|x)

dy(·, ·) Distance metric of two label distributions

Γ(x1 → x2) A translation from trajectory x1 to x2

γ(z1 → z2) A translation from latent representation z1 to z2

dΓ(x
1,x2) Path-based similarity score between trajectories x1 and x2

dγ(z
1, z2) Proxy of path-based similarity score dΓ(x

1,x2) in latent space

S A distance matrix of path-based similarity score between samples in a dataset

Gδ A graph generated from matrix S with threshold δ

K Number of clusters

C A set of K clusters

fL A Laplace encoder

fE A composite encoder with feature-wise Laplace encoders

fP A predictor for label distribution

Code Availability. The source code of T-Phenotype can be found in the two GitHub repositories listed below:

• The van der Schaar lab repo: https://github.com/vanderschaarlab/tphenotype

• The author’s personal repo: https://github.com/yvchao/tphenotype

https://github.com/vanderschaarlab/tphenotype
https://github.com/yvchao/tphenotype
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A ANALYSIS OF THE LAPLACE ENCODER

A.1 Implementation Details

The proposed Laplace encoder is implemented with a RNN-based neural network fL parameterized by θL. As shown in
Figure A.1, given discrete time-series of a one-dimension trajectory x(t), the Laplace encoder first generates a summary of
time-series x(t) via the RNN. With the summary as input, the MLP outputs a representation w ∈ Cn(d+1). Elements in w
can be divided into two groups: poles and coefficients, which are further used to construct a function in the frequency domain,
Fw(s), as defined in (3). Changing the order of poles (and associated coefficients) in w has no effect on Fw(s) since it is
permutation-invariant to the poles in w. As discussed in the main manuscript and in the next paragraph, we impose a lexical
order on poles in the MLP output w to make it a unique representation of Fw(s). The trajectory x(t) can be reconstructed
as x̂(t) through the inverse Laplace transform (4) on Fw(s). Here, the reconstruction x̂(t) is a function and its value can be
evaluated everywhere in t ∈ [0, 1]. This allows us to compare input time-series with variable-length and irregularly-sampled
observations in a unified latent space. For the sake of convenience, we denote with L−1(w) = x̂(t) = L−1[Fw(s)](t) the
transform that maps embedding w to its time-domain reconstruction x̂(t).

Figure A.1: Laplace Encoder.

Robust Lexical Order of Poles. Due to the summation in (3), Fw(s) is permutation-equivariant with respect to the poles in
w. Thus, we impose a lexical order (pm ≤ pm+1 for m = 1, . . . , n− 1) on the poles to obtain a unique Laplace embedding
w as discussed in the manuscript. To guarantee this property, we transform the unordered representation (output of the
MLP in Laplace encoder) into the final unique Laplace embedding w by sorting the poles (together with their associated
coefficients) in a lexical order. To achieve a stable ordering that is robust to inevitable noise in w, we encourage any pair of
two poles to be sufficiently different to avoid abrupt changes in their order. Hence, given two poles pm, pl, we say pm ≤ pl
if and only if (Re(pm) < Re(pl)) ∧ (|Re(pm)−Re(pl)| > δpole) or (|Re(pm)−Re(pl)| ≤ δpole) ∧ (Im(pm) ≤ Im(pl)),
and pm > pl otherwise, where δpole ≥ 0 is a threshold that controls the robustness of the lexical order. The best threshold
δpole is search as a hyperparameter in our experiment.

Ranges of Poles and Coefficients. Each pole pm in embedding w is located on the complex plane C. The real part
Re(pm) indicates the increase or decay speed of the corresponding component (eRe(pm)t) in the time-domain reconstruction
x̂(t) = L−1(w). Too large or small value of Re(pm) leads to unrealistic signals. In the meantime, The imaginary part
Im(pm) represents the frequency of oscillations in the related component (cos(Im(pm)t) + j sin(Im(pm)t), j2 = −1)
in reconstruction x̂(t). Very high-frequency oscillation in the input time-series x(t) are usually caused by random
noise and should be discarded in reconstruction x̂(t). In our experiment, we limit the range of poles to the area of
{p

∣∣ |Re(p)| ≤ rmax, |Im(p)| ≤ freqmax}, where rmax limits that maximum increase or decrease speed of signals
in reconstruction x̂, freqmax is the maximum allowed frequency such that high-frequency signals above freqmax are
considered as a noise component in time-series x(t) and, thus, discarded when constructing Fw(s). In our experiments,
we set rmax = 10 and freqmax = 20Hz. Similarly, the coefficient cm,l in embedding w is limited to a square area of
{c

∣∣ |Re(c)| ≤ cmax, |Im(c)| ≤ cmax}. We set cmax = 5 which is sufficient for normalized time-series (via min-max or
normal scaling). The range of poles and coefficients in w can be adjusted accordingly based on needs in practical application
scenarios. When fed into the predictor network fP , the poles and coefficients in embedding w are normalized by the
corresponding maximum allowed values to facilitate the learning process.

Embedding of Static Features. In order to improve computation efficiency, when the d-th feature dimension xd of
trajectory x is known to be constant over time, i.e., xd(t) ≡ xd(0), instead of training a Laplace encoder, the static value
xd(0) is directly used to represent xd(t), and the d-th component wd in latent variable z is replaced by xd(0).
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Regularization Terms. Apart from the lexical order imposed on the embedding w, we further introduce three regulariza-
tion terms that encourage the Laplace encoder to provide a unique and consistent Laplace representation given an input
time-series. These regularization terms are combined into the second term of Lunique in (5); we will describe each in turn.

The first regularizer, lsep, penalizes the case where two poles in embedding w are nearly identical – that is, pm and pl are
considered as an identical pole when |pm − pl| ≤ δpole – based on the following hinge loss:

lsep(x̂(t)) =
∑
m̸=l

max(0, δpole − |pm − pl|). (10)

Here, pm and pl are two poles in the associated embedding w given the input time-series x(t), i.e., w = fL(x(t)), and the
threshold δpole > 0 for robust pole sorting is reused here as a pole separation threshold.

The second regularizer, lreal, ensures that the reconstructed trajectory x̂(t) is real-valued on [0, 1] by suppressing the
imaginary part of the reconstructed trajectory x̂(t) via the following loss:

lreal(x̂(t)) =
1

T
∥Im(x̂(t))∥22, (11)

where t = [t1, . . . , tT ]
⊤ includes time stamps randomly sampled over tj ∈ [0, 1] for j = 1, . . . , T . Specifically, tj =

clamp( jT + 1
2T ε,min = 0,max = 1), ε ∼ Normal(0, 1).

The last regularizer, ldistinct, encourages that no two distinct Laplace embeddings generate the same trajectory based on the
following loss:

ldistinct(x̂
i(t), x̂j(t)) = ∥wi −wj∥22e−∥x̂i(t)−x̂j(t)∥2

2 , (12)

where the radial basis similarity function e−∥x̂i(t)−x̂j(t)∥2
2 is used to discover similar trajectories, wi and wj are embeddings

of input time-series while x̂i(t) and x̂j(t) are their time-domain reconstructions. Since the input time-series may be of
different lengths and sampling intervals, we use the reconstructed trajectories for pair-wise comparison between time-series
here.

Overall, we construct Lunique(θL) as a combination of the three regularization terms introduced above:

Lunique(θL) =

dimx∑
d=1

 1

N

∑
i

lsep(x̂
i
d(t)) +

α1

α
lreal(x̂

i
d(t)) +

α2

α

1

N(N − 1)

∑
i ̸=j

ldistinct(x̂
i
d(t), x̂

j
d(t))

 , (13)

where α is the coefficient for Lunique(θL) in (5), α1 and α2 are balancing coefficients that trade-off different uniqueness
properties in the Laplace encoder. In the experiment, due to the high computational complexity, the last term ldistinct is only
evaluated on a subset of 10 randomly selected time-series in each training batch. In addition, since ldistinct relies on the
reconstructed time-series x̂(t) which may be inaccurate in the beginning of training, we fix α2 to 0.01 such that it majorly
takes effect after the reconstruction error is small enough.

A.2 Quantitative Analysis

Comparison with Regular Auto-encoder. We provide a toy example to demonstrate the advantage of our proposed
Laplace encoder over regular auto-encoders in time-series reconstruction. A Laplace encoder composed of a 1-layer GRU
(Cho et al., 2014) and a 1-layer MLP with 10 hidden units in each layer is considered in the following discussion. Other
parameters of the Laplace encoder are set as n = 4, d = 1, α = 1.0, α1 = 0.1, α2 = 0.01, δpole = 1.0. A regular time-series
auto-encoder is used for comparison. The auto-encoder has a 1-layer GRU network as the encoder. The decoder contains a
1-layer MLP on top of another 1-layer GRU. Each layer in the auto-encoder includes 10 hidden units. The auto-encoder
maps the input time-series to a latent variable. Then, the latent variable is provided to the decoder network for reconstruction
of the entire time-series.

Consider a toy dataset with N = 1000 irregularly sampled time-series in t ∈ [0, 1]. Each sample contains T = 15
observations from one of the following four types of trajectories:

• Type 1: x(t) = cos(2π(t− ϕ)).

• Type 2: x(t) = cos(π(t− ϕ)).
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• Type 3: x(t) = sin(π(t− ϕ)).

• Type 4: x(t) = sin(2π(t− ϕ)).

Delay term ϕ ∼ Exp( 12 ). Gaussian noise sampled from Normal(0, 0.032) is independently introduced to the observations
at different time points. The mean squared error (MSE) in time-series reconstruction of the considered Laplace encoder and
auto-encoder network is evaluated over 5 random splits of the toy dataset with the train/validation/test ratio of 64/16/20. Our
proposed Laplace encoder achieves the best performance of MSE = 0.039± 0.008. The auto-encoder has a much higher
reconstruction error of MSE = 0.108± 0.019. Comparison of typical reconstruction outcomes of the Laplace encoder and
the auto-encoder is illustrated in Figure A.2.

(a) Trajectory reconstruction via Laplace encoder. (b) Trajectory reconstruction via Auto-encoder.

Figure A.2: Comparison of Time-series Reconstruction Outcomes of Laplace Encoder and Auto-encoder.

(a) Impact of α. (b) Impact of α1. (c) Impact of α2.

(d) Impact of δpole. (e) Impact of pole number n. (f) Impact of maximum pole degree d.

Figure A.3: Sensitivity of Laplace Encoder with Respect to Different Hyperparameters. Error bars are calculated via evaluation
on 3 random splits of the toy dataset.

Sensitivity Analysis. We further conduct a sensitivity analysis of the Laplace encoder fL under different hyperparameters
on the toy dataset. The default hyperparameters are set as n = 4, d = 1, α = 1.0, α1 = 0.1, α2 = 0.01, δpole = 1.0.
To evaluate the impact of individual hyperparameter on the Laplace encoder, in each test, we only alter the value of one
hyperparameter and keep other hyperparameters the same as default setting. The parameter sensitivity is measured via the
reconstruction error (MSE), and the sensitivity test result is given in Figure A.3.
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It can be found that our proposed Laplace encoder fL has relatively stable time-series reconstruction performance under
different hyperparameters. As mentioned earlier, the regularizer lditinct may generate wrong gradients in the beginning of
training due to the large reconstruction error. The increased MSE for larger α2 in Figure A.3c is within expectation, and we
choose to set α2 to 0.01 such that it only takes effect when the reconstruction error is small enough.

In addition, the effect of pole separation threshold δpole on the Laplace embedding is illustrated in Figure A.4. When
δpole = 0.0, the order of poles in Laplace embedding w can easily be affected by random noise in input time-series, which
makes it difficult to ensure the uniqueness of w. In contrast, setting δpole = 1.0 effectively improves the representations
learned by the Laplace encoder, and different components in the Laplace transform Fw(s) are clearly represented by distinct
poles (marked with different colors).

(a) δpole = 0.0. (b) δpole = 1.0.

Figure A.4: Distribution of Laplace Embedding w under Different Thresholds of δpole. The Laplace embeddings of trajectory
x(t) = cos(2π(t− ϕ)), ϕ ∼ Exp( 1

2
) are plotted as poles and coefficients on the complex plane with different values of δpole.

Impact of Sampling Rate in Input Data. The Nyquist Sampling Theorem states that a band-limited signal (maximum
frequency of B) can be perfectly reconstructed from sequential observations with (average) sampling rate above 2B. It
provides a lower bound on the number of time-series observations required for our proposed Laplace encoder to work.
Thus, we assume that the sampling rate in real-world datasets is sufficiently large so that important temporal patterns can be
correctly identified. To validate the above statement, we conduct a synthetic experiment on time-series data generated by
x(t) = sin(2πt+ φ) where φ ∼ Exp( 12 ) with different sampling rates. Figure A.5 demonstrates that the reconstruction
error of the Laplace encoder converges to zero when the sampling rate is sufficiently large.

Figure A.5: Impact of Sampling Rate on Time-series Reconstruction via Laplace Encoder.

B PROOF OF PROPOSITION 1

Proposition 1 states that, given two Laplace embeddings z1 and z2 in latent spaceZ , the distance between their corresponding
time-domain trajectories x̂1 and x̂2 is upper-bounded by ψ∥z1 − z2∥22 with some scalar ψ > 0. The proof of Proposition 1
can be derived as the following:

Proof. Let us first consider the uni-variate case. Given two arbitrary Laplace embeddings w1,w2 ∈ Cn(d+1), their time-
domain reconstructions can be obtained via inverse Laplace transform, i.e., x̂i(t) = L−1(wi) ≜ L−1[Fwi(s)](t), i = 1, 2.
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According to (3) and (4), we have

x̂i(t) =

n∑
m=1

d∑
l=1

cim,lt
l−1

Γ(l)
ep

i
mt, t ≥ 0, (14)

where Γ(l) = (l − 1)! is the Gamma function, wi = [pi1, p
i
2, . . . , c

i
1,1, . . . , c

i
n,d]

⊤, i = 1, 2.

Difference in One Coefficient. Suppose w1 and w2 only differ at one coefficient cm,l, which leads to the result
∥w1 −w2∥22 = |c1m,l − c2m,l|2. Then,

∥x̂1 − x̂2∥2L2
[0,1]

=

∫ 1

0

|x̂1(t)− x̂2(t)|2dt,

=

∫ 1

0

|c1m,l − c2m,l|2
∣∣∣∣ tl−1

Γ(l)
epmt

∣∣∣∣2dt,
≤ |c1m,l − c2m,l|2ψcm,l = ψcm,l∥w1 −w2∥22,

(15)

where ψcm,l is some suitable constant.

Difference in One Pole. Now, let us consider the case where w1 and w2 only differ at one pole pm which gives
∥w1 − w2∥22 = |p1m − p2m|2. Without loss of generality, we assume p2m − p1m = r + jθ, where r ≤ 0, j2 = −1. The
following inequality can be established when t ∈ [0, 1]:

|1− e(p
2
m−p1m)t|2 = |1− ert(cos(θt)− j sin(θt))|2,

= (1− ert)2 + 2ert(1− cos(θt)),

≤ (1− ert)2 + ertθ2t2, (via ert > 0 and 1− cos(x) ≤ x2

2
)

≤ r2t2 + ertθ2t2, (via r ≤ 0 and 0 ≤ 1− ert ≤ (−r)t)
≤ (r2 + θ2)t2,

= |p1m − p2m|2t2.

(16)

Hence, we have

∥x̂1 − x̂2∥2L2
[0,1]

=

∫ 1

0

|x̂1(t)− x̂2(t)|2dt,

=

∫ 1

0

∣∣∣∣ci,ltl−1

Γ(l)

∣∣∣∣2|ep1mt|2|1− e(p2i−p1i )t|2dt,
≤

∫ 1

0

∣∣∣∣ci,ltl−1

Γ(l)

∣∣∣∣2|ep1mt|2|p1m − p2m|2t2dt,
≤ |p1m − p2m|2ψpm = ψpm∥w1 −w2∥22,

(17)

where ψpm is some suitable constant.

General Cases. Now, we define an operator Si(w1,w2) that generates a new composite vector w̄i from w1 and w2. The
first i elements of the composite vector w̄i are taken from w2 while the latter n(d+ 1)− i elements of w̄i are obtained
from w1. For instance, we have S0(w

1,w2) = w1, S1(w
1,w2) = [p21, p

1
2, p

1
3, . . . , c

1
1,1, . . . , c

1
n,d]

⊤, S2(w
1,w2) =

[p21, p
2
2, p

1
3, p

1
4 . . . , c

1
1,1, . . . , c

1
n,d]

⊤, . . ., and Sn(d+1)(w
1,w2) = w2. It is easy to see that Si(w1,w2) and Si+1(w

1,w2)

only differ at one pole or one coefficient, and ∥Si(w1,w2)− Si+1(w
1,w2)∥22 = |p1i+1 − p2i+1|2 when 0 ≤ i ≤ n− 1 and

∥Si(w1,w2) − Si+1(w
1,w2)∥22 = |c1m,l − c2m,l|2 otherwise, where m = ⌊ i−nd + 1⌋, l = i − n − (m − 1)d + 1. Each

composite vector w̄i = Si(w
1,w2) yields a time-domain trajectory L−1(w̄i) via inverse Laplace transform of Fw̄i

(s).
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Note that L−1(w̄0) = L−1(w1) = x̂1 and L−1(w̄n(d+1)) = L−1(w2) = x̂2. Based on the triangular inequality,

∥x̂1 − x̂2∥2L2
[0,1]

= ∥
n(d+1)−1∑

i=0

L−1(Si(w
1,w2))− L−1(Si+1(w

1,w2))∥2L2
[0,1]

≤
n(d+1)−1∑

i=0

∥L−1(Si(w
1,w2))− L−1(Si+1(w

1,w2))∥2L2
[0,1]

,

≤
n(d+1)−1∑

i=0

ψ∥Si(w1,w2)− Si+1(w
1,w2)∥22,

=

n∑
m=1

ψ|p1m − p2m|2 +
n∑

m=1

d∑
l=1

ψ|c1m,l − c2m,l|2,

= ψ∥w1 −w2∥22,

(18)

where we take ψ = maxm,l(ψ
p
m, ψ

c
m,l).

Finally, for the multivariate case, let us consider two latent embeddings z1 and z2 as well as their associated time-domain
reconstructions x̂1 and x̂2. We define the distance between trajectories x̂1 and x̂2 as

∥x̂1 − x̂2∥2L2
[0,1]

≜
dimx∑
d=1

∫ 1

0

|x̂1d(t)− x̂2d(t)|2dt, (19)

where x̂md is the d-th dimension of trajectory, x̂m = L−1(wm
d ) = L−1[Fwm

d
(s)] for m = 1, 2, wm

d is the d-th component
of zm. According to (18), we have the following bound for each dimension d.∫ 1

0

|x̂1d(t)− x̂2d(t)|2dt = ∥x̂1
d − x̂2

d∥2L2
[0,1]
≤ ψd∥w1

d −w2
d∥22, (20)

where ψd > 0 is some suitable scalar. Since ∥z1−z2
2∥22 =

∑dimx

d=1 ∥w1
d−w2

d∥22, the distance between the two reconstructed
trajectories x̂1 and x̂2 can be upper-bounded as follows with some suitable ψ > 0.

∥x̂1 − x̂2∥2L2
[0,1]
≤

dimx∑
d=1

ψd∥w1
d −w2

d∥22 ≤ ψ∥z1 − z2∥22. (21)

Corollary 1. Given a continuous set Φz in latent space, the set Φ, which consists of reconstructed trajectories of z ∈ Φz , is
also a continuous set in trajectory space X .

Proof. Consider a trajectory x̂ ∈ Φ and its corresponding latent embedding z ∈ Φz . For any ε > 0, due to the continuity
of Φz , there must exist another embedding z′ ∈ Φz such that ∥z − z′∥22 < δε, where δ > 0 is a scalar. Let us denote the
time-domain reconstruction of z′ as x̂′ ∈ Φ. According to Proposition 1, ∥x̂ − x̂′∥2

L2
[0,1]

≤ ψ∥z − z′∥22 holds for some

ψ > 0. Setting δ = 1
ψ leads to the inequality ∥x̂− x̂′∥2

L2
[0,1]

≤ ε which indicates the continuity of set Φ.

Equivalent Translation in the Latent Space. Consider two trajectories x1,x2 ∈ X with the corresponding latent
embeddings z1 and z2 in the latent space. We construct a set Pz = {γ̃(z1 → z2)} of all possible continuous path γ̃ in the
latent space that connects z1 and z2. Let gE : Z → X be a function that maps latent embedding z back to its time-domain
reconstruction x̂ in the trajectory space. Then, given a translation Γ(x1 → x2) in the trajectory space, we can define the
(approximately) equivalent translation in the latent space as

γ(z1 → z2) ≜ argmin
γ̃∈Pz

min
z∈γ̃

max
x∈Γ
∥x− gE(z)∥2L2

[0,1]
, (22)

where minz∈γ̃ maxx∈Γ ∥x− gE(z)∥2L2
[0,1]

measures the minimum distance between translation, i.e., Γ, and the time-domain

reconstruction of latent path γ̃, i.e., Γ̃ = {gE(z) | z ∈ γ̃}. In general, γ is the closet projection of Γ within the latent space
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Z , and the equivalence of trajectory translation is approximate. If every trajectory x ∈ Γ has a rational Laplace transform
with no more than n poles and maximum degree of d as described in (3), the equivalence becomes strict. Without loss of
generality, let us consider the uni-variate case. Given a translation Γ, we assume each x ∈ Γ can be exactly described by the
Laplace transform Fw(s) in (3), where w = fL(x(t)), t is a vector of some suitable sampling time stamps. For any two
trajectories x, x′ ∈ Γ that satisfy |x(t)− x′(t)| ≤ δ almost everywhere in t ∈ [0, 1], we have

|Fw(s)− Fw′(s)|2 =

∣∣∣∣∫ ∞

0

(x(t)− x′(t))e−stdt
∣∣∣∣2 ,

≤
∫ ∞

0

|x(t)− x′(t)|2|e−st|2dt,

≤ δ2
∫ ∞

0

|e−st|2dt,

=
δ2

2Re(s)
,

(23)

holds for Re(s) > 0. When δ → 0, we have x′ → x and Fw′ → Fw. Note that Fw −Fw′ is rational and can be determined
with a sufficient number of observations in its region of convergence, e.g., Re(s) > 0. The equivalence in Laplace transform,
i.e., |Fw(s)− Fw(s)|2 ≡ 0, implies that w′ = w.6 Thus, x′ → x also leads to w′ → w, which means that the collection
of Laplace embeddings {w|w = fL(x(t)), x ∈ Γ} is in fact a continuous path γ in the latent space. Thereby, path γ is a
latent translation that exactly yields the trajectory translation Γ. Similar results can be easily extended to the multi-variate
trajectory setting.

Justification for Latent Path-based Test. The path-based connectivity test dΓ(x1,x2) is defined based on the oracle
model g(x) of conditional distribution p(y|x). In our proposed method T-Phenotype, a predictor is built upon the Laplace
embedding, i.e., f(X) = fP ◦ fE(X), to approximate the oracle conditional distribution such that f(X) ≈ g(x) given
time-series X sampled from x. Thus, we have dΓ(x

1,x2) ≈ maxx∈Γ,i=1,2 dy(f(x(t)), f(X
i)), where t is a vector of

some suitable observation time stamps. Further, note that translation Γ in trajectory space can be approximated by Γ̂ as
time-domain reconstruction of latent translation γ(z1 → z2) in Z , where zi = fE(X

i) for i = 1, 2. Then, we have

max
x∈Γ,i=1,2

dy(f(x(t)), f(X
i)) ≈ max

x̂∈Γ̂,i=1,2
dy(f(x̂(t)), f(X

i)) ≈ max
z∈γ,i=1,2

dy(fP (z), fP (z
i)), (24)

which leads to the latent path-based test in (7).

C GRAPH-CONSTRAINED K-MEANS ALGORITHM IN T-PHENOTYPE

The graph-constrained K-means iteration in Algorithm 1 is provided in Algorithm C.1. After each run via GK-means, the
objective function J in (2) is re-evaluated. The main algorithm of T-Phenotype stops after 5 iterations with no improvement
in objective J under maximum of 1,000 iterations. Alternatively, T-Phenotype stops when the improvement is below certain
tolerance tol = 10−7, i.e., |∆J | ≤ tol.

D EXPERIMENT SETUP

D.1 Datasets and Statistics

For the two real-world medical datasets, we want to capture recent temporal patterns and associated target outcomes. Thus,
we utilize a sliding window of size 6 years and 24 hours to extract sub-sequences containing temporal predictive patterns
among most recent observations for ADNI and ICU datasets, respectively. Statistics of major feature variables in the ADNI
dataset and ICU dataset can be found in Table D.1 and Table D.2, respectively.

D.2 Baselines

We compare the performance of T-Phenotype with the following five benchmarks ranging from traditional method to state-
of-the-art deep learning-based methods, where each clustering method reflects a different notion of temporal phenotypes:

6When Fw(s) and Fw′(s) have less than n poles, w and w′ may take value from multiple alternative embeddings. However, we can
always select the combination such that w′ = w.
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Algorithm C.1 GK-means (Single K-means iteration over similarity graph Gδ)
Input: J, e1, e2, . . . , eK ,Gδ ▷ J objective, ek cluster seed, Gδ: similarity graph
Output: C = {C1, C2, . . . , CK}

1: for k = 1, 2, . . . ,K do
2: vk,X

(k) ← ek
3: Ck ← {X(k)} ▷ Initialize cluster Ck with seed ek
4: end for
5: Dfree ← {X|X ̸∈ Ck, ∀Ck ∈ C} ▷ Get the set of unclustered samples
6: while |Dfree| > 0 do
7: for X ∈ Dfree do
8: C∗ ← argmin

Ck∈C,X
Gδ←→Ck

dy(f(X),vk) ▷ Find the best cluster assignment

9: C∗ ← C∗ ∪ {X}
10: Dfree ← Dfree \ {X}
11: end for
12: for k = 1, 2, . . . ,K do
13: vk ← 1

|Ck|
∑

X∈Ck
f(X) ▷ Update cluster centroid

14: end for
15: end while

Table D.1: Statistics of ADNI Dataset.

STATIC COVARIATES TYPE MEAN MIN/MAX (MODE) TYPE MEAN MIN/MAX (MODE)

Demographic Race Cat. 0.93 White Ethnicity Cat. 0.97 Not Hisp/Latino
Education Cat. 16.13 16 Marital Status Cat. 0.75 Married

Genetic APOE ε4 Cat. 0.44 0

TIME-VARYING COVARIATES TYPE MEAN MIN/MAX (MODE) TYPE MEAN MIN/MAX (MODE)

Demographic Age Cont. 73.62 55/91.4

Biomarker

Entorhinal Cont. 3.6E+3 1.0E+3/6.7E+3 Mid Temp Cont. 2.0E+4 8.9E+3/3.2E+4
Fusiform Cont. 1.7E+4 9.0E+3/2.9E+4 Ventricles Cont. 4.1E+4 5.7E+3/1.6E+5
Hippocampus Cont. 6.9E+4 2.8E+3/1.1E+4 Whole Brain 1.0E+6 6.5E+5/1.5E+6
Intracranial Cont. 1.5E+6 2.9E+2/2.1E+6

Cognitive

CDRSB Cont. 1.21 0.0/17.0 Mini Mental State Cont. 27.84 2.0/30.0
ADAS-11 Cont. 8.58 0.0/70.0 ADAS-13 Cont. 13.60 0.0/85.0
RAVLT Immediate Cont. 38.26 0.0/75.0 RAVLT Learning Cont. 4.65 -5.0/14.0
RAVLT Forgetting Cont. 4.19 -12.0/15.0 RAVLT Percent Cont. 51.68 -500.0/100.0

K-means with Warping-based Distance. The technique of dynamic time warping (DTW) provides one way to measure
time-series similarity regardless of the observation interval. Time-series with similar temporal patterns usually leads to
smaller DTW distances. We apply conventional K-means with the DTW-based similarity measure to discover clusters
representing different temporal patterns. We denote this approach as KM-DTW.

Deep Temporal K-means. Embedding (i.e., hidden representations) from RNNs can provide meaningful information
to measure the similarity between time-series. With the encoder-predictor (E2P) structure introduced in (Lee and van der
Schaar, 2020), we include the baseline of KM-E2P that performs clustering in a representation space via K-means. We
denote the baseline as KM-E2P(z) when The representation space is formed by the latent embeddings from an encoder
network. The discovered cluster will capture both similarities in input time-series and the output label prediction due to the
E2P structure. When the representation space is selected to be the output (label prediction) of the predictor network, we
refer to the method as KM-E2P(y). In this case, the discovered clusters are aligned to major modes in the label distribution
and are not necessarily associated with certain temporal patterns in trajectory space.

K-means with Laplace Encoder. Similar to the baseline of KM-DTW, the time-series embedding from Laplace encoder
provides a unified representation of (potentially) irregularly sampled time-series. The Euclidean distance between Laplace
embeddings can thus be used as a similarity measure for different patient trajectories. In practice, the longitudinal
observations of patients are first converted to a latent space via the Laplace encoder. Then, K-means algorithm is performed
over the latent representations to identify patient subgroups based on their similarity in temporal patterns.

Toward K-means Friendly Spaces using Sequence-to-sequence. Sequence-to-sequence (SEQ2SEQ) learning paradigm
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Table D.2: Statistics of ICU Dataset.

Static Covariates TYPE MEAN MIN/MAX (MODE) TYPE MEAN MIN/MAX (MODE)

Demographic Age Cont. 67.25 15.0/90.0 Gender Cat. 0.56 Male
Admission ICU Type Cat. 2.76 Medical ICU

TIME-VARYING COVARIATES TYPE MEAN MIN/MAX (MODE) TYPE MEAN MIN/MAX (MODE)

Blood Test

Albumin Cont. 2.92 1.0/5.3 ALP Cont. 1.2E+2 1.2E+1/2.2E+3
ALT Cont. 3.9E+3 1.0/1.2E+4 AST Cont. 5.1E+2 4.0/1.8E+4
Bilirubin Cont. 2.91 0.1/47.7 BUN Cont. 27.41 0.0/197.0
Cholesterol Cont. 156.52 28.0/330.0 Creatinine Cont. 1.50 0.1/22.1
Glucose Cont. 1.4E+3 1.0E+1/1.1E+3 Lactate Cont. 2.88 0.3/29.3
HCO3 Cont. 23.12 5.0/50.0 pH Cont. 7.49 1.0/735.0
K Cont. 4.14 1.8/22.9 Mg Cont. 2.03 0.6/9.9
Na Cont. 139.07 98.0/177.0 HCT Cont. 30.69 9.0/61.8
TroponinI Cont. 7.15 0.3/49.2 TroponinT Cont. 1.20 0.01/24.91
Platelets Cont. 1.9E+2 6.0/1.0E+3 White Blood Cell Cont. 12.67 0.1/187.5

Monitoring

Heart Rate Cont. 86.80 0.0/199.5 Respiratory Rate Cont. 19.64 0.0/98.0
SysABP Cont. 119.57 0.0/273.0 NISysABP Cont. 119.20 0.0/247.0
DiasABP Cont. 59.54 0.0/268.0 NIDiasABO Cont. 58.18 0.0/180
MAP Cont. 80.23 0.0/295.0 NIMAP Cont. 77.13 0.0/194.0
GCS Cont. 11.41 3.0/15.0 Temperature Cont. 37.07 -17.8/42.1
Urine Cont. 12E+2 0.0/1.1E+5

Oxygen FiO2 Cont. 0.54 0.21/1.0 PaCO2 Cont. 40.41 11.0/100.0
PaO2 Cont. 147.82 0.0/500.0 SaO2 Cont. 96.65 26.0/100.0

allows the learning of a representation space that is easier to perform clustering compared to the original time-series data.
Such baseline reflects the recent trend of combining conventional clustering methods, e.g., K-means, with dimension
reduction using deep learning technique (Xie et al., 2016; Baytas et al., 2017). With different temporal patterns encoded in
a low-dimension representation space, K-means clustering is applied to discover clusters that represent various temporal
feature interactions in input time-series data. In the experiment, we use a modified version of DCN (Yang et al., 2017) as the
SEQ2SEQ baseline.

AC-TPC. AC-TPC (Lee and van der Schaar, 2020) is one of the state-of-the-art temporal clustering approach that discovers
outcome-oriented clusters. AC-TPC learns a cluster assignment policy in the latent space based on an encoder network. The
cluster assignment policy is trained with the actor-critic loss from reinforcement learning to find the optimal clusters that
represent typical label distributions learned by a predictor network. Similar to KM-E2P(y), there is no guarantee on the
association between temporal patterns and clusters discovered by AC-TPC.

D.3 Training Procedure of T-Phenotype

To fit the model of T-Phenotype on a dataset, the Laplace encoder for each trajectory dimension is firstly pre-trained based
on (5) calculated at each time step. Then, we fit the predictor fL with observed patient outcomes y. Finally, the temporal
clusters are discovered via graph-constrained K-means algorithm C.1 based on the output from the predictor. Latent
embeddings from the Laplace encoder has a clear mathematical meaning. Thus, we freeze the pre-trained Laplace encoder
to be isolated from gradients due to outcome predictions. Joint optimization of the encoder and predictor may lead to slower
convergence and lower performance as shown in Table 2 and Table 3 with “T-Phenotype (J)” as the ablation study.

D.4 Performance Metrics

Prediction Performance. Area under the curve of receiving-operator characteristic (AUROC) and area under the curve of
precision-recall (AUPRC) are used to assess the prognostic value of the discovered clusters on predicting the target label y.
For non-binary (category larger than 2) labels, these scores are calculated individually for each category and averaged over
the entire categories.

Clustering Performance. For synthetic data, we evaluate the clustering performance in terms of the purity score (Lee and
van der Schaar, 2020), adjusted Rand index (RAND) (Steinley, 2004), and normalized mutual information (NMI) (Vinh
et al., 2009) as the ground-truth cluster label is available. For the real-world dataset, there is no ground-truth of cluster
label. In such a case, the Silhouette coefficient (Rousseeuw, 1987) is commonly used as a measure of cluster consistency by
assessing the homogeneity within each cluster and heterogeneity across different clusters. More specifically, the traditional
Silhouette index assumes convex clusters and uses the average intra-cluster distance (a) and inter-cluster distance (b) to
evaluate the consistency between cluster assignment and pattern distribution as s = |b−a|

max(a,b) . Averaging s over all samples
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gives the Silhouette index S.

In this paper, the clusters are identified via predictive temporal patterns and are not necessarily in convex shapes. To better
reflect our new notion of clusters, we instead use an m-nearest neighbor version of Silhouette index, i.e., Sm. Specifically,
suppose there are K clusters C = {C1, C2, . . . , CK}. Given a time-series X in cluster Ck, we only consider its m nearest
samples in the corresponding cluster when calculating intra- and inter-cluster distances am and bm as given below:

am =
1

|Nm(X, Ck)|
∑

X′∈Nm(X,Ck)

∥X −X ′∥22, bm = min
i ̸=k

1

|Nm(X, Ci)|
∑

X′∈Nm(X,Ci)

∥X −X ′∥22, (25)

where Nm(X, Ck) indicates the set of m nearest neighbors of X in cluster Ck. Then, the clustering consistency in our
variant Silhouette index is calculated as sm = |bm−am|

max(am,bm) . The average score Sm of all samples is used to measure the
overall clustering consistency. Note that when m ≥ maxCk∈C |Ck|, the variant Sm is identical to the original Silhouette
index, i.e., Sm = S.

Focusing on m closest samples allows us to effectively evaluate pattern consistency in non-convex and irregularly shaped
clusters. Nonetheless, when multiple temporal patterns are put into the same cluster, Sm may still generate a high score due
to the focus on local similarity. To address this issue, we use another connectivity-based metric Pm to evaluate the purity of
a cluster in terms of temporal patterns. Consider a cluster Ck, a connectivity graph over time-series in Ck can be derived via
m-nearest neighbor discovery. We use the count pk of connected subgraphs to estimate the number of temporal pattern
included in cluster Ck and calculate the temporal pattern purity via Pm = 1

K

∑
Ck∈C

1
pk

. It is clear that Pm = 1 when m is
sufficiently large and each cluster only contains a single temporal pattern, and Pm = 1

K

∑
Ck∈C

1
|Ck| when m = 0.

To get an overall assessment of cluster consistency, we normalize Sm into [0, 1] and calculate the summary metric AUSIL as
the area under the curve of Sm verses Pm for m = 1, 2, . . . ,M,M ∈ N. For the evaluation of phenotype discovery, we
combine the prediction accuracy (AUROC and AUPRC) and cluster consistency (AUSIL) into two composite metrics HROC

and HPRC. Similar to the F1-score in classification, these composite metrics are defined respectively as

HROC ≜ 2
AUROC ·AUSIL

AUROC+AUSIL
, HPRC ≜ 2

AUPRC ·AUSIL

AUPRC+AUSIL
. (26)

E HYPERPARAMETER SELECTION

In the experiment, T-Phenotype, KM-E2P(y), KM-E2P(z) are implemented with PyTorch and are trained with learning rate
of 0.1 in 50 epochs. AdamW optimizer is used to tune the network parameters. The K-means clustering in KM-E2P(y),
KM-E2P(z) and KM-DTW is performed with K-means++ initialization based on implementation in PyClustering.7 The
baselines of AC-TPC and SEQ2SEQ are implemented in TensorFlow. They are trained with Adam optimizer with training
epochs set to 200 due to different learning rates in their implementation.

We perform hyperparameter selection on each dataset via 3-fold cross-validation. For T-Phenotype, the best hyperparameters
of the Laplace encoders are searched to minimize the average reconstruction error over all temporal dimensions. For each
real-world dataset, the best number of clusters K is searched via maximizing the composite metric HPRC of T-Phenotype.
The selected best cluster number K is used for all baselines on the same dataset. For baselines of KM-E2P(y) and
KM-E2P(z), the hyperparameters for each dataset are search to maximize HPRC (or purity score on the synthetic dataset)
given the selected cluster number K. The hyperparameters of AC-TPC and SEQ2SEQ are set to be the same with the
original implementation in (Lee and van der Schaar, 2020) (dropout layers are disabled to ensure reproducibility). The
hyperparameter space considered in our experiment is discussed as follows.

E.1 Hyperparameter Selection of T-Phenotype

Laplace Encoder. In the experiment, each Laplace encoder fL in T-Phenotype contains a 1-layer GRU and a 1-layer MLP
with 10 hidden units in each layer. Given a time-series input, each Laplace encoder generates an embedding with n = 4
poles and maximum degree of d = 1. As mentioned earlier, coefficient α2 for regularization term ldistinct is set to 0.01
throughout the experiment. The rest hyperparameters are searched in the parameter space as follows.

• Coefficient for pole separation loss lsep: α ∈ {1.0, 10.0}.
7https://pyclustering.github.io/

https://pyclustering.github.io/
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• Coefficient loss lreal: α1 ∈ {0.1, 1.0}.

• Threshold for pole sorting and the separation loss: δpole ∈ {1.0, 2.0}.

To address the complex temporal patterns in the ICU dataset, the maximum degree of poles d is also added to the search
space, and the range of d ∈ {1, 2} is considered. The best hyperparameter for Laplace encoder on the three datasets are
given as follows.

• Synthetic dataset: α = 1.0, α1 = 0.1, δpole = 1.0.

• ADNI dataset: α = 1.0, α1 = 0.1, δpole = 2.0.

• ICU dataset: α = 1.0, α1 = 0.1, δpole = 2.0, d = 2.

Predictor. The predictor fP is composed of a 3-layer MLP with 10 hidden units in each layer.

Cluster NumberK. The best number ofK for each dataset is selected based on the optimal Laplace encoder and predictor
structures selected above. We use the ground truth cluster number K = 3 for the synthetic dataset. For the two real-world
datasets, the cluster number is searched among K ∈ {2, 3, 4, 5} to maximize the composite clustering performance HPRC.
The optimal cluster number selection result is given below.

• Synthetic dataset: K = 3 (we directly use the ground truth).

• ADNI dataset: K = 4.

• ICU dataset: K = 3.

E.2 Hyperparameter Selection of Baselines

KM-E2P(y). The KM-E2P(y) model includes a 1-layer GRU network to extract temporal features from input time-series.
A 2-layer MLP is stacked on top of the GRU network to form an encoder. Given the encoder output, another 2-layer
MLP is used to predict the categorical label y. All layers in the GRU and MLP share the same number h of hidden units.
Hyperparameters of h ∈ ×{5, 10, 20} is searched in each dataset basedd on the corresponding K determined above. By
maximizing the composite metric HPRC or purity score, the hyperparameter selection result is obtained as follows.

• Synthetic dataset: h = 20.

• ADNI dataset: h = 20.

• ICU dataset: h = 20.

KM-E2P(z). Similar to KM-E2P(y), the KM-E2P(z) model is composed of a encoder with 2-layer MLP on top of a
1-layer GRU network to extract temporal features from input time-series. The encoder outputs a r-dimension latent vector,
which is then used by a 2-layer MLP-based predictor for label prediction. All layers in the GRU and MLP share the
same number h of hidden units. Given the best cluster numbers of K found by T-Phenotype, on each dataset, the optimal
combination of h and r are search in the space of (h, r) ∈ {10, 20} × {5, 10, 20} to maximize the composite metric HPRC

or purity score when ground truth cluster label is available. The hyperparameter selection result is given as follows.

• Synthetic dataset: h = 10, r = 10.

• ADNI dataset: h = 10, r = 20.

• ICU dataset: h = 20, r = 10.

KM-L. The baseline KM-L simply shares hyperparameters with T-Phenotype for its Laplace encoders on each dataset.
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F COMPLETE BENCHMARK RESULT

The complete benchmark result on synthetic dataset is shown in Table F.1. T-Phenotype has significantly better clustering
performance (purity score, adjusted Rand index, normalized mutual information) over all baselines on the synthetic data.
In the meantime, the advantage of T-Phenotype over other baselines (except for AC-TPC) is clearly demonstrated via the
proposed phenotype discovery performance metrics of HROC and HPRC. An extra baseline of KM-Laplacian (K-means on
graph Laplacian calculated via dynamic time warping) is included in Table F.1 for reference. We note that this method has
two major drawbacks: 1) there is not a stable and consistent representation space for cluster assignment for new samples;
and 2) the distance matrix computation complexity in dynamic time warping could be extremely high, which makes this
baseline infeasible for the two real-world datasets.

Table F.1: Complete Benchmark Result on the Synthetic Dataset.

METHOD AUROC AUPRC PURITY RAND NMI HROC HPRC

KM-E2P(y) 0.973±0.014 0.962±0.019 0.663±0.019 0.477±0.033 0.569±0.045 0.846±0.012 0.842±0.010
KM-E2P(z) 0.963±0.012 0.948±0.011 0.677±0.029 0.418±0.024 0.485±0.047 0.879±0.011 0.873±0.009
KM-DTW 0.722±0.033 0.649±0.028 0.469±0.017 0.068±0.021 0.077±0.022 0.787±0.020 0.742±0.019
KM-Laplacian 0.736±0.024 0.663±0.017 0.490±0.021 0.086±0.011 0.094±0.010 0.797±0.016 0.752±0.013
KM-L 0.646±0.030 0.593±0.027 0.687±0.033 0.395±0.058 0.447±0.059 0.735±0.020 0.700±0.017
SEQ2SEQ 0.507±0.028 0.505±0.014 0.378±0.008 -0.003±0.003 0.005±0.003 0.630±0.022 0.628±0.011
AC-TPC 0.966±0.012 0.952±0.017 0.659±0.020 0.487±0.035 0.596±0.043 0.931±0.011 0.925±0.014

T-Phenotype (J) 0.967±0.020 0.954±0.025 0.655±0.021 0.440±0.051 0.543±0.064 0.845±0.064 0.840±0.064
T-Phenotype 0.975±0.013 0.960±0.024 0.965±0.018‡ 0.902±0.048 ‡ 0.875±0.050‡ 0.927±0.010 0.920±0.014

Best performance is highlighted in bold. Symbol ‡ indicates p-value < 0.01

The complete benchmark result on two real-world datasets is provided in Table F.2. T-Phenotype in general has the best (or
second best) phenotype discovery performance (HROC and HPRC) while achieving high accuracy in outcome prediction
(AUROC and AUPRC), which demonstrates the prognostic value of the phenotypes discovered by T-Phenotype.

Table F.2: Complete Benchmark Result on Two Real-world Datasets.

METHOD AUROC AUPRC AUSIL HROC HPRC

A
D

N
I

KM-E2P(y) 0.893±0.005 0.728±0.017 0.677±0.019 0.770±0.013 0.701±0.012
KM-E2P(z) 0.884±0.012 0.711±0.020 0.672±0.028 0.763±0.018 0.690±0.013
KM-DTW 0.743±0.013 0.522±0.020 0.762±0.049 0.752±0.027 0.618±0.021
KM-L 0.697±0.029 0.465±0.019 0.820±0.022‡ 0.753±0.019 0.593±0.018
SEQ2SEQ 0.775±0.023 0.550±0.030 0.772±0.014 0.773±0.012 0.642±0.022
AC-TPC 0.861±0.012 0.665±0.020 0.726±0.020 0.788±0.014 0.694±0.013

T-Phenotype (J) 0.867±0.020 0.679±0.040 0.690±0.007 0.768±0.011 0.684±0.021
T-Phenotype 0.891±0.005 0.716±0.015 0.711±0.023 0.791±0.013 0.713±0.009‡

IC
U

KM-E2P(y) 0.697±0.014 0.593±0.012 0.668±0.046 0.682±0.029 0.628±0.025
KM-E2P(z) 0.677±0.030 0.579±0.018 0.698±0.042 0.686±0.031 0.633±0.024
KM-DTW 0.539±0.030 0.515±0.011 0.786±0.072 0.636±0.023 0.621±0.021
KM-L 0.577±0.019 0.532±0.009 0.834±0.024 0.682±0.009 0.649±0.004
SEQ2SEQ 0.592±0.024 0.539±0.012 0.830±0.016 0.690±0.011 0.653±0.004
AC-TPC 0.660±0.008 0.573±0.003 0.735±0.024 0.695±0.014 0.644±0.011

T-Phenotype (J) 0.697±0.025 0.595±0.017 0.691±0.091 0.691±0.056 0.636±0.048
T-Phenotype 0.681±0.017 0.585±0.015 0.726±0.015 0.703±0.007 0.648±0.008

Best performance is highlighted in bold. Symbol ‡ indicates p-value < 0.01

G FURTHER ANALYSIS ON PHENOTYPE DISCOVERY

Comparison of Cluster Assignments on ADNI Dataset. On the ADNI dataset, typical phenotypes from KM-E2P(y),
SEQ2SEQ, AC-TPC and T-Phenotype are compared in Figure G.1. Due to the model design, KM-E2P(y) only focuses on
the predicted outcome distribution when discovering phenotypes (as shown in Figure G.1a). Compared to T-Phenotype,
KM-E2P(y) wrongly splits normal patients with the same temporal pattern (stable CDRSB trajectory) into two clusters
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under K = 4. Additionally, KM-E2P(y) fails to discover the two subtypes of patients with high-risk of MCI as illustrated
in phenotype 2 and 3 in Figure G.1d. While the SEQ2SEQ method is able to capture temporal patterns exhibit in patient
trajectories, it is incapable to properly associate these temporal patterns with patient outcomes. For instance, SEQ2SEQ
wrongly splits high-risk patients with increasing CDRSB scores over time into two different subgroups with similar outcome
distributions.

As discussed in the main manuscript, AC-TPC aims at discovering the minimum number of clusters that can sufficiently
represent the outcome distribution. Thus, it only identifies three phenotypes under K = 4 and combines the two subtypes
(Phenotype 2 and 3 in Figure G.1d) of MCI patients into the same cluster. In comparison, T-Phenotype discovers phenotypes
based on both predicted outcome and the associated predictive temporal patterns. The two subgroups of patients with
expected diagnosis of MCI are correctly identified by T-Phenotype, which demonstrates the prognostic value of our method
over the considered baselines.

Phenotypes on ICU Mortality. On the ICU dataset, T-Phenotype is applied to identify phenotypes based on the patient’s
age, gender, GCS score and the fraction of PaCO2. Three major phenotypes are discovered by T-Phenotype, and the GCS
trajectories of test samples in each subgroup are illustrated in Figure G.2. Based on the stability of their GCS trajectory,
patients in each phenotype are plotted separately in two subfigures. The GCS score is predictive of patient mortality after
ICU discharge (Leitgeb et al., 2013) and shows good discrimination accuracy on high- and low-risk patients admitted to
ICU (Bastos et al., 1993). The predicted mortality rates in phenotypes 1, 2 and 3 are 15.3%, 3.2% and 32.4%, respectively.
The GCS levels of patients in the three subgroups manifest a clear association to their corresponding mortality risks. For
instance, many patients of phenotype 3 had lower GCS score (below 10) than the two other subgroups. In contrast, while
having higher GCS levels, many patients in Phenotype 1 and 2 had an increase pattern (as shown in Figure G.2b) in their
recent GCS measurements, which potentially contributes to their decreased risks of death. In the meantime, age is reported
to be another risk factor for ICU mortality (Blot et al., 2009; Haas et al., 2017). With the average patient age of 63.0 (IQR:
53.0 – 76.0), 43.0 (IQR: 29.8 – 55.3) and 70.6 (IQR: 62.0 – 82.0) in the three identified subgroups, phenotype 1 and 2 are
clearly separated.8

8Interquartile range (IQR) is the range defined by 25% and 75% quantiles of a variable.
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(a) Four phenotypes from KM-E2P(y).

(b) Four phenotypes from SEQ2SEQ.

(c) Three phenotypes from AC-TPC.

(d) Four phenotypes from T-Phenotype.

Figure G.1: Comparison of Phenotypes Discovered on the ADNI Dataset.
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(a) Patients with stable (std < 1) GCS trajectories.

(b) Patients with less stable (std ≥ 1) GCS trajectories.

Figure G.2: Three Phenotypes Discovered by T-Phenotype on ICU Dataset. The GCS trajectory of patients with different
phenotypes are illustrated in the considered time period. All trajectories start at t = 0 and are smoothed with a rolling window of size 5.
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