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Abstract

We present Parallel Feasible Pareto Frontier En-
tropy Search ({PF}2ES) — a novel information-
theoretic acquisition function for multi-objective
Bayesian optimization supporting unknown con-
straints and batch queries. Due to the complex-
ity of characterizing the mutual information be-
tween candidate evaluations and (feasible) Pareto
frontiers, existing approaches must either employ
crude approximations that significantly hamper
their performance or rely on expensive inference
schemes that substantially increase the optimiza-
tion’s computational overhead. By instead us-
ing a variational lower bound, {PF}2ES provides
a low-cost and accurate estimate of the mutual
information. We benchmark {PF}2ES against
other information-theoretic acquisition functions,
demonstrating its competitive performance for op-
timization across synthetic and real-world design
problems.

1 INTRODUCTION

The problem of optimizing multiple objectives is common
across science, machine learning and industry and is known
as Multi-Objective Optimization (MOO). Due to the con-
flicting nature of the multiple objectives, there is not one
single solution and we instead seek the Pareto Frontier —
a set of optimal solutions that provide a trade-off among
different objectives. More precisely, the Pareto frontier con-
sists of all solutions from which one cannot improve the
performance of a specific objective without degrading an-
other. For constrained MOO problems, the goal is to find the
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feasible Pareto frontier, i.e., the Pareto frontier containing
only points that satisfy the constraints.

Multi-Objective Bayesian Optimization (MOBO) (Yang
et al., 2019; Daulton et al., 2021; Feliot et al., 2017; Qing
et al., 2022a) is a well-established framework for solving
expensive MOO problems with strict evaluation budgets.
In order to achieve data-efficiency, BO uses cheap prob-
abilistic surrogate models to predict the performance of
not-yet-evaluated configurations. Heuristic search strate-
gies, known as acquisition functions, then use the posterior
belief of this model to direct subsequent objective function
evaluations into promising areas of the search space. The
choice of the acquisition function plays a crucial rule on the
performance of BO and so acquisition function design is an
active research area. Existing common MOBO acquisition
functions include (Yang et al., 2019; Daulton et al., 2020;
Couckuyt et al., 2014; Abdolshah et al., 2018), to name a
few.

A new class of acquisition functions for MOBO has recently
arisen based on information theory. Motivated by state-of-
the-art performance achieved by information-theoretic ap-
proaches for single-objective BO (Hernández-Lobato et al.,
2014; Wang and Jegelka, 2017; Moss et al., 2021; Hvarfner
et al., 2022), recent works (Hernández-Lobato et al., 2016;
Garrido-Merchán and Hernández-Lobato, 2019; Belakaria
and Deshwal, 2019; Suzuki et al., 2020; Belakaria et al.,
2020; Fernández-Sánchez et al., 2020) have provided several
information-theoretic approaches for MOO. These acquisi-
tion functions follow the intuitive goal of seeking to reduce
the amount of uncertainty (as quantified by differential en-
tropy (Hennig and Schuler, 2012)) held by our surrogate
model about the Pareto frontier.

However, the full potential of multi-objective information-
theoretic acquisition functions has not yet been realised,
with existing work not demonstrating the state-of-the-art per-
formance exhibited by their single-objective counterparts.
This poor performance is due to the difficulty in provid-
ing a proper and efficient characterization of the mutual
information between sampled observation and the Pareto
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frontier. Existing approaches rely on either computation-
ally expensive approximate inference schemes like expecta-
tion propagation (Hernández-Lobato et al., 2016; Garrido-
Merchán and Hernández-Lobato, 2019) and density filtering
(Fernández-Sánchez et al., 2020), or on making coarse as-
sumptions about the structure of the Pareto front (Suzuki
et al., 2020; Belakaria and Deshwal, 2019; Belakaria et al.,
2020). Indeed, both types of approximation lead to poor
empirical performance (Daulton et al., 2021).

In this work, we provide {PF}2ES, a new information-
theoretic acquisition function for MOBO. Inspired by the
recent work of (Poole et al., 2019; Takeno et al., 2022),
we use a variational lower bound to propose a novel cheap,
accurate and explainable approximation to the joint mu-
tual information between (batches of) candidate evaluations
and (feasible) Pareto fronts. Our primary contributions are
summarised as follows:

• We introduce a new information-theoretic acquisition
function for multi-objective optimization that supports
both constrained and unconstrained problems.

• We propose an efficient parallelisation strategy q-
{PF}2ES which provides effective batch optimization
across batches of q points.

• We provide theoretical links between {PF}2ES and a
common MOBO acquisition function: multi-objective
Probability of Improvement (Yang et al., 2019; Hawe
and Sykulski, 2007), the first such analysis across
information-theoretic MOBO.

• We provide a new taxonomy of comparing different
information theoretic acquisition functions focusing on
the output space (see Section 2.3) through the uncer-
tainty calibration of the Pareto frontier.

• We demonstrate {PF}2ES’s competitive performance
against existing acquisition functions across a range of
synthetic and real-life batch optimization problems.

2 PRELIMINARIES

2.1 Multi-Objective Optimization with Unknown
Constraints

Maximize fff (xxx) = ( f1(xxx), f2(xxx), ..., fM(xxx))

s.t. (g1(xxx)≥ 0, ...,gC(xxx)≥ 0) := ggg(xxx)≥ 000

xxx ∈ X ∈ Rd

(1)

We consider constrained multi-objective optimization
(CMOO) problems, formally expressed as finding the maxi-
mum of a vector value function: fff = { f1, ..., fM} : xxx →RM

in a bounded design space X ⊂ Rd that need to consider
a set of unknown constraints ggg = {g1, ...,gC} (i.e., the ana-
lytic formulation is unknown), where M and C represents

the number of objectives and constraints respectively. A
candidate xxx is feasible if ggg(xxx) ≥ 000. The optimal compari-
son of different feasible candidates is determined through
the following ranking mechanism: a feasible candidate xxx
is preferable to xxx′ in the sense that ∀ j ∈ M : f j(xxx)≥ f j(xxx′)
and ∃ j ∈ M : f j(xxx)> f j(xxx′). This specific ranking strategy
is termed as dominance (≻) and described as fff (xxx) dom-
inates fff (xxx′): fff (xxx) ≻ fff (xxx′). A feasible candidate input xxx
is called a Pareto optimal candidate if there do not exist
any other feasible candidates in the design space that are
able to dominate it; the set containing all the Pareto opti-
mal candidates is called Pareto set and denoted as xxxF . The
goal of CMOO is to efficiently identify the feasible Pareto
frontier 1 F := { fff (xxx)|∀xxx′ ∈ X \ xxxF s.t. ggg(xxx′) ≥ 000,∃xxx ∈
xxxF s.t. fff (xxx)≻ fff (xxx′)}, which is constructed by the Pareto
set.

2.2 Multi-Objective Bayesian Optimization

For many real-world problems, the exact form of fff and ggg is
unknown, and the evaluation of the objective functions and
constraints functions hhhxxx := { f1xxx , ..., fMxxx ,g1xxx , ...,gCxxx} at an
input location xxx is computationally expensive. In these set-
tings, it is crucial to restrict the total number of observations
required to find the Pareto frontier F .

In order to achieve data efficiency, BO (Frazier, 2018;
Shahriari et al., 2015; Garnett, 2022) leverages a probabilis-
tic surrogate model as a computationally efficient approxi-
mation of the original expensive objective function. Within
this research we focus our discussion on the standard Gaus-
sian Process (GP) (Rasmussen, 2003) framework. Given Ntr
expensive observations D = {{xxx}i,{hhh}i}Ntr

i=1 := {XXX tr,HHH}, a
GP is able to provide a Gaussian posterior distribution of
any not-yet-evaluated hhh. Here we follow a common and
most generic assumption that each objective (and constraint)
are statistically independent. Consequently, the posterior
distribution of i′th outcome hhhi at unknown candidate(s) xxx
is a (multivariate) Gaussian with mean and (co)variance
defined as:

mmmi(xxx|D) = kkk(xxx)T KKK−1HHH i

Vi(xxx|D) = kkk(xxx,xxx)− kkk(xxx)T KKK−1kkk(xxx)
(2)

where kkk(·, ·) represents kernel and KKK is the Gram matrix
building upon existing input XXX tr, HHH i represents the ith output
of training data. See Rasmussen (2003) for a comprehensive
introduction to GPs.

To guide the search into promising areas of the search space
and provide highly efficient optimization, BO relies on an
acquisition function that uses the posterior belief to predict

1This formulation can be easily adapted to MOO problem
without constraints ggg. Since we aim to tackle both MOO and
CMOO problems using our acquisition function, we overload F
(as well as the term Pareto frontier) to represent both feasible
Pareto frontier in CMOO and Pareto frontier in the MOO problem.
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the utility of making an evaluation at any candidate input.
The original expensive objective functions and constraints
are then evaluated at the input with the largest predicted
utility and the resulting evaluation is used to update the
surrogate model. This model updating, acquisition function
building, and objective function evaluation pattern iterates
until a predefined stopping criterion has been met.

2.3 Information-Theoretic Multi-Objective Bayesian
Optimization

One increasingly popular class of acquisition functions
are those based on the now well-established information-
theoretic framework. Here, we seek evaluations that pro-
vide maximal information about a given target quantity.
In the context of MOO, the target is to reduce our uncer-
tainty about the set of optimal (feasible) trade-offs (i.e.,
Pareto set or Pareto frontier). However, this can be for-
mulated in two distinct ways. First, we can use the input-
space formulation (Hernández-Lobato et al., 2016; Garrido-
Merchán and Hernández-Lobato, 2019) and calculate our
uncertainty over where the optimal trade-offs lie in our
search space, i.e., the Pareto set. More recently, output-
space methods (Belakaria and Deshwal, 2019; Belakaria
et al., 2020; Fernández-Sánchez et al., 2020) have been pro-
posed that seek to reduce the uncertainty in the (feasible)
Pareto frontier F directly. As the discrete Pareto frontier
is just an M · |F |-dimensional quantity in contrast to the
d · |F |-dimensional quantities in the Pareto set, the output-
space method enjoys simpler calculations and easier numer-
ical approximations ( at least when d > M). Unfortunately,
although existing output-based MOO methods are much
cheaper than their input-based alternatives (Belakaria and
Deshwal, 2019), they all employ coarse approximations that
hamper their performance and hinder their interpretation.
For example, existing approaches employ approximations
like assuming factorized conditional probability distribu-
tions (Fernández-Sánchez et al., 2020), or using an overdone
heuristic approximation to collapse F to its outcome-wise
max (Belakaria et al., 2021).

3 {PF}2ES FOR CONSTRAINED
MULTI-OBJECTIVE OPTIMIZATION

The goal is to determine where to sample xxx in order to learn
as much as possible about the Pareto frontier F? Under
the information-theoretic framework, the act of learning
is characterized by the Shannon mutual information I(·, ·)
(Cover, 1999) between our target quantity F , and the pos-
sible distribution of the concatenated objective-constraint
observations hhhxxx according to our GP surrogate models:

I(F ;hhhxxx) (3)

Current output-space methods for information-theoretic
MOO (Belakaria et al., 2020; Suzuki et al., 2020) (i.e.,

those that seek to learn the Pareto Frontier, as discussed
in Section 2.3) recast the mutual information (Eq. 3’s) as the
reduction in differential entropy H of F provided by the
candidate evaluation, i.e., using the expansion I(F ,hhhxxx) =
H(F )−H(F |hhhxxx). Following this formulation, the primary
difficulty is providing a reliable and efficient approximation
of the differential entropy H(F |hhhxxx).

3.1 A Variational Lower Bound of the Mutual
Information I(F ;hhhxxx)

For {PF}2ES we avoid the difficulties of approximating the
differential entropy by directly approximating the mutual
information itself (Eq. 3). In particular, we follow the ideas
of (Poole et al., 2019; Takeno et al., 2022) and replace the
mutual information with the following variational lower
bound:

I(F ;hhhxxx)

=
∫

F

∫
hhhxxx

p(hhhxxx,F )log
p(hhhxxx,F )

p(hhhxxx)p(F )
dFdhhhxxx

= EF

[∫
hhhxxx

p(hhhxxx|F )log
p(hhhxxx|F )q(hhhxxx|F )

p(hhhxxx)q(hhhxxx|F )
dhhhxxx

]
= EF

[∫
hhhxxx

p(hhhxxx|F )log
q(hhhxxx|F )

p(hhhxxx)
dhhhxxx+

DKL(p(hhhxxx|F )||q(hhhxxx|F ))
]

≥ EF

[∫
hhhxxx

p(hhhxxx|F )log
q(hhhxxx|F )

p(hhhxxx)
dhhhxxx

]
(4)

where DKL represents the KL-divergence and the density
q(hhhxxx|F ) is a variational approximation of the ground truth
conditional distribution p(hhhxxx|F ). The inequality in the
final line of Eq. 4 is due to the non-negativity of the KL-
divergence. As the gap between the true mutual informa-
tion and our lower bound can be explicitly seen as the
KL-divergence between the variational approximation and
ground truth conditional distribution, the suitability of this
lower bound depends on our ability to build a reasonable
approximation q(hhhxxx|F )≈ p(hhhxxx|F ).

We now explain how to build an effective variational approx-
imation q(hhhxxx|F ). Given a realization of the Pareto frontier
F (illustrated in Fig. 1a for an unconstrained problem), the
output space RM+C can be partitioned into two complemen-
tary regions A(F ) and A(F ), i.e., A(F )∪A(F ) = RM+C

2, where A(F ) ⊂ RM+C is the feasible non-dominated re-
gion {{ fff xxx,gggxxx} : ∄xxx∗ ∈ xxxF s.t. fff xxx∗ ≻ fff xxx, gggxxx ≥ 000} in the
output space. We then set q(hhhxxx|F ) as (an extension of the

2We note the output space is actually defined in a bounded
space formulated by two extreme points: ideal point and anti-
ideal point as shown in Fig. 1a to allow a practical objective space
partition, however, in {PF}2ES we set these two extreme points
to a constant vector with large values (i.e., 1e20) and omit the
notation of them afterwards.
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(a) (b) (c)

Figure 1: Partitioning the output space (bounded by the ideal point and anti-ideal point) according to a Pareto frontier:
a) Given F : Partitioning into a dominated region A and an non-dominated region A. b) Given a discrete Pareto frontier
approximation F̃ : Partitioning the output space into an approximated dominated region Ã and non-dominated region Ã by
hypervolume based decomposition P . c) A partition of the output space given a discretized feasible Pareto frontier F̃ for a
constrained optimization problem.

concept of Pareto frontier truncated normal distribution
(Suzuki et al., 2020)):

q(hhhxxx|F ) =


p(hhhxxx)

ZA
hhhxxx ∈ A

0 else
(5)

where ZA :=
∫

A p(hhhxxx)dhhhxxx = 1−ZA is the probability of hhhxxx
be in A, which is constructed based on the frontier realiza-
tion A(F ) . The choice of variational approximation q is
motivated by that, given a fixed F , for any xxx,hhhxxx; we assign
q(hhhxxx|F ) = 0 for hhhxxx to be feasible and non-dominated (i.e.,
there exists xxx′ ∈ xxxF such that fff xxx ≻ fff (((xxx′′′))) and gggxxx >>> 000). This
of course assumes that we are able to obtain the expensive
observations without noise which is a common scenario
(e.g., (Vakili et al., 2020)).

By substituting our approximate conditional distribution
(Eq. 5) into Eq. 4, the variational information lower bound
has the following simple expression 3

I(F ;hhhxxx)≥ EF

[∫
hhhxxx∈A(F )

p(hhhxxx|F )dhhhxxx · log
1

ZA(F )

]
=−EF

[
log
(
1−ZA(F )

)]
= α{PF}2ES.

(6)

which leads to the proposed {PF}2ES acquisition function.

Explainability of {PF}2ES: Given the {PF}2ES’s expres-
sion in Eq. 6, we are able to link it with the common
Multi-Objective Probability of Improvement (MOPI) (Yang
et al., 2019; Hawe and Sykulski, 2007). MOPI is the multi-
objective version of Probability of Improvement (Kushner,
1964) and measures utility by the probability that a new can-
didate will locate in the non-dominated region A(F ), which

3By convention (Cover, 1999) 0log0 = 0 and so∫
hhhxxx∈A p(hhhxxx|F )logp(hhhxxx|F )dhhhxxx = 0. See Appendix A of

(Takeno et al., 2022) for a discussion.

can be constructed based on a Pareto frontier F . MOPI can
be adapted to the CMOO setting, where it can be multiplied
with a Probability of Feasibility (PoF) term (αMOPI ×αPoF )
following the approach of (Hawe and Sykulski, 2008; Gard-
ner et al., 2014). This, under the assumption that fff and ggg is
statistically independent, is equivalent to the probability that
a new candidate is feasible and located in the non-dominated
region.

The link between {PF}2ES and MOPI can be established
through the following remark (see Appendix. A for proof):

Remark 1. The following acquisition functions lead to the
same maximal candidate xxx = arg max

xxx∈X
α(xxx):

1. MOO

1.1. αMOPI using F as Pareto frontier
1.2. α{PF}2ES with |F̃|= 1 and use the same F as 1.1.

2. Constrained MOO when

2.1. αMOPI ∗ αPoF using F as reference Pareto fron-
tier

2.2. α{PF}2ES with |F̃|= 1 and use the same F as 2.1.

where F̃ is defined in Eq. 8. We note this linkage provides
insights into the empirical performance of {PF}2ES as well.

4 PRACTICAL CALCULATION OF
{PF}2ES AND ITS PARALLELIZATION

Practical calculation of the variational lower bound (Eq. 6)
requires some additional steps. The primary difficulty is
that the region A (for any given Pareto frontier F ) does not
have an analytical form. A popular approach (Belakaria
and Deshwal, 2019; Suzuki et al., 2020; Hernández-Lobato
et al., 2016; Garrido-Merchán and Hernández-Lobato, 2019)
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is to use a finite representation of the Pareto frontier F̃ :=
{ fff | fff ∈ F} s.t. |F̃ | < ∞. Based on F̃ , a hypervolume-
based output space partitioning strategy (Lacour et al., 2017;
Couckuyt et al., 2012), denoted as P , can be used to par-
tition the output space into Np disjoint hypercubes, thus
obtaining an approximation of A denoted by hypervolume
based approximated non-dominated region:

A ≈ Ã(F̃ ) = P(F̃ ) = {Ã1, Ã2, ..., ÃNp} (7)

which is the complement of Ã(F̃ ) := { fff xxx ∈ RM|∃ fff ∈
F̃ , fff xxx ⪯ fff}. Such partitioning is illustrated in Fig. 1b for
unconstrained MOO problems. For CMOO problem, Ã(F̃ )
can be obtained by first partitioning the non-dominated re-
gion in the objective space: RM and then concatenated with
the constraint space where ggg ≥ 000, see Fig. 1c for an illustra-
tion.

Given Ã, we are able to reach the following analytically
tractable approximation of Eq. 6:

−EF

[
log
(
1−ZA(F )

)]
≈− 1

|F̃| ∑
F̃∈F̃

[
log

(
1−

Np

∑
i=1

ZÃi

)]
(8)

where F̃ is a set of sampled Pareto frontiers providing a
Monte Carlo (MC) approximation of the outer expectation
in Eq. 6. We build this MC sample of F̃ by using a standard
multi-objective optimization algorithm (e.g., NSGAII (Deb
et al., 2002)) on samples from the GP’s spectral posterior
(also known as sampling GP posterior via its Fourier features
(Rahimi and Recht, 2007)), which is a common strategy
utilized in acquisition functions for MOO (Belakaria and
Deshwal, 2019; Suzuki et al., 2020; Daulton et al., 2022).
ZÃi

is the probability that hhhxxx is in the i′th hypercube Ãi and
can be calculated as (Suzuki et al., 2020):

ZÃi
=

M+C

∏
k=1

(
Φ(

Ãk
iu −mmmk

xxx

σσσ k
xxx

)−Φ(
Ãk

il
−mmmk

xxx

σσσ k
xxx

)

)
. (9)

where Φ(·) represents the cumulative density function of
the standard normal distribution, Ãk

iu , Ã
k
il

represents the k′th
dimensional upper and lower bound of the i′th hypercube,
respectively. mmmk

xxx,σσσ
k
xxx represent the k′th dimensional GP pos-

terior mean and standard deviation, respectively.

Unfortunately, due to the subtlety of our employed parti-
tioning strategy, we cannot simply use the r.h.s of Eq. 8
as α{PF}2ES. In particular, the hyper-volume based parti-
tion P , operating on the finite representation F̃ , means
that Ã is an overestimation of the non-dominated region A.
Therefore, we are no longer guaranteed to satisfy the lower
bound property in Eq. 6 since ZA(F ) < ZA(F̃ ). More impor-
tantly, calculating {PF}2ES based on the above Ã results in
the same empirical clustering issue observed in MOPI, i.e.
that the probability of improvement rewards tiny improve-
ments of the Pareto frontier approximation F̃ if they are

achieved with high confidence (Emmerich et al., 2020) (see
Appendix. B for a detailed elaboration).

In order to mitigate this clustering issue whilst ensuring
that our acquisition function remains true to its motivation
as a lower bound to the mutual information, we propose
a small change to how we construct our approximation of
A. Inspired by the common empirical strategy employed
in MOPI and PI acquisition functions ((Wang et al., 2016;
Emmerich et al., 2020; Kushner, 1964)), we introduce a
small positive penalization vector εεε = [ε1, ...,εM] to shift
the discrete Pareto frontier approximation:F̃εεε := F̃ + εεε

to avoid any overestimation of A resulting from the hyper-
volume decomposition. In Appendix. D, we show that it is
possible to construct an ε that ensures that our acquisition
function remains a lower bound. However, building such
an epsilon is costly, so we also propose the practical solu-
tion of setting ε through a simple heuristic that achieves
very similar empirical performance (see Appendix. D). In
particular, we set epsilon as εk = c

(
max(F̃ k)−min(F̃ k)

)
∀k ∈ M,F̃ ∈ F̃. i.e. a proportion of the maximal total varia-
tion observed over the Pareto front. We show empirically
that {PF}2ES’s performance is robust to the choice of c
through sensitivity analysis (Appendix. F). We set c = 0.04
for all our experiments.

Combining all these steps, we can finally state our proposed
acquisition function as

α̃{PF}2ES =− 1
|F̃| ∑

F̃∈F̃

[
log

(
1−

N

∑
i=1

ZÃi(Fε )

)]
. (10)

See Algorithm 1 in Appendix. D for a high-level algorithmic
summary of our calculation strategy.

4.1 Parallelisation of {PF}2ES

For many practical MOO problems, it is common to have
parallel or distributed evaluation resources available, i.e. we
recommend q > 1 evaluations during each BO step. We now
propose an extension of {PF}2ES that allows it to be used
for such batch optimizations. This time, the principled ques-
tion is at which q points should we sample simultaneously
to learn as much as possible about F ?

Consider the random variable hhhXXX = {hhhxxx1 , ...,hhhxxxq}, i.e., the
possible observations that could arise from a parallel eval-
uation of a batch of q points. In this scenario, we want to
allocate a batch of q points X that provide the most mutual
info about the (feasible) Pareto frontier. Following the same
derivation as Eq. 4 - 6, we are able to have our proposed
extension of {PF}2ES for batch design:

α̃q-{PF}2ES ≈− 1
|F̃| ∑

F̃∈F̃

[
log
(

1−ZÃq(F̃εεε )

)]
, (11)

where ZÃq
:=
∫

Ãq
p(hhhXXX )dhhhXXX (see Eq. 17). i.e., the proba-

bility that there exists at least one batch element hhhxxxi ∈ hhhXXX
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such that hhhxxxi ∈ Ã(F̃εεε) = {Ã1(F̃εεε), ..., ÃN(F̃εεε)}. Calculat-
ing the probability of ZÃ involves a complex interaction
between joint batch points within the complex region Ã;
we hence propose to approximate this probability through
an MC approximation (a detailed derivation is provided in
Appendix. C.1):

ZÃq

≈ 1
NMC

NMC

∑
j=1

(Np⋃
i=1

(
q⋃

l=1

(
M+C

∏
k=1

(
1(Ak

il ≤ hhhk
xxxl j

≤ Ak
iu)
))))

≈ 1
NMC

NMC

∑
j=1

maxi

maxl

M+C

∏
k=1

σ(
hhhk

xxxl j
−Ak

il

τ
)·

σ(
Ak

iu −hhhk
xxxl j

τ
)

 ,

(12)
where hhhk

xxxl j
represents the k′th output dimensionality of j′th

MC sample of l′th batch point hhhxxxl , and σ(·) is the sigmoid
function, NMC represents the MC sample size. To ensure
the differentiability of our acquisition function, we follow
a common strategy in BO (Wilson et al., 2018; Daulton
et al., 2020) to relax the categorical event imposed by 1(·)
in the first line of Eq. 12 by replacing it with a sigmoid
function and a small non-negative temperature parameter
τ . We note Eq. 12 can be explained as calculating the event
that whether any batch element is within Ã, averaged
through NMC sample numbers. For joint sampling of the
batch outcome hhhXXX , we use the reparameterization trick in
combination with a sample average approximation (SAA)
(Balandat et al., 2020) to perform a continuous acquisition
function optimization process, where the base sample of
SAA has been generated through a randomized quasi-Monte
Carlo, details of the approximation and a demonstration of
q-{PF}2ES are provided in Appendix. C.2.

We stress the existence of remark. 1 confirms that our MC-
based parallelisation strategy (Eq. 12) can be directly ap-
plied to the MOPI acquisition function as well.

Complexity Analysis Lastly, we provide complexity analy-
sis in Appendix G, A run-time comparison with other acqui-
sition functions utilized in the next section is also conducted
in Appendix H.

5 EXPERIMENTAL VALIDATION OF
{PF}2ES

We now present the empirical performance of {PF}2ES
across constrained and unconstrained synthetic benchmarks
and real-life application problems. The primary focus of
these experiments is to compare our methods with other
output-based entropy search methods, we have also included
the standard EHVI acquisition functions as a performance

reference 4.

Sequential MOO problem We compare against PFES
(Suzuki et al., 2020), MESMO (Belakaria et al., 2020),
EHVI (Yang et al., 2019), PESMO (Hernández-Lobato et al.,
2016), as well as providing random search as a common
baseline.

Parallel MOO problem We compare against qEHVI
(Daulton et al., 2020), {PF}2ES with a fantasizing method
(i.e., the Kriging Believer (KB) method (Ginsbourger et al.,
2010)) and random search.

Sequential CMOO problem We compare against EHVI-
PoF (the multiplication of EHVI with PoF as a common
strategy for CMOO (e.g., Martı́nez-Frutos and Herrero-
Pérez (2016))), MESMOC (Belakaria et al., 2021), MES-
MOC+ (Fernández-Sánchez et al., 2020) and random search.

Parallel CMOO problem We compare against qEHVI
(Daulton et al., 2020)5, PPESMOC (Garrido-Merchán and
Hernández-Lobato, 2020), random Search and {PF}2ES
using a fantasize method (Ginsbourger et al., 2010).

For PESMO, MESMOC+ and PPESMOC, we used the pub-
lic implementation provided by the papers. The settings
of all acquisition functions are detailed in Appendix. E.3.
For the surrogate models, we build GPs with Matérn 5/2
kernels using maximum a posteriori estimates for the ker-
nel parameters. For optimizing the acquisition functions,
we use a multi-start L-BFGS-B optimizer starting from the
min(10×qd,100) 6 best locations from 5000 random start-
ing locations. For the hyperparameter of the acquisition
function, we empirically choose τ = 1e−3 . For sampling
the (feasible) Pareto frontier F̃ , we use the open-source NS-
GAII optimizer in PyMOO (Blank and Deb, 2020), where
constraints are handled by the parameter-less approach
(Deb and Agrawal, 1999). For all our information-theoretic
acquisition functions, we use five sampled Pareto frontiers.
All of the following experiments start with 2d +1 random
sampled initial points. For the recommendation of optimal
candidates, we use the out-of-sample strategy (performing
recommendation based on the GP model) as a common ap-
proach in the information-theoretic acquisition function (see
Appendix. E.2 for details).

4Our code is available at https://github.com/
TsingQAQ/trieste/tree/PF2ES_preview_
notebook.

5We note that the EHVI acquisition function typically requires
a reference point to calculate, since the setting of reference point
can introduce bias hence performance difference, in our numeri-
cal experiments we assume such a reference point is unknown
beforehand and need to be calculated dynamically in each iter-
ation, we refer to Appendix. E.1 on how such a reference point is
specified.

6The upper limit is set to restrict the computation cost of multi-
start L-BFGS-B grow continuously with q and d, especially for
higher input dimensionality and large batch size, see Fig. 12 in
Appendix H.

https://github.com/TsingQAQ/trieste/tree/PF2ES_preview_notebook
https://github.com/TsingQAQ/trieste/tree/PF2ES_preview_notebook
https://github.com/TsingQAQ/trieste/tree/PF2ES_preview_notebook
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Figure 2: Uncertainty Calibration of inferred Pareto Frontier during BO iterations.

First, we consider a suite of popular synthetic benchmarks.
Details of the benchmark functions, the reference point set-
tings, and benchmark results on in-sample recommendations
are provided in Appendix. E.1, I.1 respectively.

5.1 Uncertainty Calibration of Inferred Pareto
Frontier

To help discern between {PF}2ES and other information-
theoretic acquisition functions that choose points with the
overarching goal of reducing uncertainty in the Pareto fron-
tier, it is natural to include a performance metric that directly
measures this property.

Therefore, inspired by an approach in active learning (Qing
et al., 2021), we propose an uncertainty calibration pro-
cedure on a hypervolume based Pareto frontier indicator
distribution that reflects the uncertainty of GPs w.r.t the
Pareto frontier. More specifically, the hypervolume indi-
cator function I(·) (Guerreiro et al., 2020) is applied to
each sampled Pareto frontier F̃ from the GPs. This way,
a one-dimensional distribution of hypervolume indicators
is obtained. Note that if the sampled Pareto frontiers have
converged to the (finite approximation of the) Pareto frontier
F , the distribution will collapse to the hypervolume indi-
cator of the (finite approximation of the) Pareto frontier F .
Hence, the expectation and uncertainty of the hypervolume
based Pareto frontier indicator distribution can serve as a
representation of the Pareto frontier estimation accuracy as
well as the uncertainty based on GPs, respectively.

The proposed uncertainty calibration metric is illustrated
in Fig. 2. For each BO iteration, the Pareto frontier indi-
cator distribution I(F̃ (GP)) is approximated by 10 MC
samples of F̃ and we present the aggregate results across
30 repetitions of experiments by their median and 10-90
percentile. It can be seen that {PF}2ES achieved the fastest

convergence to the reference hypervolume, implying low
uncertainty about the Pareto frontier indicator distribution.

5.2 Multi-Objective Bayesian Optimization

Synthetic Problems

We now present our main experimental results. The log-
hypervolume difference achieved across 30 repetitions for
each algorithm is reported in Fig. 3. We see that {PF}2ES
leads to competitive performance in both MOO and CMOO
problems in the case of sequential and batch sampling. Note
that the performance of EHVI, often regarded as the gold
standard, relies on setting a reasonable reference point. For
problems where there is no prior information known about
the reference point location, dynamic reference updating
strategies must be used. For example, EHVI performs
poorly on C2DTLZ2 which has disjoint Pareto frontiers
(Deb, 2019). Additional experimental results on larger batch
sizes and larger output dimensionalities are provided in Ap-
pendix. I.2 and I.3 respectively.

Four BarTruss Design

We consider a real-life mechanical design problem (MOO)
(Tanabe and Ishibuchi, 2020; Dauert, 1993), where we seek
a four elastic truss structure system with small structure vol-
ume whilst having small deformation under external forces.
The cross-section areas of the four bars in the truss system
are chosen as the design variables for the unconstrained
multi-objective optimization problem. Note the scale of the
two objectives is significantly different for this problem.

The results are depicted in Fig. 4. For the sequential
case, {PF}2ES demonstrates the overall fastest convergence
speed. While all acquisition functions tend to have similar
performance in the batch scenario.
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Figure 3: Comparison of different acquisition functions for multi-objective Bayesian optimization. Results are shown
through median performances and interquartile ranges.

Figure 4: Four Bar Truss experimental results (with the
same legend as Fig. 3).

Disc Brake Design Finally, we consider a real-life disc
brake design problem (CMOO) (Tanabe and Ishibuchi, 2020;
Ray and Liew, 2002). Here, the objectives are the mass
of the brake and the achieved stopping time. The design
variables are the inner radius and outer radius of the discs,
the engaging force, and the number of friction surfaces.
Four constraints are presented in this problem: the minimum
distance between the radii, maximum length of the brake,
pressure, temperature, and torque limitations.

The results are depicted in Fig. 5. {PF}2ES demonstrate
the overall fast convergence speed, while {PF}2ES-KB and
qEHVI are slightly better than q-{PF}2ES in terms of stable

Figure 5: Disc Brake Design experimental results (with the
same legend as Fig. 3).

performance.

6 CONCLUSION

We have presented a new information-theoretic acquisition
function {PF}2ES. By using a variational lower bound to
the mutual information, {PF}2ES provides efficient (batch)
multi-objective optimization for problems with unknown
constraints. Extensive experimentation demonstrates the
competitive performance of {PF}2ES over other entropy-
based methods. We also advocate the advantages of
{PF}2ES to other greedy acquisition functions (e.g., EHVI),
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i.e., it is free from the requirement of a proper configura-
tion of a reference point, which arguably is often unknown
for real-life applications and can affect the performance of
acquisition functions to a large extent.

Limitations and Future Work The current out-of-sample
recommendation is based on the posterior mean of the GP.
Hence, its performance depends on the modeling accu-
racy of the GP itself which means it can suffer from the
curse of input dimensionality. Furthermore, the current
out-of-sample recommendation strategy can be extended
to a Bayesian version. Future research will focus on tack-
ling these aspects and making the parallelization scalable to
much larger batch sizes.

7 SOCIAL IMPACT

This paper presents a fundamental approach for multi-
objective Bayesian Optimization and has no direct societal
impact or ethical consequences. It can be used in generic
real-life applications from, e.g., machine learning to engi-
neering. Of course, the applications themselves can have an
impact. As a Bayesian Optimization technique, {PF}2ES
aims for identifying the Pareto frontier hopefully with less
expensive black-box function evaluations (e.g., expensive
biomedical experiments, power-consuming simulations),
hence contributing to less energy consumption.
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A RELATIONSHIP WITH THE MULTI-OBJECTIVE PROBABILITY OF IMPROVEMENT

We provide additional insights for {PF}2ES by linking Eq. 6 to the Multi-objective Probability of Improvement (MOPI)
(Yang et al., 2019). First, we define the following generic formulation of MOO acquisition functions:

αMOO =
∫

E
g
(∫

F
ℓ(F,E)p(F)dF

)
p(E)dE, (15)

where ℓ(·) and g(·) are arbitrary functions, and E and F are random events. Evidently, {PF}2ES is a special case obtained
by setting E := F , F := hhhxxx, ℓ(hhh,F ) := 1(hhhxxx ∈ A(F )), and g(·) :=−log(1−·). Here 1(·) is the indicator function.

Subsequently, by setting ℓ(E,F) := 1(hhhxxx ∈ Ã(F )) (i.e., F := hhhxxx and E := F ), g(·) as the identity function, and specifying
a Dirac delta distribution over the Pareto frontier F , we see that the inner integration

∫
F ℓ(F,E)p(F)dF for both {PF}2ES

and MOPI evaluates to p(hhhxxx ∈ Ã(F )). Therefore, as g{PF}2ES(·) and gMOPI(·) are both monotonic increasing over (0,1),
the acquisition functions have the same maximizer, i.e., where p(hhhxxx ∈ Ã(F )) is largest. The constraint case (i.e., remark
1.2) is obtained by assuming independency of fff and ggg.

B MITIGATING THE CLUSTERING ISSUE

We first demonstrate the clustering issue on the inverted VLMOP2 problem (Van Veldhuizen and Lamont, 1999), i.e., we
adopt VLMOP2 for maximization by taking the negative of each objective function. For illustrative purposes, the parameters
for extracting the Pareto frontier in α̃{PF}2ES(Ã(F̃ )) are set to |F̃FF |= 5 and |F̃ |= 5 ∀F̃ ∈ |F̃FF |.

(a) (b) (c)

Figure 5: The hypervolume partition strategy for a discrete Pareto frontier F̃ is an overestimation of the actual non-dominated
space A. a) Part of the dominated region has been misclassified as non-dominated (green area). b) This overestimation
will make the clustering more severe when calculating {PF}2ES based on Ã(F̃ ): For a certain iteration, given the MC
samples of F̃ , {PF}2ES favors the ’false positive’ location in the output space (σσσ xxx = [0.00158,0.00112]) that is certain
(high confidency) to (marginally) improve. c) This causes a clustering issue as candidates very close to existing training data
points are preferred.

A contour of {PF}2ES based on the approximation of Eq. 8 is depicted in Fig. 5, which shows that the new candidate point
is believed to make an improvement with high confidence (due to the small GP posterior variance) in 4 of the 5 Pareto
frontier samples. Unfortunately, the improvement is marginal as the predicted observation is located in the (relatively small)
false positive region introduced by the hypervolume decomposition P , see Fig. 5a. In practice, {PF}2ES will tend to
keep sampling in a region that it is confident to make tiny (or no) improvements, causing the sampled points to be densely
clustered in a small region of the input domain X .

In order to mitigate this issue and encourage the acquisition function to focus more on where the Pareto frontier is uncertain,
we utilize a parameter ε to shift the Pareto frontier approximation F̃ and shrink the false positive region. The effect is
demonstrated in Fig. 6. It can be seen that the modified acquisition function α̃{PF}2ES(Ã(F̃ε)) tend to be more explorative
than the naive approach α̃{PF}2ES(Ã(F̃ )) (i.e., based on Eq. 8).

Finally, this significant performance improvement is validated by the sensitivity analysis of ε in Fig. 10, where the
performance of the original approach α̃{PF}2ES(Ã(F̃ )) is denoted as ε = 0.
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(a) (b) (c)

Figure 6: The ε approach for mitigating clustering issues. a) The non-dominated region is extracted from the partitioning
P based on the shifted Pareto frontier F̃ε . b) Relative to Fig. 5, the conservative estimation of Ã has encouraged more
exploration, i.e., candidate (σσσ xxx = [0.053400,0.032628]). c) The corresponding exploration around the Pareto set in the
input space.

C PARALLEL VERSION q-{PF}2ES

C.1 Derivation of q-{PF}2ES

Consider the random variable hhhXXX = {hhhxxx1 , ...,hhhxxxq}, i.e., the objective-constraint observations that could arise from a parallel
evaluation of a batch of q points. In this scenario, we want to allocate a batch of q points X that provide the most mutual
information about the (feasible) Pareto frontier. With Eq. 4, we have:

I(F ;hhhXXX )≥ EF

[∫
hhhxxx

p(hhhXXX |F )log
q(hhhXXX |F )

p(hhhXXX )
dhhhXXX

]
(16)

Given the Pareto frontier F , we set the variational approximation of the ground-truth conditional distribution p(hhhXXX |F ) as:

q(hhhXXX |F ) =


p(hhhXXX )

ZAq

hhhXXX ∈ Aq

0 otherwise,

(17)

where Aq ∪ Aq = Rq(M+C), Aq ∈ Rq(M+C) is the union of the non-dominated feasible regions: {hhhXXX ∈ Rq(M+C)|∃i ∈
{1, ...,q},hhhxxxi ∈ A} and Aq ∈ Rq(M+C) is its complement {hhhXXX ∈ Rq(M+C)|∀i ∈ {1, ...,q},hhhxxxi ∈ A}. An intuitive illustra-
tion of Aq and q(hhhXXX |F ) is provided in Fig. 7. Note, the practical interpretation of the conditional probability Eq. 17 is that,
given F , the outcome of the objective-constraint observation is expected to have zero probability of being in the feasible
non-dominated region A for any candidate point within the batch, as otherwise F is not a valid Pareto frontier.

Following the same steps to motivate {PF}2ES, we arrive at the following MC estimate of the resulting variational bound
and the proposed batch extension of {PF}2ES:

αq-{PF}2ES ≈− 1
|F̃| ∑

F̃∈F̃

[
log
(

1−ZÃq(F̃εεε )

)]
, (18)

where ZÃq
:=
∫

Ãq
p(hhhXXX )dhhhXXX . i.e., the probability that there exists at least one batch element hhhxxxl ∈ hhhXXX such that hhhxxxl ∈ Ã =

{Ã1, ..., ÃNp}. We omit the notion F̃εεε here as well as in Eq. 19,12 for notational simplicity.

To demonstrate the calculation of ZÃq
, it is convenient to utilize the notion of events. Define ω(Ã,hXXX ) representing the

event that there exists at least one batch element hhhxxxl ∈ hhhXXX such that hhhxxxl ∈ Ã , it can be seen that ZÃq
= p(ω(Ã,hXXX )). Now,

since Ã = {Ã1, ..., ÃNp}, we know that ω(Ã,hXXX ) =
⋃Np

i=1 ω(Ãi,hXXX ), where ω(Ãi,hXXX ) represents there exists at least one batch
element hhhxxxl ∈ hhhXXX such that hhhxxxl ∈ Ãi. It can be also seen that ω(Ãi,hXXX ) =

⋃q
l=1 ω(Ãi,hxxxl ) where ω(Ãi,hxxxl ) is the lth batch
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Figure 7: The batch conditional probability density q(hhhXXX |F ) for M = 1, q = 2 and C = 0. The problem degenerates to
a batch single-objective optimization problem, where F collapses to a scalar value (the maximum) and the dominance
operation is reduced to >. In this scenario, by conditioning on F (white dot), the objective space can be partitioned into 2
different subspaces: the union of the non-dominated feasible regions Aq and its complement Aq, see bottom-left plot. The
condition of being in the region of Aq can be interpreted as: no point inside the batch is larger than F . The concept can be
generalized for arbitrary M, q and C.

element hxxxl is in Ãi. Combine the two unions, and the fact that ω(Ãi,hxxxl ) = ∏
M+C
k=1

(
1(Ak

il
≤ hhhk

xxxl j
≤ Ak

iu)
)

representing hhhxxxl is

within the decomposed hypercube Ãi, the event of ω(Ã,hXXX ) can be written as:

ω(Ã,hXXX ) =

Np⋃
i=1

(
q⋃

l=1

ω(Ãi,hxxxl )

)
=

Np⋃
i=1

(
q⋃

l=1

(
M+C

∏
k=1

(
1(Ãk

il ≤ hhhk
xxxl j

≤ Ãk
iu)
)))

(19)

Finally, we are able to MC approximate the probability of this event:

ZÃq
= p

(
ω(Ã,hhhXXX )

)
≈ 1

NMC

NMC

∑
j=1

(Np⋃
i=1

(
q⋃

l=1

(
M+C

∏
k=1

(
1(Ãk

il ≤ hhhk
xxxl j

≤ Ãk
iu)
))))

≈ 1
NMC

NMC

∑
j=1

maxi

maxl

M+C

∏
k=1

σ

hhhk
xxxl j

− Ãk
il

τ

 ·σ

 Ãk
iu −hhhk

xxxl j

τ

 ,

(20)

Note that the additional approximation introduced in Eq. 20 is caused by the relaxation of the categorical event (imposed by

the indicator function) to a continuous approximation: 1(Ãk
il
≤ hhhk

xxxl j
≤ Ãk

iu)≈ σ

(
hhhk

xxxl j
−Ãk

il

τ

)
·σ

(
Ãk

iu−hhhk
xxxl j

τ

)
. This makes the

MC approximation suitable for gradient-based optimizers.

C.2 Monte Carlo Approximation of q-{PF}2ES and its Demonstration

We elaborate on the implementation of the MC approximation. Let ℓ : Rq(M+C)×A → R represent the utility function that
calculates ZÃq

as in Eq. 12, we can write the MC approximated q-{PF}2ES in terms of ℓ as:

αq-{PF}2ES ≈ α̃q-{PF}2ES =− 1
|F̃| ∑

F̃∈F̃

[
log

(
1− 1

NMC

NMC

∑
j=1

ℓ(hhhXXX j, Ãq(F̃εεε))

)]
, (21)

where α̃q-{PF}2ES represents the MC approximated acquisition function. Note that Ãq(F̃εεε) is independent of XXX . With the
aim of a consistent MC acquisition function gradient, we leverage the reparameterization trick (Kingma and Welling, 2013)
to generate samples of hhhXXX : since hhhXXX ∼N (mmmXXX ,LXXX LT

XXX ) where mmmXXX ∈Rq(M+C), Cholesky factor LXXX ∈Rq(M+C)×q(M+C) , it can
be generated via hhhXXX = mmmXXX +LXXX λ , where λ ∼ N (000, III) and the base sample sets: {λ j}NMC

j=1 ,λ j ∈Rq(M+C) is holding through
the whole process of acquisition function maximization, the largely preserved consistency can be shown via the chain
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rule of derivative as ∇XXX α̃q-{PF}2ES =− 1
|F̃| ∑F̃∈F̃

[
− 1

NMC
∑

NMC
j=1 ∇XXX ℓ(hhhXXX j ,Ãq(F̃εεε ))(

1− 1
NMC

∑
NMC
j=1 ℓ(hhhXXX j ,Ãq(F̃εεε ))

)
]

, where each element within the max function(
∏

M+C
k=1

(
σ

(
hhhk

xxxl j
−Ãk

il

τ

)
·σ

(
Ãk

iu−hhhk
xxxl j

τ

)))
is differentiable. We use quasi-Monte Carlos to generate the base samples and

refer Balandat et al. (2020); Daulton et al. (2020) for details of such an approximation.

As a proof of concept, we illustrate the effectiveness of q-{PF}2ES (with batch size q = 2, and qMC sample size 128) on a
one-dimensional Sinlinear-Forrester function (Table 3 of Qing et al. (2022a)). The progress plot of batch queries is provided
in Fig. 8. It can be seen that the out-of-sample strategy is able to accurately recommend a Pareto frontier without false
positives after five batches BO iterations.

Figure 8: q-{PF}2ES on the inverted Sinlinear-Forrester problem (d = 1,M = 2,C = 0), i.e., for maximization we take
the negative of the objective functions, with q = 2 starting from three training data points. The first row is contour of
q-{PF}2ES in the concatenated batch input space. The second row represents the sampled Pareto frontiers F̃FF and the queried
batches in the objective space (the shaded oval area is the 2σσσ of the GP uncertainty). The third row shows the out-of-sample
recommended Pareto frontiers after the batch query, with false positives denoted in green.

D ALTERNATIVE STRATEGY FOR SETTING ε

In the case of common bi-objective optimization (M = 2) scenarios, ε can also be specified using an alternative strategy. The
motivation for this approach is that, under mild additional assumptions, ε is closer to the infimum of the mutual information
lower bound set (i.e., an ordered set of ε with the lower bound property of the mutual information).

Proposition 1. For a continuous Pareto Frontier F with M = 2, given its finite approximation F̃ := { fff ∗| fff ∗ ∈ F} that
satisfy ∀k ∈ M: ∃ fff ∗ ∈ F̃ s.t. fff ∗k = max

xxx∈X
( fff k(xxx)) and |F̃ | ≥ 2, define its corresponding set for kth output F̃ k

ord ordered with

≤. Define εεε ttt := [ε1, ...,εM], where ∀k ∈ M,εk = max
1≤i≤|F̃ |−1

(F̃ k
ordi+1 − F̃ k

ordi). ∀εεε ≥ εεε ttt , with the hypervolume partition

P(F̃εεε) based on F̃εεε := { fff + εεε| fff ∈ F̃}, I(F ;hhhxxx)≥ lim
|F̃|→∞

α̃{PF}2ES(Ã(F̃εεε)).

Proposition 1 states that under the extrema assumption (i.e., the discrete Pareto frontier preserves all extrema points in F ),
specifying ε as the maximum inner spacing between Pareto points within F̃ per output dimension. One can subsequently
define the non-dominated region Ã based on the shifted Pareto frontier F̃εεε , which guarantees the acquisition function to be a
lower bound of mutual information estimation (Eq. 8) when the Pareto frontier samples |F̃| → ∞. Here we elaborate on
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the proof of Proposition 1. We start with assuming an unconstrained multi-objective optimization problem. Note that the
following proof also utilizes the well-established definition of strict and weak dominance (i.e., ≻ and ⪰ respectively) and the
property of transitivity of dominance (i.e., a ⪰ b ⪰ c ⇒ a ⪰ c), for which we refer to standard multi-objective optimization
textbooks, e.g., Emmerich and Deutz (2018).

Lemma 1. For any discrete Pareto frontier F̃ ∗ when M = 2, with εεε t defined as in proposition 1, ∀ fff ∈ Ã(F̃ ∗)∩{ fff |∀k ∈
M : fff k ≤ max(F̃ ∗

k )} , ∃ fff ∗ ∈ F̃ ∗ s.t. fff ∗ ⪯ fff + εεε t and fff ∗ is not unique.

Proof. For any kth output, given that fff k ≤ max(F̃ ∗
k ), we know that ∃ki ∈ [1, |F̃ | − 1]: F̃ k

ordki
≤ fff k ≤ F̃ k

ordki+1
. 1◦:

if for l ̸= k, F̃ l
ordl|F̃ |−i

≤ fff l ≤ F̃ l
ordl|F̃ |−i+1

, then we know that fff k + εk ≥ F̃ k
ordki+1

and fff l + εl ≥ F̃ l
ordl|F̃ |−i+1

, hence

fff +εεε ⪰ (F̃ k
ordki+1

,F̃ l
ordl|F̃ |−i+1

). Since (F̃ k
ordki+1

,F̃ l
ordl|F̃ |−i+1

)⪰ (F̃ k
ordki

,F̃ l
ordl|F̃ |−i+1

) and (F̃ k
ordki+1

,F̃ l
ordl|F̃ |−i+1

)⪰

(F̃ k
ordki+1

,F̃ l
ordl|F̃ |−i

), the lemma holds; 2◦: if for l ̸= k, fff l > F̃ l
ordl|F̃ |−i+1

. Finally it can be shown that

(F̃ k
ordki+1

,F̃ l
ordl|F̃ |−i+1

)⪰ (F̃ k
ordki

,F̃ l
ordl|F̃ |−i+1

) and (F̃ k
ordki+1

,F̃ l
ordl|F̃ |−i+1

)⪰ (F̃ k
ordki+1

,F̃ l
ordl|F̃ |−i

).

Lemma 2. For a given discrete Pareto frontier F̃ with εεε t as defined in proposition 1, Ã(F̃εt )⊆ A(F ).

Proof. Note the necessary condition for Ã(F̃εεεt ) ⊆ A(F ) is ∀ fff ∈ Ã(F̃εεεt ): fff ∈ A(F ). Proof by contradiction: suppose
∃ fff ∈ Ã(F̃εεεt ) s.t. fff /∈ A(F ), hence fff ∈ A(F ). This implies ∃ fff ′ ∈ F : fff ′ ⪰ fff ⇒ fff ′+ εεε t ⪰ fff + εεε t . 1◦: Suppose ∀k ∈ M:
fff k ≤ max(F̃εεεt k), with lemma 1, by setting F̃ ∗ = F̃εεεt we know ∃ fff ′′ ∈ F̃εεεt s.t. fff ′′ ⪯ fff + εεε t , then fff ′+ εεε t ⪰ fff + εεε t ⪰ fff ′′ ⇒
fff ′ ⪰ fff ′′− εεε t , since fff ′′− εεε t ∈ F , due to the definition of a Pareto frontier this can only be hold when fff ′′− εεε t = fff ′, which
contradicts with its non-unique property, hence lemma holds; 2◦: Suppose ∃k ∈ M s.t. fff k > max(F̃εεεt k), since according
to the definition of F̃ , max(F̃εεεt k) = max(Fk)+ εεε t k, this results fff k > max(Fk) and hence fff ∈ A(F ), contradicting with
fff ∈ A(F ).

Eventually, the proof of Proposition 1 becomes straightforward: with lemma 2 and Eq. 6 we have I(F ;hhhxxx) ≥
−EF

[
log
(
1−ZA(F )

)]
= lim

|F|→∞

− 1
|F| ∑F∈F

[
log
(
1−ZA(F )

)]
≥ lim

|F̃|→∞

α̃{PF}2ES(Ã(F̃εεε)) since ZA(F ) ≥ ZÃ(F̃εεε )
.

Remark that the proposition 1 is also valid for CMOO when F ̸= φ (the extrema condition in CMOO needs to be generalized
for constraints). In reality, F is not continuous for all problems, unfortunately. Clustering techniques (e.g., Schubert et al.
(2017)) can be utilized as a pre-processing step to satisfy the condition of the proposition. Nevertheless, this does increase
the complexity of the method. For M > 2, proposition 1 does not hold since εεε , as defined using the maximum inner spacing,
can not guarantee that Ã(F̃ε)⊆ A(F ), and the choice of εεε can be correlated with the choice of partitioning strategy P .

The practical implementation of the original acquisition function {PF}2ES-c, as well as using the proper εεε approach based
on proposition 1 ({PF}2ES-lb) is detailed in Algorithm 1 and 2, respectively. Note that lines 2-9 in both algorithms only
need to be calculated once per BO iteration.

D.1 Comparing strategies for setting ε

We investigate the two different approaches for setting εεε for two bi-objective optimization problems. Namely, VLMOP2 and
C-BraninCurrin as provided in Table 1, both with continuous Pareto frontiers. The results are shown in Fig. 9 where we
refer to the heuristical approach as {PF}2ES-4% (i.e.,c = 0.04) and the approach above as {PF}2ES-lb. From the in-sample
regret, it can be seen that {PF}2ES-lb can be more greedy than {PF}2ES-4%, although it is less competitive in terms of
out-of-sample recommendations for C-BraninCurrin. As conclusion, both strategies lead to comparable performance. Hence,
we propose to simply utilize the heuristic approach which does not depend on extra assumptions and generalizes better with
respect to M.
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Algorithm 1 Practical implementation of {PF}2ES-c

1: Input: a candidate xxx; GP models for objectives (and
constraints): M , heuristic shifting percentage c.

2: for i = 1, ..., |F | do
3: generate ith GP parametric trajectory approxima-

tions (see e.g., Eq. 3, 4 of Qing et al. (2022b)).
4: Apply NSGA2 to GP trajectories to obtain Pareto

frontier samples F̃
5: for k = 1, ...,M do:
6: εk = c ·

(
max(F̃ k)−min(F̃ k)

)
7: end for
8: F̃ε = F̃ + ε

9: Partition Ã : Ã = P(F̃ε)
10: end for
11: Return {PF}2ES-c (Eq. 10).

Algorithm 2 Practical implementation of {PF}2ES-lb

1: Input: a candidate xxx; GP models for objectives (and
constraints): M .

2: for i = 1, ..., |F | do
3: generate ith GP parametric trajectory approxima-

tions (see, e.g., Eq. 3, 4 of Qing et al. (2022b)).
4: Apply NSGA2 to GP trajectories to obtain Pareto

frontier samples F̃
5: for k = 1, ...,M do:
6: εk = max

1≤i≤|F̃ |−1
(F̃ k

ordi+1 − F̃ k
ordi) as in

proposition 1
7: end for
8: F̃ε = F̃ + εεε

9: Partition Ã : Ã = P(F̃ε)
10: end for
11: Return {PF}2ES-lb (Eq. 10).

Figure 9: Comparing strategies for setting εεε for two synthetic benchmark functions.

E EXPERIMENTAL DETAILS

E.1 Synthetic problems and setting the reference point

We benchmark on synthetic problems regularly used within the literature. Details are given in Table 1, together with the
reference point used in the uncertainty calibration 7 (i.e., Fig. 3) and for performance metric (i.e., Fig. 4, 5). Note that the
ideal hypervolume utilized to calculate the log hypervolume difference performance metric is set optimistically to guarantee
a well-behaved performance metric.

E.2 Out-of-sample recommendation strategy

For both MOO and CMOO problems, the feasible Pareto optimal inputs XXX r is recommended using a conservative model-based
approach similar to Garrido-Merchán and Hernández-Lobato (2020); Ungredda and Branke (2021). The recommendation
task can be formulated as a MOO problem:

maximize
xxx∈X

mmm1,mmm2, ...,mmmM

s.t.,1−Φ(
mmmM+1 −η1

σσσM+1 )≥CFea, ...,1−Φ(
mmmM+C −ηC

σσσM+C )≥CFea

(22)

where m and σ represent the GP poster mean and standard deviation, respectively. We expect all the recommendations
to be feasible in our empirical experiments, hence CFea is set to 0.95 and is decreased with 0.05 in case no feasible

7Note that since the Pareto frontier samples from the GP posterior, in case of an inaccurate model, it can significantly deviate from
the real Pareto frontier (e.g., at the initial stages of the BO process). Hence, the reference point utilized in the hypervolume indicator
calculation is set more conservatively than in the regret calculation.
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solution exists (i.e., XXX r = φ ), ηC = 0.5% ·
(
max(HHHC)−min(HHHC)

)
. In practice, we empirically find that while an aggressive

recommendation strategy (e.g., CFea = 0.5,η = 0) can possibly contain infeasible candidates, the recommended candidates
are able to cover the real Pareto frontier faster and the constraints are often only violated with a tiny amount (e.g., 1e−3
level), which is tolerable for some applications. Hence, the practitioner is recommended to choose CFea and η according to
the tolerance to constraint violations.

E.3 Setup details of different acquisition functions

We provide configuration details for different information-theoretic acquisition functions used in the comparison.

EHVI is using the Trieste (Berkeley et al., 2022) implementation. The dynamic reference point specification strategy
(Knudde et al., 2017) is utilized:

rre f = max(F̃ )+2 · max(F̃ )−min(F̃ )

|F̃ |
(23)

qEHVI is based on the Trieste (Berkeley et al., 2022) implementation and extended with a random quasi-Monte Carlo
(qMC) method for batch reparameterization sampling(see Eq. 15 of Daulton et al. (2020))). 128 qMC samples are used to
approximate the hypervolume improvement.

The qEHVI paper does not provide a dynamic reference point strategy for CMOO. Denoting the outcome of objective
function on training data as FFF , the following strategy is used:

rre f =

 max(F̃ )+2 · max(F̃ )−min(F̃ )

|F̃ | F̃ ̸= φ

max(FFF)+2 · max(FFF)−min(FFF)
|FFF | F̃ = φ

(24)

EHVI-PoF is a common strategy for handling CMOO. In case there are no predicted feasible observations on the training
data, the probability of feasibility function will be used for locating a feasible observation first. For EHVI-PoF, the same
reference point setting as EHVI is utilized, where F̃ is the feasible Pareto frontier.

Information-theoretic acquisition functions For PESMO, MESMOC+ and PPESMOC, the implementations of the
accompanying papers are used 8 and implement the remaining acquisition functions ourselves. While we aim to use similar
settings for all algorithms (e.g., the Pareto frontier number, the population sizes for NSGA2), the provided implementation
of PESMO, MESMOC+, and PPESMOC still have different settings, see Table 29.

Table 2: Configurations of different information-theoretic acquisition functions.

Pareto Frontier
Sample Strategy

Pareto Frontier
Samples

Out-of-sample
Recommendation Strategy

{PF}2ES (for MOO) NSGA2 5 NSGA2
PFES NSGA2 5 NSGA2
MESMO NSGA2 5 NSGA2
PESMO Monte Carlo 1 NSGA2
q-{PF}2ES (for MOO) NSGA2 5 NSGA2

{PF}2ES (for CMOO) NSGA2* 5 NSGA2*
MESMOC NSGA2* 5 NSGA2*
MESMOC+ Monte Carlo 1 Monte Carlo
q-{PF}2ES (for CMOO) NSGA2* 5 NSGA2*
PPESMOC Monte Carlo 1 Monte Carlo

8We are not able to use a continuous optimizer for out-of-sample recommendations for MESMOC+ and PPESMOC.
9NSGA2* is a parameter-less NSGA2 approach (Deb and Agrawal, 1999) to perform CMOO. We use the available training data to

initialize NSGA2, which leads to improved performance.
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F SENSITIVITY ANALYSIS OF THE HYPERPARAMETERS OF {PF}2ES AND q-{PF}2ES

F.1 Parameter ε

We conduct a sensitivity analysis for setting εεε to determine its effect on the performance of the acquisition function. The
results are depicted in Fig. 10, with results of both in-sample, and out-of-sample regret, as well as the uncertainty calibration
of the Pareto frontier.

Figure 10: Sensitivity analysis of ε on the performance of {PF}2ES.

It can be seen that εεε is less sensitive in terms of out-of-sample regret within the range of 3%−5%. A too-small value will
not mitigate the clustering issue, while a large value of ε can cause too much exploration resulting in a deterioration of the
in-sample regret. Importantly, using εεε is helpful for a faster reduction of the uncertainty of the Pareto frontier.

F.2 Number of Monte Carlo samples for q-{PF}2ES

We conduct an empirical sensitivity analysis of the MC sample size used in approximating the q-{PF}2ES (i.e., Eq. 12) and
its effect on the performance. The results on two different benchmark functions are provided in Fig. 11. As expected, it can
be seen that with an out-of-sample recommendation strategy, a larger MC sample size can positively affect the performance
of the acquisition function. The benefit is more obvious for the in-sample recommendation strategy.

Figure 11: The performance difference of q-{PF}2ES with respect to different MC sample sizes.
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G COMPUTATIONAL COMPLEXITY OF {PF}2ES AND q-{PF}2 ES

For the information-theoretic acquisition function, generating the Pareto frontier approximation (i.e., line 3-9 of Algo-
rithm 1,2) is treated separately as the initialization cost, while the cost of evaluating the acquisition functions is termed as
evaluation cost.

Initialization cost The initialization of {PF}2ES consists of two parts: generation of F̃ samples and calculate Ã(F̃ ) by
utilizing a hypervolume decomposition P on F̃ . The cost of the former, ignoring the non-dominated sorting complexity of
NSGA2 which is O(M|F̃ |2) (Deb et al., 2002), breaks down to the cost of evaluating the GP spectral samples, which is
linear with the number of random Feature features. The hypervolume decomposition strategy (Lacour et al., 2017) utilized in
this research has a complexity of O(|F̃ |⌊M

2 ⌋+1). However, both {PF}2ES and q-{PF}2ES are agnostic to the choice of P .

Evaluation cost

- {PF}2ES By denoting the maximum number of cells across the set of Pareto frontier samples F̃FF as max(Np), the
computational complexity of evaluate {PF}2ES is: O (max(Np)M) 10.

- q-{PF}2ES We omit the cost of the batch reparameterization sampling (which is O((M+C)q)) and hence, the evaluation
cost of q-{PF}2ES itself is: O (max(Np)qNMCM).

H COMPARING RUNNING TIMES

The following experiments are conducted in parallel per batch of ten on a Linux server with 256 GB RAM. The results are
depicted in Table 3. In general, the joint batch acquisition function q-{PF}2ES requires a longer time to query a batch of
samples than {PF}2ES. Besides the additional computational complexity introduced by the MC approximation, cfr. Section
G, this can be attributed to an increase in difficulty for the multi-start L-BFGS-B optimizer as illustrated in Fig. 12. We also
note that, though the {PF}2ES-KB consumes similar time as other batch strategies, its computationally cost grows much
faster w.r.t. q as it requires additional sampling of the Pareto frontier F̃ . For PPESMOC, we generally observe a longer
average query time than the original paper which reports the median (Table 1 of Garrido-Merchán and Hernández-Lobato
(2020)), and the query time grows drastically with the number of iterations (e.g., the batch query time for C2DTLZ2 grows
from around 20 minutes per batch sample to almost 3 hours when approaching the maximum number of batch iterations).

Figure 12: Comparison of {PF}2ES and the Monte Carlo approximation of q-{PF}2ES (with q = 1) on the SRN benchmark
function. The effect of the MC approximation on the gradient-based acquisition function optimizer can be seen in the last
sub-figure: the multi-start gradient-based optimization generally requires larger function evaluations to converge (i.e., the
norm of the derivatives reaches a lower value).

I ADDITIONAL EXPERIMENTAL RESULTS

I.1 Experimental results for the in-sample recommendation strategy

We report the experimental results of the in-sample recommendation strategy in the main paper, see Fig. 13, the in-sampled
Pareto frontiers are extracted from all of the data obtained so far. However, the in-sample recommendation strategy is not
the intrinsic strategy for non-myopic information-theoretic acquisition functions.

10Note that for both {PF}2ES and q-{PF}2ES, the complexity involved with constraint number C is independent with the decomposed
grid size max(Np) given independent assumption across each outcome.
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Table 3: Wall time for optimizing the acquisition function in seconds on a CPU (2x Silver 4210 CPU @ 2.20GHz). The
mean and 2 times the standard deviations are reported across 30 runs.

VLMOP2 BraninCurrin ZDT1 ZDT2

{PF}2ES 47.38±4.28 47.01±2.58 46.35±2.08 45.86±2.23
PFES 63.68±32.95 53.90±26.29 84.02±63.6 63.32±44.74
MESMO 34.70±1.56 34.85±1.50 34.21±1.79 34.00±1.64
PESMO 319.91±133.79 321.83±135.60 335.36±396.14 432.59±334.89
EHVI 0.29±1.19 1.08±1.48 0.43±1.39 0.3226±1.35

q-{PF}2ES (q=2) 113.96±85.54 128.08±115.16 132.23±215.71 117.43±202.28
{PF}2ES-KB (q=2) 89.96±79.00 90.43±65.71 94.80±80.17 94.80±80.17
qEHVI (q=2) 6.49±3.90 10.44±9.90 4.98±9.83 4.20±8.69

C-BraninCurrin Constr-Ex SRN C2DTLZ2

{PF}2ES 63.05±4.58 75.52±5.92 75.81±6.39 65.43±4.54
EHVI-PoF 7.46±2.9 10.44±3.90 8.47±3.32 6.81±1.85
MESMOC 46.41±2.59 54.47±2.81 52.22±2.93 48.89±5.06
MESMOC+ 58.52±38.62 70.02±54.44 70.78±72.39 83.42±72.88

PPESMOC (q = 2) 2152.51±2981.10 2735.67±3953.59 2372.81±3791.25 4276.52±7232.86
q-{PF}2ES (q=2) 186.72±177.68 259.27±167.52 98.13±50.22 217.71±217.48
{PF}2ES-KB (q=2) 170.56±126.00 169.40±156.65 196.04±160.60 169.11±94.08
qEHVI (q=2) 33.07±14.43 30.30±22.13 35.57±14.25 32.99±27.26

I.2 Experimental results for larger batch sizes

Additional experimental results for larger batch sizes q are given in Fig. 14. Besides the ZDT1 and C2DTLZ2 synthetic
functions reported in the main paper, we also add the results of two new synthetic experiments, namely the DTLZ4 problem
and the Osy problem, see Table 1 for detailed settings. In general, with the same black box function evaluation budget,
q-{PF}2ES demonstrates similar performance. It is also expected that with an increase in batch size, the acquisition function
performance can be degraded slightly due to the increasing complexity of the acquisition function optimization process.

I.3 Experimental results for M > 2 objectives

Two additional results for a larger number of objectives are seen in Fig. 15 based on two new problems. For the unconstrained
version, we use DTLZ4 with 3 objective functions. For the constraint case, we use a real-life conceptual Marine design
problem (Parsons and Scott, 2004; Tanabe and Ishibuchi, 2020). Details of the problem are also provided in Table 1. It can
be observed that {PF}2ES and q-{PF}2ES provide competitive performance. For the conceptual Marine design problem,
we generally observe that {PF}2ES-KB provides the fastest converge speed. We reason this is because given the relatively
high constraint numbers, the approximated non-dominated feasible region Ã is relatively small. For Monte Carlo-based
acquisition functions like q-{PF}2ES, this can impose difficulties for approximation and optimization since ZÃq

(Eq. 20) is
rather small.

Note that, as discussed in Appendix. G, the computational complexity for providing the exact approximation of A will
increase exponentially with the number of objectives M, meaning that it will become the dominant factor in the calculation
cost of {PF}2ES as M increases. This is a common problem for hypervolume partition strategy-based acquisition functions
(e.g., EHVI, MOPI).
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Figure 13: Comparison of different acquisition functions for multi-objective Bayesian optimization with respect to an
in-sample recommendation strategy. In case of encountering a numerical issue (i.e., Cholesky decomposition issue) a
different initial sample set is utilized.

Figure 14: Numerical experiments of q-{PF}2ES on larger batch sizes. Note all the batch methods terminate on roughly the
same number of function evaluations.
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Figure 15: Experimental comparison for larger output dimensionality.


